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A statistical solution to the chaotic,  
non-hierarchical three-body problem

Nicholas C. Stone1,2,3* & Nathan W. C. Leigh4,5

The three-body problem is arguably the oldest open question in astrophysics and has 
resisted a general analytic solution for centuries. Various implementations of 
perturbation theory provide solutions in portions of parameter space, but only where 
hierarchies of masses or separations exist. Numerical integrations1 show that bound, 
non-hierarchical triple systems of Newtonian point particles will almost2 always 
disintegrate into a single escaping star and a stable bound binary3,4, but the chaotic 
nature of the three-body problem5 prevents the derivation of tractable6 analytic 
formulae that deterministically map initial conditions to final outcomes. Chaos, 
however, also motivates the assumption of ergodicity7–9, implying that the 
distribution of outcomes is uniform across the accessible phase volume. Here we 
report a statistical solution to the non-hierarchical three-body problem that is derived 
using the ergodic hypothesis and that provides closed-form distributions of 
outcomes (for example, binary orbital elements) when given the conserved integrals 
of motion. We compare our outcome distributions to large ensembles of numerical 
three-body integrations and find good agreement, so long as we restrict ourselves to 
‘resonant’ encounters10 (the roughly 50 per cent of scatterings that undergo chaotic 
evolution). In analysing our scattering experiments, we identify ‘scrambles’ (periods 
of time in which no pairwise binaries exist) as the key dynamical state that ergodicizes 
a non-hierarchical triple system. The generally super-thermal distributions of 
survivor binary eccentricity that we predict have notable applications to many 
astrophysical scenarios. For example, non-hierarchical triple systems produced 
dynamically in globular clusters are a primary formation channel for black-hole 
mergers11–13, but the rates and properties14,15 of the resulting gravitational waves 
depend on the distribution of post-disintegration eccentricities.

The three-body problem is a prototypical example of deterministic 
chaos5, in that tiny perturbations in the initial conditions (or errors in 
numerical integration) lead to exponentially divergent outcomes16. 
Chaotic systems often ‘forget’ their initial conditions (aside from inte-
grals of motion), although this is by no means guaranteed—indeed, the 
topology of the chaotic three-body problem does contain islands of 
regularity17,18. Nonetheless, to a first approximation, it is reasonable to 
estimate the probability of different outcomes by invoking the ergodic 
hypothesis7,19 and to assume that non-hierarchical triples will uniformly 
explore the phase-space volume accessible to them8. In this way, we 
may turn the chaotic nature of the three-body problem5,16—which has 
so far frustrated general, deterministic, analytic mappings from one set 
of initial conditions to one set of outcomes—into a tool that simplifies 
the mapping from distributions of initial conditions to distributions 
of outcomes.

We consider the generic outcome of the non-hierarchical Newtonian 
three-body problem: a single escaper star with mass ms departs from 
a surviving binary with mass mB = ma + mb, where ma and mb are the 

component masses. In Fig. 1 we illustrate this scenario, using both a 
direct numerical integration of the equations of motion and a schematic 
diagram of a metastable triple at the moment of breakup. At the time 
of disintegration, the binary components are separated by a distance 
r and have relative momentum p, and the escaper is separated from 
the binary centre of mass by rs and is moving with relative momentum 
ps. The total energy and angular momentum of the system, inherited 
from the initial conditions and preserved through a period of chaotic 
three-body interactions, are E0 and L0, respectively. For convenience, 
we define the additional masses M  =  ms  +  mB, m  =  mBms/M and 
M m m m= /a b B  . The total accessible phase volume for this system is 
that of an eight-dimensional hypersurface8:

L L L r p r p∫ ∫σ δ E E E δ= … ( + − ) ( + − )d d d d (1)B s 0 B s 0 s s

shaped by the requirements of energy and angular-momentum con-
servation for both the elliptic orbit of the surviving binary (EB, LB) and 
the hyperbolic orbit between the binary and the escaper (Es, Ls). In 
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equation (1), δ represents the Dirac delta function. Given a microcanoni-
cal ensemble of non-hierarchical triples with different initial conditions 
but identical integrals of motion and mass combinations, the outcome 
states (after breakup) will—assuming ergodicity—uniformly populate 
the phase volume that is accessible at the moment of disintegration. 
This ensemble is microcanonical in the sense that each three-body 
system is isolated from external sources of heat, but is unusual in its 
low particle number7.

We evaluate this integral at the moment of disintegration, which we 
idealize as occurring anywhere inside a ‘strong interaction region’ of 
radius R(EB, LB, CB), where L LC = ˆ ⋅ ˆB B 0 . Canonical transformations to 
elliptic/hyperbolic Delaunay elements facilitate the integration 
(see Supplementary Information) and yield a phase volume of
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where G is Newton’s gravitational constant. For brevity, we  
have re-inserted the angular momentum of the escaping star, 
L L C L C L C L( , ) ≡ (1 − ) + ( − )s

2
B B B

2
B
2

B B 0
2. σ is a phase volume and the inte

grand of equation (2) is a trivariate outcome distribution representing 
the differential probability of finding a disintegrating metastable triple 
in a volume dEBdLBdCB: the microcanonical ensemble for survivor bina-
ries produced in the non-hierarchical three-body problem (other—
angular—binary orbital elements are distributed uniformly). Therefore, 
specification of the total energy E0 and the total angular momentum 
L0 suffices to describe the distribution of outcomes in non-hierarchi-
cal triple systems, even if this information alone cannot deterministi-
cally specify how one individual outcome follows from one set of 
initial conditions. Conservation of E0 and L0 means that the trivariate 
outcome distribution in equation (2) can be mapped one to one to the 
distribution of escaper properties. Equation (2) makes fewer simplify-
ing assumptions than did past ergodic analyses of the general three-
body problem8,9,20,21, and its outcome distributions are qualitatively 
different.

We marginalize over LB and CB to compute the distribution of outcome 
energies, dσ/dEB. In this and all remaining calculations, we assume that 
the strong interaction region is a dimensionless multiple of the time-
averaged binary size, that is, R = αaB(1 + eB), where α ≈ 1 is a dimensionless 
constant (see Extended Data Figs. 1–3 and Supplementary Information  
for more details). In an L0 = 0 ensemble, this is dσ/dEB ∝ |EB|−7/2, extend-
ing to |EB| → ∞. Conversely, when L0 is large, the ergodic energy distribu-
tion is slightly steeper, changing roughly as dσ/dEB ∝ |EB|−4, but only up 
to a maximum energy of E L∝max 0

−2; larger outcome energies are pro-
hibited by angular-momentum conservation. The energy distribution 
that we calculate differs from past estimates determined assuming 
detailed balance10, demonstrating that a population of binaries engag-
ing in resonant three-body interactions with a thermal bath of single 
stars cannot achieve detailed balance, so long as their outcomes are 
ergodically distributed.

We likewise integrate to find the marginal outcome distributions in 
angular momentum (which we represent in terms of binary eccentric-
ity eB, as dσ/deB) and inclination (dσ/dCB). In contrast to the usual 
(although not universal22) expectation of a thermal eccentricity distri-
bution, dσ/deB = 2eB, we find a mildly super-thermal eccentricity dis-
tribution for large L0: σ e e ed /d = (1 + )B

6
5 B B . This radial orbit bias is a 

geometric effect arising from the larger average interaction cross-
section of a highly eccentric binary, the apocentre of which is twice as 
large as that of a circular binary of equal energy. In the low-L0 limit, the 
ergodic distribution of survivor eccentricities is highly super-thermal, 
with σ e e e ed /d ∝ (1 + )/ 1 −B B B B

2  when L0 = 0. There is a strong bias 
towards producing nearly radial binaries as a consequence of angular-
momentum starvation: whereas a low-L0 ensemble of non-hierarchical 
triples may produce a quasi-circular survivor binary, doing so requires 
substantial fine-tuning of the angle and velocity of the escaper, and is 
therefore disfavoured. Similar phase volume considerations explain 
the strong bias towards prograde (0 < CB ≤ 1) orbits predicted by equa-
tion (2) when marginalized into dσ/dCB. More detailed explorations of 
the ergodic dσ/dEB, dσ/deB and dσ/dCB distributions are shown in 
Extended Data Figs. 1, 2, 3, respectively, as well as in Supplementary 
Information.

Our outcome distribution, dσ/(dEBdLBdCB), was derived with several 
assumptions, most notably: (i) the ergodic hypothesis, (ii) instantane-
ous disintegration and (iii) a specific parameterization of the ‘strong 
interaction region’ defining the limits of integration. It should therefore 
be tested against ensembles of numerical scattering experiments. We 
have explored the ergodicity of non-hierarchical triples in the equal-
mass limit by using the FEWBODY numerical scattering code to run 
three ensembles of different binary–single scattering experiments (see 
Extended Data Table 1). Each ensemble has roughly N ≈ 105 runs with 
constant E0 and L0, but otherwise random initial conditions (we initialize 
our binary–single scatterings with zero impact parameter, so we can 
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Fig. 1 | Non-hierarchical three-body scatterings. a, Two-dimensional 
projection of an equal-mass resonant scattering encounter, where an 
interloper star (red) encounters a binary (blue and black). The resonant 
interaction unfolds over several dynamical times before the system 
disintegrates in a partner swap. b, Schematic illustration of the metastable 
triple at the moment of disintegration.
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parametrize L0 in terms of the initial binary eccentricity e0). However, 
many of our scattering experiments do not form resonant three-body 
systems, but instead resolve abruptly in a prompt exchange, where it is 
unlikely that the ergodic hypothesis can be applied. Metastable three-
body systems generally exhibit intermittent chaos23. Long periods of 
quasi-regular evolution occur during the non-terminal ejection of a 

single star, but these are then interrupted by brief periods of intensely 
chaotic evolution when that star returns to the pericentre4,10. We 
hypothesize that the degree of ergodicity in a subset of scattering 
experiments can be inferred from the number of scrambles, Nscram.

We illustrate the development of ergodicity in Fig. 2, which shows top-
ological maps in outcome space. Whereas the full scattering ensemble 
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Fig. 2 | Topological maps of three-body scattering 
outcomes for run A. a–f, The total number of 
scrambles is colour-coded (smallest values of Nscram as 
dark blue, larger Nscram in green and yellow) with 
logarithmic scaling, as a function of survivor binary 
eccentricity eB (a, c, e), energy EB (b, d, f) and cosine 
inclination CB. Shown are the cases Nscram ≥ 0 (a, b), 
Nscram ≥ 1 (c, d) and Nscram ≥ 2 (e, f). Clouds of regularity 
obscure the underlying chaotic sea in a, b, but have 
dissipated in e, f, indicating that scrambles are the 
key dynamical mechanism responsible for 
‘ergodicizing’ the comparable-mass three-body 
problem.
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Fig. 3 | Marginal distribution of binary energy, 
dσ/dEB, as a function of dimensionless energy, 
EB/E0. The dotted lines are ergodic outcome 
distributions for ensembles with high (purple), 
medium (blue) and low (green) angular momentum. 
The data points are binned outcomes from numerical 
binary–single scattering ensembles (N ≈ 105). 
Horizontal error bars show bin sizes and vertical 
error bars indicate 95% Poissonian confidence 
intervals. a, Full set of results from our numerical 
scattering experiments. b, Subset of results for 
Nscram ≥ 1. c, Subset of results for Nscram ≥ 2. Detailed 
balance (black dashed line) is never achieved.
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has clear geometrical features indicative of prompt exchanges, these 
‘clouds of regularity’ mostly (entirely) disappear if one considers the 
∼50% of integrations with Nscram ≥ 1 (Nscram ≥ 2). With this qualitative argu-
ment in mind, we use Figs. 3 and 4 to quantitatively compare the binned 
results of our scattering experiments to the marginal distributions pre-
dicted by the ergodic hypothesis. Horizontal error bars show bin sizes 
and vertical error bars indicate 95% Poissonian confidence intervals. 
All three of the marginal distributions that we examine (dσ/dEB, dσ/deB 
and dσ/dCB) exhibit reasonable (and sometimes very close) agreement 
between the ergodic theory of equation (2) and our numerical scat-
tering experiments, provided that we examine resonant encounters 
(Nscram ≥ 2). The marginal distributions for large-L0 ensembles are very 
consistent with the numerical experiments. The agreement is slightly 
worse for our low-L0 ensemble.

The agreement between ergodic theory and experiment is never 
exact, even in Nscram ≥ 2 subsamples, and in most cases we see data 
that match analytic predictions to leading order but also exhibit some 
level of higher-order structure. The nature of these superimposed, 
second-order structures is not altogether clear, as two explanations 
seem plausible. First, these could represent islands of regularity in 
the initial conditions that we explore: regions of parameter space 
that do not fully forget their initial conditions despite undergoing 
multiple scrambles. Second, these could represent a failure in the 

idealized escape criteria, R(EB, LB), that we employ. We only consider 
very simple definitions of the strong-interaction region, the true 
shape of which is probably connected to the stability boundary of 
the triple24. We defer an investigation of these two hypotheses to 
future work.

Non-hierarchical triples are common, if short-lived, in the astro-
physical Universe25. They are responsible for many interesting phe-
nomena. For example, binary–single scattering events in dense star 
clusters produce blue stragglers26,27, cataclysmic variables28, X-ray 
binaries29,30 and even binary stellar-mass black holes11. The lattermost 
of these scenarios may be responsible for most of the black-hole merg-
ers seen by the LIGO experiment12,13. Dynamical formation of these 
systems in a binary–single scattering is favoured when the surviv-
ing binary is drawn from the high-eB tail of outcomes. It is therefore 
notable that (i) we find generic superthermality in the outcomes of 
comparable-mass scatterings (both from ergodic theory and numeri-
cal experiments) and (ii) that our formalism has identified the type of 
binary–single encounters that are predisposed to produce exotic bina-
ries: low-L0 scatterings. In the future, it may be possible to apply our 
formalism to estimate the properties of temporary binaries formed 
during long, but non-terminal, single-star ejections. High eccentricity 
binaries formed as ‘intermediate states’ of a three-body resonance 
may merge during the ejection owing to short-range dissipative 
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Fig. 4 | Marginal distributions of binary eccentricity and orientation.  
a, c, e, dσ/deB against eccentricity eB. b, d, f, dσ/dCB against the cosine of the 
binary inclination, CB. Line styles represent ergodic outcome distributions with 
the same ensemble angular momenta as in Fig. 3. The data points are binned 
outcomes from the same numerical scattering ensembles as in Fig. 3, with each 
row corresponding to the same cuts on Nscram. The eccentricity outcome 

distributions are notably super-thermal (the thermal distribution, dσ/deB = 2e, 
is shown as a black dashed line). The inclination distributions exhibit 
anisotropic bias towards prograde binaries aligned with L0 (the isotropic 
distribution is shown with a black dashed line). Horizontal error bars show bin 
sizes and vertical error bars indicate 95% Poissonian confidence intervals.
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forces, leading to, for example, uniquely eccentric gravitational-
wave signals14.
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Extended Data Fig. 1 | Marginal distribution of binary energies, dσ/dEB. 
Colours show dimensionless angular momenta ∼L0; upper and lower black 
dashed lines are asymptotic power laws for ∼L0 = 1 and ∼L0 ≈ 1, respectively.  
a, Ergodic outcome distributions using the ‘apocentric escape’ (AE) criterion; 
that is, assuming that disintegration of metastable triples occurs within a 
strong interaction region of size R = αaB(1 + eB). Here we take α = 2. Solid lines 
represent equal-mass scattering ensembles (ma = mb = ms) and dotted lines 

extreme-mass-ratio ensembles (ma = mb = 10ms). b, As in a, but for a ‘simple 
escape’ (SE) criterion, R = αaB. c, Intermediate-mass-ratio scattering ensembles 
(ma = mb = 3ms). Solid lines correspond to α = 2 and dotted lines to α = 5. d, As in  
c, but for ma = mb = 10ms. Note that ∼L0 is a dimensionless angular momentum 
normalized by the circular orbit angular momentum of a binary with energy E0 
and masses ma and mb.



Extended Data Fig. 2 | Marginal distribution of binary eccentricity, dσ/deB. 
Line styles and assumptions are as in Extended Data Fig. 1, except for the upper 
and lower black dashed lines, which here show the ∼L ≈ 10  and ≪∼

L 10  limits of the 
dσ/deB distribution, respectively (unlike for dσ/dEB, these limits differ 

significantly in the AE and SE regimes). In comparable-mass AE calculations, 
mildly super-thermal outcomes arise from geometric effects when ∼L ≈ 10 ; by 
contrast, angular-momentum starvation produces extremely super-thermal 
outcomes when ≪∼

L 10 . Small ms values foreclose parts of eB space, as LB ≈ L0.



Article

Extended Data Fig. 3 | Marginal distribution of binary orientation, dσ/dCB. 
Assumptions and line styles are as in Extended Data Fig. 1, except that the black 
dashed lines show (i) an isotropic outcome configuration and (ii) an analytic 
approximation for dσ/dCB, as labelled in a (for an equal-mass triple with ∼L = 0.50 ).  

For ≪∼
L 10 , surviving binaries are distributed isotropically (as symmetry 

dictates). Otherwise, binary orientations L LC = ˆ ⋅ ˆ
B B 0 are biased towards 

prograde outcomes. For extreme mass ratios and large ∼L0, retrograde 
outcomes may be entirely prohibited.



Extended Data Table 1 | Numerical (binary–single) scattering ensembles used for comparison to analytic theory

The first two columns show the initial binary eccentricity e0 and the conserved dimensionless angular momentum ∼L0 in each simulated scattering run. The other columns show the number of 
runs with Nscram ≥ I, Ni. Each run has initial impact parameter b = 0, isotropically distributed phase angles and particles of equal mass (ma = mb = ms).
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