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ABSTRACT

Of all sensor performance parameters, the conversion gain is arguably the most fundamental as it describes
the conversion of photoelectrons at the sensor input into digital numbers at the output. Due in part to the
emergence of deep sub-electron read noise image sensors in recent years, the literature has seen a resurgence
of papers detailing methods for estimating conversion gain in both the sub-electron and multi-electron read
noise regimes. Each of the proposed methods work from identical noise models but nevertheless yield diverse
procedures for estimating conversion gain. Here, an overview of the proposed methods is provided along with
an investigation into their assumptions, uncertainty, and measurement requirements. A sensitivity analysis is
conducted using synthetic data for a variety of different sensor configurations. Specifically, the dependence of the
conversion gain estimate uncertainty on the magnitude of read noise and quanta exposure is explored. Guidance
into the trade-offs between the different methods is provided so that experimenters understand which method is
optimal for their application. In support of the reproducible research effort, the MATLAB functions associated
with this work can be found on the Mathworks file exchange.

Keywords: conversion gain, DSERN, photon counting distribution, photon transfer, QIS, read noise, sensor
characterization, sub-electron noise

1. INTRODUCTION

Since the advent of the Charge-Coupled Device (CCD) in the early 1970s, methods for characterizing electro-
optical image sensors have continued to adapt to emerging technologies. Of particular importance in image
sensor characterization is the measurement of conversion gain, which describes an intrinsic conversion constant
relating arbitrary units of Digital Numbers (DN) at the sensor output back to a physically meaningful quantity
of electrons (e-) at the sensor input. Generally speaking, each pixel in an image sensor array will have a unique
conversion gain and this gain nonuniformity corrupts the output imagery. For this reason, a precise estimate of
each pixel’s conversion gain is needed to correct the image degrading effects of gain nonuniformity and calibrate
the sensor in terms of absolute units. For many decades, the Photon Transfer (PT) method has been the standard
approach to conversion gain estimation.1–4 Since the arrival of photons at a sensor is accurately modeled by the
Poisson distribution, the moments of the sensor input are known allowing PT to treat the sensor as a black box,
only observing the statistical moments of the output, to determine the conversion gain.

In 2015, the first Deep Sub-Electron Read Noise (DSERN) image sensor was reported in the literature,
carrying with it promising applications in low-light imaging and quantum technologies.5 As a result of sub-
electron read noise, DSERN devices could discern the number of electrons generated in each pixel leading to
never before seen structure in the data produced by such devices. As an example, Figure 1 shows histograms
produced by a traditional scientific grade CCD pixel (left) and DSERN CMOS pixel (right) exposed to constant
illumination. While it is not possible to observe electron events in the CCD data (since the read noise σR is too
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large), the DSERN produced histogram shows distinct peaks where zero, one, two, etc. free-electrons have been
detected within the pixel.

The additional structure observed in DSERN sensor data has led to the development of several new methods
of conversion gain estimation, which leverage the additional structure to produce lower uncertainty estimates
in comparison to the traditional PT method.6–8 What is not clear in this body of research is that all of the
proposed methods are derived from the same statistical model, which is valid for sensors with sub-electron and
multi-electron read noise. Furthermore, while these newly proposed methods were designed to leverage the
additional structure in data produced by DSERN capable devices, some show promise in characterizing sensors
outside the DSERN regime; thus, serving as a general estimation procedure to supersede the legacy PT method.
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Figure 1. Histograms produced by a scientific grade CCD pixel (left) and DSERN CMOS pixel (right).

In this work, a comprehensive overview of all currently available methods for conversion gain estimation will
be discussed using a unified model and notation to facilitate comparison between each method. This will be
accomplished by first describing the unifying model of sensor noise and then using the framework of this model
to describe each method in detail. With a full description of each method at hand, Monte Carlo simulations
will be carried out to determine which method is best under a variety of sensor parameters. The authors aim to
implement each method as faithfully as possible, and to this end, all of the code, including the implementation
of each method, is available on the Mathworks file exchange.

2. THE PHOTON COUNTING DISTRIBUTION MODEL

The Photon Counting Distribution (PCD) model represents a single observation from a pixel (a digital gray
value) as the random variable X given by8, 9

X = ⌈(K +R)/g + µ⌋
K ∼ Poisson(H)

R ∼ N (0, σ2
R).

(1)

The variables used in this model are defined as follows: K represents the electron number, H represents the
expected number of electrons generated (thermally or otherwise) per integration time and is expressed in units
of (e-), σR represents the input referred analog read noise in units of (e-), g represents the conversion gain in
units of (e-/DN), µ represents the pixel bias or DC offset in units of (DN), and ⌈·⌋ denotes rounding to the
nearest integer. In all, the random variable X captures the process of adding noise (R) to a number of electrons
(K) followed by the application of gain, offset, and finally quantization.

The quantization (rounding) defining the PCD model in (1) adds significant complexity to the distribution
of X . If, however, g ≪ σR so that the quantization bins are sufficiently small, the quantization process can be



modeled as an additive noise source so that a continuous distribution still provides an adequate model. Under
this assumption the distribution of X is modeled by the PCD

fX(x|θ) =
∞
∑

k=0

e−HHk

k!
φ(x;µ + k/g, σ2), (2)

where θ = (H, g, a, b2) denotes the PCD parameter vector, φ(x;α, β2) is the Gaussian probability density with
mean α and variance β2, and σ = (σ2

R/g
2+ σ2

Q)
1/2 represents the combined read and quantization noise in units

of (DN). For most applications the series representation (2) works best since only a few terms are needed to get
a good approximation for fX ; however, through the use of characteristic functions an integral representation can
also be derived in the form

fX(x|θ) = 1

π

∫ ∞

0

exp(H(cos(t/g)− 1)− σ2t2/2) cos((µ− x)t+H sin(t/g)) dt. (3)

Furthermore, (2) suggests a Monte Carlo estimator of the form

fX(x|θ) = Eφ(x;µ+K/g, σ2) ≈ 1

n

n
∑

k=1

φ(x;µ +Kk/g, σ
2), (4)

where {K1, . . . ,Kn} are i.i.d. Poisson(H) random variables. For notational purposes the shorthand X ∼
PCD(H, g, µ, σ2) will be used to denote a random variable distributed according to the PCD. Two special
cases of the PCD occur as H → 0 and σ → ∞ giving PCD(H, g, µ, σ2) → N (µ, σ2) and PCD(H, g, µ, σ2) →
N (µ+H/g, σ2 +H/g2), respectively.

As far as the author’s know, the first known mention of the PCD (albeit not by this name), in the context of
image sensors, can be found is James Janesick’s Photon Transfer (pg. 26, Figure 3.7), which showed simulated
data for the standardized version PCD(1, 1, 0, σ2).3 Later papers by Fossum, Starkey, and Ma6, 10–13 wrote
down a more complete mathematical description of PCD(H, 1, 0, σ2), which included a parameter for the quanta
exposure. Furthermore, Nakamoto and Hotaka7 included a parameter for the gain in the form PCD(H, g, 0, σ2)
but never in the full form accounting for the offset as seen in (2). What makes (2) a complete description is
the fact that it provides all the parameters necessary to fit the PCD to raw sensor data. Depending on the
specified parameters, the shape of the PCD can vary from a simple Gaussian bell-curve to a more complicated
form involving many local maxima (peaks). The parameter µ acts as a location parameter shifting the PCD on
the x-axis, while g acts as a scaling factor that controls the distance between adjacent peaks. Changing either
of these parameters does not drastically change the overall look of the PCD. On the other hand, the parameters
H and σ2 play a significant role in the shape of the PCD. Figure 2 plots the PCD for various H and σ2 (fixing
µ = 0 and g = 1) to show how these parameters change the appearance of the probability density. In particular,
for small enough σ2, the PCD oscillates showing many local maxima. Sensors that exhibit clearly resolved peaks
like this are said to belong to the DSERN (a.k.a. sub-electron noise) regime. Likewise, the parameter H changes
the overall envelope of the PCD from a highly skewed form at small H to a more Gaussian profile at large H .

3. METHODS FOR ESTIMATING CONVERSION GAIN

In recent years several novel methods have emerged for estimating conversion gain in the sub-electron and multi-
electron noise regimes. What is not immediately clear in the literature is that all of these newly proposed
methods, as well as the traditional PT method, can all be fully described in the context of the PCD model
introduced in the previous section. As such, the goal of this section is to explain each method, using a unified
notation, in the PCD framework. Supporting theory for each method will be presented followed by a discussion
of the associated pros and cons.

3.1 Photon Transfer Method

Photon Transfer (PT) is a classic method for measuring conversion gain that has been around for several decades
in various forms.1, 3, 14 To derive the PT estimator of the conversion gain, first let X ∼ PCD(H, g, µ, σ2) and
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Figure 2. Plots of the PCD for various H and σ2 with µ = 0 and g = 1 fixed.

define v(H) := VarX = σ2 +H/g2 to be the variance of X as a function of the quanta exposure H . Here, the
symbol E is used to denote the expectation operator so that the variance is defined as VarX = EX2 − (EX)2. It
follows from the definition of the derivative that

1/g

∂Hv(H)
= lim

∆H→0

∆H/g

v(H +∆H)− v(H)
= lim

∆H→0
g = g. (5)

Notice that the fraction defining the derivative in (5) is independent of ∆H ; thus, the limit ∆H → 0 is not
needed and nonzero values of ∆H may be used to compute g. With this information now suppose X ∼ PCD(H+
∆H, g, µ, σ2) and Y ∼ PCD(H, g, µ, σ2) are independent PCD random variables. Consequently, ∆H/g = EX −
EY and v(H +∆H)− v(H) = VarX − VarY leading to the classic PT relation

g =
EX − EY

VarX − VarY
. (6)

The PT method for conversion gain estimation replaces the populations means and variances in (6) with
their respective unbiased estimators to obtain an estimator for g. Specifically, let x = {x1, . . . , xn1

} with
xk ∼ PCD(H +∆H, g, µ, σ2) denote a random sample of n1 observations at a quanta exposure of H +∆H and
y = {y1, . . . , yn2

} with yk ∼ PCD(H, g, µ, σ2) denote a second (independent) random sample of n2 observations
at a quanta exposure of H . Denoting x̄ = 1

n1

∑n1

k=1 xk as the sample mean and x̂ = 1
n1−1

∑n1

k=1(xk − x̄)2 as
the sample variance of the x-sample (and likewise for ȳ and ŷ), the PT estimate for the conversion gain is given
by14, 15

g̃ =
x̄− ȳ

x̂− ŷ
. (7)

Since this is an estimator of two independent samples, Hendrickson et. al. (2022) derived approximate optimal



sample size pairs (nopt
1 , nopt

2 ) of the form15

nopt
1 ∼ 2(1 + ζ)

acv20(1 − ζ)2
+ 5

nopt
2 ∼ 2ζ(1 + ζ)

acv20(1 − ζ)2
+ 1,

(8)

where

ζ =
VarY

VarX
=

σ2 + H
g2

σ2 + H
g2 + ∆H

g2

(9)

and acv0 denotes the desired relative uncertainty of the final estimate, e.g. acv0 = 0.05 corresponds to 5%
estimator uncertainty.15 These approximate optimal sample size pairs allow an experimenter to achieve the
desired estimate uncertainty (acv0) with the fewest total number of samples possible.15

In practice, most image sensors are not perfectly linear (g is dependent on H) so that a small ∆H (ζ ≈ 1) is
needed to obtain a meaningful estimate of g at the chosen illumination level. This, however, can cause instability
in the estimator due to the fact that statistical uncertainty in the quantity x̂− ŷ can lead to division by zero type
errors∗. In fact, for even moderately large n1 and n2, the sampling distribution of (x̂− ŷ)−1 is accurately modeled
by the inverse gamma-difference distribution, which is known to have undefined moments in a similar manner
as the Cauchy distribution.16 This lack of well-defined moments leads to the PT estimator g̃ having ill-behaved
statistical properties, most of which can be mitigated by using very large sample sizes (notice that nopt

i → ∞
and ∆H → 0). Additionally, a disadvantage of this estimator is that it utilizes only the first two moments of the
PCD. Since the PCD is not fully described by these first two moments, the PT estimator does not fully utilize
all the information about g contained in the sample leading to larger estimator uncertainty compared to other
techniques. Despite these disadvantages, the PT estimator is still attractive as it provides useful estimates of
g in both the sub-electron and multi-electron read noise regimes and is calculated from basic sample moments;
rendering it the most computationally inexpensive estimator of g.

3.2 Photon Counting Histogram Method

In response to the emergence of DSERN capable image sensors, the Photon Counting Histogram (PCH) method,
developed at Dartmouth University, was the first documented method to explicitly incorporate the PCD model
into the estimation of the sensor performance parameters.5, 6 PCH is primarily a method for estimating conversion
gain and read noise by detecting the locations of local maxima and minima observed in an experimentally
generated histogram. To perform PCH characterization, a sample x = {x1, . . . , xn1

} with xk ∼ PCD(H, g, µ, σ2)
is captured and binned as a histogram, which is the experimental PCH. Each bin count is divided by the sample
size n1 to normalize the histogram so that it represents an approximation of the pixel’s PCD at the chosen value
of H . Assuming the read noise is small enough, many peaks (local maxima) in the experimental PCH should
be present and an algorithm for detecting these peaks is deployed. Figure 3 shows a simulated PCH with the
locations of ten detected peaks.

To estimate the conversion gain, let {(px1, py1), . . . , (pxm, pym)} denote a sequence of m consecutive peak
locations detected in the experimental PCH. According to the PCD model, the abscissas of the peaks locations
{pxk}, in units of (DN), are approximately located at equally spaced intervals of the form pxk = µ + k/g with
k ∈ N0. As such, fitting a line to the data {(1, px1), . . . , (m, pxm)} and extracting the reciprocal slope of the fit
yields an estimate g̃ for the conversion gain. If the electron number associated with each peak location is also
known, one may instead fit a line to the data {(k1, px1), . . . , (km, pxm)} with the reciprocal slope again yielding
g̃ and the y-intercept yielding an estimate for the bias µ̃.

Estimation of the quanta exposure requires the two most prominent peak locations and their electron numbers
denoted by {(pxk∗ , pyk∗), (px(k∗+1), py(k∗+1))} and (k∗, k∗ + 1), respectively (see Figure 4). For small read noise
values the ordinates of these peaks are approximated by

pyk ∼ 1√
2πσ

e−HHk

k!
. (10)

∗The numerical instability of this estimator for g is similar to the numerical instability of numerical derivatives.
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Figure 3. Simulated PCH showing ten detected peak locations.

Taking the ratio of the two most prominent peaks and solving for H subsequently gives the estimate (see Figure
4)

H̃ = (k∗ + 1)
py(k∗+1)

pyk∗

. (11)

In a similar manner, the read noise is calculated by first locating the valley (local minima) between the two most
prominent peaks, denoted (vx∗, vy∗), and then computing the Valley Peak Modulation (VPM)

VPM = 1− vy∗
1
2 (pyk∗ + py(k∗+1))

. (12)

The VPM is independent of the parameters g and µ so that a lookup table can be generated containing the VPM
for various values of σR and H . Using the estimate H̃ , one can then lookup the value of σR corresponding to
the estimated VPM to obtain the PCH estimate of read noise.
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Figure 4. Simulated PCH showing two most prominent peaks with corresponding valley location used for quanta exposure
and read noise estimation.



Assuming one is able to obtain estimates for all four parameters (which requires knowing the electron numbers
for the detected peaks), the PCH estimates can be refined by fitting the PCD to the experimental PCH using
nonlinear least squares with the initial parameter estimates as starting points.

PCH provides an intuitive graphical approach to sensor characterization and only requires a single sample
of data. Because PCH incorporates the full description of the PCD model into the estimation procedure, it
leverages the structure of DSERN data resulting in estimates of conversion gain with less uncertainty compared
to the PT method. Furthermore, a unique feature of PCH is that the initial estimate of g obtained from peak
locations does not assume a Poissonian light source so that sources of an arbitrary probabilistic nature can in
theory be used.7 The biggest challenge with this method is the need to reliably detect peak and valley locations,
which requires both large sample sizes and sufficiently small read noise so that the peaks can be observed. For
this reason, the applicability of the PCH method is restricted to the DSERN regime.

3.3 Fourier Transform Method

Initially, the Fourier-based approach for sensor characterization was not developed as a self-contained method, but
rather as a means of deriving starting points for the PCH-EM algorithm discussed in Section 3.6. Nevertheless,
this approach can be regarded as a characterization method in its own right.8 The idea behind this technique,
similar to the PCH method, stemmed from the fact that the PCD exhibits periodic oscillations when the read
noise is sufficiently small. This approach revolves around the analytical expression for the magnitude of the PCD
Fourier transform given by

|f̂X(ω)| := |E exp(−2πiωX)| = exp(H(cos(2πω/g)− 1)− 2π2σ2ω2). (13)

Recall that when the read noise is sufficiently small, the PCD has local maxima occurring with a period of
approximately 1/g (frequency of g). This property means the magnitude function should exhibit local maxima at
frequencies approximately located at integer multiple of g as is seen in Figure 5 (blue curve). Let ω∗ denote the
frequency corresponding to the local maxima near g, which is the second most prominent peak of the magnitude
function after the primary peak at ω = 0. We note that in order for this secondary peak to exist we must have
σ2
e-/H < |minx>0 sincx| = 0.217 . . . , where σe- = σ × g is the read plus quantization noise in units of electrons

and sincx = sinx/x. Using Lagrange inversion and defining z = −σ2
e-/H we compute

ω∗ = g +
∞
∑

n=1

lim
ω→g

∂n−1
ω

(

ω − g

sinc(2πω/g)

)n
zn

n!
= g(1 + z + z2 +O(z3)), (14)

which shows that for small |z|, ω∗ is very well approximated by g.

With this information we can approximate the magnitude function |f̂X(ω)| near the secondary peak by
considering the following asymptotic approximation as ω → g:

|f̂X(ω)| ∼ a exp(−2π2v(ω − b)2), (15)

where v = VarX = σ2 +H/g2,

a = exp

(

−2π2

(

H − (H/g)2

v

))

, (16)

and

b =
H/g

v
. (17)

Figure 5 shows the exact magnitude function (blue) compared to the asymptotic approximation (purple) along

with the location of the secondary peak (ω∗, |f̂X(ω∗)|). As can be observed, the peak of the asymptotic approx-
imation, (b, a), provides an excellent approximation to the location of the exact peak. To understand why this
is, notice that this asymptotic expression approximates ω∗ as

ω∗ ∼ b =
g

1 + σ2
e-/H

=
g

1− z
= g(1 + z + z2 +O(z3)), (18)



Figure 5. Graph of |f̂X(ω)| (blue) and its asymptotic approximation near ω = g (purple) versus ω showing the two most
dominant peaks at ω = 0 and ω = ω∗.

which shows agreement with the first three terms of the exact expansion for ω∗ obtained in (14).

The system of three equations given by v, a, and b can be inverted to give the following approximations for
H , g, and σ2:

H(v, a, b) ∼ vb2 − log a

2π2

g(v, a, b) ∼ b− log a

2π2vb

σ2(v, a, b) ∼ v −
(

v − log a

2π2b2

)−1

.

(19)

Equipped with these details, the Fourier based method of characterization is as follows. First, a sample
x = {x1, . . . , xn1

} with xk ∼ PCD(H, g, µ, σ2) is captured and the sample mean x̄ = 1
n1

∑n1

k=1 xk and sample

variance x̂ = 1
n1−1

∑n1

k=1(xk−x̄)2 are computed. Since the sample x is integer-valued, it is binned in bins centered
on the integers and the counts ck for each bin location bk are normalized via pk = ck/n1 so that we obtain a density
normalized experimental PCH. The Discrete Fourier Transform (DFT) of the density normalized experimental
PCH is then calculated and the location of the secondary peak in the DFT is detected yielding an estimate (b̃, ã).
Initial estimates for H , g and σ2 are then found from (19) giving (H0, g0, σ

2
0) = (H(x̂, ã, b̃), g(x̂, ã, b̃), σ2(x̂, ã, b̃)).

Final estimates H̃ , g̃, σ̃2 are then found by fitting the magnitude function (13) to the experimental PCH DFT
using nonlinear least squares and the starting points (H0, g0, σ

2
0). Using the fact that EX = µ + H/g we then

obtain an estimate for µ in the form µ̃ = x̄−H̃/g̃. Further improvements on µ̃ are possible using autocorrelation.8

The Fourier based method echos that of the PCH method in that it requires sufficiently small read noise to
work. It also requires some implementation of peak detection and refines the initial estimates with nonlinear
least squares. In fact, the PCH and Fourier methods are essentially the same method with PCH operating in the
original data space and Fourier operating in the frequency space. What makes the Fourier method attractive
as that it obtains estimates of each PCD parameter from a single sample and requires only detecting a single
peak in the experimental PCH DFT (compare this to detecting many peaks with PCH). Since only a single peak
is needed and the method is based on the DFT it is also easily automated and computationally inexpensive.
Additionally, this method makes full use of the PCD model so that it can usually obtain lower uncertainty
estimates of the conversion gain in comparison to the PT method. The major downside of this method is that
the read noise needs to be small enough to guarantee the existence of the secondary peak. This ultimately limits
the applicability of this method, like the PCH method, to the DSERN regime.



3.4 Nakamoto’s Method

In response to the PCH method, Nakamoto and Hotaka introduced a characterization technique based on the
principle of Maximum Likelihood Estimation (MLE) that also takes advantage of the full PCD model.7 To

understand how this method works, let y = {y1, . . . , yn2
} with yk ∼ PCD(0, g, µ, σ2)

d
= N (µ, σ2) be a sample

of data captured under dark conditions with short enough integration time so that dark current is negligible
(H = 0). Since the distribution of this data is normal, unbiased estimates for µ and σ2 may be directly measured
from the y-sample via

µ̃ =
1

n2

n2
∑

k=1

yk (20)

and

σ̃2 =
1

n2 − 1

n2
∑

k=1

(yk − µ̃)2, (21)

which are the sample mean and sample variance, respectively. Now consider capturing a second sample x =
{x1, . . . , xn1

} with xk ∼ PCD(H, g, µ, σ2) for some choice of H > 0. Since Exk = µ+H/g we can estimate the
sample mean x̄ = 1

n1

∑n1

k=1 xk and then construct an estimator for the quanta exposure as a function of g in the
form

H̃(g) = g(x̄− µ̃). (22)

Then, a constrained likelihood function is made from these three estimates via

L(g|x) =
n1
∏

k=1

fX(xk|H̃(g), g, µ̃, σ̃2) (23)

and an estimate for g is computed by maximizing this constrained likelihood function (or equivalently it’s
logarithm)

g̃ = argmax
g

L(g|x). (24)

An estimate for the quanta exposure follows by evaluating H̃ = H̃(g̃). Since closed-form solutions for this
maximization are intractable, any number of numerical methods can be employed.

Like the PCH and Fourier methods, Nakamoto’s method incorporates the full description of the PCD model
into the estimation procedure, which generally results in conversion gain estimates with less uncertainty than can
be obtained with the traditional PT method. Furthermore, the H = 0 sample allows for direct measurement of µ
and σ2, which generally helps stabilize the conversion gain estimates when the read noise is large. Because peak
detection is not part of the estimation procedure, Nakamoto’s method shows promise in being a viable method for
both the sub-electron and multi-electron read noise regimes. The most significant disadvantage of this method is
the requirement to obtain a sample at H = 0, which may not be possible depending on the available integration
times of the sensor and the magnitude of dark current. This requirement is particularly challenging when trying
to characterize an entire sensor array, which will inevitably contain hot pixels that cannot achieve a quanta
exposure near zero. Lastly, we note that this method requires two samples but does not make full use of the
information contained in both samples. This can be seen by the fact that the x-sample contains information
about µ and σ; however, these parameters are estimated only from the y-sample.

3.5 PCH Expectation Maximization Algorithm

The Photon Counting Histogram Expectation Maximization (PCH-EM) algorithm (in review at the time of
writing) is the latest iteration of methods for performing sensor characterization based on the PCDmodel.8, 9, 17 It
is the first technique devised to compute simultaneous maximum likelihood estimates for all four PCD parameters
using only a single sample of data. This method was inspired from the fact that when the electron numbers
associated with each observation are known, that is, we have the complete data (x,k) = {(x1, k1), . . . , (xn1

, kn1
)},

closed-form maximum likelihood estimators for each PCD parameter are easily derived.8 While the electron
numbers cannot be directly observed, this fact motivates a latent (hidden) variables model of estimation, which



is what the general expectation maximization algorithm provides. As such, PCH-EM is a specific implementation
of the general EM algorithm with the PCD being the underlying distribution to be estimated.

To perform PCH-EM, a random sample x = {x1, . . . , xn1
} with xk

iid∼ PCD(H, g, µ, σ2) is captured. Given
an initial estimate of the parameters θ0 = (H0, g0, µ0, σ

2
0) (obtained by one of the other methods, e.g. Fourier or

PT method), the PCH-EM algorithm iteratively updates the parameter estimates via the update equations8

Ht+1 = At (25a)

gt+1 =
Bt −H2

t+1

Ct − x̄Ht+1
(25b)

µt+1 = x̄− Ht+1

gt+1
(25c)

σ2
t+1 = x̂− Bt −H2

t+1

g2t+1

, (25d)

where x̄ = 1
n1

∑n1

k=1 xk is the sample mean, x̂ = 1
n1

∑n1

k=1(xk − x̄)2 is the sample variance, and

At =
1

N

N
∑

n=1

∞
∑

k=0

γ
(t)
nkk (26a)

Bt =
1

N

N
∑

n=1

∞
∑

k=0

γ
(t)
nkk

2 (26b)

Ct =
1

N

N
∑

n=1

xn

∞
∑

k=0

γ
(t)
nkk, (26c)

where

γ
(t)
nk =

e−HtHk

t

k! φ(xn;µt + k/gt, σ
2
t )

∑∞

ℓ=0
e−HtHℓ

t

ℓ! φ(xn;µt + ℓ/gt, σ2
t )
. (27)

The γ
(t)
nk are called membership probabilities because they represent the probability of xn belonging to the kth

Gaussian component of the PCD given the current parameter estimates θt. Since PCH-EM is just a specific
implementation of the more general Expectation Maximization (EM) algorithm, each iteration of the algorithm
guarantees an increase in the likelihood of the sample. The algorithm halts when a specified convergence criteria
is achieved. In practical implementation, all of the series in the update equations can be truncated to finite sums
by only considering the terms k ∈ {F−1(ǫ), . . . , F−1(1− ǫ)}, where F−1 is the Poisson(Ht) quantile function and
ǫ > 0 is a small positive number.

PCH-EM provides many positive characteristics in that it provides maximum likelihood estimates of all
the PCD parameters using a single sample of data, incorporates the full PCD model, and does not require
numerical optimization, e.g. Newton iteration, to maximize the sample likelihood. It is also easily automated and
computationally inexpensive although not as inexpensive as traditional PT. Furthermore, because the general
EM algorithm is so well studied, many extensions of PCH-EM are possible to improve the robustness of the
algorithm and its estimates. The major downside of this method, which holds for all other methods excluding
PT, is the requirement of starting points. Poor starting points can result in slow convergence or convergence to
a local maxima while missing the global maxima of the sample likelihood function. While PCH-EM can suffer
form the issue of local maxima, extensions of the algorithm using annealing are possible.18–20

3.6 Two-Sample PCH-EM Algorithm

Currently in development, PCH-EM2 is the two-sample generalization of PCH-EM that incorporates two samples
taken at different H into a single likelihood function, thus offering both advantages and disadvantages similar
to the single-sample PCH-EM approach. One significant benefit of PCH-EM2 is that it enables one to obtain



low-uncertainty estimates of all four parameters by combining samples taken at two different H-values, as the
uncertainty of estimates for each PCD parameter varies differently with H . Therefore, PCH-EM2 is expected
to be more accurate than PCH-EM. Further extensions of this method to an arbitrary number of samples is
also possible. Additionally, the use of an extra sample stabilizes the algorithm in the presence of high read
noise, making it a good candidate for general estimation procedure in the sub-electron and multi-electron read
noise regimes. Unlike Nakamoto’s method, PCH-EM2 can extract information about each parameter from both
samples, making it theoretically more accurate. However, PCH-EM2, like other two-sample methods, is more
sensitive to nonlinearity in comparison to single-sample methods because it requires the sensor to behave linearly
over both samples instead of just one.

4. COMPARISON OF METHODS

4.1 Design of Experiment

To compare the uncertainty of each methods’ conversion gain estimates, Monte Carlo experiments were per-
formed. However, the four-dimensional parameter space of the PCD model made it challenging to fully explore
in simulations. To reduce the area of exploration, the parameter µ was set to zero for all simulation runs since it
only shifts the PCD without changing its shape. Moreover, to avoid over-quantization, the conversion gain was
fixed at g = σR/6 for all runs, leaving only two dimensions (σR, H) ∈ R>0 ×R≥0 to consider. As the read noise
surpasses about 0.5 e-, peak detection methods struggle, so the read noise interval was limited to σR ∈ (0, 2).
Similarly, the Poisson distribution’s dynamic changes occur mainly when H is small, so the quanta exposure was
limited to H ∈ (0, 10). Using these constraints, a grid of 64 σR-values on (0.05, 2) and 32 H-values on (0.05, 10)
was created, which paired with µ = 0 and g = σR/6, resulted in a total of 2048 points in the PCD parameter
space to simulate data on.

Once the desired parameters were selected, the following stage in the experimental design involved selecting
the kinds of data to simulate along with their corresponding sample sizes. Six methods were available, three
of which (PCH, Fourier, PCH-EM) necessitated just one sample, while the remaining three (PT, Nakamoto,
PCH-EM2) required two samples. Specifically, Nakamoto’s approach required two samples, with one of them
being at H = 0. To accommodate all methods two types of data were generated including dark samples of the
form y = {y1, . . . , yn2

} with yk ∼ PCD(0, g, µ, σ2) and illuminated samples of the form x = {x1, . . . , xn1
} with

xk ∼ PCD(H, g, µ, σ2). Observations in each sample were generated according to the model (1). The uncertainty
in any method’s conversion gain estimates will be a function of the parameters. For this reason, the optimal
sample size pairs in (8) for acv0 = 0.015 and ζ = (1 + H/σ2

R)
−1 were chosen to make the uncertainty in the

PT conversion gain estimates mostly independent of the parameters. In this way, PT would be a reference to
compare the uncertainty of the five other methods against. The specified value of acv0 = 0.015 means that the
PT conversion gain estimates should have an uncertainty of approximately 1.5% across all parameters. Figure 6
shows the total sample size n1 + n2 used as a function of the parameters. Parameters where n1 > 105 (seen as
the white region in Figure 6) were ignored to make sure the experiment did not take too long to complete.

To ensure a fair comparison of each method, both the dark and illuminated data were made available to all
six methods, even if the method naturally used only one sample. This way, the two-sample methods did not
have access to more information than the one-sample methods. The two-sample methods required no changes
to their approach since they inherently incorporated both samples into their estimation procedure. However, for
the one-sample methods, the information in the dark sample was integrated into the estimation procedure by
providing the starting points g0 = (x̄− ȳ)/(x̂− ŷ), µ0 = ȳ, σ2

0 = ŷ, and H0 = g0(x̄− µ0), where x̄ represents the
sample mean and x̂ represents the sample variance for the x-data (and likewise for the y-data). With this step,
the experimental design phase was concluded.

4.2 Results

The experiment was executed on MATLAB code containing two nested loops. In the outer loop, each iteration
consisted of selecting the next set of PCD parameters and associated sample sizes. For each iteration of the
outer loop, the inner loop was repeated 512 times, where in each of the 512 iterations a x and y sample were
generated and then supplied to each method so that the conversion gain could be estimated. This subsequently
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Figure 6. Total number of samples used for each set of PCD parameters. The black region corresponds to points where
n1 > 105, which were ignored in the simulation.

resulted in 512 conversion gain estimates g̃k for each method, which were then used to compute the normalized
Root Mean Squared Error (RMSE)

RMSE(θ) =

(

1

512

512
∑

k=1

(1 − g̃k/g)
2

)1/2

. (28)

As a result of the Monte Carlo experiment, a 64 × 32 array of normalized RMSE values for each method was
generated.

Figure 7 shows the Monte Carlo estimated RMSE for each method as a function of σR and H . The first row
is comprised of the one-sample methods with the second containing only the two-sample methods. The black
region corresponds to parameters where data was not simulated due to the sample sizes becoming too large.

Several observations can be derived from the Figure 7. Initially, it should be acknowledged that the PT
estimates’ RMSE remained relatively stable at approximately RMSE ≈ 0.015. This value corresponds to the
acv0 = 0.015 uncertainty specification used for the optimal sample sizes. Therefore, the optimal sample sizes
effectively controlled the PT estimate uncertainty for the parameters considered. Additionally, all five methods
that utilized the full description of the PCD in the estimation process showed a region below σR ≈ 0.42, e- where
their conversion gain estimates’ uncertainty was generally lower than PT (blue strip). This finding was due to
the PCD-inclusive techniques utilizing the data’s extra structure at low read noise values, which PT ignores by
only incorporating the first two moments.

Regarding the one-sample methods, the PCH and Fourier techniques outperformed PT in terms of RMSE
below approximately σR ≈ 0.42, e-; however, their performance degraded above this read noise value due to
their reliance on peak detection. Unlike the PCH and Fourier methods, PCH-EM did not necessitate observing
peaks and could still estimate the conversion gain at higher read noise values, bridging the gap into the multi-
electron read noise regime for one-sample methods. For the two-sample methods, both Nakamoto’s method and
PCH-EM2 produced conversion gain uncertainties comparable to PT’s in the σR > 0.42, e- regime. This finding
suggests that once the PCD’s structure is lost due to increasing read noise, there is only a small advantage
to using the full PCD model in the estimation process. Overall, PCH-EM performed the best for one-sample
methods, while PCH-EM2 outperformed PCH-EM and showed potential as a general estimation technique in
the sub-electron and multi-electron read noise regimes.
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Figure 7. Comparison of six characterization methods in terms of the RMSE achieved for conversion gain estimates.
Single-sample methods are shown in first row with two-sample methods in the bottom row.

5. DISCUSSION AND FUTURE WORK

This study presented an overview of the PCD model as a universal framework for describing all currently available
methods of conversion gain estimation in the sub-electron and multi-electron read noise regimes. By unifying
the notation and model, it became possible to compare and contrast the differences between these methods.
Monte Carlo experiments revealed that utilizing the full PCD model in the estimation procedure produced
conversion gain estimates with less uncertainty than the traditional PT method, especially when the read noise
is below σR ≈ 0.42 e-. Notably, the PCH-EM2 algorithm outperformed the time tested PT method below this
threshold, while its performance merged with that of PT at higher read noise levels. This suggests that PCH-
EM2 could potentially replace PT as a general estimation procedure. Future research will involve developing
and implementing a multi-sample (≥ 2 sample) PCH-EM method and exploring the use of annealing to enhance
the algorithm’s robustness to poor starting points.
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