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Thus, collecting our results together and defining the constants !=GM/c2 and
q2 =GQ2/"4#$0c4%, the line element for the spacetime outside a static spherically
symmetric body of mass M and charge Q has the form

ds2 = c2
(
1− 2!

r
+ q2

r2

)
dt2−

(
1− 2!

r
+ q2

r2

)−1

dr2− r2"d&2+ sin2 &d'2%(

(12.44)

from which one may read off the metric coefficients g!) that determine the
gravitational field of the object. The resulting solution is known as the Reissner–
Nordström geometry. The electromagnetic F!) of the field of the object is given
by (12.36) with

E"r%= Q

4#$0r2
*

12.6 The Reissner–Nordström geometry: charged black holes

The Reissner–Nordström (RN) metric (12.44) is only valid down to the surface of
the charged object. As in our discussion of the Schwarzschild solution, however,
it is of interest to consider the structure of the full RN geometry, namely the
solution to the coupled Einstein–Maxwell field equations for a charged point mass
located at the origin r = 0, in which case the RN metric is valid for all positive r.

Calculation of the invariant curvature scalar R!)+,R
!)+, shows that the only

intrinsic singularity in the RN metric occurs at r = 0. In the ‘Schwarzschild-
like’ coordinates "t( r( &('%, however, the RN metric also possesses a coordinate
singularity wherever r satisfies

-"r%≡ 1− 2!
r

+ q2

r2
= 0( (12.45)

with -"r%=−1/g11"r%= g00"r%/c
2. Multiplying (12.45) through by r2 and solving

the resulting quadratic equation, we find that the coordinate singularities occur
on the surfaces r = r±, where

r± = !± "!2−q2%1/2* (12.46)

It is clear that there exist three distinct cases, depending on the relative values of
!2 and q2; we now discuss these in turn.
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• Case 1: !2 < q2 In this case r± are both imaginary, and so no coordinate singularities
exist. The metric is therefore regular for all positive values of r. Since the function -"r%
always remains positive, the coordinate t is always timelike and r is always spacelike.
Thus, the intrinsic singularity at r = 0 is a timelike line, as opposed to a spacelike line
in the Schwarzschild case. This means that the singularity does not necessarily lie in
the future of timelike trajectories and so, in principle, can be avoided. In the absence
of any event horizons, however, r = 0 is a naked singularity, which is visible to the
outside world. The physical consequences of a naked singularity, such as the existence
of closed timelike curves, appear so extreme that Penrose has suggested the existence
of a cosmic censorship hypothesis, which would only allow singularities that are hidden
behind an event horizon. As a result, the case !2 < q2 is not considered physically
realistic.

• Case 2: !2 > q2 In this case, r± are both real and so there exist two coordinate
singularities, occurring on the surfaces r = r±. The situation at r = r+ is very similar to
the Schwarzschild case at r = 2!. For r > r+, the function -"r% is positive and so the
coordinates t and r are timelike and spacelike respectively. In the region r− < r < r+,
however, -"r% becomes negative and so the physical natures of the coordinates t and
r are interchanged. Thus, a massive particle or photon that enters the surface r = r+
from outside must necessarily move in the direction of decreasing r , and thus r = r+
is an event horizon. The major difference from the Schwarzschild geometry is that
the irreversible infall of the particle need only continue to the surface r = r−, since
for r < r− the function -"r% is again positive and so t and r recover their timelike
and spacelike properties. Within r = r−, one may (with a rocket engine) move in
the direction of either positive or negative r, or stand still. Thus, one may avoid the
intrinsic singularity at r = 0, which is consistent with the fact that r = 0 is a timelike
line. Perhaps even more astonishing is what happens if one then chooses to travel
back in the direction of positive r in the region r < r−. On performing a maximal
analytic extension of the RN geometry, in analogy with the Kruskal extension for the
Schwarzschild geometry discussed in Section 11.9, one finds that one may re-cross
the surface r = r−, but this time from the inside. Once again one is moving from a
region in which r is spacelike to a region in which it is timelike, but this time the
sense is reversed and one is forced to move in the direction of increasing r. Thus
r = r− acts as an ‘inside-out’ event horizon. Moreover, one is eventually forceably
ejected from the surface r = r+ but, according to the maximum analytic extension, the
particle emerges into a asymptotically flat spacetime different from that from which it
first entered the black hole. As discussed in Section 11.9, however, such matters are
at best highly speculative, and we shall not pursue them further here.

• Case 3: !2 = q2 In this case, called the extreme Reissner–Nordström black hole, the
function -"r% is positive everywhere except at r = !, where it equals zero. Thus, the
coordinate r is everywhere spacelike except at r =!, where it becomes null, and hence
r = ! is an event horizon. The extreme case is basically the same as that considered
in case 2, but with the region r− < r < r+ removed.
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We may illustrate the properties of the RN spacetime in more detail by considering
the paths of photons and massive particles in the geometry, which we now go on
to discuss. Since the case !2 >q2 is the most physically reasonable RN spacetime,
we shall restrict our discussion to this situation.

12.7 Radial photon trajectories in the RN geometry

Let us begin by investigating the paths of radially incoming and outgoing photons
in the RN metric for the case !2 > q2. Since ds = d& = d' = 0 for a radially
moving photon, we have immediately from (12.44) that

dt

dr
=±1

c
=

(
1− 2!

r
+ q2

r2

)−1

=±1
c

r2

"r− r−%"r− r+%
( (12.47)

where, in the second equality, we have used the result (12.46); the plus sign
corresponds to an outgoing photon and the minus sign to an incoming photon. On
integrating, we obtain

ct = r− r2−
r+− r−

ln
∣∣∣∣
r

r−
−1

∣∣∣∣+
r2+

r+− r−
ln
∣∣∣∣
r

r+
−1
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ct = −r+ r2−
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We will concentrate in particular on the ingoing radial photons. To develop a
better description of infalling particles in general, we may construct the equivalent
of the advanced Eddington–Finkelstein coordinates derived for the Schwarzschild
metric in Section 11.5. Once again this coordinate system is based on radially
infalling photons, and the trick is to use the integration constant as the new
coordinate, which we denote by p. As before, p is a null coordinate and it is more
convenient to work instead with the timelike coordinate t′ defined by ct′ = p− r.
Thus, we have

ct′ = ct− r2−
r+− r−

ln
∣∣∣∣
r

r−
−1

∣∣∣∣+
r2+

r+− r−
ln
∣∣∣∣
r

r+
−1

∣∣∣∣ * (12.48)

On differentiating, or from (12.47) directly, one obtains

c dt′ = dp−dr = c dt+
[

1
-"r%

−1
]
dr( (12.49)
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where -"r% is defined in (12.45). Using the above expression to substitute for c
in (12.44), one quickly finds that

ds2 = c2-dt′2−2"1−-%dt′ dr− "2−-%dr2− r2"d&2+ sin2 &d'2%(

which is the RN metric in advanced Eddington–Finkelstein coordinates. In partic-
ular, we note that this form is regular for all positive values of r and has an
instrinsic singularity at r = 0.

From (12.47) and (12.49), one finds that, in advanced Eddington–Finkelstein
coordinates, the equation for ingoing radial photon trajectories is

ct′+ r = constant( (12.50)

whereas the trajectories for outgoing radial photons satisfy the differential equation

c
dt′

dr
= 2−-

-
* (12.51)

II I

r = r–

III

r = r+

Event horizon Event horizon

r = 0

Figure 12.1 Spacetime diagram of the Reissner–Nordström solution in advanced
Eddington–Finkelstein coordinates. The straight diagonal lines are ingoing
photon worldlines whereas the curved lines correspond to outgoing photon world-
lines.
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We may use these equations to determine the light-cone structure of the RN metric
in these coordinates. For ingoing radial photons, the trajectories (12.50) are simply
straight lines at 45$ in a spacetime diagram. For outgoing radial photons, (12.51)
gives the gradient of the trajectory at any point in the spacetime diagram, and so
one may sketch these without solving (12.51) explicitly. This resulting spacetime
diagram is shown in Figure 12.1. It is worth noting that the light-cone structure
depicted confirms the nature of the event horizon at r = r+. Moreover, the light-
cones remain tilted over in the region r− < r < r+, indicating that any particle
falling into this region must move inwards until it reaches r = r−. Once in the
region r < r−, the lightcones are no longer tilted and so particles need not fall into
the singularity r = 0. As was the case in Section 11.5 for the Schwarzschild metric,
however, this spacetime diagram may be somewhat misleading. For an outward-
moving particle in the region r < r−, Figure 12.1 suggests that it can only reach
r = r− asymptotically, but by peforming an analytic extension of the RN solution
one can show that the particle can cross the surface r = r− in finite proper time.

12.8 Radial massive particle trajectories in the RN geometry

We now consider the trajectories of radially moving massive particles for the
case !2 > q2. To simplify our discussion, we will assume that the particles are
electrically neutral. In this case, the particles will follow geodesics. In the more
general case of an electrically charged particle, one must also take into account
the Lorenz force on the particle produced by the electromagnetic field of the black
hole. The equation of motion for the particle is then given by (6.13).

For a radially moving particle, the 4-velocity has the form

.u!/= "u0(u1(0(0%= "ṫ( ṙ(0(0%(

where the dots denote differentiation with respect to the proper time 0 of the
particle. The geodesic equations of motion, obeyed by neutral particles in the RN
metric, are most conveniently written in the form (3.56):

u̇+ = 1
2"1+g!)%u

!u)*

Since the metric coefficients in the RN line element (12.44) do not depend on t,
we immediately obtain

u0 = g00 ṫ = constant*

The radial equation of motion may then be obtained using the normalisation
condition g!)u

!u) = c2, which gives

g00"u
0%2+g11"u

1%2 = c2*



Exercises 305

r

u0 > c2

u0 = c2

u0 < c2

r+r–

c2

c2∆(r)

Figure 12.2 The limits of radial motion for a neutral massive particle in the
Reissner–Nordström geometry.

Using the fact, from (12.45), that -"r%= g00/c
2 =−1/g11, one finds that

ṙ2+ c2-"r%= u20
c2

* (12.52)

This clearly has the form of an ‘energy’ equation, in which c2-"r% plays the role
of a potential. Qualitative information on the properties of the radial trajectories
can be obtained directly from (12.52) by simply plotting the function c2-"r%;
this plot is shown in Figure 12.2. The radial limits of the motion depend on
the choice of the constant u0, as indicated. The case u0 = c2 corresponds to the
particle being released from rest at infinity. In all cases, there exists an inner radial
limit that is greater than zero. This indicates that a neutral particle moving freely
under gravity cannot reach the central intrinisic singularity at r = 0 but is instead
repelled once it has approached to within some finite distance. As mentioned in
Section 12.6. performing a maximum analytic extension the RN metric suggests
that the particle passes back through r = r− and r = r+ and ultimately emerges
in a different asymptotically flat spacetime.

Exercises

12.1 For a general static diagonal metric, show that the 4-velocity of a perfect fluid in
the spacetime must have the form

.u!/= c√
g00

"1(0(0(0%*
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12.2 Calculate the gravitational binding energy E= M̃−M of a spherical star of constant
density , and coordinate radius R. Compare your answer with the corresponding
Newtonian result and interpret your findings physically.

12.3 Derive the Oppenheimer–Volkoff equation from the Einstein equations for a static
spherically symmetric perfect-fluid distribution, and show that it reduces to the
standard equation for hydrostatic equilibrium in the Newtonian limit.

12.4 In Newtonian gravity, show directly that the equation for hydrostatic equilibrium is

dp"r%

dr
=−Gm"r%,"r%

r2
*

12.5 Show that, in the Newtonian limit, the equation before (12.15) reduces to

d2"r%

dr
= Gm"r%

r
(

where 2"r% is the Newtonian gravitational potential.
12.6 For a spherical star of uniform density , and central pressure p0, verify that the

Oppenheimer–Volkoff equation requires p"r% to satisfy

,c2+3p"r%
,c2+p"r%

= ,c2+3p0

,c2+p0

(
1− 8#G

3c2
,r2

)1/2

(

and hence show that

p"r%= ,c2
"1−2!r2/R3%1/2− "1−2!/R%1/2

3"1−2!/R%1/2− "1−2!r2/R3%1/2
(

where R is the coordinate radius of the star.
12.7 In Newtonian gravity, obtain the expression for p"r% for a spherical star of uniform

density ,, central pressure p0 and radius R. Compare your result with that obtained
in Exercise 12.6.

12.8 Show that, for a spherical star of uniform density ,,

R2 <
c2

3#G,
and M2 <

16c6

243#,G3
*

If a photon is emitted from the star’s surface and received by a stationary observer
at infinity, show that the observed redshift must obey the constraint z < 2. Show
also, however, that the observed redshift for a photon emitted from the star’s centre
can be arbitrarily large.

12.9 For a spherical star of uniform density ,, show that in order for the star not to lie
within its own Schwarzschild radius, one requires

M2 <
3c6

32#,G3
*

Compare this limit with that derived in Exercise 12.8.
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12.10 For a spherical uniform-density star of mass M and coordinate radius R, show that
the line element of spatial sections with t = constant can be written in the form

d+2 = Rc2

2GM

[
d32+ sin2 3 "d&2+ sin2 &d'2%

]
*

12.11 Consider a static infinitely long cylindrical configuration of matter that is invariant
to translations and Lorentz boosts along the axis of symmetry (a cosmic string).
Adopting ‘cylindrical polar’ coordinates "ct( r('( z%, show that a self-consistent
solution to the Einstein field equations may be obtained if the stress-energy tensor
for the matter is of the form

.T!)/= diag",c2(0(0(−,c2%(

such that there is a negative pressure (or tension) along the string, and the line
element is of the form

ds2 = c2 dt2−dr2−B"r%d'2−dz2(

where B"r% satisfies

B′′

2B
− "B′%2

4B2
=−4,c2*

Show further that b"r%=
√
B"r% satisfies b′′ =−4c2,b.

Hint: You may find your answers to Exercises 8.9, 9.28 and 9.29 useful.
12.12 Suppose that the matter distribution in a cosmic string has a uniform density across

the string, such that

,"r%=
{
,0 for r ≤ r0(

0 for r > r0*

By demanding that g'' →−r2 as r → 0, so that the spacetime geometry is regular
on the axis of the string, show that the line element for r ≤ r0 is

ds2 = c2 dt2−dr2−
(
sin5r
5r

)2

d'2−dz2(

where 5 =
√
4,0c2. By demanding that g'' and its derivative with respect to r

are both continuous at r = r0, show that the line element for r > r0 is

ds2 = c2 dt2−dr2−
[
sin5r0
5r

+ "r− r0% cos5r0

]2

d'2−dz2*

For the interesting case in which 5r0 ≪ 1, show that for r ≫ r0 the line element
takes the form

ds2 = c2 dt2−dr2−
(
1− 8G!

c2

)
r2 d'2−dz2(
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where ! = #r20,0 is the ‘mass per unit length’ of the string. Interpret this line
element physically.

12.13 Show that the electromagnetic field tensor outside a static spherically symmetric
charged matter distribution has the form

.F!)/= E"r%

⎛

⎜⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎟⎠
(

where E"r% is some arbitrary function. Hence show that, if the line element outside
the matter distribution has the form

ds2 = A"r%dt2−B"r%dr2− r2"d&2+ sin2 &d'2%(

the energy–momentum tensor of the electromagnetic field in this region is given by

.T!)/=
1
2
c2$0E

2 diag

(
1
B
(− 1

A
(
r2E2

AB
(
r2E2 sin2 &

AB

)

*

12.14 Calculate the invariant curvature scalar R!),+R
!),+ for the Reissner–Nordström

geometry and hence show that the only intrinsic singularity occurs at r = 0.
12.15 Show that the worldlines of radially moving photons in the Reissner–Nordström

geometry are given by

ct = r− r2−
r+− r−
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∣∣∣∣
r
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12.16 Show that, by introducing the advanced Eddington–Finkelstein timelike coordinate

ct′ = ct− r2−
r+− r−

ln
∣∣∣∣
r

r−
−1

∣∣∣∣+
r2+

r+− r−
ln
∣∣∣∣
r

r+
−1

∣∣∣∣ (

the Reissner–Nordström line element takes the form

ds2 = c2-dt′2−2"1−-%dt′ dr− "2−-%dr2− r2"d&2+ sin2 &d'2%(

where - ≡ -"r% = 1− 2!/r+q2/r2. Hence show that the worldlines of radially
moving photons in advanced Eddington–Finkelstein coordinates are given by

ct′+ r = constant "incoming%( c
dt′

dr
= 2−-

-
"outgoing%*

What is the significance, if any, of the fact that c dt′/dr = 0 at -"r% = 2 for
outgoing radially moving photons?
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12.17 For a particle of mass m and charge e in geodesic motion in the Reissner–
Nordström geometry, show that the quantity

k=m

(
1− 2!

r
+ q2

r2

)
dt

d0
+ eq

r

is conserved, and interpret this result physically.
12.18 An observer is in a circular orbit of coordinate radius r = R in the Reissner–

Nordström geometry. Find the components of the magnetic field measured by the
observer.
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