
VOL. 79, NO. 7 JOURNAL OF GEOPHYSICAL RESEARCH MARCH 1, 1974 

A Theory of Long-Period Magnetic Pulsations 
2. Impulse Excitation of Surface Eigenmode 

Lm CHEN AND AKIRA I-IASEGAWA 

Bell Laboratories, Murray Hill, New Jersey 07974 

A theory of long-period magnetic pulsations (Pc 3 to Pc 5) is presented as an initial value 
problem to explain impulse-excited pulsations. By using a one-dimensional model a wave 
equation that shows a coupling between a surface wave and a shear Alfv6n wave is derived. 
By solving this equation on the basis of initial value approach we conclude that there is a 
continuous spectrum with damping proportional to inverse power of time and that there are 
weakly.. damped discrete eigenmodes (surface eigenmodes) due to sharp variations in the 
plasma parameters. The frequency •or and the damping rate • of the surface eigenmode are 
given approximately by o•r -- k,[(BI 2 q- Bn2)/•(pl q- pn)] TM and •/•o• -- Ik/v (In v•) I re- 
spectively, where v•('--B/(•p) TM) is the Alf6n speed, k, and k• are wave numbers parallel 
and perpendicular to the magnetic field, and subscripts I and II refer to quantities associated 
with each side of the surface. The result is used to explain recent observations of plasmapause- 
associated magnetic pulsations as well as magnetic pulsations excited by sudden commence- 
ments and sudden impulses near the magnetopause. 

In the companion paper [Chen and Hasegawa, 1974] 
we presented a theory of long-period rnagnetic pulsations 
based on the idea of a steady state resonance coupling be- 
tween a rnonochrornatic surface wave excited at rnagneto- 
pause due to Kelvin-Helmholtz instability (and/or other 
rnechanisms) and a shear Alfv6n wave associated with 
local field line oscillations. We have shown that this theory 
can unify many contradictory observations and predict, 
among other things, the dawn-dusk asymmetries in the 
sense of polarization as well as the tilt of the rnajor axis 
of the polarization ellipse. However, recently, Lanzerotti 
et al. [1973], using latitudinal data near the plasmapause, 
have observed weakly damped coherent oscillations at 
L •_ 3.2, which are accompanied by impulselike perturba- 
tions at higher latitudes, L •_ 4.4 and 4.0. The steady state 
approach, which shows latitude independent frequency, 
obviously cannot explain these observations. A natural 
step to take here is to apply an initial value approach 
and study effects of sharp changes in magnetospheric plasma 
parameters. The present paper describes this approach. 
First, we use a one-dimensional model and ideal MHD 
equations to derive a coupled wave equation. We then 
obtain the solution of this equation by constructing its 
Green function. For this purpose we note the analogy of the 
present problem to that of an electrostatic oscillation in 
a nonuniforrn cold plasma. Frorn this analogy we can 
conclude the existence of a continuous spectrum (non- 
collective modes) and a discrete spectrum (collective 
modes). Since the noncolleCtive modes damp away as 
inverse power of time owing to phase mixing, we con- 
centrate on the collective modes, where damping can be 
rather weak if sharp discontinuities in the plasrna param- 
eters exist. We then calculate the oscillation frequency 
and dampiag rate in terms of magnetospheric parameters. 
Finally, We apply these theoretical results to the recent 
observations [Lanzerotti et al., 1973] of plasmapause- 
associated magnetic pulsations as well as magnetic pulsa- 
tions excited' by the sudden commencements and sudden 
impulses at the magnetopause [Sait ø and Matsushita, 
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1967] and show how the magnetospheric pararneters can 
be inferred by using the observed frequency and darnping 
rate in time.and in space. 

MODEL AND THE WAVE EQUATION 

We assume the plasma to be an ideal MHD fluid with its 
equilibrium properties (density p, pressure P, and confining 
magnetic field B - Bz) varying only in the y' direction. (In 
the magnetosphere, x and y roughly correspond to W-E and 
radially inward directions, respectively.) Here P and B 
satisfy the equilibrium condition d/dy (P q- B2/2/•0) = 0. 
(If we include the effect of the curved field line, this condition 
is modified. In particular, one can have a situation in which 
both P and B increase (or decrease) with radius.) Lineariz- 
ing the standard set of MHD equations, we have the equation 
of motion as 

/•op•'--- (B'V)={ = --/aoVP- B(B'V)(V'{) (1) 
Here • is the fluid displacement vector, O{/Ot = v; p = p d- 
B.b//a0 is the perturbed total pressure; b, the perturbed 
magnetic field, is expressed in terms of { as 

b = (B.V)i[- B(V.I:) -- (dB/dy)(:,,z (2) 

For a compressible fluid the adiabatic equation of state 
and the continuity equation relate the perturbed p and {: 

(For an incompressible fluid (V'/• = 0), one has a similar 
equation [Uberoi, 1972]. However, as is shown in the com- 
panion paper [Chen and Hasegawa, 1974], the nonuniformity 
does not generally allow incompressible perturbation.) 
We then take,the Laplace time and the Fourier space trans- 
forms of the perturbed quantities; i.e., 

•(y, kll, kx, o•) = fo © dt dx dz l•(x, y, z, t) 

ß exp [i(wt- kxx- kllz) Imco > 0 

1 /•(x, y, z, t) -- (2•r)2 d• • dkx dkll 1•(•, kll, kx, w) 

ß exp [i(kxx -{- k,lz -- cot)] 
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where the integration path c runs parallel to the real axis 
of the w plane above all singularities of •. Using the above 
representations and (2) and (3) in (1), we obtain, after 
straightforward calculations, the following coupled wave 

I 

equation in }•: 

d [ ,•aB 2 dy e -- aB•'k • 
Here 

ay2 + = (4) 

2 

e(y) = w/Zop(y) -- 

o• ( y) = 1 Jr- lg Jr- 2B2) 

lg(Y) -- '•!•oP/B •' 

and S corresponds to initial conditions. For waves with 
Ikil >> Ik, I we can assume Io•B2k•.21 >> lel, and (4) becomes 

d'•y d in e d• k l•'• = •'(Y, w) (4') •y q- dy dy 

which asymptotically corresponds to noncollective oscilla- 
tions with position dependent frequency and damping pro- 
portionM to the inverse power of time. 

Second, there also exist collective eigenoscillations 
(position independent) with exponential dampings. The 
damping is weak if ß has sharp discontinuities. 

When we apply the above results to the magnetosphere, 
one sees the interesting possibility of exciting weakly damped 
collective modes due to the sharp jump in density and/or 
magnetic field at the magnetopause, plasmapause, and per- 
haps at the edge of the ring current. In the absence of 
such a jump the eigenmode in the magnetosphere is a 
diffused damped mode corresponding to the noncollective 
oscillati.on, and a monochromatic oscillation is excited only 
by a monochromatic source function as discussed in the 
companion paper. In the next section we adopt a simple 
model for .e(y) and calculate the eigenoscillation frequency 
and the damping rate of the collective modes. The analysis 
is closely parallel to that of Sedld•ek [1971a]. 

Equation 4 • is the model wave equation that we shall use. 
The problem now is to construct the Green function 
G(y, s) of (4t), from which the complete solution can 
be obtained. As Uberoi [1972] has pointed out, (4.') has 
an exact analogy with the wave equation describing an 
electrostatic oscillation in a nonuniform cold plasma, which 
has been extensively studied by Barston [1964] and 
Sedld•ek [1971a, b]. We shall briefly discuss this analogy 
in the next section. 

ANALOGY WITH ELECTROSTATIC OSCILLATIONS IN 

NONUNIFORM COLD PLASMAS 

The oscillation spectrum of a nonuniform cold plasma 
has been studied by many authors. These oscillations can 
be described by a wave equation similar to (40, • being 
replaced by the potential •p and e being replaced by e • = 
w • -- w:,•y). Note that the boundary conditions 5•(•p) --• 0 
as y --• 4-oo are the same. Furthermore, since the matching 
conditions are also the same, i.e., •(•p) is continuous and 

= = _ 
is continuous, we can expect the Green functions to have 
identical structures. From this analogy we can draw the 
following qualitative pictures [Sedld6ek, 1971a]. 

First, there exists a continuous spectrum, 

2 __ Oj2 2 {w' [ minw• < _< max• } w,•(y) = k,,•'Ba/t•op 

((y) 
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Fig. 1. Profile of e(y) used in •he •ext. 

CALCULATIONS OF THE COLLECTIVE MODES 

The collective modes come in through the Green function, 
which can be written as 

G(y, y'; w) = z-l[•l(y, w) •.(y', w) H(y' -- y) 

q- •.(y, w) •i(Y', •) H(y -- y') ] (5) 

where dependences on k, and k, are understood. Here H 
is the unit step f•ction, •, and • are two homogeneous 
solutions to (4') satisfying boundary conditions at y = --m 
and y '= + m, respectively, J is the conjunct of •, and •, 

= e(y)L ay (o) 
and J is independent of y and y'. 

Let us take .e (y) to be (see Figure 1 ) 

2 

e(y) = • = •/Zop• -- kl12B• 2 y _< --a 

e(y) - $y q- r/ --a _< y _< a (7) 
2 

e(y) -- e•r = w/Zopr• -- kll•'B• •' y >_ a 

where 8 -- ((ii -- ([i)/2a and r/ -- ((ii + ([I),/2, the sub- 
scripts I and II indicating each side of the surface. 
(We have also analyzed this problem with e(y) nowhere 
constant. As might be expected, the results are similar as 
long as Ik•LI >> 1, where L is the scale length of e(y) 
variation at lYl -- a+.) We also assume that for lyl -< a, 
tax' monotonically decreases with y. Then J becomes 

= D(&, (8) 

where Y• -- .k.e•/8, Y. -- k.e./8, and D, the 'dispersion 
function,' is 

D(k.t, k, ;co) = --[Io(Yii) + I1( Yii)][Ko(Yi) + Ki( Yi)] 

+ [Io(Yi) -- I•(Yi)][Ko(Yii) -- K•( Y,i)] (O) 

Here I and K are modified Bessel functions, and D is a 
multivalued function due to the logarithmic terms in K. 
This gives rise to branch cuts and therefore Riemann sheets 
(Figure 2). The complete solution •,(y, l) can be obtained 
by performing inverse Laplace transform and integrating 
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over the initial conditions; i.e., 

l•(y, t) - • dy' doo e- •t G(y, y'; o•) •'(y', o•) (10) 
In perfor•ng the • integration one closes the integration 
path by e•ending it into the lower half of the • plane. The 
two major contributions are from integrations along the 
branch cuts (on the re• axis of the • plane) of G, which 
corresponds to the continuous spectrum, and from simple 
pol• of the analytic continuation of • into the lower 
half of the • plane, which corresponds to the collective 
modes. This finding is s•ar to the theory of Landau 
damping in wa• plasma osc•lations [Sedl•ek, 1971b]. 
We are o•y intere•ed in the least-damped modes, which 
exist in the n • •1 Riemann sheets when ]k•a] • 1. 
Assuming ]k•a] • 1 or, equivalently, ]Y•], ]rII] • 1, we 
have the following 'dispersion relation' on the n • •1 
sheet: 

•ri = 0 (11) 

From (11) we obtain the oscillation frequency •r and the 
damping rate 7' 

[.kl/(Bi 2 + Bii2)11/2 •'•-- L •O(PI -[- PII) (12) 
2 2 

q' ,•, a' (k•.2a) •oPIPII( VAI m VAIi ) (13) 

Note that owing to the difference in e between this case 
and the electrostatic case a simple substitution of 
in electrostatic case by k,v.• does not lead to (12) and (13). 
On the n -- --1 sheet we have •or' -- --•r and 7' -- 7. 
Note also that •t)AII 2 __• •t)r •' __• •I 2. 

At the plasmapause, ,pii >> .pi and Bi 2 • Bii2; we then 
have 

T/w, • --(,r/4) I•-/•1 (15) 

Here •-• = 2a • [d In p/dyl•o] -• is the scale length of 
density variation at the phsmapause. 

At the magnetopause, however, p• >> p• and B• • << B• •. 
Here su•eripts I and II stand for the earthside and the 
sunside, res•ctively. We then have 

ß •r • kllSi/(•opii)1/2 (16) 

la/'l (17) 

Here (•')-• is the scale length of density and magnetic fidd 
variation at the magnetopause. 

Physiea•y, this collective mode corresponds to the eigen- 
mode of the surface wave excited at the boundary due to 
the discontinuity in .•. The sharper the discontinuity is, 
i.e., the smiler the weaker the damping is. The 
numar of the collective modes is approximately equal to 
the number of •seontinuities [Barston, 1964]. As the 
pro•e becomes smooth, these modes become heavily damped, 
and one is left o•y with the continuous spectrum. Finally, 
as can be expected from a surface wave, let us note that 
the collective mode has a peak at the jump and decays 
away exponentially as exp [--Ik•Yl]. 
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c 
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Fig. 2. The branch cuts and the least-damped roots of 
the dispersion function on its n -- +1 Riemann sheet; C is 
the integration path for the inverse Laplace transform. 

SUMMARY AND DISCUSSION 

In the previous sections we have presented a theory of 
long-period micropulsations as an initial value problem. 
Using a one-dimensional model and the Laplace transform, 
we derive a wave equation that shows the coupling be- 
tween the surface wave (i.e., the evanescent compressional 
Alfv.•n wave) and the shear A!fv•n wave. We then note 
the analogy of this problem to that of electrostatic oscilla- 
tions in nonuniform cold plasmas. From this analogy we 
can conclude that there exists first, a continuous spectrum 

2 (.02 2 {w2 I min w• • • maxto• } 

which corresponds to noncollective modes with, asymptoti- 
cally, position dependent frequency •o•(y) and damping 
proportional to inverse power of time, and second, a discrete 
spectrum, which corresponds to collective modes (surface 
eigenmodes) with position independent frequency and 
exponential damping. The damping can be rather weak if the 
plasma parameters have sharp variations. Expressions of 
the frequency o• and damping rate • of the surface eigen- 
modes are then derived in -terms of plasma parameters. As we 
have shown in the companion paper, the dynamics of MHD 
plasmas in a dipole magnetic field can be described by a 
coupled wave equation with a structure similar to the one 
used here. Therefore we can expect that the fundamental 
physics obtained here, i.e., the continuous spectrum and the 
surface eigenmodes, also exists in the more complicated and 
realistic case. There are, however, other effects due to the 
presence of the ionosphere-earth boundary. With the bound- 
ary located at y = c, the boundary condition then becomes 
• -- 0 at y - --•o, c instead of at y = q-•o. An additional 
damping introduced by this effect is negligible, however, 
if kxc >• 1, because •/•o due to this effect may be estimated 
to be exp [--kxc], even if the ionosphere is totally absorbing. 
The other effect is a damping due to the ionospheric dissipa- 
tions associated with the motion of the field line in the 

ß 

ionosphere. The order of magnitude of this damping rate can 
be roughly estimated by • "• P/W. Here P is the dissipated 
power, and W is the total wave energy. If we take the skin 
depth of the ionosphere and the ground X as the dissipative 
layer, y/w then may be deduced to be •X/1, where 1 is the 
length of the field line. Consequently, damping due to this 
effect is also negligible. 

Let us now discuss the above theoretical results with 
regard to recent observations of the plasmapause-associated 
micropulsations mentioned earlier [Lanzerotti e't al., 
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Fig. 3. Latitude dependence of magnetic variations during four time periods when sinusoidal oscillations were 
observed at the lowest latitude. All three stations are located at the same magnetic longitude [after Lanzerotti 
et al., 1973]. 

1973]. Four typical events are shown in Figure 3. The 
damped oscillations observed at L -- 3.2 are assumed to 
be the excitations of wealdy damped surface eigenmodes 
due to a sharp density jump. The disappearance of such 
oscillations at higher latitudes (L -- 4.0 and 4.4) is con- 
sistent with the theoretical result that the surface eigen- 
mode has its peak magnitude at the jump and decays 
away exponentially with a scale of k l-L These observations 
then suggest that during these events the plasmapause was 
located near L -- 3.2. Away from the plasmapause (e.g., 
at L -- 4.0), only modes corresponding to the continuous 
spectrum were excited and, consequently, damped away 
owing to spatial phase mixing. Furthermore, using the 
observed oscillation frequency (,• ,• 0.07 rad/s), damping 
rate (7/• • 0.08), and maximum decay length (i.e., 
k•.ml•, -• 1/0.8 R•) in (14) and (15), we obtain for the 
fundamental mode Viii • 650 km/s and Kmax -• __• 0.05 Rr. 
These results are consistent with satellite observations 
[Burton et al., 19'70; Chapp,ell et al., 1970]. 

The surface eigenmode may also explain the long-period 
damped type pulsations often associated with sudden com- 
mencements and sudden impulses; i.e., Psc 4 and Psc 5 
[$aito an.d Matsushita, 1967]. Although detailed infor- 
mation is lacking, we can roughly check the frequency 
range. Near the magnetopause (L _• 8), from (16) and 
the balance of momentum flux (B•/2.•o : ,plIV•2), the 
eigenmode frequency is (if the Doppler shift by the solar 
wind m'otion is neglected) 

t• •--_ 2•/•ktt Vs (18) 

Here Vs is the solar wind speed. Taking Vs --• 400 km/s, 
we then have for the fundamental mode a period T _• 400 
s,. which corresponds to Psc 5 predominantly observed in 
auroral zone. Finally, we emphasize the significance of 
using micropulsation data as a possible diagnostic tool 
for the dynamics of the plasmapause and,. perhaps, the 
magnetopause and solar wind, and we note that damped 
Alfv.6n waves attributed as surface eigenmodes have also 
been observed in laboratory theta. pinch experiments 
[Grossmann and Tataronis, 1973]. 
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