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The complex morphologies exhibited by spatially confined thin
objects have long challenged human efforts to understand and
manipulate them, from the representation of patterns in draped
fabric in Renaissance art to current-day efforts to engineer flex-
ible sensors that conform to the human body. We introduce
a theoretical principle, broadly generalizing Euler’s elastica—a
core concept of continuum mechanics that invokes the energetic
preference of bending over straining a thin solid object and
that has been widely applied to classical and modern studies
of beams and rods. We define a class of geometrically incom-
patible confinement problems, whereby the topography imposed
on a thin solid body is incompatible with its intrinsic (“target”)
metric and, as a consequence of Gauss’ Theorema Egregium,
induces strain. By focusing on a prototypical example of a sheet
attached to a spherical substrate, numerical simulations and ana-
lytical study demonstrate that the mechanics is governed by a
principle, which we call the “Gauss–Euler elastica.” This emer-
gent rule states that—despite the unavoidable strain in such
an incompatible confinement—the ratio between the energies
stored in straining and bending the solid may be arbitrarily small.
The Gauss–Euler elastica underlies a theoretical framework that
greatly simplifies the daunting task of solving the highly nonlin-
ear equations that describe thin solids at mechanical equilibrium.
This development thus opens possibilities for attacking a broad
class of phenomena governed by the coupling of geometry and
mechanics.

elasticity | pattern formation | variational calculus | wrinkles

The spatial confinement of thin, solid objects has been the tar-
get of theoretical inquiry since the very early formulations

of continuum mechanics. The best-known example is “Galileo’s
beam,” a problem that is central to solid mechanics and, more-
over, to the foundations of variational calculus. Considering the
buckling of a wooden beam, Euler recognized that the problem
is described by the variational principle (1),

Euler’s elastica : δUbend = 0; subject to Ustrain = 0 , [1]

where Ubend and Ustrain, respectively, are the contributions to
the elastic energy of a solid rod due to bending and straining,
and δU represents the first variation of U with respect to shape.
Eq. 1, known as “Euler’s elastica,” is borne out of two princi-
ples that interweave mechanics and geometry. First, thin solids
are energetically far less costly to bend than to stretch, owing
to the fact that the ratio of bending to stretching moduli for a
rod (or sheet) of thickness t varies as ∼ t2 (2). Second, confin-
ing a rod in space—say, by forcing its ends to be closer than
its contour length—can generically be done without straining
its centerline. Thus, by restricting configurations to isometric
deformations (i.e., Ustrain = 0), one guarantees that they acquire
minimal energy as t→ 0, thereby greatly reducing the space
of possible equilibria states, making the problem analytically
tractable.

Euler’s rule can be extended to 2D solids under particular
circumstances in which the deformed midsurface can be embed-
ded in 3D isometrically (i.e., without strain) (3), for example,
when analyzing the “developable cones” realized by gently push-
ing a Xerox paper into a ring (4). However, when addressing

the generic problem of confinement of a thin solid in 3D space—
namely, confinements that require a change in Gaussian curva-
ture of the midsurface—Gauss’ Theorema Egregium implies that
a perfectly isometric deformation of the midsurface is impossible
(5), revoking the applicability of Euler’s variational rule (1) and
requiring, instead, minimization of the fully fledged Föppl–von
Kármán (FvK) energy (2),

FvK : δ[Ubend +Ustrain] = 0 . [2]

The unavoidable strain inherent to such geometrically incom-
patible confinement (GIC) underlies both the impossibility of
drawing an accurate map of the globe as well as the frustration
of gift-wrapping a ball. A quintessential example of GIC is given
by the “spherical stamping” experiments of Hure et al. (Fig. 1A),
in which a thin sheet (of size W and thickness t) is placed in a
narrow gap (2δ) between two rigid, concentric spherical shells (of
radius R) (6). Here, the positive Gaussian curvature of the con-
fining topography gives rise to complex patterns that cannot be
described by Euler’s variational rule, necessitating consideration
of the highly nonlinear interplay between bending and strain in
the FvK equations.

In this work, we aim to bridge the gap between the bending-
dominated mechanics of Euler and strain-dominated geometry
of Gauss through the “Gauss–Euler elastica”—a proposed prin-
ciple that generalizes the variational rule (1) and characterizes
the mechanical equilibrium of GIC problems. We define GIC
as the imposition of a smooth “substrate,” whose shape has a
Gaussian curvature, Gsub(x), onto a thin solid sheet or shell,
whose “target” metric is characterized by a different curva-
ture, Gtar(x). In addition to Gsub−Gtar 6= 0, a GIC problem is
equipped with two dimensionless parameters, denoted χ−1 and
ε−1, which characterize, respectively, the confinement strength
and the bendability of the confined solid. In what follows, we
will show how to define these parameters for other GIC prob-
lems (e.g., Fig. 1 B–F), but to begin, their meaning is best
understood through the spherical stamping problem, where
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Fig. 1. (A–D) Examples of GIC of thin sheets/shells. (A) Circular sheet in a spherical stamp. Reprinted with permission from ref. 6. Copyright 2012 by the
American Physical Society. (B) Top view of conical sheet confined between rigid, planar plates. Image courtesy of Eran Sharon (The Hebrew University of
Jerusalem, Jerusalem). (C) Top view of simulated flat sheet confined to a “spherical Winkler” substrate (schematically drawn in G and H). (D) A polygonal
patch cut from a thin spherical shell floated at a (planar) air/liquid interface. Image courtesy of O. Albarrán (Max Planck Institute for Dynamics and Self-
Organization, Göttingen, Germany), D. V. Todorova (University of Pennsylvania, Philadelphia), E. Katifori (University of Pennsylvania, Philadelphia), and
L. Goehring (Nottingham Trent University, Nottingham, United Kingdom). (E and F) A schematic of the system shown in A. (G and H) A schematic of the
spherical Winkler model in C. A thin sheet is attached to a sphere made of N� 1 radial harmonic springs, with rest length R and spring constant 4πR2Ksub/N.

Gsub =R−2 >Gtar = 0. Considering t� δ�W �R, the con-
finement strength and bendability are conveniently defined
as:

χ−1 =
(

W 2/2R
δ

)
2 ; ε−1 =

(
W 2/2R

t

)
2. [3]

When δ&W 2/R (i.e., χ−1 . 1), the wide gap requires no deflec-
tion, and the sheet remains flat (i.e., no confinement). If the
gap is sufficiently small (i.e., χ−1 & ε−1), the stamp imposes per-
fect spherical shape, requiring a “bare” geometric strain εbare∼
(W /R)2, due to the elongation of its longitudes and shorten-
ing of latitudes. Our study focuses on the intermediate regime,
ε−1�χ−1� 1, in which the sheet shape is strongly sensitive
to confinement, but can relieve the energetically costly strain
down to a residual value, εres� εbare, through deflections within
the gap that are only penalized by their bending cost. We pro-
pose that these elastic deformations are described by a variant
of Eq. 1:

Gauss-Euler elastica : δUbend = 0; subject toUstrain/Ubend→ 0,

[4]

where “→” refers to the doubly asymptotic limit of high
bendability and strong confinement, ε−1�χ−1� 1.

Eq. 4 describes an energy-minimization problem that is dom-
inated by bending, while being constrained by the high cost of
strain, much like the original elastica problem, but with two
key and nontrivial distinctions. First, the minimization princi-
ple, δUbend = 0, means that, despite the presence of Gaussian
curvature, the elastic energy is dominated by bending rather
than strain; thus, Eq. 4 is closer to Euler’s elastica (1) than to
the generic FvK problem (2). Second, the suppression of strain
that is expressed as an exact isometry constraint (Ustrain = 0) in
Euler’s elastica is now imposed in a weaker, asymptotic manner
(Ustrain/Ubend→ 0). Again, this latter distinction derives from
the unavoidable distortion of a confined solid from its intrinsic
metric due to a confining topography with Gsub 6=Gtar. We will
show that the ratio Ustrain/Ubend, and the deformed shape of
the confined solid, are controlled by the confinement strength
and bendability parameters, χ−1 and ε−1, yielding distinct types
of energy minimizers at various sectors of the parameter regime,
ε−1�χ−1� 1.

We commence with a simpler model of a 2D sheet attached
to a ball of stiff, radial springs (8–10). The relative simplicity of
this “minimal” GIC problem enables a pedagogic exposition and
an explicit derivation of the principle (4), which we then use to
study spherical stamping.

Spherical Winkler Foundation
Consider a circular solid sheet of thickness t and radius W , made
of Hookean solid of Young’s modulus E , with stretching and
bending moduli, Y =Et and B ∝Yt2, respectively. The sheet is
attached to a stiff spherical surface of radius R; deflections away
from the substrate are penalized by N radial, uniformly spaced
harmonic springs, each spring with constant 4πR2Ksub/N (Fig. 1
G and H). The energy density (per area), u , of the system is
written schematically as:

u = ustrain + ubend + usub , [5]

where ustrain∼Y · (strain)2 , ubend∼B · (curvature)2 , and
usub∼Ksub · (deflection)2 . The strain and curvature tensors, εij
and κij , respectively, are given in terms of the in-plane displace-
ments, ur , uθ , and normal deflection ζ of the sheet from its rest,
planar state (SI Appendix). Here, the two dimensionless groups
that quantify the strength of confinement and bendability of the
sheet are defined as (8, 9):

χ−1 =
KsubR

2

Y
; ε−1 =

YW 4

BR2
∼
(
W 2

tR

)
2 . [6]

The physical meaning of these parameters can be grasped
by considering an ideal, axisymmetric deformation of the sys-
tem. If Ksub is very small, the sheet remains nearly planar,
and the energetic cost of flattening the substrate beneath it
is usub∼Ksub(W 2

R
)2, whereas if Ksub is large, the substrate is

barely deformed, and the sheet conforms to its spherical shape
with characteristic energies, ubend∼B/R2 and ustrain∼Y ε2

bare

[where εbare∼ (W /R)2]. In this light, the dimensionless param-
eters in Eq. 6 are seen as the ratios χ−1∼ usub

ustrain
, ε−1∼ ustrain

ubend
.

Here, we focus on the regime:

ε−1�χ−1� 1 =⇒ χ� 1 , (ε/χ)� 1 , [7]
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in which Ksub is large, and the substrate closely retains its shape
to avoid a high-energy usub. However, rather than conform-
ing axisymmetrically to the substrate, which would generate a
bare strain and an energy density, u(bare)≈ ustrain∼Y ε2

bare, the
high bendability of the sheet enables a substantial suppression
of strain, down to a residual level, εres, via formation of small-
wavelength wrinkles that “absorb” the excess length of com-
pressed latitudes at the expense of only slight deviation of the
substrate from its spherical shape.

The deformed shape and the residual strain can be found
via a numerical simulation of the Seung–Nelson model of a 2D
elastic sheet bound to a spherical Winkler foundation (11, 12),
whose discrete elements capture the full geometrical nonlinear-
ity underlying the FvK energy (SI Appendix). In our simulations
(Fig. 2), we explore the relevant parameter regime (7) by fixing
the confinement strength at a large value, χ−1' 39, 78, 156 or
340, and gradually increasing the bendability, ε−1 (from 2× 105

to 108), by reducing the sheet’s thickness. As ε−1 exceeds a crit-
ical value (dashed vertical in Fig. 2 G and H), radial wrinkles
emerge in an annular zone, L< r <W . Increasing ε−1 further,
the wrinkles cover a larger and larger portion of the sheet, and
their characteristic wavelength, λ, becomes smaller (Fig. 2G).
We find that:

λ/W ≈ 2π(χε)1/4 ; L/W ' 24/3(ε/χ)1/6. [8]

Analyzing the radial and hoop components of the in-plane stress
tensor, σrr (r),σθθ(r) (which are linear combinations of the
respective components of the strain tensor; SI Appendix), we find
that, unlike the axisymmetric case, for which σ(bare)

rr ∼σ(bare)
θθ ∼

Y εbare, here:

σrr ∼σθθ ∼Y · εres , where: εres≈
√
BKsub/Y , [9]

(Fig. 2 D–F), such that εres/εbare∼
√
ε/χ→ 0 in the limit (7).

Let us recall that uniaxial compression of supported sheets yields
wrinkles with wavelength λ of the form (8), reflecting suppres-
sion of compressive stress (here, σθθ) down to residual level
∼−
√
BKsub (obtained by balancing sheet bending and substrate

stiffness) (13, 14). Fig. 2 D–F shows that not only the compres-
sive hoop stress, σθθ , but also the purely tensile radial stress, σrr ,
scales as

√
BKsub.

Further analysis of simulations reveals that the wrinkle-
assisted suppression of stress (9) reshuffles the energetic hier-
archy in the asymptotic limit (7). Fig. 2H shows that the strain
energy is dominant at the vicinity of the threshold, but becomes
negligible in comparison with the bending and substrate ener-
gies in the limit (7). This reversal of the energetic hierarchy
can be understood through estimates of respective energy den-
sities, which, at first pass, neglect spatial variation. Since Eq. 9
shows that all components of strain scale as εres, we have that
ustrain∼Y ε2

res, while ubend∼B(f /λ2)2, where f is the charac-
teristic amplitude of wrinkles; the wavelength, λ, is given by Eq.
8; and usub∼Ksubf

2. To estimate f , we use a “slaving” condi-
tion that links the wrinkle amplitude and wavelength, (f /λ)2∼
(W /R)2, expressing the fact that the excess arclength “wasted”
by azimuthal wrinkles matches the inward radial displacement of
latitudes on the substrate (9, 10). We thus obtain:

ubend∼ usub∼ u(bare)
√
ε/χ ; ustrain/ubend∼

√
ε/χ . [10]

This result exhibits two critical features. First, the elastic energy
is asymptotically vanishing in comparison with the bare energy,
u(bare)∼Y ε2

bare, required for perfectly conforming the flat sheet
to a sphere. Second, the energetic hierarchy is reversed in com-
parison with the bare deformation—being governed by bending
(and substrate deformation) rather than strain. Taken together,
these two features manifest the Gauss–Euler principle (4).
Notwithstanding the fact that imposing Gaussian curvature gen-
erates some strain in the sheet, its energetic cost is negligible,
and the energy-minimizing state is found by minimizing bending
energy (for this case, in balance with the substrate) over a fam-
ily of “asymptotically isometric” configurations, in an analogous
manner to Euler’s elastica (1).

Inverted Tension Field Theory
Motivated by the numerical results, and by classical tension field
theory (TFT), which describes an asymptotic, compression-free
stress field in confinement problems that are governed by tensile
boundary loads (3), we introduce here an “inverted” TFT (ITFT)
that describes an asymptotic, strain-free stress field, in confine-
ment problems governed by geometrical incompatibility. For the
spherical Winkler problem, this theory is formulated as a doubly
asymptotic expansion of FvK equations in χ and ε, around the

A

D E F

B C

G

H

Fig. 2. (A–C) Top views of simulated circular sheets (gold) bound to spherical Winkler substrate (blue), with corresponding stress profiles of radial (σrr , blue)
and hoop (σθθ , red) components, shown in D–F. (D–F) Circles show stress computed from simulations and solid curves show ITFT predictions (SI Appendix).
Stresses are normalized by the bare stress scale, Yεbare = Y(W/R)2. (G) Comparison of observed values of L (radius of unwrinkled core) and λ (wrinkle
wavelength, measured at r=W ; Inset), with ITFT predictions (Eq. 11 and SI Appendix) plotted as functions of ε/χ, the ratio of the inverse bendability (ε) and
confinement strength (χ), Eq. 6. Colors indicate the value of ε, and vertical dashed line denotes the wrinkling threshold. (H) Plots of the energy content in
bending + substrate deformation (red) and strain energy (blue) for simulated sheets, showing that the ratio between strain and bending energies vanishes
as ε/χ→ 0, as invoked by the Gauss–Euler elastica (Eq. 4). Energies are normalized by the bare energy of the unwrinkled state (πYW6/(384R4)∼Yε2

bareW2);
ITFT predictions (SI Appendix) are shown in solid curves.
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singular limit (7), to which we refer below by the symbol “→”.
The succinct exposition below is supported by a detailed analy-
sis of the displacement field, force balance equations, and energy
balance in SI Appendix:

i. Hoop confinement: Elimination of radial strain—namely, pre-
serving length of longitudes—requires a finite radial displace-
ment: ur (r)→− 1

6
r3

R2 . This follows directly from the condition
εrr = ∂rur + 1

2
( ∂ζ
∂r

)2 → 0, where ζsph(r)≈−r2/2R. Conse-
quently, the projection of the sheet’s latitudes onto the sphere
is contracted by: ∆̃(r)≡−ur/r→ 1

6
( r
R

)2.
ii. Wrinkle wavelength and hoop stress: Considering each lat-

itude as an elastic hoop attached to a substrate of stiff-
ness Ksub under confinement ∆̃(r), wrinkles relax the
bare compressive strain, ∆̃(r)—namely, ζ(r , θ)→ ζsph(r) +
f (r) cos(rθ/λ)—such that the amplitude, f , and wavelength,
λ, satisfy the aforementioned slaving condition (πf

λ
)2→

∆̃(r) (15). Minimizing bending and substrate energies, one
obtains:

λ≈ 2π(B/Ksub)1/4 =W (εχ)1/4 ; σθθ ≈−2B/λ2 . [11]

iii. Radial stress: Turning now to force balance in the radial
direction, we address the 2nd FvK equation:

∂r (rσrr )−σθθ = 0 [12]

=⇒σrr→ 2
√
BKsub(−1 +W /r) , [13]

where we used σθθ from Eq. 11 as a nonhomogeneous source
for σrr along with the free boundary condition, σrr |r=W =
0. Notably, Eq. 13 manifests the counterintuitive concept
of “bending-induced” tension along wrinkles, which was
envisioned already by Hure et al. (6).

iv. Strained core: The spatial divergence of radial stress, σrr ∼
r−1 in Eq. 13, must be alleviated by a strained, unwrinkled
core, 0<r<L, whose radius vanishes asymptotically as χ, ε→
0. The characteristic strain in this core is (L/R)2, yielding a
radial (and similarly, hoop) tension, σrr∼Y (L/R)2. The con-
tinuity of σrr at r =L is required by radial force balance and
yields the scaling relation, L/W∼(ε/χ)1/6, in accord with our
simulations (8). Notably, the core-assisted regularization of
radial stress (13) modifies our estimate of the strain energy
(10) by only a logarithmic factor, log(W /L)∼log(ε/χ).

v. Vanishing shear: The above arguments explain why the
radial and hoop stresses vanish as χ, ε→ 0. However, an
asymptotically isometric configuration requires also the van-
ishing of shear stress, σrθ→ 0, which is accommodated by
way of small oscillations of radial displacement in reg-
istry with wrinkles, ur ≈−r∆̃ + (fr/R) cos(rθ/λ) (16). The
energetic cost of these “shear cancelling” radial oscillations
leads to curvature-induced stiffness, Kcurv=Y /R2, that sup-
presses further the wrinkle amplitude. Taken together with
the substrate stiffness, this leads to a generalized version
of Eq. 11:

λ=2π(B/Keff)1/4 ; Keff=Ksub+Kcurv . [14]

(Since σrr�KsubW
2, another contribution to Keff , due to ten-

sion along wrinkles (16), is negligible here.) Since Kcurv/Ksub =
χ� 1, curvature-induced stiffness is also negligible here. How-
ever, we will show below that the elastic cost of shear suppression
is critical for other GIC problems.

The solution of our ITFT equations yields quantitative expres-
sions for the wavelength (Fig. 2G) and residual stresses (solid
curves in Fig. 2 D–F), as well as the energies, Ubend,Usub, and

Fig. 3. (A) Three incarnations of radial force balance (12) for a spheri-
cally confined sheet, where 〈ustrain〉= Ustrain/πW2. Standard TFT addresses a
tensile load γ at the edge, r = W , whose work is included in 〈ustrain〉 [a log-
arithmic factor, log(W/L), is neglected from the energies of TFT and ITFT].
For simplicity, the axisymmetric equation is written for zero Poisson ratio.
AXI, axisymmetric. (B) The mechanical equilibrium of a thin elastic solid is
described by the FvK energy (2) and requires simultaneous minimization of
straining and bending energies. As the bendability of the confined solid
increases (arrows direction), the problem is described by an effective rule,
depending on the conditions that generate confinement.

Ustrain (Fig. 2H), in excellent agreement with simulations. This
substantiates the Gauss–Euler elastica (4) and the ITFT equa-
tions, whose polar representation is Eqs. 11, 12, and 14, as
valuable tools for solving GIC problems.

ITFT vs. TFT
We elucidate how ITFT embodies the Gauss–Euler elastica (4)
by comparing the radial force balance equation and radial stress,
Eqs. 12 and 13, with their counterparts in two standard studies of
a sheet attached to a spherical substrate (Fig. 3A).

The bare, axisymmetric (unwrinkled) state results from solving
Eq. 12 by expressing the stress tensor through the axisymmetric
displacement field (Fig. 3 A, Top) (8), yielding a 2nd -order equa-
tion for ur (r). The consequent mean strain energy is 〈ustrain〉=
Ustrain/πW

2∼Y ε2
bare.

A TFT analysis of this problem (Fig. 3A) (8, 9) is suitable when
a tensile load, γ=σrr |r=W , is sufficiently smaller than Y εbare,
yet much larger than the residual hoop compression in a wrin-
kled state, |σθθ| ∼ 2

√
KsubB (10). Under such conditions, Eq. 12

becomes a 1st -order homogenous equation for the radial stress,
and the asymptotic stress tensor has a single nonvanishing com-

ponent: σij→γ
(
W /r 0

0 0

)
, which underlies the dominant part of

the energy.
In contrast, the ITFT stress yields a subdominant energy

(ustrain�ubend). Eq. 12 becomes an inhomogeneous equation
for σrr , whose source (σθθ) is set a priori by minimization of the
bending energy, disregarding the explicit contribution of ustrain

to the total energy. The asymptotic stress field has the form

σij→2
√
KsubB

(
−1 +W /r 0

0 −1

)
, acting as a tensorial Lagrange

multiplier that generalizes the scalar Lagrange multiplier of
Euler elastica.

The Spherical Stamping Problem
Spherical stamping differs from the Winkler-foundation prob-
lem in that there is no energetic penalty for deforming the
spherical substrate. Instead, the energy consists only of bend-
ing and straining the sheet, subjected to the constraint that its
deflection from the sphere is bounded: |ζ(r , θ)− ζsph(r)| ≤ δ. A
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qualitative understanding of this problem can be obtained by
assuming that wrinkles fill the gap, such that the slaving condi-
tion, (πf /λ)2=∆̃(r)∼ (r/R)2, implies a wrinkle wavelength λ∼
δ (up to r -dependent prefactors). The “local λ law” (Eq. 11) then
suggests that the gap effect is akin to a spherical Winkler sub-
strate: Ksub(r)∼B/δ4 (SI Appendix) (16). The ITFT Eqs. 11 and
12 thus yield |σθθ|∼σrr∼B/δ2. Using the results of the preceding
analysis and recalling the dimensionless groups defined in Eq. 3,
we readily find that for a given ratio ε/χ= (δ/t)2, radial wrin-
kles cover the sheet barring a core of radius L/W ∼ (t/δ)2/3.
Evaluating the hoop and radial stresses and the various ener-
gies, one finds that: Ubend/Ubare∼ (t/δ)2 and Ustrain/Ubend∼
(t/δ)2. Hence, the deformation satisfies the Gauss–Euler elastica
(4) in the doubly asymptotic limit, χ, ε/χ→ 0.

Note that if δ&
√
Rt (χ�ε1/2�1), the gap-induced stiffness,

Ksub=B/δ4, falls below Kcurv=Y /R2. In this regime, Eq. 14
restricts the wavelength to: λ∼

√
Rt ; consequently, wrinkles do

not fill the gap (i.e., f <δ). This reflects the energetic cost of sup-
pressing shear strain when wrinkling about a curved shape; wrin-
kles with amplitude larger than∼

√
Rt would not satisfy ustrain�

ubend and, thus, do not constitute an asymptotic solution of the
Gauss–Euler elastica (4).

To obtain the actual ITFT solution for the spherical stamping
problem, one has to consider a “three-zone” pattern: a “gap-
limited” zone (L1 < r <W ), where the amplitude f (r) = δ, max-
imizing deflection at the vicinity of the edge where confinement
is strong; a “curvature-limited” zone (L2 < r <L1)—where the
wavelength λ≈

√
Rt and 0< f (r)<δ, so that wrinkles do not fill

the gap; and, finally, a strained, unwrinkled core at r <L2 (the
geometry and distribution of stamp forces are described in SI
Appendix). A central result of this analysis is the emergence of two
“subphases” of ITFT (Fig. 4B): For ε.χ<ε7/10 (t . δ. t7/10),
the pattern comprises only a gap-limited zone, which terminates
sharply at an unwrinkled core [L1 =L2∼W (t/δ)2/3 in the above
notations]; the intervening, curvature-limited zone appears when
χ∼ ε7/10(δ∼ t7/10) and expands [withL2∼W (t/δ)2/3 andL1∼
δ(R/t)1/2] upon increasing the gap until it reaches the outer
edge at χ∼ ε1/2 (δ∼ t1/2), at which stage a wrinkled state loses
contact with the confining shells. Fig. 4A presents the energy
U of our ITFT solution (normalized by Ubare =πYW 6/384R4)
and the related stamping force F = 2 ∂U /∂δ, as a function of
δ/t , for some values of the inverse bendability, ε, exhibiting two

noteworthy features. First, each plot terminates at a finite value,
(δ/t)max∼ε−1/2, at which the wrinkle pattern is fully curvature-
limited and detaches from the confining shells (signified by a
vanishing stamping force). Second, as bendability increases, the
energy relaxation becomes more efficient—the residual energy,
Utot at (δ/t)max scales as ε1/2 Ubare.

Discussion
We introduced the Gauss–Euler elastica (4) for GIC problems—
stating that bending is minimized subject to negligibility of
strain energy. We demonstrated the applicability of this rule
in two variants of a spherically confined sheet through ITFT—
an asymptotic expansion of FvK equations around a singular,
strain-free limit. We showed that the ITFT may be regarded an
extension of Euler elastica, where the stress acts as a tensorial,
spatially varying Lagrange multiplier that enforces asymptotic
isometry. The schematic, Fig. 3B, shows how the highly nonlinear
FvK problem for a confined sheet (2) recasts distinct simplifi-
cations as the sheet thickness becomes small: Euler elastica is
applicable for developable deformations (no tension, no Gaus-
sian curvature); TFT is applicable in the presence of tensile loads
whose work dwarfs bending energy; and ITFT applies for GIC
problems, where nondevelopable deformations emerge in the
absence of tensile loads.

The GIC problem we addressed—confinement of a planar
sheet onto a spherical topography—corresponds to Gtar<Gsub,
where confinement is preferentially azimuthal, and the emerging
wrinkle pattern is splayed. The GIC problem shown in Fig. 1B is
characterized by Gtar>Gsub; there, confinement is preferentially
radial, and wrinkles are bent. We expect that the Gauss–Euler
elastica (4) is valid also for such problems, and even for more
complex GIC problems that result in a mix of splay and bend of
wrinkle textures (Fig. 1D).

Our analysis assumes that the minimal FvK energy (2) can
be safely evaluated through the upper bound obtained by solv-
ing the ITFT equations for smooth, periodic deformations (SI
Appendix). Notwithstanding the agreement between our simula-
tions (Fig. 2) and solutions of the ITFT Eqs. 11, 12, and 14, we
emphasize that the validity of the rule (4) hinges on the validity
of this central assumption, which awaits a rigorous mathemati-
cal proof. Furthermore, while our findings support the validity
of Eq. 4 for the class of strong confinement problems addressed
here, identified by finite, thickness-independent incompatibility,

A B

Fig. 4. ITFT predictions for the spherical stamping problem. (A) The predicted total energy, Utot, and force, F = 2∂δUtot (Inset), plotted vs. the (nor-
malized) gap separation δ/t, for a range of inverse bendability parameters. Energies are normalized by the bare energy (of axisymmetric state),
Ubare =πYW6/(384R4). Curves terminate at the point when wrinkles break contact with stamp, namely, L1→W . (B) A schematic phase diagram of the
spherical stamping problem, spanned by gap height δ and (inverse) sheet thickness t−1, with the predicted regimes of two- or three-zone radial wrinkle
patterns highlighted in orange/yellow.
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|Gtar−Gsub| 6= 0, we suspect that it fails for a class of “weak
confinement” problems for which the mismatch |Gtar−Gsub|
may eventually vanish with t . Well-known examples for this lat-
ter class of problems are the biaxial confinement of a stiff skin
attached to a (planar) compliant substrate (13, 17, 18), and the
contact of curved liquid surfaces with a planar sheet (19). The
complexity of such problems can be anticipated by considering
the two problems we addressed here in the parameter regimes
complementary to Eq. 7—namely, ε� 1,χ/ε� 1. In the spheri-
cal Winkler problem, this corresponds to the regime, where the
substrate is very soft and can deform substantially—flattening
uniformly to reduce the sheet’s strain and thereby developing
stress-focusing, crumpled zones (19) or, alternatively, enabling
the formation of localized folds (20–22).

For the spherical stamping problem, a parameter regime that
corresponds to weak confinement is δ�

√
Rt , where radial wrin-

kles predicted by ITFT no longer fill the gap, and another
deformation is required to relax the residual energy,

√
t/δ ·

Ubare, stored in a wrinkled state (Fig. 4A). To wit, let us consider
a very weak confinement—namely, δ∼ tβ , where 0<β�1 (light
purple in Fig. 4B); here, the sheet barely touches the confining
shells, and the problem seems qualitatively similar to confining
a sheet in a ball whose radius is only slightly smaller than its
own (23). There, the deformation is governed by a few “stretch-
ing ridges” that separate the sheet into stress-free facets (5).
Such a deformation is distinguished from a wrinkled state in two
intimately related aspects. First, the ridges, which dominate the
energy, are characterized by a balance of bending and strain (5),
thereby obeying the general FvK rule (2), but not the restrictive

version invoked in the Gauss–Euler elastica (4). Second, in con-
trast to wrinkle patterns, where curvature oscillates throughout
the sheet, a network of ridges localizes curvature in “boundary
layers” (whose width vanishes as t→ 0) and, consequently, there
is an asymptotic divergence of curvature and discontinuity of
slope between the two sides of each ridge, similarly to origami
constructions.

The plausibility of origami-like deformations under weak con-
finement suggests yet another possibility of a smoother, but
nevertheless nonwrinkly, deformation: Curvature, rather than
slope, is spatially nonuniform, such that only the curvature’s
derivative is localized in a network of ridges and diverges as t→ 0
(heavy purple in Fig. 4B). Such a nontrivial pattern is suggested
by Nash embedding theorem (24), whose relevance for the defor-
mations of solid sheets has very recently begun to be explored
(25). Whether such Nash mappings do characterize an asymp-
totically isometric response of confined solids, and whether their
regularized versions (for small, but finite δ and t) are subjected
to the Gauss–Euler elastica (4), are fascinating questions that we
hope will inspire future studies.
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