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We demonstrate high fidelity repetitive measurements of nuclear spin qubits in an array of neu-
tral ytterbium-171 (171Yb) atoms. We show that the qubit state can be measured with a spin-flip
probability of 0.004(4) for a single tweezer and 0.012(3) averaged over the array. This is accom-
plished by near-perfect cyclicity of one of the nuclear spin qubit states with an optically excited
state under a magnetic field of B = 58 G, resulting in a spin-flip probability of ≈ 10−5 per photon
during fluorescence readout. The performance improves further as ∼ 1/B2. The state discrimina-
tion fidelity is 0.993(4) with a state-averaged readout survival of 0.994(3), limited by off-resonant
scattering to dark states. We combine our measurement technique with high-fidelity rotations of the
nuclear spin qubit via an AC magnetic field to explore two paradigmatic scenarios, including the
non-commutivity of measurements in orthogonal bases, and the quantum Zeno mechanism in which
measurements “freeze” coherent evolution. Finally, we employ real-time feedforward to repetitively
and deterministically prepare the qubit in the +z or −z direction after initializing it in an orthogo-
nal basis and performing a measurement in the Z-basis. These capabilities constitute an important
step towards adaptive quantum circuits with atom arrays.

I. INTRODUCTION

Measurements play a crucial role in quantum informa-
tion science to determine the result of the intended oper-
ation, correct errors [1, 2], and prepare useful many-body
states [3–10]. Ideally, the qubits are not lost as a result of
these measurements and remain in the state correspond-
ing to the measured outcome. These conditions taken to-
gether constitute a quantum nondemolition (QND) mea-
surement, which has been demonstrated on many quan-
tum hardware platforms [11–25]. The ability to perform
measurements in isolated atoms or atom-like systems in a
solid state host is often hampered by the complex, multi-
level structure of the atomic system. Such measurements
are typically performed via optical fluorescence readout
in which one qubit state is “bright” while the other is
“dark”. In many cases, imperfect cyclicity of the bright
state leads to leakage between the two states and limits
the brightness or contrast of the qubit, which can be ad-
dressed by either using single photon detectors [26–30] or
by coupling the qubit to an optical cavity [31–36]. How-
ever, neither approach is readily compatible with scalable
parallel qubit readout.
Arrays of neutral atoms in optical tweezers [37] are

rapidly emerging as a leading platform for myriad quan-
tum science applications ranging from quantum simula-
tion [38, 39], computing [39, 40], and sensing [41, 42] to
networking [43, 44]. Scalable, lossless readout of hyper-
fine qubits has been performed with arrays of neutral
alkali atoms in optical tweezers [45–47], and QND read-
out of hyperfine [48, 49] and nuclear spin qubits [50–52]
has been performed with ensembles of atoms in an op-
tical dipole trap. The use of optical qubits helps obvi-
ate cyclicity limitations and thus optical qubits are read-
ily compatible with scalable single-atom QND measure-
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ments [14, 41, 42, 53, 54], but are hampered by require-
ments on optical phase stability and atomic temperature.
For spin-encoded qubits on the other hand, a scalable ap-
proach to QND readout in arrays of neutral atoms in op-
tical tweezers remains an outstanding challenge. Namely,
≈ 1000 photons must be scattered for high fidelity detec-
tion of single atoms in free space with collection efficien-
cies typically at the single-percent level, and thus QND
readout with percent-level atom loss and qubit depolar-
ization requires such events to be at the ≈ 10−5 level per
photon.
Here, we leverage the unique atomic structure of neu-

tral 171Yb atoms to directly perform high-fidelity QND
measurements of a qubit encoded in the nuclear spin-1/2
degree of freedom in the electronic ground state. By per-
forming fluorescence detection via the relatively narrow
3P1 optically excited state in which the mF = −3/2 Zee-
man sub-level is sufficiently isolated at a modest mag-
netic field of 58 G, the polarization selection rule for
decay to only the mF = −1/2 ground state provides a
cyclicity of ≈ 105 with respect to the mF = +1/2 ground
state, corresponding to an average qubit depolarization
probability of 0.004(4) for a single tweezer (0.012(3)
for array-averaged) during 12-ms measurements with fi-
delity of 0.993(4) and survival probability of 0.994(3). We
demonstrate this technique for an array of 171Yb atoms
in optical tweezers of wavelength ≈ 760 nm – ideal for
subsequent manipulation of the optical “clock” transi-
tion [55, 56]. Unlike the seminal demonstrations of free
space non-destructive qubit readout in alkali atom ar-
rays [45–47], our tweezers are relatively shallow (U0/kB ≈
580µK) and remain on the entire time, obviating the
need to chop them out of phase with the probe light.
Moreover, the probe beams are randomly polarized and
have projections onto all three dimensions, allowing the
atoms to stay cold in three dimensions under probe illu-
mination, with a temperature of T ≈ 5 µK.
We combine high-fidelity projective measurements with

qubit rotations to explore textbook scenarios including
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FIG. 1. Overview. (a) The experimental system consists of a
glass vacuum cell with one microscope objective on either side.
Atoms are illuminated with two retro-reflected probe beams
that each have an angle with respect to the xy- and yz-planes.
The tweezer array lies parallel to the y-axis. The DC magnetic
field and the tweezer electric field point in the y-direction.
An AC magnetic field produced by the pair of coils shown
points in the z-direction. Images recorded on the camera can
be analyzed in real-time to enable or disable AC pulses on
the coils. (b) The relevant level structure of 171Yb, showing
the cycling transition from the 1S0 |mF = −1/2⟩ ≡ |0⟩ qubit
state making it bright while |mF = +1/2⟩ ≡ |1⟩ is dark during
readout. (c) Energies of the four mF Zeeman states in 3P1

F = 3/2 relative to free space versus magnetic field, taken
with a ≈ 1mK tweezer depth for a single array site. (d) A
histogram of 12ms fluorescence readout (2500 repetitions ×
5 sites = 12500 shots) of the nuclear spin qubit, where the
dark peak is either zero atoms or an atom in |1⟩ and the
bright peak is an atom in |0⟩. The system was initialized in |0⟩.
The discrimination fidelity is F = 0.993(4). Inset: Averaged
(2500 repetitions) camera image of fluorescence from a 5-site
array with spacing of 7.8µm.

observation of the non-commutivity of measurements in
variable bases, and demonstration of the quantum Zeno
mechanism by studying the interplay of measurement
and qubit rotation during repetitive alternation. Finally,
we implement real-time adaptive control [57] to perform
a qubit rotation conditioned on the measurement out-
come in order to deterministically prepare a target state
after a projective measurement, and we show the ability
to repetitively do so in alternation with a rotation to an
orthogonal basis. If combined with the ability to perform
measurements on only subsets of qubits [36, 57, 58], this
work would aid in the realization of measurement-based
quantum computation [59–61], non-unitary many-body
state preparation protocols [5, 6, 8–10], quantum error
correction [1, 2], and the study of measurement-induced
phase transitions [62–66].

II. OVERVIEW OF THE EXPERIMENTAL
SYSTEM

We begin with a laser cooled ensemble of 171Yb atoms
suspended in the center of a glass cell held under ultra-
high vacuum [see Fig. 1(a)]. High-resolution microscope
objectives with diffraction-limited NA ≈ 0.6 are placed
on either side of the glass cell. A one-dimensional array
of five optical tweezers with wavelength λT ≈ 760 nm
and 1/e2 waist radius of w0 ≈ 670 nm is generated
with an acousto-optic deflector (AOD) [67]. The spac-
ing between adjacent tweezers is d = 7.8µm, correspond-
ing to a frequency difference between adjacent radio fre-
quency tones sent to the AOD of 1.75 MHz. The inset to
Fig. 1(d) shows 2500-shot averaged images of the fluores-
cence from our 5-site array. We use a power of 7mW per
tweezer, which corresponds to a depth of U0/h ≈ 12MHz
(U0/kB ≈ 580µK) in the ground state. Appendix A pro-
vides further details of our experimental system.
The tweezers are continuously on during the MOT

phase; atoms remain in the tweezer traps after the MOT
light and magnetic field gradient have been turned off.
Single atoms are obtained in the tweezers by applying
a cooling pulse using the MOT beams under a field of
1.5G in the y-direction, which is also the direction of the
tweezer’s polarization [see Fig. 1(a)]. This pulse has a
total intensity of Icool = 1.3 Isat, where Isat is the satu-
ration intensity of the intercombination transition, with
a detuning of δ/2π ≈ −150 kHz (≈ −0.8Γ) from the
F = 3/2, mF = −1/2 state. This cooling pulse drives
light-assisted collisions that transform the initially Pois-
sonian atom number distribution into either just 0 or 1
atom remaining [68]. After the cooling pulse, we obtain a
tweezer loading fraction of p ≈ 0.7 – which is correlated
with the density of the reservoir from which we load, sug-
gesting that higher loading fractions are possible [69] –
and an atomic temperature of T ≈ 5µK measured via
release and recapture from the tweezers [70]. See Appen-
dices A and B for further details.
Readout is performed using the same transition as

that for the MOT (1S0 ↔ 3P1, F = 3/2) [71, 72],
where the transition linewidth of Γ/2π = 182 kHz is
well suited for our photon scattering rate of Γscatt ≈
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FIG. 3. Characterizing depolarization during qubit readout. (a) Circuit diagram for studying the dependence of depo-
larization during qubit readout on magnetic field. A probe block of variable magnetic field is placed between two measurements
performed at 58G. The final “atom readout” pulse is used to post-select on events in which the atom survived the entire
sequence. (b) The measured array-average (diamonds) and single-site best (squares), SPAM-corrected, and the predicted state
populations (line) under real imaging conditions versus magnetic field. The error bars reflect the standard deviation of a bino-
mial distribution. (c) Circuit diagram for directly studying the depolarization probability during qubit readout at 58G. (d) The
array-averaged histograms from each image for 17500 shots, with the results shown together on a 2D histogram. These results
show that the D→B and B→D conditional depolarization probabilities during a 12ms probe pulse are 0.025(2) (0.011(3))
and 0.025(2) (0.018(4)) averaged across the array (best site), respectively, before SPAM correction.

97000 photons/s during fluorescence detection. We use
two counter-propagating beams that each have an an-
gle of ≈ 15 degrees with respect to xy-plane and an an-
gle of ≈ ±30 degrees with respect to the yz-plane [see
Fig. 1(a)]. This configuration is used to minimize the
effect of surface scatter from the beams, which do not
pass through the faces of the cell used by the microscope
objectives. The polarization of the beams is chosen to
have large projections onto both π and σ±. We use an
electron-multiplying CCD (EMCCD) to image atomic
fluorescence via the microscope objective opposite the
one used to generate the tweezers. Typical readout pulses
are 12ms long with probe intensity of Iprobe ≈ 1 Isat (the
total beam intensity is ≈ 3 times higher but we assume
it is equally divided among the three polarizations) and
detuning δ/2π ≈ −180 kHz with respect to the target
mF state within the F = 3/2 manifold. Our imaging
system uses a magnification of ≈ 9, and our estimated
atom-to-camera collection efficiency is ≈ 0.04 based on
the calculated scattering rate for these probe conditions
and the number of photons collected on the camera.

III. NONDESTRUCTIVE QUBIT READOUT

A crucial feature of our nondestructive qubit readout
technique is the electric dipole polarization selection rule
associated with our choice of excited state [see Fig. 1(b)].

The mF states within 3P1 are well resolved even at low
magnetic fields due to the relatively narrow linewidth
(Γ/2π ≈ 182 kHz) and the large g-factor (≈ 1.4 MHz/G),
as shown in Fig. 1(c). Based on the zero-field detun-
ings of |mF | = 1/2 and |mF | = 3/2 and the known
ground-state light shift, we estimate the differential po-
larizabilities α = (Ue − U0)/U0 at this tweezer wave-
length (λT ≈ 760 nm) to be α|1/2| ≈ −0.030(3) and
α|3/2| ≈ 0.25(3) (see Appendix F), which are in good
agreement with recent observations [69, 72]. Although
the |mF | = 1/2 states are appealing due to the nearly-
zero differential light shift and the assurance that both
nuclear spin ground states will remain bright [72], the
positive differential light shift of the |mF | = 3/2 state
corresponds to the case where the excited state is deeper
trapped than the ground state – a scenario in which at-
tractive Sisyphus cooling has been observed for strontium
(Sr) [54, 73, 74] and predicted for Sr and Yb [75, 76].
In this work, we focus on the mF = −3/2 excited

state which, under ideal conditions, can decay only to
the mF = −1/2 ground state. This allows us to perform
“qubit readout” since the |mF = −1/2⟩ ≡ |0⟩ state will
remain bright while the |mF = +1/2⟩ ≡ |1⟩ state is dark
[see Fig. 1(b)]. It is also crucial to be able to perform
“atom readout” – which is state-independent – in order
to differentiate a perceived outcome of |1⟩ in a qubit mea-
surement from cases where the atom may have been lost.
We employ two techniques for performing atom readout
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Table I. Summary of discrimination fidelity, atom survival, and depolarization probabilities. The discrimination
fidelity F , atom survival probabilities ηB

surv, η
D
surv, η̄surv, and depolarization probabilities PD→B

depol , PB→D
depol , P̄depol are listed for

the mF = −3/2 imaging condition both on a single array site and averaged over a 5-site array. Symbols with superscripts are
state-dependent, with ‘B’ referring to the |0⟩ bright state and ‘D’ referring to the |1⟩ dark state, while those with bars are
state-averaged. Numbers are listed with and without SPAM correction.

Array-averaged

F ηB
surv ηD

surv η̄surv PD→B
depol PB→D

depol P̄depol

Uncorrected 0.993(4) 0.960(9) 0.9960(1) 0.978(5) 0.025(2) 0.025(2) 0.025(2)

Corrected — 0.99(1) — 0.994(3) 0.010(6) 0.013(2) 0.012(3)

Best site

F ηB
surv ηD

surv η̄surv PD→B
depol PB→D

depol P̄depol

Uncorrected 0.992(4) 0.966(8) 0.9963(2) 0.981(4) 0.011(3) 0.018(4) 0.014(2)

Corrected — 0.99(1) — 0.993(5) 0.003(3) 0.005(7) 0.004(4)

(see Fig. 2). One is to use the mF = −1/2 excited state
which is connected to both ground states; the other is to
re-initialize the qubit in |0⟩ via optical pumping and then
perform qubit readout. Our optical pumping efficiency is
0.98(1) with state preparation and measurement correc-
tion (see Appendices A & I), 0.972(9) without. We focus
primarily on the latter technique, mostly to avoid the
need to change the probe frequency by many tens of MHz
when going between the mF = −3/2 and mF = −1/2
excited states. Nevertheless, we find that imaging with
mF = −3/2 and −1/2 offer similar performance: the col-
lection efficiency is similar, and the steady-state tempera-
ture under probing is T ≈ 5 µK for both. See Appendix B
for further details on their comparison.
We note that both cases are limited by tweezer-induced

off-resonant scatter during probing and cooling from the
steady state population in 6s6p 3P1 to the higher 6s7s
3S1 state, which can then subsequently decay to the en-
tire 6s6p 3PJ manifold. In principle, 3P2 and 3P0 could
be repumped, but we note that 3P2 – which is the domi-
nant decay path – is unfortunately strongly anti-trapped
in tweezers with wavelength λT ≈ 760 nm due to its prox-
imity to the 3P2 ↔ 3S1 transition at 770.2 nm. Without
any repumping, we observe the lifetime in |0⟩ under prob-
ing to be τ = 1.24(8) s which is consistent with our model
(see Apppendix E). We choose a probe time of 12ms
as an optimal compromise that offers a bright/dark dis-
crimination fidelity of F = 0.993(4) corresponding to the
histogram in Fig. 1(d), and a probe survival of the |0⟩
state of 0.99(1) with state preparation and measurement
(SPAM) correction (see Appendix I), in good agreement
with our measured lifetime. Significant gains are possible
by operating in a shallower tweezer and improving the
collection and detection efficiency. We measure the life-
time in |1⟩ under probe conditions to be 2.99(6) s, sug-
gesting that the survival of the |1⟩ dark state is 0.9960(1).
The state-averaged survival during qubit readout is thus
taken to be 0.994(3).
To ensure that the |0⟩ qubit state remains bright while

the |1⟩ qubit state remains dark during probing, we re-
quire excellent isolation of the |0⟩ ↔ |3/2,−3/2⟩ transi-
tion. There are two effects that limit this isolation: Ra-
man transitions via other excited states, and mixing be-
tween the excited states. We analyze these effects in Ap-
pendices D and G, respectively, showing that both are
suppressed quadratically in magnetic field. The Raman
transitions have a spontaneous contribution and a stim-
ulated contribution. The latter is due to the presence of
all polarization components [see Fig. 1(b)] but the effect
is suppressed by the ≈ 45 kHz nuclear spin splitting at 58
G. Although choosing our probe polarizations to contain
only σ± components would have broken the stimulated
Raman condition and removed the mF = −1/2 → m′

F =
−1/2 channel, the results would not have significantly
changed due to the inevitablemF = +1/2 → m′

F = −1/2
channel [see Fig. 1(b)], and doing so would have cost us
the ability to use “atom readout” via the mF = −1/2
excited state. The mixing between the excited Zeeman
states is zero with a perfectly linearly polarized tweezer
whose polarization is perfectly aligned with the magnetic
field. Finite mixing emerges due to deviations from this
perfect case, but they are suppressed as ∼ 1/B2 as shown
in Appendix G.
We study the qubit depolarization of our −3/2 imag-

ing protocol for several magnetic fields. We place a 12ms
qubit readout block performed at a variable magnetic
field between two qubit readout blocks performed at
B = 58G [see Fig. 3(a)]. We place an atom readout
block at the end of the sequence to post-select on events
where the atom survives the entire sequence. As shown
in Fig. 3(b), we see good agreement with the expected
∼ 1/B2 scaling. The case of 58 G is studied in further
detail in Fig. 3(c) and (d). By plotting all camera counts
in each image for all 17500 shots with respect to the
dark/bright (D/B) threshold [see Fig. 3(d)], we can di-
rectly measure the probability of all four events: B→B,
D→D, B→D, and D→B. These results – with fur-
ther analysis described in Appendix H – indicate array-
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averaged and state-averaged conditional depolarization
probabilities of P̄depol = 0.012(3) with SPAM correction;
P̄depol = 0.025(2) without. Our ability to fully control
the tweezer polarization across the array is currently lim-
ited by a slight defocus in the tweezer array optics. This
causes the tweezers to not be exactly parallel, which mat-
ters because the tweezer polarization is along the array
axis. Therefore, we see substantially better depolariza-
tion values in the center of our array where the polariza-
tion is better aligned to BDC (see Appendix G): the state-
averaged corrected and raw depolarizations for our best
site are P̄depol = 0.004(4) and P̄depol = 0.014(2), respec-
tively. This issue can be addressed with straightforward
adjustments to our optics or by rotating our array by 90
degrees, which we leave for future work. We have explic-
itly measured the array-averaged spin-flip time scale to
be 0.65(4) s, which is in good agreement with both site-
by-site and array-averaged spin-flip probabilities during
readout.
The measured results are listed in Table I, and include

both raw and corrected values (see Appendix H) for ar-
ray averages and the best site. As noted above, there is
a 0.01(1) (0.0040(1)) probability of atom loss in |0⟩ (|1⟩)
during readout, which would manifest mostly as an in-
flated B→D probability (a raw histogram is shown in
Appendix H). However, this issue can be addressed via
post-selection as we have done, or in real time via a sec-
ond measurement after a π-pulse on the qubit.

IV. INTERLEAVED READOUT AND QUBIT
ROTATION

We now add qubit rotations to demonstrate the util-
ity of high-fidelity repetitive qubit readout. Rotations
are driven by an AC magnetic field perpendicular to
the DC field. At BDC = 58 G, the nuclear spin qubit
splitting is f ≈ 43.5 kHz. We apply up to BAC = 0.29
G directly to our shim coil pair in the x-direction [see
Fig. 1(a)], for which the Rabi frequency is ΩRF/2π ≈ 100
Hz (see Appendix C 1 for further details). Similar re-
sults were recently obtained with a designated antenna
loop [72]. The data shown below uses a Rabi frequency
of ΩRF/2π ≈ 28 Hz to mitigate transient effects associ-
ated with the AC field. We note that stimulated Raman
rotations via optical transitions offer Rabi frequencies on
the ∼MHz scale [69, 73].
Rabi and Ramsey coherence. We add qubit ro-

tations between two qubit readout pulses as shown in
Fig. 4(a). We start with a state polarized along |+⟩ =

(|0⟩+ |1⟩)/
√
2 using a π/2-pulse, such that the probabil-

ities of measuring |0⟩ and |1⟩ in the first image are equal.
We plot the probability that both image outcomes are
the same, Psame, as shown in Fig. 4(b). No obvious con-
trast decay is observed in Rabi oscillations extending out
to one second. With the pulse sandwiched between two
qubit readout blocks, we show a scatter plot of counts
in both images for all 200 shots [see Fig. 4(c)]. We show
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FIG. 4. Interleaved readout and qubit rotation. (a)
Circuit for qubit rotations between two qubit readout pulses.
The atom readout pulse is included at the end to post-select
on events in which the atom survives the entire sequence. We
start with a state aligned along |+⟩ = (|0⟩ + |1⟩)/

√
2. (b)

Rabi oscillations versus time, showing three groups that span
the first second. No obvious contrast decay is observed. Psame

refers to cases where the outcome of the two qubit measure-
ments are the same. This outcome is equally split between |0⟩
and |1⟩ due to the initial state |+⟩. (c) The 2D scatter plots
of photon counts associated with the early-time data points
with rotations of 0, ≈ π/2, and π as shown in (b). These re-
sults indicate that the π-pulse fidelity is comparable to the
probability of not undergoing a spin flip during readout.

plots for rotations of θ = 0, ≈ π/2, and π. In the case of
the π-pulse, we see that nearly all occurrences are B→D
and D→B, and thereby calculate the π-pulse fidelity as
0.997(4) with correction and 0.984(8) without (see Ap-
pendix I).
We also perform a Ramsey sequence to characterize the

T ∗
2 . We use two resonant π/2 pulses separated by a dark

time τ and we vary the phase of the second pulse to ob-
tain a Ramsey fringe. We plot the fringe contrast versus τ
to extract T ∗

2 . See Appendix J. The array-averaged con-
trast data is well described by a Gaussian envelope with
1/e contrast occurring at T ∗

2 = 0.37(1) s. We observe sim-
ilar values at 30 and 90 G (within ≈ 25%), and we believe
that we are limited by ambient magnetic field noise (see
Appendix J). We note that T ∗

2 = 0.7(3) s has been real-
ized with molecular nuclear spins at 86 G [77] and that
≈ 2 mG stability has been realized at ≈ 1000 G [78]. By
adding an echo pulse in the Ramsey sequence, we observe
an extended coherence time of T echo

2 = 1.40(5) s (see Ap-
pendix J). We also observe a 1/e T1 time of ≈ 200 seconds
(see Appendix J). This is somewhat longer than values re-
ported at low field, but is consistent with observed trends
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FIG. 5. Repetitive readout in variable bases. (a) The
{+Z,−Z,+X,−X} measurement sequence, showing large bit
string probabilities only for cases where the outcome is oppo-
site between both the first two and last two measurements.
The correlation matrix shows strong off-diagonal negative cor-
relations for these pairs. (b) The {+Z,+X,−Z,−X} mea-
surement sequence, showing equal bit string probabilities for
all outcomes. The correlation matrix shows no significant off-
diagonal elements. The red lines show the ideal probability
distributions, which are either 0 or 1/22 = 0.25 in (a) and
1/24 = 0.0625 in (b). The ideal off-diagonal correlations are
either 0 or −1. Data in black and solid bars post-selects on
detecting an atom in the initial and final atom readout; data
in gray and dotted bars post-selects on only the initial atom
readout.

as the field is increased [69] due to the reduced spectral
weight of magnetic field noise near the qubit frequency
– a convenient feature of operating at higher field. We
note that our non-destructive readout technique makes
it straightforward to differentiate between atom loss and
spin-flip events when measuring T1.
Repetitive readout in variable bases. The non-

commutivity of measurements in different bases is a hall-
mark feature of quantum behavior and underlies the text-
book examples of cascaded Stern-Gerlach devices and op-
tical polarizers. To further show the unique capabilities
of our repetitive qubit readout technique, we conduct a
version of such experiments by recognizing that readout
in any fixed basis can be combined with qubit rotations to
perform readout in any other basis: We rotate the desired
axis of the Bloch sphere into the measurement direction
(we define this without loss of generality to be in the z-
basis with a bright count mapped to +Z = |0⟩) and then
rotate back (see Fig. 2). We compare two measurement

sequences: {+Z,−Z,+X,−X} and {+Z,+X,−Z,−X}.
Figure 5(a) and (b) show these two cases, respectively,
where the qubit has again been initialized in |+⟩. We
show histograms of the outcome bit strings, where the
anti-correlation between the first two and latter two mea-
surements is clearly apparent in the first sequence, while
the non-commutativity between each consecutive mea-
surement in the second sequence leads to the absence of
correlations. We also directly quantify these correlations
through a correlation matrix that shows strong, negative
off-diagonal elements in the former case, but only diago-
nal elements in the latter case as expected. We show the
results with and without post-selection on detecting an
atom at the end of the sequence; atom loss during the se-
quence biases measurement outcomes toward bit strings
ending with 1’s.
The quantum Zeno mechanism. We can also study

the interplay between qubit rotations and projective mea-
surements. The quantum Zeno mechanism describes the
scenario where the measurement rate is large compared
to the qubit rotation rate, such that projection back to
the initial, un-rotated state overwhelms the growth of
population in others. This behavior has been observed
in myriad experimental systems [79–82], and we use our
ability to interleave qubit readout and rotation to access
this regime in a unique and discrete manner.
Specifically, after initializing the atom in |+⟩ and per-

forming a first qubit readout, we apply alternating qubit
rotations R(θ) and readout for N = 10 times for vari-
able rotation angle θ [see Fig. 6(a)]. We plot the average
probability of finding the qubit to be in the same state
as the first readout, Psame, versus the image index for
the N images. When θ = 0, we expect to always ob-
tain Psame = 1. The observed slow decay is due to the
small but finite depolarization probability P̄depol in each
image; Psame(N = 10) ≈ 0.9 is in good agreement with
(1 − P̄depol)

N for P̄depol ≈ 0.01. When θ = π, the mea-
surement outcome should alternate between |0⟩ and |1⟩
with contrast limited only by P̄depol and the π-pulse fi-
delity, consistent with our observations. For intermediate
angles, the probabilistic nature of outcomes in each mea-
surement combined with the averaging over all trajecto-
ries leads to a damping of Psame that asymptotically ap-
proaches Psame = 0.5. Figure 6(b) shows these expected
trends, where values within θ ∈ [0, π/2] decay monoton-
ically to Psame = 0.5 and values within θ ∈ [π/2, π] un-
dergo damped alternation.
The quantum Zeno mechanism illustrates how projec-

tive measurements can suppress qubit dynamics when
the measurement rate exceeds the coherent qubit rota-
tion rate. Accordingly, for a total rotation angle θtot ap-
plied to the qubit, the Zeno mechanism predicts a strong
dependence of the dynamics on the number N−1 of pro-
jective measurements during the rotation. Specifically,
the rotation angle θtot/(N − 1) between each measure-
ment leaves the qubit in its initial state with probability
Psame = cos2(θtot/(2N − 2)). The probability that the
qubit has remained in the state measured in the first
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FIG. 6. The quantum Zeno mechanism. (a) The Zeno
circuit. After initializing in |+⟩ and performing a qubit mea-
surement, we repetitively interleave a rotation R(θ) and a
readout N − 1 times. We post-select on the final atom read-
out. (b) The probability that the measurement has the same
outcome as the initial measurement, Psame, versus the mea-
surement index for many different rotation angles θ. We see
monotonic decay of Psame to 0.5 for θ ∈ [0, π/2] and damped
alternations to 0.5 for θ ∈ [π/2, π]. The lines deviate from the
ideal case only by the finite depolarization probability during
readout which is fit to the θ = 0 case as P̄depol = 0.0127(6).
(c) The probability that all outcomes are the same, Pall-same,
versus total rotation angle θtot = θ × (N − 1) for several
different numbers of repetitions N . The lines are Pall-same =
(1− P̄depol)

Ncos2N−2(θtot/(2N − 2)).

readout during all N − 1 subsequent measurements is
therefore Pall-same = PN−1

same = cos2N−2(θtot/(2N − 2)).
Figure 6(c) shows this trend, limited primarily by the
(uncorrected) depolarization probability P̄depol ≈ 0.01
for each measurement. The data is in good agreement
with (1 − P̄depol)

N × Pall-same, and captures the essence
of the Zeno mechanism in which Pall-same → 1 as N → ∞
for fixed θtot.

V. REAL-TIME FEEDFORWARD FOR ACTIVE
QUBIT RESET

We now add real-time control [57] to our toolbox to de-
terministically prepare the qubit in either |0⟩ or |1⟩ after
measurement, often called “active qubit reset” [83–86].
We perform this study with only a single atom; a pos-
sible extension to arrays is discussed in Section VI. We
initialize the qubit in |+⟩ and then perform a measure-
ment that projects it to |0⟩ or |1⟩. We then perform six
loops, where each is composed of a π/2 rotation, a mea-
surement, a conditional rotation (R(0) or R(π)), and a
second measurement. The goal of the conditional rota-
tion is to rotate the qubit to the same or opposite state
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FIG. 7. Repetitive real-time feedforward. (a) and
(c) The circuit for performing repetitive deterministic state
preparation for a single qubit. After initializing in |+⟩ and
performing an initial measurement, we repeat a loop that con-
tains a first pulse (π/2), a first measurement, a second pulse
(0 or π), and a second measurement. In (a), we choose the sec-
ond pulse based on the first measurement outcome in order
to yield the outcome of the second measurement to match
the initial measurement outcome. This requires feeding for-
ward the result obtained from an exclusive OR (XOR) gate
between the classical bits in the initial measurement and the
first measurement in the loop. The result is shown in (b),
where the thick solid line shows the result averaged over 400
shots. In (c), we choose to alternate between obtaining the
opposite and the same outcome in the second measurement
as that of the initial measurement, which requires alternating
between exclusive not OR (XNOR) and XOR classical logic
on odd- and even-numbered loops. The result is shown in (d),
where now we see full-contrast alternations. The arrows in
(b) and (d) illustrate the role of the feedforward, with gray
vertical lines dividing loop iterations. Loops using XOR logic
have light gray backgrounds and loops using XNOR logic have
dark gray backgrounds. (e) and (f) show a single, representa-
tive trajectory for each circuit and the arrows indicate when
a π-pulse is applied.

as measured in the initial readout. Hence, the rotation is
conditional on both the initial readout and the first read-
out in the loop. Details on the real-time implementation
of this circuit are described in Appendix K.
To keep the qubit in the same state as the outcome of

the initial measurement [see Fig. 7(a) and (b)], a classi-
cal exclusive OR (XOR) gate is used to perform a R(π)
rotation if and only if the two classical bits are different.
Otherwise, no rotation is performed: R(0). We observe
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alternation between Psame ≈ 1 and Psame ≈ 0.5, where
“same” refers to the initial readout. The first jump is
identical to the R(π/2) case of the Zeno study above [see
Fig. 6(b)]; however, instead of staying at Psame = 0.5 on
average after each subsequent rotation, our feedforward
technique deterministically puts the qubit back into the
initial state, such that Psame goes back to unity. The jump
then repeats in each loop.
Alternatively, we can switch between obtaining the

initial readout outcome (Psame = 1) and the opposite
outcome (Psame = 0) on each iteration of the loop.
This can be accomplished by using an exclusive NOR
(XNOR) in odd-numbered loops and an XOR in even-
numbered loops [see Fig. 7(c)]. In this case, we observe
full-amplitude zig-zags of Psame as shown in Fig. 7(d). In-
dividual trajectories are shown in Fig. 7(e) and (f), indi-
cating when a π-pulse is required and showing “quantum
jump”-like behavior between sequential measurements.
Finally, since the qubit is deterministically reset, de-

polarization during readout does not accrue upon subse-
quent measurements. Thus, a high contrast is maintained
for an arbitrary number of loops; we choose six loops (13
total measurements) as a compromise against atom loss.
Note that this data is post-selected on the final atom
readout.

VI. CONCLUDING DISCUSSION

In summary, we have leveraged the unique level struc-
ture of 171Yb to perform repetitive qubit readout, with
qubits encoded in the nuclear spin-1/2 ground state.
With a bright/dark discrimination fidelity of F ≳ 0.99,
atom survival of≈ 0.99, and spin-flip probability P̄depol of
≈ 0.01 during a 12ms probe pulse, we show that readout
can be repeated 10 times while still maintaining control
over the qubit state at the ≈ 0.9 level. These numbers
would improve as ∼ 1/B2. By adding high fidelity qubit
rotations with an AC magnetic field, we study quan-
tum circuits that feature both measurements and rota-
tions. These include measurements in variable bases as
a demonstration of measurement non-commutivity akin
to cascaded Stern-Gerlach devices and optical polarizers,
as well as a manifestation of the quantum Zeno mecha-
nism in which dynamics is frozen by measurement. Addi-
tionally, we use real-time feedforward to perform repet-
itive active qubit reset to |0⟩ or |1⟩, and we show that
this deterministic operation circumvents the accrual of
depolarization errors during measurement thereby main-
taining excellent contrast after 13 measurements, limited
only by atom loss. The atom loss can be mitigated by
using shallower tweezers and/or shorter readout pulses,
or by working at a tweezer wavelength with larger detun-
ing from the 3PJ↔ 3S1 transitions for which we identify
≈ 778 nm as a good candidate where 3P1 |mF | = 3/2 is
magic with the ground state (see Appendix F).

Our work demonstrates global qubit rotations and
global QND readout; however, local operations are of-
ten required. Local qubit rotations can be accomplished
by using stimulated Raman pulses [69, 73, 87] instead
of an AC magnetic field. Qubit rotations can then be
performed at ∼MHz rates rather than ∼ 100 Hz, and
single-site control can be realized with adaptive optical
elements [73, 88]. Local measurements, often referred to
“mid-circuit measurements”, are performed on a sub-
set of “ancilla” qubits while the others – the “data”
qubits – remain unaffected. Local mid-circuit measure-
ment without crosstalk with the data qubits can be per-
formed using two atomic species [14, 20, 23, 57, 89, 90],
separate readout zones [36, 91–94], and via “shelving”
with other atomic states [58, 84, 95]. Our technique of-
fers QND readout for all three approaches, and is com-
patible with shelving techniques via the optical “clock”
transition [87, 96–98]. Indeed, this is our primary motiva-
tion for operating at the clock-magic wavelength. In this
approach, qubits will be encoded in the metastable 3P0

nuclear spin, and optical pulses with a phase-stabilized
laser [99, 100] will transfer the ancilla qubit(s) to the
ground state for measurement. We also note that our
technique is compatible with the use of local light shifts
to perform mid-circuit measurements.
Finally, we note that having a qubit with excellent op-

tical bright/dark discrimination is a key prerequisite for
time bin remote entanglement generation [101, 102]. In
this scheme, the qubit state becomes entangled with the
state of a single photon in the temporal basis (early or
late bin), and photons from the pair of atoms are coinci-
dent on a photonic Bell state analyzer that haralds the
generation of a remote Bell pair between the atoms. Our
work demonstrates that 171Yb is an excellent candidate
for high-fidelity atom-photon entanglement. This could
either be performed on the 1S0 ↔ 3P1 transition at 556
nm used in this work for short distance distributed or
modular computing [103–105], or via the identical config-
uration on the 3P0 ↔ 3D1 transition at 1389 nm in the
telecommunication wavelength band that is well suited
for long distance networking [106, 107].
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APPENDIX A: Overview of the experimental
apparatus

1. Chamber, MOT, and imaging

The experimental apparatus is inspired by Ref. [108]
and comprises two main sections, wherein hot ytterbium
atom flux obtained from a single AlfaVakuo dispenser is
first cooled in two dimensions via a 2D magneto-optic
trap (MOT) and then transferred ≈ 40 cm via a nearly
resonant beam through a differential pumping tube to
load a full 3D MOT with ∼ 106 atoms over 500ms. Both
MOTs and the push beam are tuned to the 1S0 ↔ 1P1

transition (λ = 399 nm, Γ = 2π×29MHz) and are formed
at the centers of glass cells. Once loaded in the 3D MOT,
the atoms are approximately 1mK.
Next, another 3D MOT tuned to the 1S0 ↔ 3P1 (λ =

556 nm, Γ = 2π × 182 kHz) transition is turned on while
the 399 nm MOT beams are turned off and the magnetic
field gradient switched from ≈ 60G/cm to ≈ 10G/cm
accordingly. Initially, this transition is power-broadened
significantly by beam intensities set to ∼ 104 Isat to en-
sure sufficient atom transfer (roughly 50%) between the
two MOTs. The atoms are then cooled further to ap-
proximately 5µK by ramping the beam intensity down to
0.6 Isat and detuning (relative to free space) from ≈ −20Γ
to ≈ −1.2Γ over 30ms. The MOT field gradient is then
increased to≈ 14G/cm over 10ms to compress the atoms
into a volume roughly 150µm in diameter. We estimate
that the compressed MOT holds approximately 5 × 105

atoms at this stage.
The atoms are then loaded stochastically into opti-

cal tweezers at spacing 7.8µm, 1/e2 waist 670 nm (ra-
dius), depth 580µK, and wavelength ≈ 760 nm. The
tweezers are generated by a single acousto-optic deflec-
tor leading into a NA ≳ 0.6 objective (Special Optics).
The tweezer light is sourced from a M Squared Sol-
sTiS titanium-sapphire laser pumped by a M Squared
Equinox. We choose the tweezer wavelength to give magic
trapping for the ground and excited state manifolds of
the 1S0 ↔ 3P0 optical clock transition and near-magic
trapping for the |mF | = 1/2 states in the 3P1 F = 3/2
manifold. For an array of 5 tweezers, we require roughly
35mW of optical power in the plane of the atoms. We
estimate a loading fraction of approximately 0.7 (see Ap-
pendix H). The atoms are then cooled using the same
556 nm beams used for the 3D MOT, now with intensity
1.3 Isat and frequency red-detuned from the free-space
1S0 ↔ 3P1|F = 3/2, mF = −1/2⟩ transition by approx-
imately 0.8Γ, which causes atoms to escape from the
tweezers in pairs through light-assisted collisions, leav-
ing only 0 or 1 atom in the trap afterward. This process

takes ≈ 120ms, although we expect this could be im-
proved significantly with further optimization. We mea-
sure the temperature of the atoms in the tweezers using
a release-and-recapture method to be ≈ 5µK, which is
close to the Doppler limit for the transition.
The atoms are imaged using two retro-reflected beams

tuned to the 1S0 ↔ 3P1 transition (see Appendix B) with
projections onto all three trap axes. The two beams are
collimated with a 1/e2 radius of approximately 880µm
and have a ≈ 70◦ angle between them. We estimate
that each imaging beam has intensity 0.5 Isat relative
to the probe transition (other polarization components
are not counted). The two probe beams have polariza-
tion overlap, and the polarizations of the retro-reflection
beams are not rotated. Therefore, interference fringes
are likely to be present; we do not wash them out with
e.g. dithering mirrors. Imaging performed using either
the mF = −3/2 or mF = −1/2 transition is done so
with laser frequency red-detuned by approximately 1Γ.
Atomic fluorescence is collected through a second ob-
jective identical to the one used to generate the tweez-
ers but placed on the opposite side of the glass cell [see
Fig. 1(a)] and focused onto an electron-multiplying CCD
(EMCCD, Andor iXon Ultra 888) with EM gain set to
200.

2. Tweezer array homogenization

Homogenization of the optical tweezer array is key to
the maintenance of the imaging condition used for read-
out. Although the atoms in the tweezers are inherently
identical, it is critical – particularly given the nonzero dif-
ferential polarizabilities identified in Appendix F – that
the trapping potentials be as uniform as possible to pre-
vent undesired light shifts on the 3P1 imaging states.
To this purpose, we adopt an iterative procedure based

on spectroscopy of the 3S0 ↔ 3P1 F = 3/2, mF = −3/2
transition. Since this transition is non-magic in the pres-
ence of the chosen trapping wavelength, the measurement
of the transition’s resonance frequency is linearly related
to the trap depth. Thus, spectroscopy is repeatedly per-
formed for each site in the array, and the amplitudes of
the five generating RF tones sent to the acousto-optic de-
flector (AOD, AA Opto Electronic DTSX-400-760) from
an arbitrary waveform generator (AWG, Spectrum In-
struments M4i6622) are adjusted to bring the transition
resonances measured across different sites to the same
center frequency. Then, the total RF power sent to the
AOD is adjusted to bring each site to the desired trap
depth. For an array of five tweezers, this process gen-
erally converges to the ∼ 0.1% level in around 10 itera-
tions. Post-imaging atom survival is homogenized by this
procedure to within 3%. Uniformity in the shapes and
depths of the tweezers is monitored by a CCD placed af-
ter a dichroic mirror used to separate atomic fluorescence
from tweezer light after they have both passed through
the imaging objective shown in Fig. 1(a). We have ob-
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served similar homogeneity with 10 tweezers.

3. Brief overview of experiment control

The many individual components of the apparatus are
controlled by means of a combination of National In-
struments PCIe-7820 and PCIe-6738, which respectively
expose 128 digital input/output and 32 analog output-
only configurable voltage channels, housed in a single
computer. Communication with these devices is accom-
plished by means of low-level field-programmable gate
array (FPGA) programming software provided by En-
tangleware, Inc. Experimental sequences are ultimately
programmed through a high-level, Python-based inter-
face. The atomic signal returned from the apparatus via
collection on the EMCCD sensor is sent to a separate
computer, which handles both real-time feedforward (see
Appendix K) and the AWG used to control the tweezer
array.

APPENDIX B: Comparison of mF = −3/2 and
mF = −1/2 readout

In this section, we compare aspects of the two methods
of performing readout (i.e. using the mF = −3/2 and
mF = −1/2 3P1 F = 3/2 excited state). As stated in
the main text, the principal reason to prefer one to the
other is that the mF = −3/2 method is state-selective
due to dipole selection rules and, hence, can be used to
convert bright/dark classifications into qubit state mea-
surements.
The exact imaging conditions used in the two cases

shown here differ by only the strength of the magnetic
field at which they are performed. We compare the meth-
ods by exposing the atoms to light from the probe beams
at total intensity ≈ 3 Isat, of which we estimate ≈ 1 Isat
effectively drives the desired transition, but mF = −3/2
imaging is performed at 58G with detuning −1Γ for
12ms while mF = −1/2 imaging is performed at 18G
with detuning −0.5Γ for 20ms. The lower field strength
is used to minimize effects from the Zeeman splitting
between the nuclear spin ground states, and the longer
probe time is because the data was taken before fi-
nal optimization of the collection efficiency. Fig. 8(a)
shows that the mean numbers of photons collected from
filled tweezer sites (see Appendix H) differs only slightly
with comparable discrimination fidelities. Fig. 8(b) gives
temperature estimates, obtained via a standard release-
recapture experiment, for both cases as well, showing
≈ 5µK for mF = −3/2 and ≈ 4µK for mF = −1/2.
We do not explicitly measure the axial temperature and
we expect that it could be improved with an axial cooling
beam sent through the objectives. We leave this investi-
gation for future studies.
We also note differences in photon collection efficiency

between the two transitions. In the electric dipole ap-
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FIG. 8. Comparison of the mF = −3/2 and mF = −1/2
imaging conditions. (a) Comparison of photon scatter dur-
ing imaging. The upper histogram shows that for imaging
using the mF = −3/2 excited state with mean number of
photons collected µ1 = 37.1(2) at 58G magnetic field when
an atom is present (see Appendix H) while the lower shows
that for imaging using mF = −1/2 with µ1 = 28.1(2) at 18G.
The red vertical lines show the photon collection threshold for
bright/dark discrimination in each case (see Appendix H). (b)
Measurement of atom temperature in the tweezer under the
mF = −3/2 (dark green circle) and mF = −1/2 (light green
diamond) via release-recapture experiment. Tweezer sites are
imaged and the tweezers are diabatically switched off for vari-
able time before being turned on and imaged again. Recap-
ture probability is calculated as that of the second image
being bright, post-conditioned on the first being bright as
well. Optical pumping is performed before both images in the
mF = −3/2 case. Probabilities have been re-scaled so that
the mean of the four shortest-time probabilities is equal to
1. The lines show predicted probabilities obtained via Monte
Carlo simulation for temperatures 4µK (black) up to 10µK
(red), indicating that the temperature after imaging using
mF = −3/2 (mF = −1/2) is approximately 5µK (4µK).

proximation, the direction in which a given photon will
be radiated depends on the associated change in angular
momentum ∆mF undergone by the atom, and is gov-
erned by the following angular probability distributions:

f|∆mF |(θ, φ) =

{
3

16π

(
1 + cos2 θ

)
|∆mF | = 1

3
8π sin2 θ |∆mF | = 0

(B1)

with polar angle θ and azimuthal angle φ.
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We then model the emission patterns for the two imag-
ing cases detailed here. For the mF = −3/2 case, we ex-
pect the pattern to follow purely that of f1 (|∆mF | = 1).
For the mF = −1/2 case, we expect it to follow a mix
of both f0 (|∆mF | = 0) and f1 in a 2 : 1 ratio equal to
that of the squared Clebsch-Gordan coefficients for the
possible decay paths from the 3P1 F = 3/2, mF = −1/2
excited state, assuming an approximately even mixture of
polarization modes in the incident light. Thus the pho-
ton emission for both imaging cases is modeled by the
distributions

gmF
(θ, φ) =

{
f1(θ, φ) mF = −3/2
2
3f0(θ, φ) +

1
3f1(θ, φ) mF = −1/2

.

(B2)
From these, we then compare photon collection effi-

ciencies between the two cases via Monte-Carlo integra-
tion. Our objectives’ collection areas are modeled as cir-
cular, with bounding curves θ±(φ) = arccos[∓(NA2 −
sin2 φ)1/2], over which gmF

is integrated for both mF =
−3/2 and mF = −1/2. The ratio between the two cases
is found as approximately 1.4, in favor of mF = −1/2,
which is in disagreement with our findings shown in Fig 8.
We attribute to a handful of factors. First, we note that
the intensity distribution in the probe beams across the
π, σ± polarization modes may not be uniform. The ex-
act polarization of the beams is difficult to measure given
their angles of entry into the cell, and would manifest as
additional weighting factors on the f∆mF

components of
the overall photon emission distribution gmF

. Second, in-
terference between the two probe beams may also play
a role, as noted in Appendix A. Finally, the non-magic
trapping of the mF = −3/2 excited state implies that
the detuning of the probe beam varies spatially over the
trap, which causes broadening in the photon distribution.
A temperature of T ≈ 5µK gives rise to a frequency
spread of ∆f ≈ 25 kHz with a differential polarizability
of 0.25(3), which is non-negligible compared to the probe
transition linewidth. However, the excess broadening may
suggest that our atoms are somewhat hotter in the axial
direction, to which release-recapture measurements are
not sensitive. We note that it is straightforward to add
an axial cooling beam through the objective, and we leave
this study for future work.

APPENDIX C: Magnetic field system

1. AC magnetic field system

To manipulate the nuclear spin states, we can either
use the Raman transition via the electric dipole cou-
pling [69, 73] or directly using the magnetic dipole cou-
pling between nuclear states [72]. Here we introduce the
second method implemented in our experiment.
For the 171Yb ground state (6s2 1S0), the nuclear

spin I = 1/2 gives the hyperfine structure F = 1/2
with two nuclear spin states |0⟩ ≡ |mF = −1/2⟩ and

|1⟩ ≡ |mF = 1/2⟩. We apply a magnetic field along the
y-axis [see Fig. 1(a)], leading to Larmor precession in the
atomic spin. The Hamiltonian of the system is given by

Ĥ0 = gµBF̂ ·B0, (C1)

where gµB/h is around −750Hz/G for the splitting be-
tween |0⟩ and |1⟩. Thus the Hamiltonian can be simplified
as:

Ĥ0 = ℏ
(
ω0 0
0 0

)
, (C2)

where ℏω0 is the energy splitting between |0⟩ and |1⟩.
Now considering we add an AC magnetic field along the
z-axis, with the quantization axis defined by the magnetic
field along the y-axis shown in Fig. 1(a), the Hamiltonian
is given by:

Ĥ = Ĥ0 +
1

2
ℏΩcos(ωt)σ̂x

= ℏ
(

ω0
1
2Ωcos(ωt)

1
2Ωcos(ωt) 0

)
,

(C3)

where Ω = 1
2gµBBAC/ℏ is the Rabi frequency (defined as

the frequency of oscillation in state probabilities, rather
than amplitudes), BAC is the strength of the driving
magnetic field and ω is the frequency of the driving sig-
nal. Since ω0 ≫ Ω, the factor 1/2 in Ω comes from the
strength of the counter-rotating term, which does not sig-
nificantly contribute to the Rabi oscillation and, hence,
has been neglected.
To achieve a Rabi frequency Ω/2π ≈ 110Hz, we re-

quire BAC ≈ 0.29G. The easiest way of realizing such
magnetic field modulation is by using a pair of “shim”
coils [see Fig. 1(a)]. In our system this corresponds to a
current modulation amplitude Imod ≈ 0.15A. At 58G,
chosen to match the magnetic field applied during read-
out, the modulation must be applied at a RF frequency
equal to the Larmor frequency, f ≈ 43.5 kHz. Consider-
ing an inductance Lcoil ≈ 1.5mH of the shim coil, the
voltage modulation amplitude is calculated as Vmod =
Imod × 2πfLcoil = 64V = 128Vpp.
Since there is no commercial product that can give both

a high voltage and a high current drive at ≈ 45 kHz, we
built our own driver. The schematic of this RF driver
is shown in Fig. 9(a). The input RF signal is isolated
and divided into two parts with opposite polarity by the
signal transformer T1. Two high current and high speed
operational amplifiers (Linear Technology, LT1210) are
driven by the two signals and differentially drive the out-
put transformer T3. T3 is the main transformer recycled
from an ATX (Advanced Technology eXtended) power
supply of retired computers. This transformer has a turn
ratio of about 5 : 1 which increases the output voltage by
a factor of 5. The output transformer also isolates the RF
driving stage from the shim coils, which introduce min-
imum interference with the DC magnetic field control
system. Since the maximum output current of LT1210
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(a)

(b)(b)

FIG. 9. AC magnetic field system (a) The schematic of
the RF driver used to drive one pair of the horizontal shim
coils. The driver is capable of giving a maximum output volt-
age around 300Vpp and the peak current about 0.2A ranges
from 30 kHz to 2MHz. (b) The connection of the RF driver
to the shim coils. The isolated output of the RF driver (green
box) is connected in series with the shim coil driver (teal box).
A 1µF polypropylene film capacitor is used to bypass the RF
signal through the shim coil driver.

is 1.1A, the maximum current available after the trans-
former is 0.2A.
It is also necessary to use these shim coils with constant

DC component in order to cancel background magnetic
fields – for which we also use two other pairs of coils
not shown in Fig. 1(a) – requiring the RF driver to be
connected in series with a DC driver used for all three
pairs. This is possible since the secondary winding of the
transformer T3 has very small DC resistance. However,
the magnetic core of T3 will be saturated if the DC cur-
rent is larger than 0.3A, which means the RF driver is
only functional when the shim coils have relatively small
DC current. This is not a problem for our experiment
since the background magnetic field is small. As shown
in Fig. 9(b), a 1µF polypropylene film capacitor is con-
nected in parallel with the shim coil driver, which is used
to bypass the RF signal that passes through the shim coil
driver. This capacitor also helps decrease the interference
of the shim coil driver from the RF driver.

2. DC magnetic field system

To generate the magnetic field for non-destructive
imaging at 58G, we repurpose the MOT coils by switch-
ing the coils’ electrical connection from anti-Helmholtz to
Helmholtz configuration. To achieve this, we use an H-
bridge to control the current flow direction of the upper
MOT coil. The H-bridge is constructed using eight high-
current metal-oxide-semiconductor field-effect transistors
(MOSFETs) connected in parallel. The specific model

used is IXFN300N20X3 from IXYS Corporation. The
voltage-controlled resistors are used to protect each indi-
vidual device from the back-electromotive force (EMF)
generated by the coils.
To isolate the noise and the computer’s control signal

ground from the coil’s ground connection, two isolated
gate drivers (Texas Instruments, UCC21320) are used to
control both sides of the half bridges. The drivers also
protect each side of the half bridge from the dead-zone,
which can cause a short in the coil connection.
The magnetic field stabilization is achieved by sta-

bilizing the current flowing through the coil. To mea-
sure the current with high stability, a high-stability
Hall sensor (Danisense, DS300ID) is used, which has a
long-term stability of better than 0.2 ppm per month.
The secondary current output of the Hall sensor is
converted to voltage through a Kelvin connection, us-
ing a high stability (0.05 ppm/◦C) metal film resistor
(Vishay, Y16065R00000F9W). For the error signal am-
plifier, a low-noise operational amplifier (Analog Devices,
AD8675) is DC stabilized by a zero-drift operational am-
plifier (Linear Technology, LTC2057), and high gain sta-
bility (0.2 ppm/◦C) is achieved by a matched resistor
network (Linear Technology, LT5400). The reference sig-
nal for the magnetic field servo is provided by a 20-bit
high-stability (0.05 ppm/◦C) digital-to-analog converter
(Analog Devices, AD5791), with the reference voltage
provided by a temperature-controlled buried Zener diode
(Linear Technology, LTZ1000). The servo output is sent
to two insulated gate bipolar transistors (IGBTs) con-
nected in parallel, with each IGBT in series with the coils.
The specific model used is IXGN200N170, manufactured
by IXYS Corporation. Detailed schematics of the servo
and voltage reference can be found in Ref. [109].
The magnetic field servo board and voltage reference

board are connected closely inside a metal box that
is grounded. A low noise isolated DC-DC power sup-
ply [110, 111] is used to power the servo, voltage reference
and the Hall sensor, each with a separated ground. The
magnetic field control is achieved by the isolated digital
channels that directly control the digital to analog con-
verter using the serial peripheral interface (SPI) protocol.
This approach avoids any possible magnetic field change
introduced by the noise of external signal ground.

APPENDIX D: Simulating multi-level dynamics

During the qubit readout process, the relevant energy
levels are those in the 1S0 and

3P1 F = 3/2 manifolds. To
estimate the readout fidelity and to optimize experimen-
tal settings, we study the dynamics of atom population
transfer between the 1S0 nuclear spin ground states via
coherent and incoherent processes mediated by the 3P1

F = 3/2 states.
Since the 3P1 state lifetime is relatively short compared

with the imaging time (Γ−1 ∼ 10−6 s versus ∼ 10−2 s),
we ignore the populations in 3P1 states and only consider



13

1S0

3P1  F = 3/2

mF

Branching
ratio

–3/2 –1/2 +1/2 +3/2

δ01

Δ–3/2

Δ–1/2

Δ+1/2

Δ+3/2

1 1
2/3 2/3

1/31/3

FIG. 10. Energy levels and probe beam configuration.
The energy splitting between different Zeeman states in 1S0

and 3P1 manifolds are determined by external magmetic field
(Zeeman splitting) and tweezer depth (vector and tensor light
shifts). For magnetic fields exceeding 5 G, the splitting be-
tween 3P1 Zeeman states look nearly identical.

the populations in the two nuclear spin qubit levels in the
1S0 manifold, |mF = −1/2⟩ ≡ |0⟩ and |mF = 1/2⟩ ≡ |1⟩.
As mentioned in Sec. III, the qubit readout (−3/2 imag-
ing) is achieved by applying a probe beam that is close to
the |0⟩ ↔ |3P1,mF = −3/2⟩ transition, red-detuned by
1Γ. Due to the random polarization of the probe beams
(Iσ− ≈ Iσ+ ≈ Iπ = I/3), off-resonant scattering pro-
cesses via other 3P1 states can induce qubit depolariza-
tion between |0⟩ and |1⟩. Moreover, the probe beam can
coherently drive stimulated Raman transitions between
|0⟩ and |1⟩ mediated by the |3P1,mF = ±1/2⟩ states.
Figure 10 shows the energy levels of 1S0 and 3P1 states

and the probe beam with the corresponding branching ra-
tio of each transition. Since the probe beam is monochro-
matic, the Hamiltonian of the stimulated Raman transi-
tion driven by the probe beam reads

Ĥ =
ℏΩ
2

σ̂x +
ℏδ01
2

σ̂z. (D1)

Here Ω = Ω0Ω1/2∆ is the effective Raman Rabi fre-
quency, with Rabi frequencies Ω0 and Ω1 of the dipole
transition between a certain 3P1 Zeeman state and the
two ground states. Each of the two possible intermediate
states, |3P1,mF = ±1/2⟩, contributes to a Raman Rabi
frequency of

Ω±1/2 =

√
1

3

2

3

Γ2

2∆±1/2

I/3

2Isat
(D2)

where Isat is the saturation intensity for the |0⟩ ↔
|3P1,mF = −3/2⟩ transition. The total Raman Rabi fre-
quency is the sum of Ω−1/2 and Ω+1/2.

When the atoms are excited to the 3P1 states, subse-
quent scattering leads to an incoherent re-distribution of
the ground state populations, which can be described by
the following collapse operators

Γ00 = R00|0⟩⟨0|, Γ01 = R01|0⟩⟨1|,
Γ10 = R10|1⟩⟨0|, Γ11 = R11|1⟩⟨1|, (D3)

where Rij is the scattering rate from qubit state |i⟩ to |j⟩.
Each scattering rate contains contributions from several
paths via different Zeeman levels in the 3P1 manifold that
are allowed by the selection rule:

R00 = R
−3/2
0→0 +R

−1/2
0→0 +R

+1/2
0→0

R01 = R
−1/2
0→1 +R

+1/2
0→1

R10 = R
−1/2
1→0 +R

+1/2
1→0

R11 = R
−1/2
1→1 +R

+1/2
1→1 +R

+3/2
1→1 . (D4)

where Rm
i→j is the rate of the atom starting in |i⟩ being

excited to |3P1,mF = m⟩ and decaying to |j⟩. After tak-
ing the Clebsch-Gordan coefficients into consideration,
the scattering rate via every possible channel in Eqs. D4
can be calculated using rate equations. Equations D5 de-
scribe the transitions with the same initial and final state,
representing a dephasing process,

R
−3/2
0→0 =

Γ

2

Iσ−/Isat
1 + 4(∆−3/2/Γ)2 + Iσ−/Isat

R
−1/2
0→0 =

Γ

2

2

3

2/3 · Iπ/Isat
1 + 4(∆−1/2/Γ)2 + 2/3 · Iπ/Isat

R
+1/2
0→0 =

Γ

2

1

3

1/3 · Iσ+/Isat
1 + 4(∆+1/2/Γ)2 + 1/3 · Iσ+/Isat

R
−1/2
1→1 =

Γ

2

1

3

1/3 · Iσ−/Isat
1 + 4[(∆−1/2 + δ01)/Γ]2 + 1/3 · Iσ−/Isat

R
+1/2
1→1 =

Γ

2

2

3

2/3 · Iπ/Isat
1 + 4[(∆+1/2 + δ01)/Γ]2 + 2/3 · Iπ/Isat

R
+3/2
1→1 =

Γ

2

Iσ+/Isat
1 + 4[(∆+3/2 + δ01)/Γ]2 + Iσ+/Isat

, (D5)

and Eqs. D6 describe the transitions between different
initial and final states, which represent an amplitude
damping process,

R
−1/2
0→1 =

Γ

2

1

3

2/3 · Iπ/Isat
1 + 4(∆−1/2/Γ)2 + 2/3 · Iπ/Isat

R
+1/2
0→1 =

Γ

2

2

3

1/3 · Iσ+/Isat
1 + 4(∆+1/2/Γ)2 + 1/3 · Iσ+/Isat

R
−1/2
1→0 =

Γ

2

1

3

2/3 · Iσ−/Isat
1 + 4[(∆−1/2 + δ01)/Γ]2 + 2/3 · Iσ−/Isat

R
+1/2
1→0 =

Γ

2

2

3

1/3 · Iπ/Isat
1 + 4[(∆+1/2 + δ01)/Γ]2 + 1/3 · Iπ/Isat

.

(D6)

With the above Hamiltonian and collapse operators,
we can therefore use master equations to extract the
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simulation results in Fig. 3(b) for depolarization rates
under different imaging conditions, including magnetic
field, imaging time, probe beam intensity and detuning.
At high magnetic field, Fig. 3(b) indicates that the con-

tributions from the coherent and incoherent parts are
similar and they both scale as 1/B2. For the incoherent
population transfer, the 1/B2 scaling can be explained
by noticing that R01 and R10 both go as 1/B2 when
∆±1/2 ≫ Γ and I ∼ Isat. For the coherent part, the pres-
ence of all polarization components in our probe beam
can drive stimulated Raman transitions between the
qubit states, ostensibly at a rate of Ω+1/2+Ω−1/2 ∼ 1/B.
However, this rate is much smaller than the nuclear spin
splitting δ01 at modest magnetic fields, meaning the co-
herent population oscillation is negligible.

APPENDIX E: Simulating the off-resonant
scattering rate to 3P2 and 3P0

At typical trapping power for the tweezer wavelength
around 760 nm, the direct off-resonant scattering rates
from the 1S0 ground state to the 3P2 and 3P0 metastable
states are negligible due to their narrow linewidth. How-
ever, there is still a possibility of the atoms being scat-
tered to these two states through a two-photon process
involving the 6s7s 3S1 state when we probe the atoms on
the 1S0 ↔3P1 transition.
To estimate this off-resonant scattering rate, we can

simplify the calculation into two parts. First, we can cal-
culate the probability of atoms being in the 3P1 state
during imaging. Second, we can calculate the off-resonant
scattering rate from 3P1 to the 3P2 and 3P0 states.
The probability of an atom occupying 3P1 during the

imaging process is given by the expression

P3P1
=

1

2

Iprobe/Isat
1 + 4(∆/Γ3P1

)2 + Iprobe/Isat
(E1)

where Γ3P1
and Isat represent the linewidth and satura-

tion intensity of the probe transition, respectively. Iprobe
and ∆ denote the probe laser intensity and detuning, re-
spectively.
Starting from 3P1, the off-resonant scattering is domi-

nated by the 3P1 ↔ 3S1 transition. For the case of large
detuning and negligible saturation, the off-resonant scat-
tering rate is written as:

Γsc =
3πc2Γ2

3S1

2ℏω3
0

(
ω

ω0

)3 (
1

ω0 − ω
+

1

ω0 + ω

)2

Itrap,

(E2)

where Γ3S1
and ω0 are the linewidth and resonance fre-

quency of the transition. ω is the laser frequency and
Itrap is the intensity of the 760 nm tweezer. To match the
experiment, we set the tweezer power to be 7mW and
the waist (1/e2 radius) to be 670 nm.
However, the off-resonant scattering rate given above

does not take into account the atom’s initial mF state
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FIG. 11. Off-resonant scattering-limited probe lifetime
(a) The calculated lifetime under |mF | = 3/2 imaging as a
function of probe intensity. The dashed lines assume the atom
will be lost if it scatters to any 3PJ state from 3S1, while the
solid lines assume it will survive only if scattered to 3P1. (b)
The lifetime under |mF | = 1/2 imaging for the same condi-
tion, which gives a three times higher lifetime due to the lower
off-resonant scattering rate. We set the tweezer {wavelength,
power, waist (1/e2 radius)} to {760 nm, 7mW, 670 nm} for
both calculations. A probe detuning of −1Γ is used to calcu-
late the 3P1 state population.

and the polarization of the tweezer, which results in a re-
duced scattering rate due to the reduction of dipole ma-
trix elements. In our experiment, the tweezer is linearly
polarized with the polarization parallel to the external
magnetic field. Since J = J ′ = 1, for the transition start-
ing from the |F,mF ⟩ lower state (3P1) to the |F ′,mF ′⟩
upper state (3S1), the scattering rate is given by the ex-
pression

ΓF,mF
= 3Γsc

∑
F ′,mF ′

δmF ,mF ′ (2F + 1)(2F ′ + 1)

×
∣∣∣∣( F ′ 1 F

mF ′ −q −mF

){
1 1 1
F ′ F I

}∣∣∣∣2 ,
(E3)

where F ′ = 1/2 or 3/2 for the 3S1 state and q = mF ′ −
mF = 0 for a π-polarized tweezer. The symbols ( · · · ) and
{ · · · } represent Wigner 3-j and 6-j symbols, respectively.
For our |mF | = 1/2 and |mF | = 3/2 imaging methods,
the off-resonant scattering rates are given by Γsc/6 and
Γsc/2, respectively.
After being off-resonantly excited to the 3S1 state, the

atom can decay back to any of the 3PJ states. Since
the 3P2 state cannot be trapped by the 760 nm tweezer,
atoms in this state will leave the trap immediately. The
3P0 state is dark to the probe transition and is not re-
pumped in our apparatus, so both processes contribute
to atom loss during the fluorescence imaging. By compar-
ing the branching ratios of all three paths [112], we can
calculate the possibility of decaying to the 3P2 and 3P0

to be around 63% – dominated by the 3P2 component.
The solid curves in Fig. 11(a) and (b) show the calcula-
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tion of the |mF | = 3/2 and |mF | = 1/2 imaging lifetime
limited by the rate at which atoms decay to either the
3P2 or

3P0 states, assuming the atom survives if it decays
to 3P1.
However, we note that, even if the atom decays to

3P1, is not clear whether the atom survives after being
pumped to the 3S1 state for ≈ 100 ns. Although the 3S1
state is trappable with a tweezer wavelength of 760 nm,
the trap depth is around 70 times higher than that of
both 3P1 and the ground state under the same tweezer
power, which could introduce significant atom loss due
to the sudden increase in potential energy. For compari-
son, we also plot the case that the atom is fully lost after
being pumped to the 3S1 state, as shown by the dashed
curves in Fig. 11(a) and (b). For the |mF | = 3/2 probe,
this calculation gives an imaging lifetime of ≈ 0.8 s under
typical experimental conditions (7mW tweezer power,
1 Isat effective probe beam intensity with −1Γ detun-
ing), which is in rough agreement with observation. For
the |mF | = 1/2 probe, this calculation gives a lifetime of
≈ 2.5 s, which is longer than observation; we find similar
probe lifetimes and survivals in both cases. It is not clear
what other decay mechanism is in play. We measure a
lifetime of 8.8(3) s for atoms in tweezers that are not illu-
minated by any light, which is limited by a combination
of background gas collisions due to finite vacuum pres-
sure as well as atomic heating due to intensity noise on
the tweezer.
We also note that if an atom is off-resonantly excited to

the 3S1 state but eventually decays back to the original
3P1 state and survives, the atom can still be depolar-
ized between the mF = −1/2 and 1/2 ground states.
Using a similar calculation as the one introduced in the
Eq. E3, we can determine the probability of the depolar-
ization process for the |mF | = 3/2 readout. After being
off-resonantly pumped to the 3P1 state, this probability is
calculated to be 0.082, considering decay from 3S1 to

3P1.
This depolarization rate is significantly smaller than the
off-resonant excitation rate, but would ultimately limit
the depolarization during readout in situations where
state mixing and multi-level dynamics can be neglected
at a much higher magnetic field.

APPENDIX F: Polarizability calculations

The potential that an atom experiences in an optical
trap is given by the product of the state-dependent po-
larizability α and the spatially varying intensity profile
I(r) of the trap

Utrap(r) =
α(ω)

2ϵ0c
I(r), (F1)

where ϵ0 is the vacuum permittivity, and c is the speed
of light in vacuum. The dependence on the frequency
of the trap laser and the atomic state in the polariz-
ability can be understood from a quantum mechanical
treatment of the induced dipole interaction energy, also

known as the AC Stark shift. Following the derivations in
Refs. [113, 114], the polarizability operator for an atomic
state |i⟩ can be written as a Cartesian tensor of the form

α̂µν(ω) =
∑
k

2ωki

ℏ(ω2
ki − ω2)

d̂µ|k⟩⟨k|d̂ν , (F2)

where the sum is over all states connected to |i⟩ via a
dipole transition, dµ is the projection of the dipole op-
erator along the µ-th component of the incident electric
field, and ωki is the energy difference between the state
|k⟩ and |i⟩. It is more insightful to decompose the αµν

into spherical components. The final result is given as

α̂(ω) = αS(ω)− iαV (ω)
(û∗ × û) · F̂

2F

+αT (ω)
3{û∗ · F̂, û · F̂} − 2F̂2

2F (2F − 1)
.

(F3)

The object {·, ·} is the anti-commutator of two operators.
The coefficients αS , αV , and αT are the scalar, vector,
and tensor polarizabilities, respectively, of the atom for a
given hyperfine state characterized by quantum numbers
|nJIFmF ⟩. The expressions for the individual polariz-
abilities are

αS =
1√

3(2J + 1)
α
(0)
nJ (F4)

αV = (−1)J+I+F

√
2F (2F + 1)

F + 1

{
F 1 F
J I J

}
α
(1)
nJ (F5)

αT = (−1)J+I+F+1

√
2F (2F − 1)(2F + 1)

3(F + 1)(2F + 3)

{
F 2 F
J I J

}
α
(2)
nJ

(F6)

where the reduced polarizabilities α
(K)
nJ are given by

α
(K)
nJ = (−1)K+J+1

√
2K + 1

×
∑
n′J′

(−1)J
′
{
1 K 1
J J ′ J

}
|⟨n′J ′||d||nJ⟩|2

× 1

ℏ

(
1

ωn′J′nJ − ω
+

(−1)K

ωn′J′nJ + ω

)
.

(F7)

The reduced dipole matrix elements |⟨n′J ′||d||nJ⟩| can
be calculated from experimentally determined lifetimes
of the relevant states via

Γn′J′nJ =
ω3
n′J′nJ

3πε0ℏc3
|⟨J ′||d||J⟩|2

2J ′ + 1
. (F8)

A branching ratio will be needed if the excited state de-
cays to several states of lower energy, such as in the case
of decay from 3S1 to 3PJ that leads to atomic loss from
the tweezer.
From (F3), we see that the tensor light shift vanishes

for states with F = 0, 1/2. Moreover, the vector light
shift vanishes when the tweezer is linearly polarized. We
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FIG. 12. Polarizabilities of the atomic states of inter-
est. The polarizabilities of the 1S0 (black); 3P0 (yellow); 3P1,
F = 3/2, |mF | = 1/2 (light green); and 3P1, F = 3/2,
|mF | = 3/2 (dark green) are plotted as a function of the
tweezer wavelength. The shaded band represents the uncer-
tainty in the total polarizability, which arises from uncer-
tainty in the trap waist and measured light shifts of the ex-
cited states. The magic wavelength (759 nm, red vertical line)
for the ground and clock states is also near-magic for the
|mF | = 1/2 state. We have included correction factors in the
calculations for the 3P1 states to match the experimentally
observed differential polarizabilities.

work mainly with a linearly polarized tweezer, hence the
total light shift experienced by an atomic state is

Utrap = − I

2ϵ0c

(
αS + αT

3 cos2 θ − 1

2

3m2
F − F (F + 1)

F (2F − 1)

)
(F9)

where θ is the angle between the polarization of the
tweezer and the axis of quantization set by an applied
magnetic field. In the case of 171Yb, the 1S0 and 3P0

states have F = 1/2, hence they only have a scalar con-
tribution to the polarizability. On the other hand, the
3P1, F = 3/2 state will have all three components, in
general.
To calculate the polarizability of a given state, we per-

form a sum over states using measured values of the en-
ergy levels and lifetimes wherever possible. For the 3P1

state, we use the reduced dipole matrix elements given in
Ref. [115]. Our calculations yield αS(

1S0) = αS(
3P0) =

186, αS(
3P1) = 233 au, and αT (

3P1) = 87 au. The value
for αS(

1S0) at the clock-magic wavelength of 759 nm is
in excellent agreement with literature [116, 117]. This re-
sults in a predicted differential polarizability of α|1/2| ≈
−0.22 and α|3/2| ≈ 0.72, which is significantly larger than
the experimentally measured values of α|1/2| ≈ −0.030(3)
and α|3/2| ≈ 0.25(3) (see Sec III). As a result, we phe-
nomenologically correct our calculated values by using

Eq. (F9) to generate a set of linear equations

ℏ∆ω(|mF | = 3/2)

= − I

2ϵ0c

(
αS(

3P1) + αT (
3P1)− αS(

1S0)
)

(F10)

ℏ∆ω(|mF | = 1/2)

= − I

2ϵ0c

(
αS(

3P1)− αT (
3P1)− αS(

1S0)
)

(F11)

which yields αT (
3P1) = 26(6) a.u. and αS(

3P1) −
αS(

1S0) = 20(4) a.u. Note that we operate at ≈ 760.2
nm, for which αS(

1S0) differs from the clock-magic wave-
length by ≈ 0.1%. The uncertainty in the values are
mainly derived from the uncertainty in the measured dif-
ferential polarizabilities and the uncertainty in the mea-
sured beam waist of the tweezer. We have ascribed a con-
servative estimate for the uncertainties of 10%. Since the
trap depth depends on the beam waist as 1/w2

0, the over-
all uncertainty is mainly dominated by the uncertainty
in the beam waist.
Using the corrected values, we plot the polarizability

as a function of the tweezer wavelength in Fig. 12. It
is interesting to note that the polarizabilities of all 3P1

Zeeman states converge at ≈ 796 nm. Also, we identify ≈
778 nm as a good candidate for implementing our readout
technique because the 3P1 |mF | = 3/2 states are magic
with the ground state.

APPENDIX G: Effect of vector and tensor light
shifts

The vector and tensor light shift can cause additional
state-mixing in the 3P1, F = 3/2 manifold, which opens
up a depolarization channel when probing via the mF =
−3/2 state that causes the atoms to decay into the dark
1S0, mF = 1/2 (|1⟩) state. We estimate the level of state-
mixing by numerically diagonalizing the AC Stark Hamil-
tonian together with the Zeeman Hamiltonian, and ob-
serve the complex amplitudes of the various eigenstates.
We use a different convention for the coordinate sys-

tem in Fig 1 for the following calculations. The applied
magnetic field, which defines the axis of quantization, is
oriented along the +z-axis, and the tweezer propagates
along the +y-axis. Thus, the following parametrization
for the polarization of the tweezer is valid:

û = (cos γ cos θ − i sin γ sin θ) ẑ

+ (cos γ sin θ + i sin γ cos θ) x̂
(G1)

where 0 ≤ γ ≤ π/2 represents the degree of ellipticity
of the tweezer, and θ is the angle between the linear po-
larization of the tweezer and the axis of quantization set
by the magnetic field. This parametrization allows us to
consider cases where the tweezer is simultaneously ro-
tated away from the axis of quantization and contains
some degree of ellipticity. However, we will analyze the
two cases separately by setting the counterpart to zero.
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FIG. 13. State-mixing of the 3P1, F = 3/2, mF = −3/2
imaging state due to the vector and tensor light shifts
(a) The probabilities in the mF = −3/2 (dark green) and
mF = −1/2 states (light green) due to the vector (γ = 1
degree and θ = 0 degrees; solid) and tensor (θ = 1 degree
and γ = 0 degrees; dashed) light shifts as the magnitude of
the applied magnetic field is varied. The gray vertical lines at
10G (dot-dash) and 60G (dotted) show field values chosen for
the angle studies shown in (b). (b) We study the dependence
on the angles θ and γ, which describes the misalignment of
the tweezer from the axis of quantization and the degree of
ellipticity of the tweezer polarization, respectively. There is a
sharp rise at angles close to zero degree due to the sudden
appearance of the off-diagonal matrix elements.

For the 3P1, F = 3/2, mF = −3/2 state, the domi-
nant state that the vector and tensor light shift mixes
with is the neighboring mF = −1/2 state. In Fig. 13(a),
we consider the state-mixing as a function of the mag-
nitude of the applied magnetic field. We consider θ or
γ = 1 deg to illustrate the cases where the tweezer is not
purely linear, or when the tweezer is indeed linear but not
perfectly aligned onto the axis of quantization. At low
fields, state-mixing is significant as the light shifts (∼ 1
MHz) are comparable to the Zeeman energy (∼ 1.4×mF

MHz/G). The mixing can be suppressed by increasing
the magnetic field. A similar trend can be seen when we
fix the magnitude of the applied magnetic field and vary
the angles. Whenever the angles are non-zero, the state-
mixing is turned on as there is a competition between the
axis of quantization defined by the applied magnetic field
and those defined by the tweezer polarization. Naturally,
it follows that as the applied magnetic field increases in
strength, the effect of state-mixing decreases, which is

confirmed by the results in Figure 13(b).The trend phe-
nomenologically matches a ∼ 1/B2 scaling.
For a scattering rate of ≈ 97000 photons/s and a probe

time of 12ms, we estimate that ≈ 1200 photons are scat-
tered by the atoms, which is consistent with our mea-
sured collection of ≈ 36 photons with a measured atom-
to-camera collection efficiency of 0.04. For a depolariza-
tion probability of P̄depol ≈ 0.01 during the readout, we
conclude that the depolarization probability per photon
scatter is Pdepol ≲ 1 × 10−5. Up to a Clebsch-Gordan
coefficient, we expect that this depolarization probabil-
ity per photon is exactly equal to the contribution of the
mF = −1/2 state to the mixed eigenstate. As shown in
Fig. 10, the Clebsch-Gordan coefficients to decay from
3P1, mF = −1/2 favor 1S0, mF = −1/2 over mF = 1/2
by a factor of 2, so we can tolerate twice as much popula-
tion in 3P1, mF = −1/2 than if the branching ratios were
even for a given P̄depol. Therefore, this analysis suggests
that we can tolerate a population of ≈ 2.0×10−5 in 3P1,
mF = −1/2 to obtain P̄depol ≈ 0.01 during the readout,
which for B = 58 G corresponds to γ or θ ≈ 1−2 degrees.
This estimate is consistent with experimental observa-
tions in which the tweezer polarization was deterministi-
cally moved on the Poincaré sphere using a polarimeter,
and corroborates our observation of larger depolarization
probabilities for tweezers at the edges of the array.

APPENDIX H: Characterization of state
preparation and measurement parameters

In this appendix, we describe several experimentally
measured parameters relevant to state preparation and
measurement (SPAM) correction, the procedure of which
is described in Appendix I. These are the tweezer loading
probability p, the bright- and dark-state readout survival
probabilities ηBsurv and ηDsurv, the qubit spin-flip probabil-
ities PB→D

depol and PD→B
depol , and the π-pulse probability ηπ.

We additionally define bright and dark discrimination fi-
delities F1 and F0 which are also relevant to SPAM cor-
rection, but themselves left uncorrected (see Appendix I).

1. Definition of base discrimination fidelity

Here we characterize the possible measurement-based
error channels in our atom- and state-readout detection
schemes. All such errors derive from a common source,
which is the degree to which the data from a single cam-
era exposure while a tweezer site is illuminated can be
correctly classified (or not) as holding an atom in a fluo-
rescent state. While it is straightforward to scatter pho-
tons from a single atom in a tweezer and count the num-
ber detected by a sensor, this measurement may be con-
founded by a number of other processes. For example, it
is possible that the atom is not in a state excited by a
particular laser frequency, the scattered photons may not
all be collected by the sensor, the atom may have exited
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the trap or gone dark during the exposure, or the atom
simply may not have been loaded in the first place.
We first define a base discrimination fidelity F as the

probability of correctly classifying a single image as con-
taining a fluorescent atom, based on the number of col-
lected photons x. We assume a simple Gaussian mixture
model of two components governed by an overall distri-
bution of the form

Π(x) = P0f0(x) + P1f1(x) (H1)

where the mixture weights PN are the probabilities of
N such atoms in a single tweezer, and fN is a Gaussian
distribution with mean µN and variance σ2

N . Individual
images are classified as “bright” (B, indicating N = 1
fluorescent atom) if the total number of photons collected
is greater than or equal to some predetermined threshold
value θ, and “dark” (D, indicating N = 0 fluorescent
atoms) otherwise. We therefore define F more concretely
as

F = Pr(D|N = 0)Pr(N = 0)

+ Pr(B|N = 1)Pr(N = 1)

= P0

∫ θ

−∞
dx f0(x) + P1

∫ ∞

θ

dx f1(x)

(H2)

All the parameters of Π are readily obtained by fitting
to a measured histogram of photon counts from a series
of images, and θ is chosen to maximize F at the number
of photons where P0f0 and P1f1 intersect. We also define
discrimination fidelities based on the individual compo-
nents of the mixture for use in SPAM correction,

F0 = Pr(D|N = 0) =

∫ θ

−∞
dx f0(x)

F1 = Pr(B|N = 1) =

∫ ∞

θ

dx f1(x).

(H3)

In a typical experiment where we initialize atoms in
tweezers by loading and optically pumping to the bright
state before imaging, we usually measure P0 ≈ 30%, and
P1 ≈ 70%, with µ0 ≈ 1.0, σ0 ≈ 2, µ1 ≈ 37, σ1 ≈ 16 pho-
tons. Note that we calculate photon counts using a linear
transformation from raw photoelectron counts yielded by
our EMCCD (see Appendix A). This transformation is
calibrated to give zero photon counts at some non-zero
number of photoelectrons which, in relatively rare cases,
can lead to negative photon counts.
To estimate the uncertainty in F under both imag-

ing conditions described in Appendix B (treated inde-
pendently), we use a bootstrapping procedure following
Ref. [118]. From a data set of 2500 × 5 realizations of
the atomic fluorescence signal under a particular condi-
tion from all sites of the array (with optical pumping
performed beforehand for mF = −3/2 imaging), we then
generate 200 bootstrap data sets, each with 500 realiza-
tions, by sampling from the original set with replace-
ment. The above calculation is then carried out for each

bootstrap set, and the uncertainty in F is obtained from
the standard deviation over the bootstrap sets. We find
F = 0.993(4) with F0 = 0.997(2) and F1 = 0.991(5)
for the mF = −3/2 imaging condition, and F = 0.995(3)
with F0 = 0.997(2) and F1 = 0.995(4) for themF = −1/2
condition. We also approximate the tweezer loading prob-
ability p = 0.67(4) this way as the fraction of bright shots,

p = Pr(B). (H4)

However, because optical pumping is a process separate
from loading the tweezer, we note that P (B) is more ac-
curately p × ηOP; we decouple these parameters using
additional multi-readout sequences that do not perform
optical pumping directly after loading as described be-
low.
The imaging method used for all of the experiments

discussed here is state-selective, such that photons are
scattered from an atom only if the atom is in one of our
selected qubit states. Therefore, the mixture weights P0

and P1 are generally combinations of probabilities in a
space of events described by two binary degrees of free-
dom: (a) the internal qubit state of the atom, and (b)
whether an atom whose state is in 1S0–

3P1 manifold is
present in the tweezer. Here, (a) is the only relevant
degree of freedom and (b) represents an error channel
to which experiments are coupled via atom loss, either
through off-resonant scatter to a dark state outside the
1S0–

3P1 manifold or through heating. Due to this, it is
then impossible to determine whether a single given im-
age classified as dark has an atom in the non-fluorescent
qubit state or no atom at all.
To resolve this, we append a final, state-independent

measurement (called “atom readout” in the main text)
at the end of each experimental sequence, such that it be-
comes possible to determine which shots of the sequence
contain atoms. Then filtering out all sequence shots with
dark final measurements, P0 and P1 are directly con-
verted to state probabilities with atom loss errors entirely
decoupled from all measurements, and bright-dark clas-
sifications on the single-image level are mapped to qubit
state measurements, with bright corresponding to |0⟩ and
dark to |1⟩. For sufficiently high η̄surv, qubit states can be
measured many times in a single shot of an experiment
using this method, at the cost of immediately rejecting
a portion of data recorded in an experiment that grows
roughly as 1− ηMsurv where M is the number of measure-
ments performed. Figure 14 shows the results of the first
two readouts of Fig. 3(c), leaving out post-selection on
the final readout.
Having obtained the discrimination fidelities F0 and

F1 above from a single-measurement sequence assuming
a Gaussian mixture model for the histograms, we now
experimentally verify F0 and F1 using an independent
three-measurement sequence inspired by Ref. [18] which
we describe below. While the state readout fidelity Fread

and state initialization fidelity Finit are generally cou-
pled, it is possible to effectively decouple them by us-
ing two consecutive measurements. Explicitly, given a bi-
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FIG. 14. Depolarization probability study without
post-selection on atom readout. Photon counts from the
first two readouts in the circuit shown in Fig. 3(c) used to
study depolarization probability without post-selection on the
final atom readout. Here, the population in the B → D depo-
larization channel is artificially inflated by atom loss between
these two readouts, as is the population in the D → D quad-
rant due to failed loading of the tweezer.

modal measurement histogram belonging to the bright
(|0⟩) and dark (|1⟩ or empty tweezer) states as shown in
Fig. 1(d), setting a stricter state-assignment threshold θ
for |0⟩ (|1⟩) effectively allows one to initialize the state
with perceived increasing probability. Then the resulting
histogram of the second measurement, post-selected on
successful initialization via the first measurement, yields
the limiting discrimination fidelities FB

read for a tweezer
holding an atom in |0⟩ and FD

read for either an empty
tweezer or one holding an atom in |1⟩.
In practice, this translates to examining the results of a

experiment similar to that shown in Fig. 3(c), where the
final atom readout is moved to before the two state read-
outs. This is done to ensure via post-selection that we
consider only cases where an atom is initially present in
the tweezer, but still include effects arising from imper-
fect atom survival between readouts. The method used
to analyze results from this sequence additionally include
modified post-selection conditions on the first of the state
readouts. Holding the threshold θa used for bright/dark
classifications in the first (a) measurement fixed at the
optimal value identified by Eq. H2 (i.e. fixing the con-
ditions for detecting the presence/absence of atoms), we
allow the thresholds θb and θc for the second (b) and
third (c) measurements to vary. Still post-selecting on
a bright initial atom readout, we then examine the re-
sults of the third measurement condition on those of the
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FIG. 15. Validation of discrimination fidelity. Using
three consecutive measurement histograms a, b, c, with a be-
ing an atom readout, post-selecting data on measurement
a being bright, we estimate the readout fidelity by exam-
ining the behavior of the conditional probabilities FB

read =
Pr(Bc|Ba ∧ Bb) and F1

read = Pr(Dc|Ba ∧ Db) as well as the
average readout fidelity Fread = FD

read Pr(Db) + FB
readPr(Bb)

by sweeping the thresholds θb and θc used in measurements
b and c, respectively, while holding that for measurement a
fixed at the vertical red line, set by the optimization of Eq. H2.
We show results for θc fixed to its optimum value with the fi-
delities as a function of θb only. For large θb, |0⟩ is prepared
by b with a perceived near-unity probability and subsequently
measured in c with fidelity FB

read = 0.99(1). For small θb, |1⟩ is
perceived to be prepared with near-unity probability instead
and measured with fidelity FD

read = 0.97(2). We note that
FD

read may not have fully saturated to its maximal value due
to finite sampling of events occurring with vanishing proba-
bility.

second as a function of θb and θc and identify the proba-
bilities Pr(Bc|Ba∧Bb) and Pr(Dc|Ba∧Db) with fidelities
FB

read and FD
read, respectively.

A plot of these quantities as well as their average with
θc fixed to its optimum value is shown in Fig. 15. As θb
is increased (decreased), the perceived probability in the
θb → ∞ (θb → 0) limit of successfully initializing the
state in |0⟩ (|1⟩) increases, and the second measurement
when post-selected on the success of the first gives the de-
sired state detection fidelity. We find that FB

read = 0.99(1)
and FD

read = 0.97(2), in good agreement with the discrim-
ination fidelities F0 and F1 measured in Appendix H 1.
We note that this method of estimating discrimination
fidelity is limited by spin-flip events occurring between
readouts. The method additionally relies on full resolu-
tion of the limiting behaviors described above, which re-
quires one to sample events that occur with vanishing
probability with significantly larger data sets. For these
reasons, we choose to use the method based on fitting
to Eq. H1 and account for depolarization events in the
SPAM models described in Appendix I.
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2. Atom survival probability

The state-averaged probability η̄surv that an atom re-
mains in its tweezer after readout is estimated in two
parts. The |0⟩ bright state survival ηBsurv is measured by
performing two atom readouts a and b – of either sort
shown in Fig. 2 – in quick succession, post-selecting on
a bright a readout, and taking the fraction of those with
bright b readout as well,

ηBsurv = Pr(Bb|Ba) =
Pr(Ba ∧Bb)

Pr(Ba)
. (H5)

Uncertainty in this measurement is estimated using a
similar bootstrapping procedure to the one for discrim-
ination fidelity described above, wherein 2500 × 5 total
realizations of this two-readout sequence are again used
to generate 200 bootstrap data sets, each with 500 real-
izations, ηBsurv calculated for each one, and the standard
deviation across the bootstrap sets taken.
We find that, for the mF = −3/2 (mF = −1/2)

imaging condition taken for a single array site, ηBsurv =
0.966(8) (ηBsurv = 0.96(1)). Note that the probe time for
the −1/2 case is 20ms (versus 12ms for the −3/2 case),
which is the primary explanation for the lower survival.
As described in the main text, the survival probability

ηDsurv = 0.9960(1) of the |1⟩ dark state, which cannot be
directly estimated from the above sequence, is estimated
based on the measured lifetime of the |1⟩ state under
probe conditions. We measure this using a more complex
experimental sequence comprising an initial atom read-
out (a) and a π/2-pulse, followed by a state readout (b),
a hold under probe conditions, and a final atom readout
(c). We extract the lifetime 2.99(6) s by fitting the prob-
ability P (Bc|Ba ∧ Db) as a function of hold time to a
decaying exponential. We also use this sequence to ver-
ify the measured value of ηBsurv via its lifetime using the
same procedure with P (Bc|Ba∧Bb). This yields a bright
state lifetime of 1.24(8) s, which is in good agreement
with ηBsurv above.

3. Optical pumping efficiency

Optical pumping is performed using a single beam di-
rected onto the atoms along an axis perpendicular to
that of the tweezers in the horizontal plane. The polar-
ization of the pump beam is set to be linear, with po-
larization vector also lying in the horizontal plane, per-
pendicular to the quantization axis set by a 50G mag-
netic field and the polarization of the tweezer light. The
frequency of the beam is set to be near-resonant with
the 1S0 ↔ 3P1 F = 3/2, mF = −1/2 transition, such
that the 1S0 |mF = +1/2⟩ ≡ |1⟩ state is pumped to 1S0
|mF = −1/2⟩ ≡ |0⟩. The pump beam has 1/e2 radius
≈ 2mm and intensity ≈ 1.3 Isat, and is applied for 80µs.
We measure the optical pumping efficiency ηOP using the
same two-readout sequence as for bright-state atom sur-

vival, now post-selecting on the b readout:

ηOP = Pr(Ba|Bb) =
Pr(Ba ∧Bb)

Pr(Bb)
. (H6)

From the same bootstrapping procedure, we find ηOP =
0.972(9) (single-site best; ηOP = 0.972(9) array-
averaged).

4. Qubit depolarization probabilities

As stated in the main text and shown in Fig. 3(c), we
use two qubit readouts a and b followed by a single atom
readout c to study the qubit depolarization probability.
Post-selecting on a bright c readout to decouple from
atom loss errors, we can directly measure the probabil-
ities PD→B

depol and PB→D
depol that the qubit state flips from

bright (|0⟩) to dark (|1⟩) or vice-versa between a and b:

PD→B
depol = Pr(Bb|Da ∧Bc) =

Pr(Da ∧Bb ∧Bc)

Pr(Da ∧Bc)
(H7)

PB→D
depol = Pr(Db|Ba ∧Bc) =

Pr(Ba ∧Db ∧Bc)

Pr(Ba ∧Bc)
. (H8)

We measure PD→B
depol = 0.011(3) and PB→D

depol = 0.018(4)

(single site best; PD→B
depol = 0.025(2) and PB→D

depol =

0.025(2) array-averaged).

5. π-pulse fidelity

Finally we estimate the unitary π-pulse fidelity Fπ

given by the overlap of the ideal π-pulse Uπ,ideal =
−iσx and the real π-pulse applied R(Ω0, δ) =
exp(−iL/2(Ω0σx + δσz)):

Fπ =
1

2

∣∣∣tr [U†
π,idealR(Ω0, δ)

]∣∣∣
=

∣∣∣∣Ω0

Ω
sin

(
θ

2

)∣∣∣∣ , (H9)

where θ = ΩL is given by the generalized Rabi frequency
Ω =

√
Ω2

0 + δ2 and pulse length L.
Noting that Fπ is given directly by the state transition

probability ηπ = |⟨0|R(Ω0, δ)|1⟩|2 = F 2
π , we use the three-

readout sequence shown in Fig. 16 to first extract ηπ. As
shown in the model (Fig. 16) we define the state-averaged
ηπ:

ηπ =
1

2

[
Pr(Bb|Da ∧Bc) + Pr(Db|Ba ∧Bc)

]
, (H10)

and similarly define the (state-averaged) Fπ:

Fπ =
1

2

[√
Pr(Bb|Da ∧Bc) +

√
Pr(Db|Ba ∧Bc)

]
.

(H11)
Thus we measure Fπ = 0.984(8), and 0.997(4) with
SPAM correction.
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APPENDIX I: State preparation and measurement
correction

In experimental sequences, we infer the presence or in-
ternal state of atoms by mapping photon counts onto
a binary space and thereby extracting desired quanti-
ties like readout survival probability, qubit depolarization
probability, and π-pulse fidelity. However, imperfections
in tweezer loading probability, discrimination fidelity, op-
tical pumping efficiency, and indeed qubit depolarization
can produce errors in these measurements. State prepa-
ration and measurement (SPAM) correction attempts to
isolate quantities of interest from sources of error based
on a constructed model of possible subprocesses that may
occur in each experimental sequence and estimated prob-
abilities for each of those subprocesses. Generically, we
model a quantity ∗X measured directly from experimen-
tal data as a function of the isolated “true” value of the
quantity X as well as some number of other relevant
quantities. A set of models and experimentally measured
values can be used to completely constrain all other such
models, and the system can then be inverted to obtain
SPAM-corrected values for all quantities simultaneously.
Directed, weighted, acyclic graphs provide a convenient

language to describe the various states of the experimen-
tal system as it progresses through a given sequence as
well as the measurement outcomes it can produce, and
allow for easy generation of SPAM correction models
through well-known graph traversal algorithms. In these
graphs, each node represents a state of the system and
each weighted edge gives the probability of transitioning
to another. Every experimental trajectory is represented
as the complete path from a given start node to any ter-
minal node with no outgoing edges, and the total proba-
bility that the trajectory is realized is the product of the
edge weights in the path. An example graph is shown
for the sequence we use to measure the π-pulse probabil-
ity ηπ in Fig. 16, and in general models are generated by
summing over the probabilities of trajectories that follow
Eqs. H4–H10.
We use a number of these graphs, one for each exper-

imental sequence described in Appendix H, to produce
models for all relevant quantities – tweezer loading prob-
ability p, depolarization probabilities PD→B

depol and PB→D
depol ,

survival probabilities ηBsurv and ηDsurv, optical pumping ef-
ficiency ηOP, and π-pulse fidelity – and solve the exper-
imentally constrained system numerically. Uncertainties
are estimated by setting each measured value to its own
uncertainty bounds independently, re-solving the system
under all 2n such combinations, and taking the RMS de-
viation of this solution set from the nominal corrected
values. We note a corrected fill fraction of p = 0.68(4)
(array-averaged) with the rest of the SPAM-corrected
values are listed in the main text or in Table I.
We note that, here, the state discrimination fidelities

F , F0, and F1 are deliberately left uncorrected in or-
der to simplify calculations: Strictly, the treatment of
the depolarization probabilities here is as the probabil-

ity of a bit-flip occurring after a readout is performed,
which neglects the possibility that the flip occurs dur-
ing the readout itself. We note in this scenario, however,
that because the atom would not scatter photons for the
complete duration of the imaging pulse, the number of
photons scattered during readout would deviate signifi-
cantly from the means of either the N = 0 or N = 1
components identified in Eq. H1 and be detectable as a
count somewhere in overall count distribution between
the two peaks. Since such an event would directly affect
our measured discrimination fidelities, SPAM correction
using uncorrected fidelities therefore constitutes correc-
tion for both discrimination infidelity and any qubit flip
errors that occur during a single readout.

APPENDIX J: Estimation of T1 and T ∗
2

Measurement of the array-averaged T1 depolarization
lifetimes is often hampered by atom loss. When using
e.g. a state-dependent blow-away pulse to measure qubit
state populations [69], atom loss directly confounds the
measurements from which state populations are inferred.
Our ability to de-couple atom loss from state measure-
ment allows us to measure these quantities in a straight-
forward manner. In Figs. 17(a) and 17(b), we show the
circuits used to measure T1 and T ∗

2 , respectively. Both
circuits are similar to that shown in Fig. 3(c) used to
measure depolarization probability during readout, with
two state readouts followed by an atom readout for post-
selection, except for the inclusion of a variable holding
period and π/2 pulses in the T ∗

2 case.
In Fig. 17(a), we initialize in the |0⟩ qubit state via opti-

cal pumping. This effectively turns the first state readout
into an atom readout, which allows us to simultaneously
measure atom survival as the number of shots that are
bright in the final atom readout as a fraction of those
bright in the initial readout as well. The atom survival
lifetime is obtained by fitting to a decaying exponential,
giving a dark lifetime of 8.8(3) s. T1 is similarly measured
via the time dependence of the probability Psame that the
two state readouts give the same result. We estimate that
T1 = 230(50) s, but we note that our data only extends
to 13 s. We expect that |0⟩ → |1⟩ and |1⟩ → |0⟩ depolar-
ization should have the same rate.
In Fig. 17(b), we measure the array-averaged T ∗

2 de-
phasing time. We again initialize in |0⟩ and apply a π/2-
pulse to rotate the qubit state to the equator of the Bloch
sphere, followed by a variable holding time and a sec-
ond π/2 with variable phase relative to the first. Varying
the relative phase between the pulses leads to fringes in
the probability Psame that the two state readouts give
identical results. T ∗

2 is extracted from the time depen-
dence of the contrast of these fringes as the 1/e time
of a Gaussian profile fit to the data, T ∗

2 = 0.37(1) s.
We believe that this is limited by ambient magnetic
field noise in the lab, rather than the coil servo sys-
tem. Indeed, we measure the T ∗

2 at other fields and
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FIG. 16. Example probability graph for SPAM correction. The probability graph for the three-image sequence from
Fig. 4(a) is shown, wherein each node represents a state of the system and each edge gives the probability of transitioning to
another. Every possible combination of readout results is represented as the complete path from the “Start” node on the left
to any of the terminal nodes with no outgoing edges on the right, and the total probability for any such path is found as the
product of all the edge weights along it. Here, |∅⟩ is used as a shorthand for “empty tweezer or lost atom,” and we assume that
the qubit state has vanishing probability of flipping during readout. Thus, a model for an experimentally measurable probability
is found by summing the probabilities of all paths that satisfy a corresponding set of data analysis conditions. For example, the
model for the measured π-pulse probability ∗ηπ is found following Eq. H10 as the sum over probabilities of all paths passing
through a “Bright” Readout 0 node and a “Dark” Readout 1 node (or vice-versa) as well as a “Bright” Readout 2 node, divided
by that for all paths terminating in a “Bright” Readout 2 node. This model is set equal to the experimentally measured value
of ∗ηπ and used for the simultaneous correction of all relevant parameters as described in Appendix I. Generation of models
from other graphs is done similarly, following Eqs. H4–H8.

find a minimal trend with field: for {30, 58, 90} G, we
observe T ∗

2 = {0.39(1), 0.37(1), 0.31(1)} sec. All values
range within ≈ 25%, yet the naive estimate is that B-
field noise should grow proportionately with the field, for
which a range ≈ 3 times larger would be expected. This
data is corroborated by our measurement of ≈ 10mGpp

noise below 1 kHz with our coils turned off. We note that
noise at higher frequencies has negligible effect on qubit
dynamics, considering our π-pulse time of ≈ 20ms. Ad-
ditionally, we perform a spin echo sequence to mitigate
field noise. As shown in Fig. 17(c), adding a π-pulse dur-
ing the center of the Ramsey dark time, the coherence is
extended by ≈ 4× to T echo

2 = 1.40(5) s.

APPENDIX K: Real-time feedforward architecture

Feedforward to the experiment for qubit X rotations is
done by processing scattered photon counts from images
taken by the EMCCD in real time and using the sub-
sequent bright/dark classification to determine whether

the AC magnetic coils (see Appendix C 1) should be
driven. More specifically, the AC current used to drive the
coils is generated by a RIGOL DG822 RF source whose
output is gated by an input TTL signal that normally
comes directly from the National Instruments PCIe-7820
board housed in the experiment control computer (see
Appendix A). When performing feedforward of the kind
described in Sec. V, we insert a switch on the TTL line
that is controlled by an Arduino Uno microcontroller,
which is programmed to convert an ASCII string input
over USB from the image-processing computer to a sim-
ple digital HIGH/LOW voltage for the switch. The feed-
forward logic shown in Fig. 7 is done by software run
by the image-processing computer before signals are sent
to the microcontroller. We note that the time required
to process an image, perform the appropriate logic for
the feedforward circuit, send the signal to the microcon-
troller, and set the state of the switch typically adds
about 70ms per feedforward event to the total experi-
mental sequence time. This is comparable to our current
combined readout and pulse time, but we expect that this
can be significantly reduced through optimized software
and specialized hardware.
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S. Kuhr, M. Brune, J.-M. Raimond, and S. Haroche,

Progressive field-state collapse and quantum non-
demolition photon counting, Nature 448, 889 (2007).
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FIG. 17. Measurement of array-averaged T1, T
∗
2 , and

T echo
2 . (a) The circuit used to measure dark-state survival

and the qubit depolarization time, T1. This circuit is identical
to that shown in Fig. 3 except for the addition of a holding
time τ between the first two readouts. The qubit is also initial-
ized in |0⟩ here in order to measure both Psame (blue circles)
and the atom survival fraction (orange triangles), which are
plotted below as a function of τ . The atom survival lifetime is
measured to be 8.8(3) s. T1 is estimated to be 230(50) s, but
our data extends only to 13 s. (b) The circuit used to measure
the qubit dephasing time, T ∗

2 . Here, the qubit is rotated to the
equator for a time τ before a π/2 pulse with phase φ relative
to the first is applied and the qubit state is measured. The
resulting fringes in Psame are plotted as a function of φ in the
insets, and the contrast of the fringes is plotted as a function
of the hold time τ in the main plot. The decay of the contrast
follows a Gaussian profile, the 1/e time of which we measure
as T ∗

2 = 0.37(1) s. (c) The same circuit except with a π pulse
in the middle of the precession time. This spin echo sequence
gives T echo

2 = 1.40(5) s.
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