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Steady State Excitation of Field Line Resonance 
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A theory of long-period (Pc 3 to Pc 5) magnetic pulsations is presented based on the idea 
of a steady state oscillation of a resonant local field line that is excited by a monochromatic 
surface wave at the magnetosphere. A coupled wave equation between the shear Alfvfin wave 
representing the field line oscillation and the surface wave is derived and solved for the dipole 
coordinates. The theory gives the frequency, the sense of polarizations, orientation angle 
of the major axis, and the ellipticity as a function of magnetospheric parameters. It also 
clarifies some of the contradicting ideas and observations in relation to the sense of 
polarization and excitation mechanism. At lower l•titude it is shown that the orientation 
angle rather than the sense of rotation is a more critical parameter in finding the direction 
of wave propagation in the azimuthal coordinate and hence in finding the evidence of wave 
excitation at the magnetospheric surface by the solar wind. 

Theories of magnetic pulsations can be categorized basi- 
cally into two groups. One group of pulsations primarily 
concerns 'th, ose with the excitation mechanism, which is the 
'active' aspect of the problem, and the other group of pul- 
sations concerns those with the resonance mechanism, which 
is the 'passive' aspect of the problem. For the long-period 
pulsations (v _• 45 s) the former group considers excitation 
by the Kelvin-Helmholtz instability of the outer magneto- 
spheric plasmas due to the solar wind [Dungey, 1955; 
Parker, 1958; Sen, 1963; Southwood, 1968; Boller a•d 
$tolov, 1970] or by the local plasma instabilities such as two- 
stream [Nishida, 1964; Kimura and Matsumoto, 1968], drift 
wave [Swift, 1967; Hasegawa, 1971a, b], or mirror [Hase- 
gawa, 1969] instabilities. 

The theories that treat the passive aspect of the prob- 
lem are mostly centered around the idea of the magneto- 
spheric cavity resonance [Watanabe, 1961; Dunqey, 1963; 
Ratioski, 1966] or the resonance of the local field line (in 
the limit of a large wave number in the azimuthal direction 
[Ratioski, 1967a; Dungey, 1968; Orr, 1973] ). 

Observationally, these long-period continuous pulsations 
ca• be characterized by the following properties. 

1. At higher latitude the mostly circulafiy polarized pul- 
sations reverse their sense of polarization near noo.n [Sam- 
stmet al., 1971], whereas there is no such systematic re- 
versal at lower latitude [Lanzerotti et al., 1972]. 

2. Polarization reversal also occurs at a different latitude 

[gamzon et al., 1971]. The demarcation line coincides with 
the line of peak wave amplitude and linear polarization. 

3. Systematic change of the orientation angle in the 
H,D pla•e occurs from the second to the first (the first to 
the second) quaArant near noon in the northern (southern) 
hemisphere [Van-Chi et at., 1968; Lanzerotti et al., 1972]. 
(As is illustrated in Figure 1, the tendency is less obvious in 
the afternoon sector at Siple.) 

4. For each of the events the frequency is independent 
of latitude, but when it is averaged over many events, the 
frequency of the peak amplitude is a decreasing function of 
latitude [Samson and Rostoker, 1972]. 

When the consequences of the theoretical predictions are 
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compared with these properties of pulsations, it can easily 
be seen that none of the foregoing theories are satisfactory 
enough to explain the observed phenomena consistently. 

For example, although the cavity or the field line reso- 
nance ideas can explain either the latitude independent or 
dependent pulsations by choosing a small or large azi- 
muthal wave number, they fail to explain a change of the 
sense of polariza:tion or the orientation angle near noon. Nor 
do they explain why most of the pulsations are elliptically 
polarized with its major axis always tiled in the H-D pla•e, 
i.e., not aligned with the H or D axis. On the other hand, the 
Kelvin-Helmholtz theory, which is successful in explaining 
the switch of the sense of polarization near noo n , fails to 
explain latitude dependent frequency and the lower-latitude 
pulsations that do not reveal systematic switches of the 
sense of polarization. 

The local instability theories may apply to some specific 
cases, but again they are difficult to apply to the majority 
of the phenomena that seem to have dependency on a 
global effect such as dawn-dusk asymmetry. 

A natural step to take here is therefore to combine the 
active and passive theories and to treat the problem of 
coupling between the active and the passive modes. Because 
many of the high-latitude pul•tions seem to switch their 
sense of polarization near noon, for the active mode it 
may be natural to take the Kelvin-Helmholtz mode or a 
similar surface mode excited by the solar wind friction. 
Whereas for a passive mode it is natural to take the local 
field line oscillation by the shear Alfvfin wave because of 
the observed localization of the pulsations. A coupling be- 
tween these modes is being studied independently by South- 
wood [1973], using a straight field line model. We employ 
the dipole field, which is crucial in deciding the orientation 
angle of the major axis of the polarization ellipse as will be 
seen. 

METHOD OF APPROACH 

Here we introduce the basic method of the theoretical 

approach to the problem. We consider the oscillation of the 
local field line excited by a surface wave. The surface wave 
is assumed to be monochromatic and is excited by the 
Kelvin-Helmholtz instability at the magnetospheri c bound- 
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Fig. 1. Orientation angles of the major axes in the H-D 
plane polarization ellipses at Lac Rebours (47ø52'N, 72ø27'W 
geographic) and Siple (76ø55'S, 83ø55'W). The dashed line 
illustrates the dawn-dusk asymmetry [after Lanzerotti et al., 
1972]. 

ary or by some other type of friction between the solar 
wind and the magnetopadse. We start with a review of 
the Kelvin-Helmholtz instability. In a uniform plasma the 
surface wave equation that may be excited by the Kelvin- 
Helmholtz instability is given by [e.g., $•m, 1963] 

V•'[p -!- (b.B/a0)] ---- 0 (1) 

where p is the perturbed plasma pressure, b and B are the 
perturbed and unperturbed magnetic flux density, and •o is 
the vacuum magnetic permeability. Because this is a Laplace 
equation, the general solution associated with the surface 
perturbation is of the form 

where z and z are parallel to the surface and y is perpendicu- 
lar to the surface. N•)te that the exponentiating distance is 
comparable to the wavelength parallel to the surface. Just 
inside the magnetospheric boundary, x, y, and z correspond 
approximately to the azimuthal coordinate, the radial (in- 
ward) coordinate, and the coordinate parallel to the mag- 
netic field, respectively. 

Because the magnetospheric boundary is not under a 
dynamical equilibrium, a dissipative layer must be assumed 
there in general [Eviatar and Wolf, 1968]. This assumption 
modifies the simple theory of the Kelvin-Helmholtz insta- 
bility. However, we assume here that the ordinary result 
of the Kelvin-Helmh•)ltz theory still holds if the perturbed 

wavelength is much larger than the proton Larmor radius, 
which is a typical size of such a dissipative layer. 

When incompressibility is assumed for simplicity, the 
condition of the ins ,tability is well known (see, for example, 
Boiler and Stolov [1970] ) and is given by 

(k.v,)' > • -I- • [N,(k.vA),' -I- N.0r'vA).'] (2) 
where subscripts 8 and m stand for quantities for the solar 
wind and the magnetosphere, v, is the velocity of the solar 
wind, v• is the Alfv6n velocity whose direction is taken to be 
parallel to the unperturbed magnetic field, and N is the 
unperturbed number density of th6 plasma. Because IVAI • 
BN -u', the magnetic flux density inside the magnetosphere 
is much larger than that outside, and N, >> N=, (2) can in 
most cases be simplified to 

k. > (k.v.). = (2') 

where k•, is the wave number parallel to the magnetic field 
and v, is the magnitude of the Alfv•n velocity within the 
magnetosphere. When the compressed geomagnetic field: at 
the dayside (~100 7), v• ~ 2 x 10 • km/s, and v, ~ 4 X 
10 • kuts are taken into account, (2') is satisfied with a large 
perpendicular (azimuthal) wave number k• • 5 k,, and the 
minimum value of k, is decided by the local length of the 
field line s by k,- •r/s. 

At the threshold •)f the instability the excited frequency 
is given by 

Ns 

•o = k.v, N, -I- N. '• k.v, ,• k,v• (3) 
Therefore it is conceivable that a set of discrete monochro- 

matic frequencies corresponding to the (2n -- 1)•r (n = 1, 
2, ---) modes in the standing shear Alfv6n wave at the mag- 
netospheric boundary is preferentially excited. 

Now we consider how this surface wave can couple to a 
local field line oscillation deep within the magnetosphere (L 
• 4). We assume that a one-fluid MHD equation can suf- 
ficiently describe the Alfv•n wave perturbation. With this 
assumption we ignore a possible interaction with electro- 
static drift waves. After the electric field is eliminated, the 
relevant linearized MHD equations become 

p,d,• = 1 (V x b) x B -I'- 1 (V x B) x b -- Vp (4) 
/•o /•o 

b = V x(•xB) (5) 

where • is the displacement vector defined by 

oUot = v (6) 

and v is the perturbed fluid velocity. In (4), p= and p are 
mass density (=m•N) and the perturbed plasma pressure. 
Because we are interested in the oscillation of the local 

field line, which is possible only in the shear Alfv•n wave 
perturbation, we seek for an incompressible perturbation. 

The mass conservation gives 

n + NV. + .VN = 0 (?) 

where n is the perturbed number density. From (7) we can see 
immediately that the ordinary incompressibility assumption, 
n ,-• 0, V' • •-• 0, does not hold because of the nonuniform 
plasma density, VN • 0. The incompressible perturbation 
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(n • 0) will have a finite •' • • --•' 1•, where •½ • P (ln N); 
otherwise, a finite density perturbation n • I•.•N • 
(g•½.l•)N results. This fact indicates a coupling between the 
shear Alfv•n wave of our concern and a compressional mode. 

In association with the variation of the number density, 
the plasma pressure also changes. Using the adiabatic 
assumption and (7), we have for the pressure perturbation 

p = --NT(•v' • q- 7V' •) (8) 

where T is the plasma temperature (in energy units) and 
gv • V (ln NT). The set of equations (4), (5), (7), and (8) 
contains three basic MHD waves: the ion acoustic wave, the 
magnetosonic (compressional or isotropic Alfv•n) wave, and 
the shear (anisotropic) Alfv6n wave. (The incompressionM 
surface wave of (!), as will be shown, becomes an evanescent 
compressional mode in the presence of compressibility.) 
Because we are looking at a wave having a large perpendicular 
wave number in consistency with the Kelvin-Helmholtz 
perturbations, the magnetosonic wave will have a frequency 
much higher than the frequency of our interest (which is of 
the order of the shear Alfv•n wave resonance of the local 

field line). This fact enables us to reduce the coupling between 
the shear Alfv•n wave and the rest of the mode by using two 
small parameters e and/S, where 
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Substituting (5') into (4'9, we obtain 

•oO•- (B'V)•I• = --•oV[P 4- (B.b/•o)] 4- C 
where 

• •-• k,,/kx •-• t•Nik_[ • •,Ik•_ • •vik• (( I (9) 

NT 

B -- B•/2•o (10) 
with g.= • In B. 

With these preparations we introduce here the basic 
scheme of the coupling and the theoreticM approach to the 
problem. 

Let us first see how the surface wave (1) is modified owing 
to the nonuniformity. After simple vector operations in (4) 
using V'b = V' B = 0 we have 

,, 

V(•oP + b.B) = 2(b.V)B -- •0Om• + V x(b xB) 

Hence if we take the divergence of both sides, we have 

V:(p + b'S/Uo) = 2V'[(b'V)S]/Uo -- V'(o•) (11) 

If the plasma is uMform and if the ineompressibility (V' • = 
0) is assumed, we recover the wave equation of the s•faee 
wave given in (1). If the plasma density were uniform, we 
could assume an incompressible perturbation, but V:(p + 
b.B/•0) • 0 if the magnetic field were nonuniform. This 
finding shows that the surface wave can couple to the shear 
Alfv•n wave through the nonuniform magnetic field. The 
coupling would vanish if the perturbed magnetie'-'field were 
linearly polarized in the azimuthal direction (because then 
(b'V)B = 0), but because the surface wave is cireularly 
polarized, that cannot be the ease. 

We now look at the modification of the shear Alfv•n wave 

by the surface wave. From (4), 

Od• = -V[p + (b.B//zo)] + I [(b.V)B + (B.V)b] 
Uo (4") 

whereas from (5), 

b = --B(V.•) + (B.V)•-- (I•'V)B (59 

(12) 

C = (b.V)B -- (B.V)[(I[.V)B + B(V.I•)] (13) 

with b given by (5'). Equation 12 illustrates very nicely the 
coupling between the wave equation of the shear Alfv•n 
wave, representing the oscillation of the field line (right-hand 
side is equal to 0), and the surface wave (equation 1) through 
the coupling coefficient C, which appears in consequence of the 
nonuniform magnetic field. 

However, if we evaluate the orders of magnitude of both 
sides of (12) using our small parameters • and/S, the right- 
hand side is found to involve terms larger than the left-hand 
side by a factor of •-•. This result implies that the field line 
resonance of the shear Alfv•n wave is completely wiped out 
unless a particular choice of 1• vector is made such that it 
reduces the size of these large terms on the right-hand side. 
The property of this unique 1• vector depends on the actual 
shape of the unperturbed magnetic field, and a concrete 
form will be shown in the next section. 

WAVE F_•UATION IN DIPOLE COORDINATES 

In this section we elaborate o,n the approach described 
in the preceding section to derive the coupled wave equation 
for a dipole field. We adopt here the dipole coordinates (. 
/% •0) used by Radoski [1967b] (see Figure 2). These coordi- 
nates and their respective scale factors are related to the 
spherical coordinates (r, •, e) as follows: 

v = sin •' O/r tz = DOS O/r • •o = •o 

= (rVin 0)(1 + a 0) 

h• = r sin 0 h• = h•h• = M/B 

where M is the earth's magnetic dipole moment, and B is the 
field strength. The unit vector t• is directed along the field line, 
• is in the azimuthal direction, and v = t• x• is normal to 
the field line and pointing toward the earth (projected to the 
northern (southern) hemisphere, •o and v correspond to D 
and --H (+H) direction). We assume perturbations of the 
following form: 

,•(lz, q•, v, t) = e-i'O'e im•,•(lz, v) 

Here Im] • 1/½ >> 1, and l•(/z, v) satisfies the MHD equations 
as well as the boundary conditions. Equation of motion (12) 

SOLAR WIND 

Fig. 2. Illustrations of the dipole (v, •, q•) coordinate used 
in the text. 
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then becomes for each component 

imIzzøPq-b"B 1 (14) 
o [,op + 1 

IOp (1½) 
Here 

VA Bh,. 

Thus (17) with K•i • = 0 corresponds to the guided wave 
equation for the •oroidal (• = 0)or poloidal (• = 0)mode. 
Because we are primarily interested in the coupling problem 
in the v direction around the equatorial plane, we do no• 
solve the detailed boundary value problem in the • direction; 
iraread, we assume •hat a suitable solution in the • direction 
is obtained in a WKB form. Then operators K•i • when 
operated to •(•, v) become a function of • and v. Pa•ieularly 
near the equator, where • • 0, K•i • can be regarded as a 
function of v only. The pe•urbed magnetic field b is related 
to the fluid displaeemen• • through (59, which in the dipole 
coordinates becomes 

b, Jim 10•j• (1. (18) 
(lS') 

Equation of state (8) relates the perturbed pressure p to •; 
i.e., 

op/B' = + (89 

In general, the above set of MHD equations is difficult to 
solve and only special cases where the plasma is cold and 
the compressional component vanishes have been treated 
(see Orr [1973] and references therein). 

As was described ]n the preceding section, we approach 
this problem by using two small parameters, ( and fl. First, 
we discuss the physical implications of the two small param- 
eters from ordering arguments. From (8'), (18), and (18') 
we obtain the following order estimates: 

•op/Bg.,•, I•(Bb,,/B') (21) 

KAi9.•i 9. Bb, 
k• •-•e •- j -- •,• (22) 

The above order estimates show that the shear Alfv•n wave 

resonance, which is represented by K•i • = 0 in (14) or (15), 
is attained only for a particula• orientation of/• vector such 
that the compressional magnetic field component b. is small 
(•/•, e'), because otherwise the right-hand side of (14) or 

(15) dominates over the left-hand side, and the oscillation of 
the field line becomes 'forced' oscillation rather than 'natural' 

oscillation. Thus from (14) we can solve b, and p in terms of 
• by successive approximations. That is, we put to zeroth 
order 

[Bb./Bg.] •ø) = 0 (23) 
or from (18) and (18'), 

ihq, 0• (ø) •o (ø) _ 
mh• 

1 0•, (ø) (V' _ 
h. 

( ih•_ Oh•(o) (24) mh• 2 0y / 

Equation 24 shows the orientation of • such that the local 
oscillation of the shear Alfv•n wave can occur. The first-order 

value of b• then is 

where 

B 2 I = -- B" ' -- m 

•op(ø)/B 9. = --/•[ge' •(o) q_ y(V-•)•o)] (27) 
Combining (25), (27), and (16), we can see that •,(o, ~ 
fi•.(o,; (25) a•d (27) then become 

(V- _ (259 

•op(ø'/Bg. •--- --/•[Ke}• (ø' -+- y(V' [)(o, 1 (27') 
In (25') and (27') we have omitted the subscript , from 
.• and • to simplify the notation. Substituting (24), (25'), 
(26), and (27') into the right-hand side of (15), we arrive at 
the wave equation for }. only: 

h• K• O• • • • O• J h• O• 

+ --•---• 1 

•ere we h•ve omitted the supemeript (0) to simplify the 
notation. No•e, for uni•o• plasmas K,/= K,/ (=conap), 
then (28) becomes 

(5 KAy2 m 0•-- •, = 0 
i.e., the shear Alfv•n wave (K,2 -- 0) and the compres- 
sional surface wave (k/ + k/ -- 0) are decoupled. Note 
also ttxat in a nonuniform case as m -• o•, Kaf -- 0 is a 
solutior•.of (28). This mode corresponds to a poloidal oscil- 
lation obtained by Dungey [1968]. However, this mode does 
not have a resonant coupling with the surface wave and 
hence may not be excited strongly. Equation 28 thus indi- 
cates the coupling between the surface wave and the shear 
Alfv•n wave given by K.• -- 0 due t•) nonuniformities as 
well as field line curvatures. Roughly speaking, because 
m' ~ (-' >> 1 and K,•2/K•f ~ 1, the c'ouphng is weak 
(~•) except near K.•f -- O. We therefore expect an ex- 
istence of a surface wave away from the resonant field line 
where Kaf -- 0 and a shear Alfv•n wave near the resonant 
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field line. Because in the equatorial region the surface wave 
excited by the solar wind has a maximum amplitude and 
the coupled wave equation assumes a simplest form, we shall 
confine •)ur treatment in this region and thus reduce the 
problem to one dimension in order to study the nature of 
coupling in more detail. Near the equator (p _• 0), (28) 
then becomes 

dv • + 1 dKA •o • 

I A dK.•,• m • K.• • '+' •'KA•: dv • KAy: 

the wave propagation as a steady state process [Ginzburg, 
1967]. To eliminate this difficulty, in accordance with the 
causal relation of the Laplace transformation in time, we 
have to assume a small positive imaginary part in •o' 

With •o, • 0, we then have near v -- vo, where Re(K•') -- 
0, 

oF' --1-[-iT] (32) -- L dv --Jo LVo 
where 

where 

1/LbRr _• v •_ 1/Rr 

A = 2 -[- 4vBm•B •' I -- (Kv/2VKB) 
v dKA •:/dv 

and Lb is the L value of the magnetopause. It is underst•)od 
here that all quantities correspond to values at p _• 0. In 
particular, K• and K• are not operators but are functions 
of v. Although the values of K•f and K• • can be rather 
close in low latitudes (Oh•/Op, OB/gp o: cos 0 _• 0), we take 
them to be different. Specifically, we assume K•, ' •: 0 at 
K•f -- 0. However, it becomes apparent in later analyses 
that the qualitative picture of the coupling is insensitive to 
the exact relation between K•2 and K•f. Equation 29 
plus the appropriate boundary conditions completely de- 
termines $•. Wave polarization in the •-v plane then 
can be found from the ratio b•/b, (see the appendix); i.e., 
near the equator, 

Here 

--aq-i• 

I [v•d•, ,01n•] (30) my • + 2v -4c' v Ov 

(KA •,") • = 

. = • (33) Vo L dv ---Jo 

Note IVl ~ 0(•o,/•o•) • 1, but in the presen• of • lo• 
(such • that due to ionspheric dissipation), •, is not in- 
finitely s•11 but rather positive finite to overcompensate 
the effect of l•s; hence, in general, • has • finite p•itive 
value. By defining the new va•able 

- 1 z]e 

(29) be•mes, near s = 0, 

Here 

[ (m?v) KA• •' ] = 
and Do -- --2. With [z] << e" we can solve (34) by series 
expansions, and the general solution is 

In the next section we discu• the solution and the associ- 
ated wave polarization near the resonant field line. 

Here 

• = C1}I• + C2}2• (35) 

•,• = I + a,z + a:z •' + O(a,az •) (36) 
NEAR THE RESONANT FIELD LINE 

When it is assumed that K•f -- 0 at • -- •o, then near 
the resonant field line we have 

:) KA•: •' (• -- •o) --d-•--- o (31) 
Here we use the subscript 0 to denote quantities evaluated 
•t r .= •o, and (dK•'/d•,)o is taken to be nonzero. Substitut- 
ing (31) into (29), we immediately see that the solution has 
a singularity at r =to. In fact, as will be shown later, this 
singularity is logarithmic. As is realized also by Southwood 
[1973], the nature of this singularity is the same as that of 
the singularities encountered in studying wave propagations 
in an inhomogeneous medium where the refractive index be- 
comes infinite [Budden, 1961; Ginzbur•, 1967]. The wave 
amplitude becomes infinite there, and the energy is ac- 
cumulated in the vicinity .of the pole. This physically un- 
justifiable result indicates the inappropriateness of treating 

b 2 •,.,, = },• In z + blZ + 2Z + O(bl3Z 3) (37) 

al ---- --Go r• -2 

a•. = •[Go(2 q- Go) -- Do]---• Go:/4 •, •-• 

b• = 2(Go -- 1) • 2Go 

be = --•[b•(2 + Go) + 4a: + 2a•] • a : --•Go 

Here C• and C• •re two constants to be dete•ined from 

•undary conditions. Unless •C•/C• is vanishingly small, we 
can •pproximate (35) with •z• • 1 to be 

• • C,•,• In z (35') 

For [z[ << •', •. • 1, and $• can be further app•ximated 
to be 

• • C, In z = C,[•/ + i•/] 

= c,[1 + i/ln }zl] In Izl (3g) 
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Meanwhile, we have d•,/dz _ a•, and from (35') 

(Y1 d•__• • C, -•- i d•, (39) o- 
dz -- L \ dz / \ dz / I 

where 

dz / ----- ]•a -]- ax ln. Izl (40) 
{ dt:..\ • ' . 

k•z') •-- --I-• -]- ax• (41) 
Equation 30 then gives the ratio b•/b,, which decides the 
wave polarization: 

b• i[d•i!dz d ] b. -a+ia•'-- +2+•lnk• m 

or because the first term (~l/z In z) dominates the last 
two terms (• 1), 

LH 
C 
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Fig. 4. Sketch of the wave amplitude and sense of polar- 
ization versus radius in the equatorial plane for m < 0 (local 
morning). When it is projected along the field line to the 
ground, it can be viewed as a plot versus latitude. The C 
and E stand for circular and elliptical polarization, respectively. 
The results are opposite for m > 0 (local afternoon). The 
•o is the location of the resonant field line. The ellipticity 
is large (linear polarization) near the resonant field line and 
decreases away. 

In Izl L\•-•-z / \ln [zl' (42) a•m - -- kdz13 

$ • m In •z• •Xdz ] • •] •l•/J (43) 
In the follo•ng three subsections we dkcu• separately 
the v•ues of .a •d 8 as well as the as•ciated wave polari- 
zatio• for •s/,• • 1, ls/,• • 1, and •s/,• •P 1. 

C•e 1' •s/v• (( 1. Here ß • •/2, the upper sign 
being for V • 0 and the lower sign for V ( 0. With •V] (( 
1 we obtain from the above equations 

1, (d•,'• z 1 
m I\dz/ m,1 In I•1 

$'•' m• In I•1 -- In I•1' 

(44) 

Thus the sign of a depends on that of m•; i.e., sign (a) = 
--sign (m•). With •/> 0, a • 0 for m < 0, and the major 
axis of the ellipse lies inside the first quadrant of the •-v plane. 
For m < 0, a < 0, and the major axis lies inside the second 
quadrant. With •/ • 0, the results are opposite. As for the 
sense of polarization, it depends on the sign of •, which is 
independent of the sign of •/. For Idt < 1•/2 In Ill (e.g., 
exactly at the resonant field line, s = 0), sign (•) = --sign 
(m). Hence wave polarization is on the left-hand side for 
m • 0 and on the right-hand side for m • 0. A little away 
from the resonance, where Is/q[ • [•r/2 In [•[[, sign (•) = 
--sign (s/m). Thus for m • 0, the wave is left-hand-polarized 

for s > 0 (closer to the earth) and right-hand-polarized for 
s < 0 (farther from the earth). For m > 0, the results are 
opposite. Since I$/al << 1, the ellipticity is large (close 
to a linear polarization) with the minimum value, 8•----- I -- 

Case 2: Idl-- 1. Here ß • 0(1), and we obtain 

a----- 1/2, m In I.1 (46) 

•i __• s/2•'m In (47) 

Therefore the major axis has the same properties as the 
preceding case does. Again, the sense of polarization is 
independent of 7, sign ($) - -- sign (s/m), and has been 
discussed in the preceding case. Since I$/al• 1, the ellipticity 
is smaller than that of the preceding case with 6• ----- 0.59 at 
a • -- 0.5. 

3.. Is/l >> 1. In this case we have 

•_____-!-•r s< 0 

Again, the upper sign is for •/ • 0, and the lower sign is for 
ß / ( 0. Then a and 8 become 

- s>O 
In 

(48) 

m<O m>O 

Fig. 3. Tilt of the major axis near the resonant field line at 
the equatorial plane. When • and v are projected along the field 
lines to the northern (southern) hemisphere, • (E-W) is in the D 
direction, and v (N-S) is in the -H (-t-H) direction. 

• •--- 11ms In (49) 
Note here that for s < 0, •/s and -!- •r/ln Isl have the same 
sign. Hence sign (a) = --sign (•ffm); and the major axis has 
the same properties as given in the previous two cases. Also, 
sign ($) = --sign (ms), which indicates that the wave polari- 
zation has properties similar to those of the preceding case. 
With I$/al • I the ellipticity is smaller (close to a circular 
polarization) with/;• ----- 0 at $----- 1. The above results are 
summarized in Figures 3 and 4. 

Finally, let us assume Kaf -- 0 at v -- Vo, where Ka• ø' ---- 
0, and discuss the resonance coupling. It is apparent that 
the only changes needed in the above analyses are now 
Go - Ao ~ m• ~ ,•-• (when it is assumed that • • •) 
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and Do = --(m •' + 2) ~ e -•'. Thus a• ~ ,e -•, and a• 
in other words, all the above results are expected to hold 
for Izl < .• instead of Izl < ,e •s they do in the ease with 
K•2 .• K•f. The changes are therefore only quantitative. 
That is, for Izl < e, we have 

i ] 1 
• e Ine 

•nd •or [z I << ,, 

Thus in •he fomer ease •he waves •end •o. ine!ine •o.ward 

•he • direction. In •he la•er e•e, however, •he waves have 
no pargieular gendeney of inclination. Orr and Ma•hew 
[1971] compute the r•onanee frequenei• for •he poloidal 
and •oroidal oseillagions and find gh• ghey are almos• 
identical (1-3% difference) exeep• for •he fundamental 
hamonie (30% difference); •hat is, •he la•er ease may 
be more eommo,n in practical situations. 

AWAY FROM THE •ESONANT FIELD LINE 

In this case, because 

(aK•/a•) 
Ka ½ 

the wave equation (29) can be ap- and • • ~ 1, K •'/K • 

proximated to be 

d2• m 2 

1 

vo < V _< R- J 

(50) 

1 

L•,Rr --< v < Vo 

exciting source.) We then apply this property to derive 
a coupled wave equation in the dipole coordinates. This 
wave equation is then solved for the equat9rial region. 
The solution exhibits surface waves away from the resonant 
field line. Near the resonant field line, shear Alfv6n wave 
occurs, and the solution has a logarithmic singularity. This 
unphysical property is removed by introducing finite dis- 
sipations. On the basis of the solutions we then examine 
the characteristics of the wave po. larization, i.e., the tilt of 
the maj,or axis, the sense of polarization, and the elliptieity. 
These results are summarized in Figures 3 and 4. Let us 
now discuss these theoretical results in the light of experi- 
mental observations. Since the surface wave is excited by 
the solar wind, a natural choice is rn <'0 for local morning 
and rn > 0 for local afternoon. 

Tilt o[ major axis (Figure 3). Theory indicates that 
the tilt depends on the signs of r/ and rn. When it is as- 
sumed that r/ > 0, the theory then predicts that in local 
morning (rn < 0) the major axis lies in the second (first) 
quadrant of the H-D plane for most latitudes in the north- 
ern (southern) hemisphere. This prediction assumes that 
the major axis direeft, on does not change significantly along 
the direction of the field line. This assumption is supported 
by conjugaey observation by Lanzerotti et al. [1972]. Fur- 
thermore, the tilt is predicted to. switch across the local 
noon. These predictions are consistent with the low-latitude 
conjugate observations of Lanze'rotti et al. [1972] and 
Van-Chi et al. [1968]. Samson [1972], using a string 
of seven stations located at different latitudes in the north- 

ern hemisphere (59ø-77øN) has also observed similar 
phenomena. 

Let us n'ow discuss the physical implications o.f r/ > 0 
as suggested by the observations. Since to, ;> 0 to take a.e- 
count of dissipations, r/ > 0 then implies that 

This i.s a surface wave type equation (i.e., kf' q- k• •' _• 0). 
In fact, it describes the evanescent compressional mode. 
The general solution is 

• • Blr Iml •- B2v -I•1 (51) 

The values of B• and B•. depend on the boundary condi- 
tions as well as the actual position of the resonant field 
line. If we assume that the fields vanish near the earth's 

surface, we then have approximately 

($2) 

From (30) and (51) we see that the wave polarization is 
mainly circular and that the sense of polarization depends 
on sign of m; i.e., the polarization is left-handed for 
rn < 0 and is right-handed for rn > 0. These off-resonance 
results are also summarized in Figure 4. 

Su•r•rA•¾ nN• D•scussioNs 

We have shown through general •ormulations that owing 
to nonuniformities as well as field line curvatures, surface 
waves excited by the solar wind at the magnetopause can 
couple to the shear Alfv.6n, waves (guided waves) of the 
resonant local field lines inside the magnetosphere. For 
surface waves with fast azimuthal (E-W) variations (small 
e) and in low fi plasmas the coupling that retains the 
natural field line oscillation can occur only for particular 
orientation of the • vector. (Otherwise, the nature of the 
field line oscillation is dominated by the nature of the 

Because 

then 

> 0 

[d(K•2)f&]o 

is generally negative except in regions (e.g., the plasma- 
pause) where V• decreases with vdue to rapid density 
increase (i.e., faster than B•). The present theory thus 
suggests that pulsations tend to occur in regions where 
density increases faster than B •. 

Recently, Uberoi [1972] has pointed out the dose 
analogy between the problem treated here and the prob- 
lem of electrostatic oscillations in a cold inhomogeneous 
plasma. By u•ng the small parameter e and looking at 
the steady state solution we have ignored in the present 
paper the possibility of exciting the weakly damped eol- 
leefive (position independent) mode due to a sudden jump 
in v• as well as the related initial value aspect ,of this 
problem [SedldSek, 1971]. These considerations are cur- 
rently under study and are reported in the companion 
paper. 

Wave amplitude, sense, and ellipticity o] polarization 
(Figure J). The theory predicts that the wave amplitude 
peaks at the resonant field line. The polarization is linear 
near the peak, and the elliptieity gradually decreases away 
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Fig. 5. The diurnal variation of the polarization sense for 
quasimonochromatic micropulsations of frequency •5 mHz 
[after Samson et al., 1971]. 

reverses not only across local noon but also across the 
resonant peak, which has diurnM variations, the sense 
of polarization thus cannot be expected to exhibit a clear 
diurnal pattern. Finally, let us note that the above results 
are also predicted by Southwo,od [1973] based on similar 
ideas and a straight field line model as well as by McClay 
[1970] based on the coupling of symmetric modes and the 
Hall effects. 

Latitudinal dependence o[ •requency. Because the reso- 
nant frequency increases as the latitude decreases, our 
theory thus satisfactorily explains the observations o.f 
Samson and Ro.stoker [1972]; i.e., for each individual 
event the frequency is the same for all latitudes (observing 
the Kelvin-Helmholtz surface wave), and, however, the 
latitude of the intensity peak decreases as the pulsation 
frequency increases (observing the oscillation of the 1,o.cal 
field line). In conclusion, we remark here that the theoretical 
approach of studying long-period magnetic pulsations as 
coupling between surface waves excited by the solar wind 
at the magnet,opause and the shear AJfv•n waves of local 
resonant field lines has yielded results consistent with m•ny 
aspects of the observational results. 

APPENDIX' GENERAL CONSIDERATION OF WAVE POLARIZATION 

from the peak. Furthermore, the sense of polarization is In this appendix we study the characteristics of the wave 
opposite in the two s•des of the resonant peak. The theory polarization given b•/bv -- • + i8. 
also predicts the reversal of sense of polarization across With the convention taken as e -•', b• and by can be 
local noon. •1 these theoretical predictions •ree •th the written as 
obse•ation of Sa•• et •. [1971] (see Figure 5). The 
demarcation line in Fibre 5 then corr•nds t• the b• = cos•t b• = • cos (•- k) (A1) 
location of the r•onant field lihes. Let us now explain where 9e• a + i3. From (A1) we obtain 
why in low latitudes no clear da•-dusk •ymmetry is 

•-- 2ab b, + (a • + •)b, • • = 0 (A2) obse•ed. For a station located at low latitudes we can b• • -- 
expect the observed p•sations to be near the resonant 
field line where the wave amplitude pea•. Othe•ise, the By using a new pair of axes (b/, b/), which makes an 
wave signal may be t'• low to be detected. Another indi- angle Oo in the countercl, ockwise direction with (b•, b•), 
cation of excitation of shear •fv•n waves is that in a (A2) can be reduced to (he standard e•iptic equation 
low latitude most of the obse•ed pulsations have periods 
of the order of the local first harmonic shear Alfv•n b• b• period •40 s (Fibre 6). Because the sense of polarization ($•/A) + ($•/C) - I (A3) 

The angle Oo is given by 

3O 

40 ! I I I I I I I [ I [ I I I I I 
DECEMBER 1970 

JANUARY 1971 

2O 

and 

-- 2a (A4) tan 200 = 1 -- 

A = (cos 0o -- a sin 0o) • q- /•'• sin '• 0o 

C = (sin 0o q- a cos 0o) '• q- /•'• cos 2 0o 
(AS) 

Thus 0 _< 0o _< .•r/2, and the orientation of the major axis 
is decided by the relative value of A and C. It can be shown 
that 

-- -- sin 20o[(1 -- /?)'• q-- 4a '•] (A6) 

0 20 40 60 80 I00 120 140 160 18b 

PERIOD, sec 

Fig. 6. Plot of number events versus period at the two conjugate points, Siple and Lac Rebours. It indicates that to see that the sense of polarization is entirely decided 
most of the events have frequency near the local shear by the sign of 8, i.e., left-hand polarization for 8 > 0 
Alfv•n frequency (plot provided by L. J. Lanzerotti). and right-hand polarization for • < 0. Here the convention 

Hence, for tt > 0, A < C, and b•' is the major axis; for 
a < O, A > C, and b/ is the major axis. That is, for 
a > 0, the maj.or axis lies in the first quadrant of •-v 
plane; for a < 0, it is in the second quadrant. 

From the above discussions and from (A1) it is easy 
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is taken with the thumb pointing along the Bo direction. 

As for the ellipticity 8, i t is given by 

= - 
ifA < Cora > 0; 

= - 
if A > C or a < 0. In terms of a fixed ratio of I$/a] we 
have the following minimum ellipticities. For 18/al << 1, 

8• ----- 1 -- 

at {a{ ___ 1;for {S/a{ • 1, 

8• ----- 0.59 

at {a{ • 2-•; for {•la{ >> 1, 
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