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Abstract In this contribution we address the issue of effi-
cient finite element treatment for phase-field modeling of
brittle fracture. We start by providing an overview of the
existing quasi-static and dynamic phase-field fracture for-
mulations from the physics and the mechanics communities.
Within the formulations stemming from Griffith’s theory, we
focus on quasi-static models featuring a tension-compression
split, which prevent cracking in compression and interpene-
tration of the crack faces upon closure, and on the staggered
algorithmic implementation due to its proved robustness. In
this paper, we establish an appropriate stopping criterion
for the staggered scheme. Moreover, we propose and test
the so-called hybrid formulation, which leads within a stag-
gered implementation to an incrementally linear problem.
This enables a significant reduction of computational cost—
about one order of magnitude—with respect to the available
(non-linear) models. The conceptual and structural similar-
ities of the hybrid formulation to gradient-enhanced contin-
uum damage mechanics are outlined as well. Several bench-
mark problems are solved, including one with own experi-
mental verification.

Keywords Phase-field modeling · Brittle fracture ·
Review · Hybrid formulation · Staggered scheme ·
FEM

1 Introduction

Phase-field modeling of brittle fracture in elastic solids dates
back to the late ’1990s and, since then, has been the sub-
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ject of extensive theoretical and computational investiga-
tions. In general, the phase-field approach to model systems
with sharp interfaces consists in incorporating a continuous
field variable– -the field order parameter—which differenti-
ates between multiple physical phases within a given system
through a smooth transition. In the context of fracture, such
order parameter describes the smooth transition between the
fully broken and intact material phases, thus approximating
the sharp crack discontinuity, and is, therefore, referred to as
the crack field. The evolution of this field as a result of the
external loading conditions models the fracture process. The
mathematical description consists of a coupled non-linear
system of (quasi-static or dynamic) stress equilibrium equa-
tions and a gradient-type evolution equation for the crack
phase-field.

What makes the approach particularly attractive is its
ability to elegantly simulate complicated fracture processes,
including crack initiation, propagation, merging, and branch-
ing, in general situations and for 3D geometries, without
the need for additional ad-hoc criteria. Propagating cracks
are tracked automatically by the evolution of the smooth
crack field on a fixed mesh. This leads to a significant advan-
tage over the discrete fracture description, whose numerical
implementation requires explicit (in the classical finite ele-
ment setting [1,2]) or implicit (within extended finite element
methods [3]) handling of the discontinuities. The possibility
to avoid the tedious task of tracking complicated crack sur-
faces in 3D significantly simplifies the implementation.

Several phase-field approaches to brittle fracture have
been independently developed and investigated in the physics
community [4–9] and in the mechanics community [10–
17]. Interestingly, the conceptual and technical backgrounds
for deriving the constitutive and phase-field evolution equa-
tions are substantially different for the two communities. The
dynamic models developed within the physics community
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are derived by adapting the phase transition formalism of
Landau and Ginzburg [18]. In contrast, the models proposed
within the mechanics community are based on the variational
formulation of brittle fracture by Francfort and Marigo [19],
regularized by Bourdin et al. [10], which extends the classical
Griffith’s theory of fracture. The early quasi-static formula-
tions have been extended to the dynamic case in [20–25].
In this paper, we will focus on this category of models, due
to their tight relationship to Griffith’s theory which is well
understood and widely applied by engineers. In our develop-
ments, we will limit ourselves to quasi-static fracture.

As will be detailed in the following sections, all phase-
field models introduce a regularization parameter, which is
related to the diffusive approximation of the sharp crack. In
the models from the mechanics community, this parameter
has dimensions of a length and can be interpreted as the
width of the regularized crack. An important feature of some
of these models is that they are provably convergent (in the
sense of the so-called Γ -convergence) to Griffith’s theory of
brittle fracture as the length scale parameter tends to zero.
Within a finite element formulation, the size of the elements
must be sufficiently small to adequately resolve the length
scale parameter. This typically leads to the need for very
fine meshes, and thus to a significant computational cost,
unless an appropriate adaptive local mesh refinement strategy
is implemented.

Algorithmically, phase-field approaches may be imple-
mented with monolithic or with staggered schemes, where,
respectively, the displacement and the crack phase-field are
computed simultaneously or alternately. While monolithic
schemes are more efficient, as they only need one loop
of (typically Newton–Raphson) iterations, staggered imple-
mentations have proved to lead to a significantly better
robustness [16] and thus will be considered in this paper.

Within the models related to Griffith’s theory, in this paper
we will in particular focus on those featuring a tension-
compression split. In absence of such split, such as in the
basic formulations in [10–13] (herein referred to as isotropic
models), cracking may arise also under compressive load
states, thus leading to unphysical crack propagation patterns.
Moreover, contact conditions at the crack faces upon clo-
sure of an existing crack are not automatically enforced. For
these reasons, models incorporating a tension-compression
split (here indicated as anisotropic models) have been pro-
posed by Amor et al. [14] and Miehe et al. [15,16]. From the
computational standpoint and focusing on the staggered algo-
rithmic implementation, anisotropic models are significantly
more expensive than the isotropic ones, since the balance of
momentum equations become non-linear as a result of the
split.

Within the context outlined above, the purpose of this con-
tribution is two-fold.

First, we provide a concise overview of the quasi-static
and dynamic phase-field models of fracture proposed to date
in the physics and mechanics communities. This is not to
be intended as a comprehensive state of the art review, but
rather as an attempt to delineate the main development lines
of the topic in the two communities and, in particular, to
trace their intersection points and highlight their fundamental
differences.

The second goal of the paper is to address the question of
computational efficiency of phase-field models. On one hand,
we establish an appropriate stopping criterion for the stag-
gered scheme. On the other hand, we propose and test what
we term a hybrid formulation. This formulation formally
comprises features from both the isotropic and anisotropic
models. It is shown to lead to results very similar to those
of the anisotropic model by Miehe et al. [15,16]. However,
within a staggered implementation it leads to an incremen-
tally linear problem, which enables a significant reduction of
computational cost—about one order of magnitude—with
respect to the available anisotropic models. The only seem-
ing disadvantage of the hybrid formulation is its variational
inconsistency. In order to deepen our understanding of this
new model, we show how it can be derived through a non-
variational procedure, inspired by conceptual and structural
similarities with gradient-enhanced continuum damage for-
mulations.

The paper is structured as follows. In Sect. 2 we pro-
vide a brief overview of phase-field models for brittle frac-
ture proposed within the physics and mechanics communi-
ties. Section 3 introduces the hybrid formulation for quasi-
static fracture. The similarities to gradient-enhanced dam-
age mechanics models are outlined. From the algorithmic
standpoint, we address the issue of establishing a stopping
criterion for the outer loop within a staggered scheme. In
Sect. 4 we present numerous benchmark examples and com-
pare the performance of the hybrid model with that of the
available isotropic and anisotropic models in terms of crack
phase-field, load–displacement behavior and computational
cost. For one of these examples we also performed experi-
mental verification for the crack pattern. Section 5 closes the
contribution.

The following notations are used throughout the paper:
Ω ⊂ R

n, n = 2, 3, is an open bounded domain, represent-
ing an elastic n-dimensional body, and x denotes a point in Ω .
The vectors and second-order tensors are indicated by bold-
face letters, like u, ε and σ for the displacement, strain and
stress fields, respectively. Symbols · and : stand for a contrac-
tion (a product) and a double contraction (a double product)
of two second-order tensors, respectively, so that e.g. for the
strain tensor we have ε ·ε =: ε2 and ε : ε = tr(ε2). Also, Ψ0

indicates the elastic energy density function, which is defined
as Ψ0(ε) := 1

2ε : C : ε = 1
2λtr2(ε) + μtr(ε2), with C as
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the fourth-order elasticity tensor, and λ and μ as the Lamé
constants.

2 Phase-field models for brittle fracture at a glance

In this section, we provide an overview of the phase-field
approaches to fracture that have been devised, investigated
and favored in the physics and mechanics communities. The
models are presented in chronological order. In general, we
tend to keep the original symbols and notations of the various
authors, however in some cases deviations are implemented
for unification purposes.

2.1 In physics: models based on Landau–Ginzburg phase
transition

In the physics community, starting from 2000, there have
been several attempts to adapt the general phase-field formal-
ism to fracture mechanics, particularly to dynamic fracture
problems.

• Aranson-Kalatsky-Vinokur model [4], 2000.

This model is seemingly one of the first phase-field like
descriptions of crack propagation in brittle materials, focus-
ing on Mode I fracture in two dimensions.

In this model, the displacement field u obeys the stan-
dard elastodynamic equation with a damping term, ρ ü =
η�u̇ + divσ , where ρ is the constant mass density, � and
div are the Laplace and the divergence operators, respec-
tively, a superposed dot stands for the partial differentiation
with respect to time, and η > 0 is a viscous damping parame-
ter. The stress-strain relation differs from the one used in the
isotropic linear elasticity σ = C : ε via dependencies on an
order parameter φ, which distinguishes between broken and
unbroken phases of a solid: it takes the value φ = 1 in the
solid, vanishes inside the crack, φ = 0, and varies smoothly
at the crack surfaces on a scale that is large in comparison
to the atomic spacing, to justify the continuum description.
The stress is given by

σ (u, φ) := φC : ε + χφ̇ I, (1)

with I as the second-order identity tensor and χ > 0 as an
additional material parameter associated with the hydrostatic
stress due to the creation of new defects.

The evolution of φ is assumed to be governed by dissipa-
tive dynamics φ̇ = − δF

δφ
, where F is a specific ’free-energy’

functional and δ/δφ stands for the variational differentiation
with respect to φ. The simplest form for

F ∼
∫

Ω

[
P(φ) + Dφ |∇φ|2

]
dx,

where P is a polynomial function and Dφ is a positive con-
stant, is adapted following Landau’s ideas on phase transition
[18]. The resulting (nonlinear) evolution equation reads

φ̇ =Dφ�φ − φ(1 − φ)
[
α
(

1 + (tr(ε) − β)φ
)

− γ u̇ · ∇φ
]
, (2)

where α, β and γ are the model parameters, including the
material-related ones, see [4] for details.

The phenomenological phase-field model Eqs. (1)–(2)
was shown to capture essential behavioral features like crack
initiation, propagation, branching, dynamic fracture insta-
bility, sound emission and fragmentation. However, when
applied to Mode I crack propagation in a rectangular strip
of finite width, some discrepancies between the numerical
results and the predictions of the classical fracture theory
were observed [4].

• Karma-Kessler-Levine model [5], 2001.

In 2001, Karma and co-workers proposed a phase-field
approach for fracture that emanates from the original phase-
field models for solidification. The model was restricted to
Mode III fracture (antiplane shear) to make the description
simpler since only the out-of-plane displacement component
exists in a two dimensional setting in this case. We con-
sider here its three-dimensional generalization by Hakim and
Karma [6], 2009, to make it more easily comparable with the
model of Aranson et al. [4], as well as with the models in
Sect. 2.2.

Herein, in contrast to [4], the governing system of equa-
tions, including the momentum balance equation, the stress-
strain relation and the crack phase-field evolution equation,
follows variationally from a free energy functional [6]:

F(u, φ) =
∫

Ω

[
g(φ)

(
Ψ0(ε(u)) − Ψc

)

+ V (φ) + 1

2
Dφ |∇φ|2

]
dx, (3)

where φ is the order parameter (defined analogously to Aran-
son et al. [4]), g is the function that couples φ with the elastic
field and satisfies g(φ) > 0 for 0 < φ ≤ 1, and V (φ) =
φ2(1−φ2)/4 is the so-called Ginzburg–Landau double-well
potential. Furthermore, Ψc stands for a critical strain energy
to be used as a threshold for crack initiation and, finally, Dφ

is a positive constant [identical to the corresponding one in
Eq. (2)]. An additional specific property g(φ) = φ2+α as
φ → 0, with α > 0 [(a dimensionless parameter not to be
confused with α entering Eq. (2)], is imposed on g in order to
‘obtain full stress relaxation in a completely broken solid in
the limit of large system sizes’. Also, V is specifically chosen
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to favor the preferred states φ = 0 and φ = 1 of the system
and to create an energy barrier between them, see Hakim and
Karma [6] and Spatschek et al. [7] for details.

Using the variational derivative of F with respect to u,
the equilibrium equation ρ ü = divσ is obtained, where the
stress takes the form

σ (u, φ) := g(φ)
∂Ψ0(ε)

∂ε
= g(φ)C : ε. (4)

The proposed relaxation law τ φ̇ = − δF(u,φ)
δφ

, where τ ≥ 0
is a kinetic modulus, yields a nonlinear diffusion equation
that governs the evolution of φ:

τ φ̇ = Dφ�φ − V ′(φ) − g′(φ)
(
Ψ0(ε) − Ψc

)
. (5)

• Henry and Levine model [9], 2004.

This model is an extension of the original Karma et al. [5]
formulation to the two dimensional plane strain situation in
order to investigate crack growth under Mode I and II con-
ditions. A modification of the elastic energy part of the free
energy functional is also suggested to prevent the compressed
regions of the body from cracking, that is,

F(u, φ) =
∫

Ω

[
g(φ)

(
Ψ̃ (ε(u)) − Ψc

)

+ V (φ) + 1

2
Dφ |∇φ|2

]
dx. (6)

Herein, Ψ̃ coincides with the standard elastic energy den-
sity when the material undergoes positive volume change
and contains a breaking symmetry term (the contribution of
shear) in case of negative volume change, as follows

Ψ̃ (ε) :=
{

Ψ0(ε) if tr(ε) > 0,

Ψ0(ε) − 1
2αK tr2(ε) if tr(ε) < 0.

(7)

where K := Kn|n=2, with Kn = λ+ 2μ
n as the n-dimensional

bulk modulus, and α is an arbitrary coefficient chosen to be
larger than 1. Finally, the coupling function g iss chosen here
as g(φ) = (4 − 3φ)φ3.

The resulting stress–strain relation and the evolution equa-
tion for φ in this case modify to

σ (u, φ) := g(φ)
∂Ψ̃ (ε)

∂ε
, (8)

and

τ φ̇ = Dφ�φ − V ′(φ) − g′(φ)
(
Ψ̃ (ε) − Ψc

)
, (9)

respectively.

In [9], the results of two dimensional simulations for
model Eqs. (8)–(9) were shown to agree well with experi-
mentally observed fracture patterns including crack branch-
ing and oscillations.

2.2 In mechanics: models based on Griffith’s theory

Other phase-field models for quasi-static brittle fracture have
been developed independently in the mechanics community
and are by now well accepted therein. They originate from
the variational formulation of brittle fracture by Francfort
and Marigo [19], 1998 and from the related regularized for-
mulation of Bourdin et al. [10], 2000.

In [19], the entire (quasi-static) process of crack initiation,
propagation and branching is governed by a minimization
problem of the energy functional

E(u, Γ ) =
∫

Ω

Ψ0(ε(u)) dx + Gc

∫
Γ

ds, (10)

with the elastic energy density function Ψ0 and the mater-
ial fracture toughness Gc yielding an admissible crack set
Γ ⊂ Ω and a displacement field u : Ω → R

n , which is
discontinuous across Γ . The shortcomings of the classical
Griffith theory of brittle fracture are proven to be overcome
by formulation Eq. (10), see [19] and also [11] for further
details and a comprehensive overview.

To enable an efficient numerical treatment of Eq. (10), its
regularized formulation was devised by Bourdin et al. [10]
in 2000, reading as

Eε(u, s) =
∫

Ω

(s2 + η)Ψ0(ε(u)) dx

+ Gc

∫
Ω

(
1

4ε
(1 − s)2 + ε|∇s|2

)
dx, (11)

where s is a field variable, which is introduced to indicate the
crack and therefore called the crack field parameter. Its value
varies smoothly from 1 (undamaged material) to 0 (totally
broken). Furthermore, the parameter ε > 0 has the dimen-
sion of a length and controls the width of the transition zone
of s. The small dimensionless parameter η models an arti-
ficial residual stiffness of a totally broken phase (s = 0)

and is essentially needed to prevent numerical difficulties.
With ε → 0, the formulation Eq. (11) approximates Eq. (10)
in the sense of Γ -convergence, thus establishing the link
between regularized and free-discontinuity fracture energies.
This implies that the zero set of the crack field s indeed recov-
ers the crack set Γ . To solve for (u, s), the functional Eε is
minimized directly, using, in the numerical implementations,
the so-called alternate minimization and back-tracking algo-
rithms, see Bourdin et al. [10,11].
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• Kuhn and Müller model [12], 2008.

Kuhn and Müller, using the framework of Gurtin [26] on the
thermodynamics of order parameter based models, reformu-
lated the minimization problem Eq. (11) as the system of the
stress equilibrium equation −div σ (u, s) = 0, where

σ (u, s) := (s2 + η)
∂Ψ0(ε)

∂ε
= (s2 + η)C : ε, (12)

and a Ginzburg–Landau type evolution equation for s:

ṡ = −M

[
2sΨ0(ε) − Gc

(
2ε�s + 1 − s

2ε

)]
. (13)

The latter was also complemented by the crack evolution
irreversibility constraint. The so-called mobility parameter
M ≥ 0 is responsible for the dissipation upon stable crack
growth. The limit case M → ∞ approximates quasi-static
crack propagation, simply yielding

0 = 2sΨ0(ε) − Gc

(
2ε�s + 1 − s

2ε

)
, (14)

whereas for finite values of M the model can be regarded as
a viscous approximation of the quasi-static case. We refer to
[12,13] for further details.

The evolution Eq. (13) resembles the related Eq. (5) of
Karma et al. [6] and Eq. (9) of Henry and Levine [9], as the
similar derivation formalism was used in this case as well.

Remark 1 Note that Eqs. (12) and (14) corresponding to a
quasi-static case can straightforwardly be derived via varia-
tional principle, that is, they are the Euler-Lagrange equations
of the functional Eε in Eq. (11).

It is also worth noting that Kuhn and Müller were seem-
ingly the first in the engineering community to name the
formulation Eq. (11) and the resulting system Eqs. (12)–(13)
a phase-field model for fracture, by interpreting the crack
parameter s that enters Eq. (11) as a phase-field variable. In
the remainder of this paper, the term ’phase-field model’ will
be used with respect to Eqs. (11), (12)–(13) and all related
extensions.

• Amor, Marigo, Maurini model [14], 2009.

The phase-field formulation Eq. (11) does not distinguish
between fracture behavior in tension and compression.
Already in [10] examples of unrealistic crack patterns in com-
pression were reported (see also Sect. 4). To avoid such situa-
tions, and, additionally, to prevent the interpenetration of the
crack faces under compression, a modified regularized for-
mulation of Eq. (10) was proposed in [14] using an additive

decomposition of the elastic energy density Ψ0 into volumet-
ric and deviatoric contributions. Thus, with Ψ0 = Ψ +

0 +Ψ −
0 ,

where

Ψ +
0 (ε) := 1

2 Kn〈tr(ε)〉2+ + μ(εdev : εdev)

Ψ −
0 (ε) := 1

2 Kn〈tr(ε)〉2−

}
(15)

and, in turn, Kn = λ + 2μ
n , 〈a〉± := 1

2 (a ± |a|) and εdev :=
ε − 1

3 tr(ε)I , the energy functional Eq. (11) was replaced by

Eε(u, s) =
∫

Ω

(
(s2 + η)Ψ +

0 (ε) + Ψ −
0 (ε)

)
dx

+ Gc

∫
Ω

(
1

4ε
(1 − s)2 + ε|∇s|2

)
dx. (16)

Similarly to the model of Henry and Levine [9], yet in
contrast to Eq. (11), the degradation of only the positive
energy part is allowed herein, whereas the negative part
remains undegraded. As mentioned in [14], the results on
Γ -convergence for the functional Eε in Eq. (16) are not avail-
able. That is, it is not clear what kind of functional (and hence
what kind of ’physical’ process) is to be recovered when
ε → 0 in this case. The formulation Eq. (16), however, has
been shown to provide adequate simulation results, see [14]
and the numerical examples in Sect. 4. In [14], the numeri-
cal solution (u, s) of the minimization problem for Eε was
obtained by means of the alternate minimization algorithm
of Bourdin et al. [10,11].

Remark 2 A good physical insight into the outcome of the
split of Ψ0 and the particular form of coupling between s
and u implemented in Eq. (16) can be done by reviewing the
resulting stress-strain relation

σ (u, s) := (s2 + η)
∂Ψ +

0 (ε)

∂ε
+ ∂Ψ −

0 (ε)

∂ε

= (s2 + η)
[

Kn〈tr(ε)〉+ I + 2μεdev
]

+ Kn〈tr(ε)〉− I, (17)

and the evolution equation of the crack phase-field

ṡ = −M

[
2sΨ +

0 (ε) − Gc

(
2ε�s + 1 − s

2ε

)]
, (18)

It can first be observed that by coupling s with Ψ +
0 in Eε ,

the evolution of s in Eq. (18) appears to be driven only by
the dilatational part of the volumetric strain, thus providing
cracking in tension. On the other hand, the absence of Ψ −

0 in
Eq. (18) prevents crack evolution in the (highly) compressed
parts of a solid, in which Ψ −

0 is expected to dominate Ψ +
0 .

Finally, since the Ψ −
0 part remains undegraded in Eε , result-

ing in the presence of ∂Ψ −
0 /∂ε in the relation Eq. (17), it

can be expected that in case of crack closure the crack faces
interpenetration is also prevented.
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The above remark will be recalled in Sect. 3 when estab-
lishing and motivating our hybrid phase-field formulation.

• Miehe et al. model [15,16], 2010.

Miehe and co-workers presented a thermodynamically con-
sistent phase-field model of brittle fracture [15,16]. The
model derivation is based upon continuum mechanics and
thermodynamic arguments and, to some extent, may be
viewed as an alternative to the frameworks of Francfort-
Marigo [19] and Bourdin et al. [10,11].

The proposed formulation contains the auxiliary variable
d ∈ [0, 1], termed as the regularized crack phase-field, such
that d = 0 and d = 1 correspond to the unbroken and fully
broken states, respectively. Also, in this case a length scale
parameter � is introduced to account for the thickness of a
transition zone between the two states. The assumed addi-
tive decomposition of the elastic energy Ψ0 = Ψ +

0 + Ψ −
0

uses in this case the spectral decomposition of the strain ten-
sor ε = ∑3

I=1〈εI 〉nI ⊗ nI , where {εI }3
I=1 and {nI }3

I=1
are the principal strains and principal strain directions,
respectively. This yields ε± := ∑3

I=1〈εI 〉±nI ⊗ nI and,
eventually,

Ψ ±
0 (ε) := 1

2
λ〈tr(ε)〉2± + μtr(ε2±). (19)

The governing system of equations is the system of the
balance equation −div σ (u, d) = 0, where

σ (u, d) :=
[
(1 − d)2 + k

] ∂Ψ +
0 (ε)

∂ε
+ ∂Ψ −

0 (ε)

∂ε
(20)

and the evolution equation

ηḋ = 2(1 − d)Ψ +
0 (ε) + Gc

�

(
d − �2�d

)
. (21)

Also here k is the small artificial residual stiffness of the
totally broken phase and η ≥ 0 is the viscosity parameter
[not to be confused with η entering Eq. (11), Eqs. (12) and
(16), (17)].

The structure of Eqs. (20)–(21) resembles Eqs. (17)–(18)
by Amor et al. Indeed, by setting d := 1 − s, � := 2ε

and η := 1
M , the identity of the corresponding formulations

is recovered. Moreover, the authors’ intent to split Ψ0 and
then to enable degradation of only the tensile energy Ψ +

0 to
avoid cracking in compression and, in particular, crack clo-
sure is similar to that of Henry and Levine [9] and Amor et al.
[14]. As noticed e.g. in [22], the difference between decom-
positions Eqs. (15) and (19) becomes evident in a situation
when e.g. all three principal strains are negative. In this case,
according to Eq. (15) the deviatoric strain energy will be
still degraded and the related phase-field model will produce

cracking in the corresponding regions, as can be observed
e.g. in Fig. 12. It is also worth noticing that the split Eq. (19)
results in a strongly non-linear stress-strain relation Eq. (20),
what typically requires a higher computational effort than the
corresponding case Eq. (17) of Amor et al. In general, numer-
ical results in either case are qualitatively and quantitatively
rather similar, see Sect. 4.

The key novelty of Miehe et al.’s model, which enhances
the ’preceding’ phase-field formulations and overcomes
some of their inherent implementation difficulties, is the fol-
lowing. Noticing that the ’load term’ Ψ +

0 entering Eq. (21)
determines the ’amount’ of d, the authors introduce the
history-field variable of the maximum positive reference
energy

H(x, t) := max
τ∈[0,t] Ψ

+
0 (ε(x, τ )),

obtained in a loading process. Replacing Ψ +
0 in Eq. (21) by

H, they end up with the evolution equation

ηḋ = 2(1 − d)H + Gc

�

(
d − �2�d

)
, (22)

which is now to be coupled with Eq. (20). The introduction
of H, in the first place, naturally handles the irreversibil-
ity of the crack phase-field evolution in a general, possibly
cyclic, loading/unloading scenario. Moreover, it enables an
elegant algorithmic decoupling of the (new) governing sys-
tem Eqs. (20)–(22) and the application of a staggered scheme
for computing (u, d). This scheme is simple and extremely
robust in comparison with the monolithic scheme, where u
and d are simultaneously solved for, making it a very appeal-
ing ingredient of the proposed model.

• Borden et al. higher-order model [17], 2014.

A higher-order phase-field model formulation was recently
presented by Borden et al. [17] to gain more regular and,
hence, faster converging solutions of the variational problem
of brittle fracture.

Adopting Bourdin’s formalism along with the notion of
the crack surface density function of Miehe et al., the devised
energy functional resembles Eq. (16) in the elastic energy
part, yet the corresponding surface energy integral involves
higher-order derivatives of the crack phase-field, namely,

Eε(u, s) =
∫

Ω

(
(s2 + η)Ψ +

0 (ε) + Ψ −
0 (ε)

)
dx

+ Gc

∫
Ω

(
1

4ε
(1 − s)2+ 1

2
ε|∇s|2+ 1

4
ε3(�s)2

)
dx.

(23)
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Herein, Ψ ±
0 are assumed to be given either by Eqs. (15) or

(19). The resulting evolution equation for s is now the fourth-
order partial differential equation:

ṡ = −M

[
2sΨ +

0 (ε) − Gc

(
−ε3

2
�2s + ε�s + 1 − s

2ε

)]
.

(24)

In the above, we intentionally preserved the structure of the
corresponding second-order Eq. (18), in order to evidence
the related similarities and extensions.

For resolving the higher-order model, the isogeometric
analysis framework was employed in [17]. Finally, it is worth
noting that Γ -convergence results for the related functional
Eε have not yet been derived.

• Dynamic models.

The quasi-static formulations listed above have all been
extended by the corresponding authors to the dynamic set-
ting: see e.g. Larsen et al. [20], 2010, Bourdin et al. [21],
2011, Borden et al. [22], 2012, Hofacker and Miehe [23,24],
2012, 2013, Schlüter et al. [25], 2014.

2.3 A brief comment on the models from physics

Both the Karma-Kessler-Levine [5,6] and the Henry-Levine
[9] models preserve a variational structure and therefore sug-
gest a connection to the regularized variational description of
fracture by Bourdin et al. [10] and the formulation of Amor
et al. [14], respectively. These models, however, are unre-
lated to Griffith’s theory in the sense that the Gc quantity
does not enter in any way the corresponding formulations.
Furthermore, the use of a double-well potential instead of the
single-well ’standard’ one in the energy functional makes it
rather difficult to interpret the Γ -convergence results, see
Bourdin et al. [21] and the reference therein for a brief dis-
cussion. On the other hand, in these models, attention was
paid to the appropriate choice of the degradation (coupling)
function g in order to ensure ’full stress relaxation in a com-
pletely broken solid’, as discussed in [5]. Finally, since the
physics models are formulated directly in a dynamic setting,
it is difficult to judge the computational results obtained—
the comparisons with the benchmark (quasi-static) problems
of engineering interest are seemingly not available.

3 Hybrid formulation, motivating analogies and
algorithmic aspects

In this section, we introduce a so-called hybrid formula-
tion for quasi-static brittle fracture. We outline the structural

similarities of this formulation to gradient-enhanced damage
mechanics models, and present a non-variational derivation.
Finally, although this is not strictly related to the hybrid for-
mulation, we address the algorithmic issue of establishing a
suitable stopping criterion for a staggered iterative scheme.

3.1 Hybrid formulation

Based on the background in Sect. 2, and favoring, in particu-
lar, the quasi-static phase-field models which stem from the
regularized variational formulation of Bourdin et al. [10], we
may conclude that two formulations can be treated as ’basic’
ones. These are

• Isotropic formulation

⎧⎪⎨
⎪⎩

σ (u, d) := (1 − d)2 ∂Ψ0(ε)

∂ε
,

−�2�d + d = 2�

Gc
(1 − d)H,

(25)

where H := maxτ∈[0,t] Ψ0(ε(x, τ )), and

• Anisotropic formulation

⎧⎪⎨
⎪⎩

σ (u, d) := (1 − d)2 ∂Ψ +
0 (ε)

∂ε
+ ∂Ψ −

0 (ε)

∂ε
,

−�2�d + d = 2�

Gc
(1 − d)H+,

(26)

where H+ := maxτ∈[0,t] Ψ +
0 (ε(x, τ )).

Herein, we have adopted the phase-field notations of
Miehe et al. [15,16] as for d and �. This is done in order
to unify the formulations above with the gradient-enhanced
damage model equations to be recalled in Sect. 3.2. We also
use the original terminology from [15,16] as for the terms
isotropic and anisotropic, which, in the context of fracture
phase-field modeling, specifically indicate the way the elastic
energy density function is degraded, and which are not related
to (should not be confused with) the conventional notions of
isotropy and anisotropy from continuum mechanics. Finally,
both the residual stiffness and the viscous terms in the corre-
sponding equations are neglected, and it assumed that either
of the splits for Ψ0 presented in Sect. 2.2 is applicable.

The practical advantage of the isotropic model over the
anisotropic is that, within a staggered approach, Eq. (25a)
is linear, whereas Eq. (26a) is not. Yet, the use of this
model is restricted to very simple scenarios, since the model
allows for cracking in compression and interpenetration of
the crack faces, therefore it may yield physically unrealistic
crack evolution patterns. The anisotropic formulation, where
only the tensile energy is degraded and drives the evolu-
tion of the crack field, naturally overcomes such drawback
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Fig. 1 a Specimen geometry and b Loading history

(see Remark 2). However, even within a staggered approach,
Eq. (26) is non-linear due to the decomposition of the strain
tensor, which makes the numerical treatment much more
expensive.

In this paper, we propose and test what we call an

• Hybrid (isotropic–anisotropic) formulation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ (u, d) := (1 − d)2 ∂Ψ0(ε)

∂ε
,

−�2�d + d = 2�

Gc
(1 − d)H+,

∀ x : Ψ +
0 < Ψ −

0 ⇒ d := 0.

(27)

The reason for this terminology is that the formulation for-
mally contains features of the previous two.

The general idea in devising the hybrid model is to retain
a linear momentum balance equation within a staggered
scheme, in order to keep a computational cost comparable to
that of the isotropic model. This results in retaining Eq. (27a)
from the isotropic model. However, we still want the evolu-
tion of d to be driven merely by the tensile elastic energy Ψ +

0
to avoid cracking in the compressed regions. This motivates
keeping Eq. (27b). Furthermore, we want to retain the abil-
ity to prevent crack faces interpenetration, which holds for
the anisotropic models (see Remark 2) but is violated herein
due to the ’postulated’ relation Eq. (27a). To circumvent this
issue, we introduce the constraint Eq. (27c) complementing
the first two governing equations.

The role of the constraint Eq. (27c) is illustrated in Figs. 1
and 2. In this simple example, a cyclic displacement loading

Displacement [m]

Fo
rc

e 
[N

]

without constraint
with constraint

A

E

C

D

A

D

E

B

C

Fig. 2 Load–displacement curve: comparison of the constrained and
unconstrained results at the loading stages in Fig. 1

is imposed on a pre-cracked specimen, Fig. 1, and the load-
displacement curves computed by Eq. (27) with and with-
out the enforcement of condition Eq. (27c) are compared,
Fig. 2. The results are identical at all loading stages except
for stage C, when the system with a closed crack undergoes
compression, and the following stage D. More precisely, the
unconstrained model yields a secant elastic response at the
C-stage (an effect of crack faces interpenetration). In con-
trast, the constrained model guarantees a residual resistance
in compression and therefore simulates the behavior of an
undamaged elastic system at the corresponding stage.

In Sect. 4 we bring numerical evidence that the hybrid
model is capable of producing physically adequate results,
which are qualitatively and quantitatively similar to those
of the anisotropic model. On the other hand, by recovering
the linearity of the momentum equations (within a staggered
scheme), the hybrid model leads to a computational effort
that is comparable to that of the isotropic model, and up
to 90 % (i.e. one order of magnitude) lower than that of
the anisotropic model. In Sect. 3.3 we address the issue of
the variational inconsistency of the hybrid model. Indeed,
in contrast to Eqs. (25) and (26), the system Eq. (27) does
not preserve a variational structure, since with the postulated
assumption Eelastic := ∫

Ω
(1 − d)2Ψ0(ε) dx, which would

result in relation Eq. (27a), one is not able to obtain the cor-
responding evolution Eq. (27b). We propose an alternative—
non-variational—approach to derive Eq. (27), employing the
similarity between Eq. (27) and the gradient-enhanced for-
mulation of continuum damage mechanics.

3.2 Gradient-enhanced formulation of a damage model

From the material modeling standpoint, phase-field frac-
ture models are conceptually similar to models of contin-
uum damage mechanics (CDM). Restricting ourselves to
isotropic damage models, in which one or several scalar
damage parameters are responsible for the degradation of
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material stiffness, and focusing in particular on the so-called
gradient-enhanced damage formulation by Peerlings et al.
[27], it becomes feasible to trace also the structural similari-
ties between phase-field and damage models.

The fundamentals of the CDM theory including an exten-
sive overview can be found in the monographs of Kachanov
[28] and Murakami [29]. Herein, we only briefly recall the
cornerstones of CDM and the corresponding gradient formu-
lation that will enable the derivation of Eq. (27).

In isotropic damage models, the loss of stiffness associated
to mechanical degradation of the material is represented by
a scalar parameter D, according to the stress-strain relation
σ (u, D) := (1− D)C : ε, where D ranges between 0 (virgin
material, with elastic stiffness) and 1 (completely damaged
material, with no stiffness). It is furthermore assumed that D
depends on a state variable Y , which in turn depends on the
strain, Y = Y (ε).

In local damage models, Y coincides with the so-called
equivalent strain ε̃. Various specific definitions of ε̃(ε) to
account appropriately for those features of the strain field
which are assumed to be responsible for damage inception
and propagation have been proposed in the literature, and a
few of them are summarized as follows:

ε̃ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2Ψ0(ε), Simo and Ju [30],√√√√ 3∑
I=1

〈εI 〉2+, Mazars [31],
κ − 1

2κ(1 − 2ν)
I1(ε)

+ 1

2κ

[( κ − 1

1 − 2ν
I1(ε)

)2

+ 12κ

(1 + ν)2 J2(ε)

] 1
2

, de Vree et al. [32],

(28)

where 〈εI 〉+, I = 1, 2, 3 stand for the positive part of the
principal strains, I1(ε) := tr(ε) and J2(ε) := tr(ε2) −
1
3 tr2(ε) are the first invariant of the strain tensor and the
second invariant of the deviatoric strain tensor, respectively,
and κ is the parameter that controls the sensitivity to tensile
and compressive strains. The last expression in Eq. (28) is
usually referred to as the modified von Mises definition.

Due to the fact that the damage parameter depends only
on the strain state at the point under consideration, the local
models are known to suffer from spurious mesh sensitiv-
ity, yielding physically unrealistic results. Moreover, they
are unable to interpret size effects which are often observed
experimentally.

To overcome these drawbacks, various regularization
techniques have been suggested, including non-local dam-
age models [33–35]. Herein, D is made to depend on the
strain state in a neighborhood (associated to a characteristic
length) of the point under consideration, e.g. on the non-

local equivalent strain ε̄, defined (in the simplest case) as a
weighted spatial averaging of the equivalent strain, resulting
in the formulation
⎧⎨
⎩

σ (u, D) := (1 − D(ε̄))C : ε,

ε̄(x) := 1

|V |
∫

V
g(ξ )̃ε(x + ξ) dξ .

(29)

In the above, V ⊂ Ω is an averaging volume, ξ ∈ V , and
g is a bell-shaped function, typically a Gaussian, g(ξ) :=
A exp(−|ξ |2/(2l2

c )), with lc related to the size (radius) of
V and representing the characteristic length of the non-local
continuum. Constant A is chosen to provide 1

|V |
∫

V g(ξ) dξ =
1. lc acts as a localization limiter, thus regularizing the prob-
lem [36] and the pathological mesh dependence of local dam-
age models is avoided. Also, the introduction of a length scale
enables the description of size effects.

The use of a Taylor series expansion of ε̃ and the specific
properties of g,

∫
Ω

g(ξ)ξi dξ = 0, i = 1, 2,

∫
Ω

g(ξ)ξ1ξ2 dξ = 0,

∫
Ω

g(ξ)ξ2
1 dξ =

∫
Ω

g(ξ)ξ2
2 dξ ,

turn Eq. (29b) into ε̄(x) = ε̃(x)+c�̃ε(x)+O(l3
c ), where c ∼

l2
c . Neglecting O(l3

c ), one obtains the gradient approximation
of relation Eq. (29b):

ε̄(x) = ε̃(x) + c�̃ε(x) (30)

(the notion of ’gradient’ is suggested due to � = ∇2), whose
coupling with Eq. (29a) yields the gradient-enhanced dam-
age model. As the term �̃ε requires a C1-continuous FE
approximation for the displacement field, an alternative for-
mulation was proposed by Peerlings et al. [27] to circumvent
this requirement. Some extra manipulations recast Eq. (30)
as a partial differential equation for ε̄, and one ends up with
the system

{
σ (u, D) := (1 − D(ε̄))C : ε,

−c�ε̄ + ε̄ = ε̃(ε),
(31)

where ε̄ now is an independent extra variable to be solved
for. A straightforward use of C0-continuous finite element
interpolation is enabled in this case.

The structural similarities between Eq. (31) and all three
phase-field formulations Eqs. (25)–(27) are now evident, also
see [37].

In particular, we want to focus on the similarities between
Eq. (31) and our hybrid model Eq. (27). The main obser-
vation here is that the system of Eq. (31) is ’variationally
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uncoupled’, that is, variationally inconsistent. Indeed, this is
a phenomenological formulation, where

• the stress–stress relation Eq. (31a) is postulated, includ-
ing the assumption that D is driven by ε̄, and

• the gradient-type evolution Eq. (31b) for ε̄ is viewed as
an auxiliary one. The quantity ε̃ entering the right-hand
side of this gradient equation (i.e. the source term for
ε̄) is not unique, admitting various specific mechanically
motivated choices, as given by Eq. (28). Moreover, this
equation itself stems from the heuristic, yet physically
meaningful averaging assumption Eq. (29b) on ε̃.

Adaptation of these two observations to Eq. (27) results
in a non-variational derivation of the hybrid model to be
sketched below.

3.3 Non-variational derivation of the hybrid model

An underlying energy functional, whose minimization prob-
lem yields the coupled system Eq. (27) as the Euler-Lagrange
equations, does not exist. Instead, following the above
considerations, we may view Eq. (27) as a ’variationally
uncoupled’ system with the postulated stress-stress relation
Eq. (27a) and the joint gradient-type evolution Eq. (27b). We
will show that Eq. (27b) can be obtained from some physi-
cally reasonable averaging-like assumption for d.

In what follows, we prove that there exist the (scalar-
valued) functions F(s) and Φ(�; x) such that assuming

d(x) := F

(
1

|V |
∫

V
g(ξ)Φ(�; x + ξ) dξ

)
, (32)

where V has the size of � and g(ξ) := A exp(−|ξ |2/(2�2)),
one recovers Eq. (27b). Importantly, it will be seen that Φ

depends on Ψ +
0 in such a way that the generic properties of

d are preserved.
The derivation of F and Φ for Eq. (32) is rather straight-

forward. We start with Eq. (32) and employing the Taylor
series expansion of Φ along with integration, we first obtain

d(x) = F
(
Φ(�; x) + �2�Φ(�; x) + O(�3)

)
,

where �2 := 1
2|V |

∫
V g(ξ)ξ2

1 dξ . The properties of g men-
tioned in Sect. 3.2 were also used. Taylor series expansion
of F yields

d(x) = F (Φ(�; x)) + �2 F ′ (Φ(�; x)) �Φ(�; x) + O(�3),

which, inserted into both sides of Eq. (27b), results in

−�2�d + d := F(Φ) − �2 F ′′(Φ)|∇Φ|2 + O(�3),

and

2�

Gc
(1 − d)Ψ +

0 := 2�

Gc
(1 − F(Φ))Ψ +

0 + O(�3),

respectively. The equation that links F and Φ then reads

F(Φ) − �2 F ′′(Φ)|∇Φ|2 + O(�3)

= 2�

Gc
(1 − F(Φ))Ψ +

0 + O(�3). (33)

Imposing F ′′(s) ≡ 0 on F , we obtain that F ′(s) = c ∈ R

and F(s) = cs. Then, neglecting O(�3) and plugging the
result for F in Eq. (33), we arrive at

Φ = c−1
2�
Gc

Ψ +
0

1 + 2�
Gc

Ψ +
0

.

Our final result reads as follows

d(x) := 1

|V |
∫

V
g(ξ)

2�
Gc

Ψ +
0 (x + ξ)

1 + 2�
Gc

Ψ +
0 (x + ξ)

dξ . (34)

Note that Eq. (34) is physically meaningful, as it pro-
vides the desired basic properties of d, namely, d → 1
(totally broken phase) when Ψ +

0 → ∞, and d → 0 (undam-
aged phase) when Ψ +

0 → 0. The former considers that
1

|V |
∫

V g(ξ) dξ = 1.

3.4 Algorithmic aspects

An accurate finite element treatment of the phase-field formu-
lations of fracture is currently a computationally demanding
task even in two dimensions, for the following main reasons:

• the need to resolve the small length-scale � calls for
extremely fine meshes, at least locally near the sup-
port of the phase-field variable d. In the absence of an
efficient fully adaptive mesh refinement strategy, it has
recently been typical to compute the models on fine (non-
adaptive) fixed meshes, requiring high computational
effort;

• in order to properly account for the different cracking
behavior in tension and compression, a specific split of an
elastic energy density function is required, as suggested
by Henry and Levine [9], Amor et al. [14] and Miehe et
al. [15,16] (see Sect. 2.2), thus resulting in a (strongly)
non-linear constitutive relation to be solved iteratively.
Particularly, the split in [15,16] is based on the strain
spectral decomposition and thus the need to update a sig-
nificant amount of data at each Newton–Raphson itera-
tion makes the corresponding formulation computation-
ally very expensive;
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• following the ideas of algorithmic decoupling by Miehe
et al. [16], the corresponding weak formulations of
Eqs. (25)–(27) are to be solved using the staggered
approach, which has proven extremely robust. However,
in general, decoupling of the strongly coupled (and pos-
sibly non-linear) system of equations at hand seems
justified only for ’small enough’ loading increments.
Hence, the staggered scheme is in general rather expen-
sive even for an isotropic phase-field formulation. The
nested Newton–Raphson cycle needed for the anisotropic
model adds further significant costs.

The first issue is out of the scope of this contribution. We
only note that some preliminary and very technical results
on adaptive algorithms with application to the regularized
formulation of Bourdin et al. [10] can be found in Burke et
al. [38]. The authors are also addressing this issue in ongoing
research.

The second issue is the main focus of this paper, and is
addressed by proposing the hybrid formulation which leads
to a linear stress–strain relation. This is further elaborated as
follows.

As usual, let the domain Ω represent the configuration
of an elastic isotropic body in the absence of applied forces.
We assume that the boundary ∂Ω consists, in general, of four
disjoint parts such that ∂Ω = ΓD,0∪ΓD,1∪ΓN ,0∪ΓN ,1 with
ΓD,· and ΓN ,· being the portions where Dirichlet and Neu-
mann boundary conditions are imposed, respectively. The
second subscript of Γ indicates that the related condition is
homogeneous (0) or inhomogeneous (1).

With the admissible and test spaces for the displacement
field, defined as

V1 :=
{
v ∈ H1(Ω) : v = 0 on ΓD,0, v = ū on ΓD,1

}
,

and

V0 :=
{
v ∈ H1(Ω) : v = 0 on ΓD,0 ∪ ΓD,1

}
,

respectively, the weak formulation of the models considered
above reads: given f , ū and t̄ , find (u, d) ∈ V1 × H1(Ω)

such that∫
Ω

σ (u, d) : ε(v) dx =
∫

Ω

f · v dx +
∫

ΓN ,1

t̄ · v ds, (35)

∫
Ω

[
�2∇d · ∇w +

( 2�

Gc
H�(u) + 1

)
d w

]
dx

= 2�

Gc

∫
Ω

H�(u)w dx, (36)

for any (v, w) ∈ V0× H1(Ω). Herein, f are the body forces,
ū and t̄ are the displacement and traction loadings, respec-
tively, and H� stands either for H or H+, depending on the

Table 1 The core computations for the various models

Isotropic ε, σ , ∂σ
∂ε

= C

Anisotropic (Miehe)
ε, eigenvalues/eigenvectors of ε,

ε±, σ±, ∂σ±
∂ε

=: C
±(ε)

Anisotropic (Amor) ε, εvol, εdev, σ vol, σ dev, ∂σ±
∂ε

=: C
±

Hybrid ε, σ , ∂σ
∂ε

= C

type of model. Also, since the homogeneous boundary con-
ditions of Neumann type are prescribed for d on the entire
∂Ω , no surface integration appears in Eq. (36).

In case of the anisotropic model, regardless of the type of
split used for Ψ0 (below, we will term them for simplicity
as the Amor and Miehe splits), the linearization of Eq. (35)
applies,

∫
Ω

σ (ui, d) : ε(v) dx +
∫

Ω

ε(δui) : ∂σ

∂ε
(ui, d) : ε(v) dx

=
∫

Ω

f · v dx +
∫

ΓN ,1

t̄ · v ds, (37)

where ui stands for the displacement at iteration i within a
Newton–Raphson iterative procedure and δui is the unknown
increment to be solved for to obtain ui+1 := ui + δui. The
quantities to be computed at each iteration are reported in
Table 1. The anisotropic model using Miehe’s split is obvi-
ously more expensive than the one using Amor’s decompo-
sition. More importantly, the isotropic and the hybrid model
lead to a constant stiffness matrix and thus converge in one
iteration.

Finally, we study the issue of the convergence of a stag-
gered iterative process. The general framework of a staggered
scheme with application to the system Eqs. (35)–(36) can be
found e.g. in [16]. We will focus on establishing of adequate
stopping criterion for this process.

Let ūl , t̄l and ūl+1, t̄l+1 be the fixed external loadings at
two consequent loading steps l and l + 1, respectively, and
such that the corresponding increments �ū and � t̄ are posi-
tive (monotonic loading). Let also the solution pair (ul , dl) to
the system Eqs. (35)–(36) at the loading step l be known and
we seek for the solution pair at step l + 1. Let, furthermore,{
(uk

l+1, dk
l+1)

}
, k = 1, 2, ... be the sequence of the stag-

gered solutions to Eqs. (35)–(36) computed using (ul , dl) as
an initial guess. In what follows, the subscript l + 1 will be
dropped. Finally, we call a sequence of staggered iterations
a staggered cycle.

The natural quantity to control convergence of the stag-
gered cycle is the energy of the system. We compute for
every k ≥ 1 the quantity Ek := E(uk, dk), where E is
the energy functional of the adopted phase-field formulation.
The sequence {Ek}, k = 1, 2, ..., is expected to be a decreas-
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u

Fig. 3 System geometry and loading setup

ing one, since we know that with k → ∞ the sequence{
(uk, dk)

}
has to converge to a minimizer (u, d) of E . With

an introduced quantity f (Ek), we stop the staggered cycle at
iteration k = N if the condition

f (Ek)|k=N ≤ Tol, (38)

where Tol is a user-prescribed tolerance, is fulfilled.
It turns out that the definition of f in Eq. (38) is a delicate

task, as it directly affects the choice of Tol. This will be
illustrated by the following simple example.

We consider a square specimen with a preexisting crack,
subjected on its top part to an increasing, displacement-
controlled shear loading, as depicted in Fig. 3. The bottom
part is completely fixed. With such a setup, the crack prop-
agates towards the lower right corner of the specimen (see
also Sect. 4).

Following the procedure described above, we solve the
system Eqs. (35)–(36) at load ul+1. This load level is cho-
sen such that the increment �u := ul+1 − ul , with ul as the
load at the previous step, is reasonably small. Also, the corre-
sponding solution at load ul is known and is used as the initial
guess for the staggered cycle. We choose two quantities

α(Ek) := Ek − Ek+1

Ek+1
× 100 %, (39)

and

β(Ek) := arctan

(
Ek − Ek+1

(k + 1) − k

)
× 180◦

π
, (40)

k = 1, 2, ..., to trace the convergence of the computed Ek ,
k = 1, 2, ... and to check if they are suitable to be used
in Eq. (38). Both appear rather natural, as e.g. the former
aims at stopping the cycle when the increment Ek − Ek+1

becomes small in comparison to Ek+1. The latter assesses
the slope of Ek at every k ≥ 1 and aims at stopping the
cycle when the slope becomes small enough. The plots of Ek ,
α(Ek) and β(Ek) are depicted in Fig. 4. Therein, we interrupt
the staggered cycle at k = 61 when the ’stabilization’ of

Fig. 4 The plots of Ek , α(Ek) and β(Ek). The dimensions of α and β

are % and ◦ (degrees), respectively

Fig. 5 Crack phase-field at a staggered iteration k ∈ {10, 20, 60} cor-
responding to the energy ’levels’ E10, E20, E60 in Fig. 4

Ek becomes evident (i.e. when Ek tends asymptotically to a
constant value).

Our first observation is that, even with a reasonably small
loading increment �u, numerous staggered iterations may
be needed in order for Ek to converge. An adequate stopping
criterion is required, or an inaccurate crack phase-field will be
obtained, as illustrated in Fig. 5 where a significant difference
between the d field corresponding to E10 and E60 is visible.

The second observation is that the quantities α and β

defined in Eqs. (39) and (40), respectively, appear inappropri-
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Fig. 6 The plots of Enorm
k versus sk , on the left, and γ (Ek) versus k,

on the right. The dimension of γ is ◦ (degrees)

ate to define a stopping criterion, since it is not evident what
value of Tol should be adopted in conjunction with these two
measures. It can be seen in the plots for α and β in Fig. 4
that setting in the corresponding cases e.g. Tol = 1 % and
Tol = 1◦ (what may seem a reasonable choice) will lead to
stopping the cycle after two staggering iterations, thus yield-
ing an incorrect solution.

The reason for the inadequacy of the above α and β is that
none of them accounts for the fact that the scales of Ek and
k may be very different, see Fig. 4: Ek ranges approximately
from 3.14 to 3.25, whereas k varies from 1 to 61 in this case.

A simple remedy is an appropriate rescaling. Let N > 1 be
the current staggered iteration. Having at hand the sequence
{Ek}N

k=1 = {E1, E2, ..., EN }, we introduce the following
normalized quantities
{

ENorm
k

}N

k=1
, ENorm

k := Ek − EN

E1 − EN
, (41)

and

{sk}N
k=1, sk := k

N
. (42)

The plot of Enorm
k versus sk , obtained with N = 61, is

depicted in Fig. 6, left.
Using Eqs. (41) and (42) we furthermore define

γ (Ek) := arctan

(
ENorm

k − ENorm
k+1

sk+1 − sk

)
× 180◦

π
, (43)

k = 1, 2, · · · , N , which may be viewed as a normalized
analogue of Eq. (40). The plot of γ is presented in Fig. 6,
right. It can be concluded that γ offers a more realistic choice
of Tol (e.g. 10◦), at least in this particular case.

Further analysis regarding the influence of the magnitude
of the load increment on the number of staggered iterations
required to meet the prescribed tolerance are presented in
Sects. 4.1 and 4.2.

4 Illustrative examples and comparisons

In this section, through numerous representative examples
we test the proposed hybrid phase-field model against

• the capability to adequately simulate crack initiation and
propagation, including prevention of cracking in com-
pression and interpenetration of the crack faces upon clo-
sure, as well as

• the proclaimed inexpensiveness of the formulation with
respect to the available canonical ones.

We start with two classical benchmark problems, such
as the single-edge notched tension and shear tests. For these
two examples the qualitative and quantitative results obtained
with our formulation and the isotropic and anisotropic models
will be compared, also in terms of the corresponding com-
putational costs. We will outline the influence of the number
of staggered iterations at a fixed loading step upon the solu-
tion accuracy, also in relation to the magnitude of the loading
increment between two loading steps.

We continue with the more complex example of an L-
shaped panel under the cyclic loading. Herein, our particular
goal is to demonstrate once again the role of the constrain
we introduced into the hybrid formulation for prevention of
the crack faces interpenetration.

The group of last three examples consists of the three-point
bending test, an asymmetrically notched beam and a notched
plate with hole. They aim at comparison between our hybrid
model and the anisotropic model which uses Miehe’s split.
The critical comparison of the computational effort in the
corresponding situations will be in our main focus therein.

The numerical computations are performed within the
finite element framework using fully integrated bilinear
quadrilaterals. The plain strain state is considered. We
adopt the staggered solution stopping criterion presented in
Sect. 3.4.

4.1 Single-edge notched tension test

We apply all models to a square plate containing a straight
horizontal notch located at mid-height of the left edge with
a length of 0.5 mm. The geometric properties and boundary
conditions of the specimen are shown in Fig. 7a. A verti-

u

0.5 0.5

0.5

0.5

u

0.5

0.5

0.5 0.5(b)(a)

Fig. 7 Geometry and boundary conditions of single-edge notched a
Tension test and b Shear test
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Isotropic Anisotropic (Miehe) Anisotropic (Amor) Hybrid

Fig. 8 Single-edge notched tension test. Crack phase-field at displacements a u = 5.5×10−3 mm, b u = 5.7×10−3 mm and c u = 6.0×10−3 mm
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Fig. 9 Single-edge notched tension test. Load–displacement curves

cal displacement is applied to the complete top edge. The
material parameters are chosen as λ = 121.15 kN/mm2,
μ = 80.77 kN/mm2, Gc = 2.7 × 10−3 kN/mm and � =

4.0 × 10−3 mm to match the parameters of the same exam-
ple in Miehe et al. [16]. The spatial discretization of the
model contains 12735 quadrilateral elements, with an a pri-
ori refined mesh in the central region of the specimen where
the crack propagation is expected. The displacement con-
trol is used with increments �u = 1 × 10−5 mm up to
u = 5 × 10−3 mm, and then �u = 1 × 10−6 mm up to
failure.

Figure 8 shows the crack patterns at several stages of load-
ing for all tested models. Here the red and blue colors indi-
cate to the damaged and undamaged material, respectively.
The load–displacement curves are given in Fig. 9. For this
simple setup all models, including the hybrid formulation,
yield very similar results in terms of crack path and load–
displacement behavior. Table 2 reports a comparison of the
minimum and average numbers of iterations required in order
to obtain the solution for the displacement field at each load
step. The values are reported separately for the pre-peak and

Table 2 Single-edge notched
tension test

Comparison of the number of
iterations per load step to solve
the momentum equation for the
displacement field

Model Number of iterations per load
step (2 staggered iterations)

Total comput. time
w.r.t. hybrid model

Min–max Average

Pre-peak Post-peak Pre-peak Post-peak

Isotropic 1 1 1 1 Comparable

Anisotropic (Miehe) 2–6 6–12 3.8 6.4 ≈ 83 % higher

Anisotropic (Amor) 2–6 6–14 3.5 6.6 ≈ 74 % higher

Hybrid 1 1 1 1 –
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Fig. 10 Single-edge notched tension test. Effect of the number of stag-
gered iterations on the crack phase-field with larger load increment
�u = 1 × 10−5 mm and smaller load increment �u = 1 × 10−6 mm

at u = 0.0056 mm: a 1 staggered iteration, b 2 staggered iterations, c 4
staggered iterations and d 8 staggered iterations

post-peak regimes, as the latter is more challenging from the
computational standpoint. It is evident that the anisotropic
models lead to a substantially higher computational cost in
comparison to the isotropic and hybrid models, due to the
non-linearity of the momentum equation resulting from the
tension-compression split.

The convergence and stopping criteria for the staggered
iteration have been discussed in Sect. 3.4. Herein, with
Figs. 10 and 11 we intend to illustrate the effect of the number
of staggered iterations in relation to the size of the loading
increment. It can be clearly seen that an insufficient num-
ber of staggered iterations results in significantly inaccurate
results, especially when relatively large loading increments
are used.

4.2 Single-edge notched shear test

The same specimen is now subjected to a pure shear load-
ing, as depicted in Fig. 7(b). As we already mentioned, this
example has become a canonical one in the phase-field litera-
ture, see e.g. [10,15,16] and [22], enabling to test the phase-
field method in general, as well as the performance of the
various particular formulations. Herein, we use a relatively
fine uniform mesh with 20592 quadrilateral elements, which
seems to be enough to eliminate the mesh-related effects. The
pre-existing crack is modeled by defining an initial strain-
history field as in [22]. Fixed displacement increments of
�u = 1×10−5 mm are used throughout the loading history.

The crack patterns and load–displacement curves are
shown in Figs. 12 and 13. For the isotropic model, two
symmetric crack branches form, as was originally reported
in [10]. This is due to the fact that related formulation
allows cracking in the compressed regions of a body. In
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Fig. 11 Single-edge notched tension test. Effect of the number of
staggered iterations on the load–displacement curve with a larger
load increment �u = 1 × 10−5 mm and b smaller load increment
�u = 1 × 10−6 mm

contrast, the other models, including our hybrid one, sim-
ulate the one-sided crack extensions. The anisotropic model
with Miehe’s split yields a stiffer response in the last load-
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Fig. 12 Single-edge notched shear test. Crack phase-field at displacements a u = 0.012 mm, b u = 0.015 mm c u = 0.020 mm and d u =
0.030 mm, Anisotropic (Amor): c u = 0.016 mm and d u = 0.017 mm
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Fig. 13 Single-edge notched shear test. Load–displacement curves

ing stage and never attains complete failure, as the cracked
structure reaches a stage where no further evolution of the
phase-field in the lower-right corner is possible. The subse-
quent behavior corresponds to the linearly elastic response

of the cracked specimen clamped at the undamaged lower-
right portion of the boundary, also see in [15]. On the
other hand, the anisotropic model with Amor’s split fea-
tures the development of a secondary crack at the lower-
right corner of the specimen, so that complete failure is
reached. In the absence of experimental results, it is dif-
ficult to judge which result is more physically relevant.
Interestingly, our hybrid model delivers intermediate results
between those obtained by the isotropic and anisotropic
(Miehe) formulations. Table 3 shows the critical comparison
of the computational costs required to solve the momentum
equation.

The effect of the number of staggered iterations on the
crack pattern at a prescribed displacement and on the load–
displacement curves for two different load increments are
shown in Figs. 14 and 15. The same consideration made for
the previous example applies here as well.
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Table 3 Single-edge notched
shear test

Comparison of the number of
iterations per load step to solve
the momentum equation for the
displacement field

Model Number of iterations per load
step (2 staggered iterations)

Total comput. time
w.r.t. hybrid model

Min–max Average

Pre-peak Post-peak Pre-peak Post-peak

Isotropic 1 1 1 1 comparable

Anisotropic (Miehe) 2–6 6–12 4 7.1 ≈ 85 % higher

Anisotropic (Amor) 2–6 6–14 3.7 7.3 ≈ 74 % higher

Hybrid 1 1 1 1 –

Fig. 14 Single-edge notched
shear test. Effect of the number
of staggered iterations on the
crack phase-field with larger
load increment
�u = 1 × 10−4 mm and
smaller load increment
�u = 1 × 10−5 mm at
u = 0.015 mm: a 1 staggered
iteration, b 2 staggered
iterations, c 4 staggered
iterations and d 8 staggered
iterations

(a) (b) (c) (d)
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4.3 L-shaped panel test

We now simulate crack propagation in an L-shaped slab.
The geometry and boundary conditions of the problem are
depicted in Fig. 16a. The experimental results are taken from
[39], see Fig. 16b. The material parameters are chosen as
follows: λ = 6.16 kN/mm2, μ = 10.95 kN/mm2, Gc =
8.9 × 10−5 kN/mm and � = 1.1875 mm. A discretization
with 9650 quadrilateral elements is used, with local mesh
refinement in the areas where the crack is expected to form.

Herein, we investigate the capability of the hybrid formu-
lation to deal with crack closure. Recall that the anisotropic
formulation a priori avoids the crack faces overlapping
upon the crack closure, whereas in the hybrid model this is
achieved by implementing the corresponding constrains. To
simulate the desired effect, a cyclic displacement-controlled
loading as in Fig. 17, with a fixed increment �u = 1 ×
10−3 mm, is imposed.

The results we obtain with the hybrid formulation are
compared with those of the anisotropic model using Miehe’s
split. Thus, Fig. 18 illustrates the crack progression at sev-
eral loading stages. The corresponding load–displacement
curves are presented in Fig. 19. Both models are in fairly
good agreement with the experimental results in terms of
crack pattern. Importantly, with a marginal difference of the

simulated crack patterns, the anisotropic model with Miehe’s
split requires approximately 85 % higher time than the pro-
posed hybrid formulation.

4.4 Three-point bending test

We now model three-point bending of a simply supported
notched beam, see e.g Miehe et al. [16]. The setup for the
simulation is given in Fig. 20. The material parameters are as
follows: λ = 12.00 kN/mm2, μ = 8.0 kN/mm2, Gc = 5.4×
10−4 kN/mm and � = 0.03 mm. A discretization with 9974
quadrilateral elements is used with an a priori refined mesh
in the expected crack propagation region. The simulation
is performed with displacement increments of �u = 1 ×
10−3 mm for the first 40 steps, �u = 1 × 10−5 mm for
the next 2,500 load steps and �u = 1 × 10−4 mm in the
subsequent steps until complete failure.

Figure 21 depicts the phase-field at several stages of
loading, whereas the load–displacement curves are shown
in Fig. 22. Both comparisons involve the hybrid and
the anisotropic (Miehe) models, with practically identical
results. The load–displacement curve features a nearly verti-
cal load drop after the peak value, which might hide a snap-
back branch that cannot be captured in displacement con-
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Fig. 15 Single-edge notched shear test. Effect of the number of stag-
gered iterations on the load–displacement curve with a Larger load
increment �u = 1 × 10−4 mm and b Smaller load increment �u =
1 × 10−5 mm

trolled conditions without an arc-length control. Similarly to
the previous example, the hybrid model required a signifi-
cantly lower (≈ 82 %) computational time.
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Fig. 16 L-shaped panel test. a Geometry and boundary conditions and
b Experimentally observed crack pattern [39]
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Fig. 17 L-shaped panel test. Loading history

4.5 Asymmetrically notched beam test

In this example, we model an asymmetrically-notched beam
with an imposed displacement in the center and supported
at two points, as illustrated in Fig. 23. The correspond-
ing experimental results are taken from [40] and the mate-
rial parameters λ = 12.00 kN/mm2, μ = 8.0 kN/mm2,

Fig. 18 L-shaped panel test.
Crack phase-field at
displacements a u = 0.22 mm,
b u = 0.30 mm, c u = 0.45 mm
and d u = 1.0 mm

(d)(c)(b)(a)
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Fig. 19 L-shaped panel test. Load–displacement curves
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Fig. 20 Three-point bending test. Geometry and boundary conditions
[16]

Gc = 1 × 10−3 kN/mm and � = 0.01 mm are adopted
from [16]. The discretization contains 30740 quadrilateral
elements with a mesh refinement in the expected crack prop-
agation region. For details on the influence of the mesh size
on results of the phase-field model simulations we refer to
[16].

The simulation has been performed with fixed displace-
ment increments of �u = 1×10−3 mm for the first 200 steps
and �u = 1 × 10−4 mm in the following steps. Figures 24
and 25 show that the hybrid and the anisotropic (Miehe) for-
mulations are in excellent agreement with the experiments
and with each other. As before, the hybrid model requires a
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Fig. 22 Three-point bending test. Load–displacement curves
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Fig. 23 Asymmetrically notched beam test. a Geometry and boundary
conditions and b Experimentally observed crack pattern [40]

significantly lower (≈ 85 %) computational time compared
to the anisotropic model.

4.6 Notched plate with hole

Finally, we model crack initiation and propagation for a
notched plate with a hole. For this problem, we have con-
ducted an experimental test in our laboratory to compare the
crack trajectory obtained experimentally with the numerical
predictions.

Anisotropic (Miehe) Hybrid

(b)

(c)

(a)

Fig. 21 Three-point bending test. Crack phase-field at displacements a u = 0.040 mm, b u = 0.050 mm and c u = 0.12 mm
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Fig. 24 Asymmetrically notched beam test. Crack phase-field at displacements a u = 0.223 mm, b u = 0.225 mm, c u = 0.227 mm and
d u = 0.230 mm
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Fig. 25 Asymmetrically notched beam test. Load–displacement
curves

4.6.1 Experiment

The geometry, boundary conditions and experimental setup
are shown in Fig. 26. The specimen is a notched plate, with
load application by a top pin and a fixed lower pin, and with
a hole offset from the center to induce mixed-mode fracture.

The material used was cement mortar, composed of 22 %
cement (cement I 32.5:high alumina cement 4:1), 66 % sand
(grain size < 1 mm) and 12 % water, leading to a water-
cement ratio of 0.55. The material is expected to behave lin-

(b)

applied load
upper pin

fixed
lower pin

specimen

20
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65

20

20
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20

20

(a)

55

10

10u

u=0

Fig. 26 Notched plate with hole. a Geometry and boundary conditions
and b Experimental setup

early elastic until brittle fracture occurs. The material para-
meters were measured on a compact tension specimen. The
Young’s modulus was measured based on the compliance
of the sample in accordance with [41] and the critical stress
intensity factor follows from ASTM E399-12. The Poisson
ratio was assumed to be 0.22, see e.g. [42]. The material
parameters are λ = 1.94 kN/mm2, μ = 2.45 kN/mm2 and
Gc = 2.28 × 10−3 kN/mm. Experimentally, displacement
controlled loading was applied at a rate of 0.1 mm/min.
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(a) (b)

Fig. 27 Notched plate with hole. a Fractured specimen and b Gray-
shaded area marking the experimentally observed crack patterns for the
four tested samples

One of the fractured specimens is shown in Fig. 27a. A
curved crack develops from the notch to the large hole. Later,
a secondary straight crack appears from the hole to the sample
edge. In Fig. 27b the envelope of crack paths found for four
tested samples is marked by the grey area.
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Fig. 29 Notched plate with hole. Load–displacement curves

4.6.2 Numerical simulations

The numerical simulations have been performed with fixed
displacement increments of �u = 1 × 10−3 mm throughout
the simulation, with a length scale parameter � = 0.1 mm.
The mesh consists of 25085 quadrilateral elements with
refinement in the areas where the crack is expected to form.

The computational results are shown in Figs. 28 and 29.
Both the hybrid and the anisotropic (Miehe) formulations
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Fig. 28 Notched plate with hole. Crack phase-field at displacements a u = 0.60 mm, b u = 0.65 mm, c u = 0.75 mm and d u = 2.23 mm
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capture well the experimentally observed crack pattern. In
particular, the anisotropic model predicts a slightly more
inclined secondary crack. The load–displacement curves are
virtually identical up to an advanced failure stage, after
which they differ by an offset due to a different magni-
tude of the post-peak load drop. As expected, the hybrid
model enabled saving computational time compared to the
anisotropic (Miehe) model, with an approximate difference
of 85 % in favor of the hybrid formulation.

5 Conclusions

Phase-field modeling of brittle fracture is a promising com-
putational tool to handle fracture problems for 3D geometries
with arbitrarily complex topologies of the crack surfaces. In
this paper, we first provided a concise overview of the quasi-
static and dynamic phase-field models of fracture proposed to
date in the physics and mechanics communities. The second
goal of the paper was to address the question of computa-
tional efficiency, with focus on quasi-static fracture, on mod-
els based on Griffith’s theory featuring a tension-compression
split (anisotropic models) and on staggered implementation
schemes. Anisotropic models are the only ones able to han-
dle the physically different cracking behavior of materials in
tension and compression, as well as the contact conditions at
the crack faces upon their closure. Staggered schemes have
been proved to be the most robust option for complex fracture
problems.

On one hand, we proposed a simple but effective stop-
ping criterion for the staggered scheme. This criterion was
shown to lead to consistent results, as opposed to the possible
misleading outcomes of more immediate alternatives. On the
other hand, we introduced and tested a new hybrid (isotropic–
anisotropic) formulation. This formulation was shown to lead
to results very similar to those of the available anisotropic
models, at a small fraction of their computational cost. The
reason is that, unlike anisotropic models, the proposed hybrid
formulation leads to an incrementally linear problem within
a staggered implementation, which delivers a saving in com-
putational cost of about one order of magnitude. The mod-
els were comparatively tested with numerous 2D benchmark
examples, including one with own experimental verification
for the crack pattern.

As the hybrid model reproduces the predictive perfor-
mance of anisotropic models at the cost of isotropic mod-
els, it is expected to be of even greater convenience for 3D
fracture problems, where the significant advantages of phase-
field modeling over alternative computational treatments can
be best exploited.
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