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We study the dynamics of a single active Brownian particle (ABP) in a two-dimensional harmonic
trap. The active particle has an intrinsic time scale D−1

R set by the rotational diffusion with diffusion
constant DR. The harmonic trap also induces a relaxational time-scale µ−1. We show that the
competition between these two time scales leads to a nontrivial time evolution for the ABP. At
short times a strongly anisotropic motion emerges leading to anomalous persistence/first-passage
properties. At long-times, the stationary position distribution in the trap exhibits two different
behaviours: a Gaussian peak at the origin in the strongly passive limit (DR →∞) and a delocalised
ring away from the origin in the opposite strongly active limit (DR → 0). The predicted stationary
behaviours in these limits are in agreement with recent experimental observations.

Active particles form a class of nonequilibrium systems
which are able to generate dissipative directed motion
through self-propulsion and consuming energy from their
environment [1–5]. Study of active particles is relevant in
a wide variety of biological and soft matter systems rang-
ing from bacterial motion [6, 7], cellular tissue behaviour
[8], formation of fish schools [9, 10] as well as granular
matter [11, 12] and colloidal surfers [13]. Recent years
have seen a tremendous surge of research, both theoret-
ical and experimental, on active matter e.g., the collec-
tive behaviour of active particles which include flocking
[14, 15], clustering [13, 16, 17], phase separation [18–20]
and the absence of a well defined pressure [21].

In a recent experiment, Janus swimmers were confined
in a two-dimensional harmonic-like trap with the use of
an acoustic tweezer and the stationary density was mea-
sured by varying the trap strength [22]. Strong signa-
tures of activity were observed even in the dilute limit,
with a crossover from a Gaussian-like stationary state,
to a strongly active stationary state, where the particles
cluster at the outskirts of the trap. The dilute limit cor-
responds to a collection of non-interacting Active Brown-
ian Particles (ABP), each one performing an overdamped
directed spatial motion at a fixed speed but with the di-
rection undergoing a rotational diffusion [23]. Numerical
studies of a single ABP, in presence of confining poten-
tials, have also observed a similar crossover in the sta-
tionary state [24, 25].

Dynamical behaviour of active Brownian particles dif-
fer crucially from passive ones. For a ‘passive’ or or-
dinary Brownian particle, the presence of a harmonic
trap of strength µ sets a relaxational time scale µ−1. At
times t� µ−1, the particle diffuses isotropically and for
t� µ−1, a Gaussian (Boltzmann) stationary distribution
is reached. For an ABP, the coupling to the rotational
diffusion introduces an additional time scale D−1

R , where
DR is the rotational diffusion constant.

While the activity induced crossover in the stationary
position distribution of an ABP has been studied both
experimentally and numerically, the interplay of the two
time scales µ−1 and D−1

R leads to fascinating dynami-
cal features, already at the single particle level, that are
yet to be explored. The aim of this Letter is to pro-
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FIG. 1: Position probability distribution P (x, y, t) for an ABP
in a 2d harmonic trap of strength µ at different time t. Upper
and lower panels correspond to the cases µ−1 > D−1

R and
µ−1 < D−1

R , respectively. The presence of anisotropy at short-
times and the delocalized stationary state (for µ−1 < D−1

R )
are both signatures of activity. The numerical data have been
obtained with D−1

R = 102 and µ−1 = 103 (upper panel) and
D−1

R = 103 and µ−1 = 102 (lower panel).

vide a detailed understanding of this dynamics, both the
relaxation to the stationary state at late times, as well
as the anomalous early time dynamics where anisotropy
plays a dominant role. For the relaxational dynamics,
we compute exactly the time dependent radial distribu-
tion function at all times, both in the strongly active
(DR → 0) and strongly passive (DR → ∞) limit. For
the early time dynamics, we establish an exact mapping
to the “Random Acceleration Process” (RAP) and show
that the ABP has anomalous non-Markovian persistence
properties, with a nontrivial persistence exponent.

The physical picture emerging from our study is sum-
marized in Fig. 1 for D−1

R < µ−1 (upper panel) and for
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D−1
R > µ−1 (lower panel). In both cases, at short-times

t � min(D−1
R , µ−1), the presence of activity gives rise

to strong anisotropy with the particle keeping its ini-
tial orientation (chosen to be along x-direction here). In
this regime, the effect of the trap can be neglected and
we show that the evolution of the y-component maps
onto the RAP, which is non-Markovian [28, 38]. At later
times, if D−1

R < µ−1, the anisotropy starts to disappear
and the ABP undergoes ordinary diffusion (upper middle
panel). Eventually, for t � µ−1 the probability distri-
bution saturates to a Boltzmann-like form with a single
Gaussian peak at the center of the trap. On the other
hand, for strongly active system, i.e., when D−1

R > µ−1

the anisotropy persists and the particle starts to accumu-
late away from the center of the trap. For t � D−1

R the
isotropy is slowly recovered (lower right panel). The sta-
tionary distributions we obtain in the two limiting cases
are in agreement with the experimental and numerical
observations [22, 25].

Model: We consider an active overdamped particle in the
2d-plane in the presence of a confining harmonic poten-
tial U(x, y) = µ(x2 + y2)/2. In addition to its cartesian
coordinates (x, y) the particles has an “active” internal
degree of freedom, given by the orientational angle φ(t)
of its velocity, which undergoes rotational diffusion. The
time evolution is encoded in the Langevin equation [3–5]

ẋ = −µx+ v0 cosφ(t) (1a)

ẏ = −µy + v0 sinφ(t) (1b)

φ̇ =
√

2DR ηφ(t). (1c)

Here ηφ(t) is a Gaussian white noise with 〈ηφ(t)ηφ(t′)〉 =
δ(t− t′). DR is the diffusion coefficient of the rotational
degree of freedom. In principle, one could also add a
translational thermal noise term to the (x, y) evolution.
However, this only leads to a renormalisation of the ef-
fective diffusion constant [3–5], without changing the
physics qualitatively. Hence we ignore this thermal noise.
The self-propulsion, or ‘activity’, arises from the fact that
the instantaneous linear velocity depends on the angle
φ(t) with the constant speed v0 controlling the strength
of the coupling. We assume that the particle starts at the
origin x = y = 0, oriented along x, i.e., with angle φ = 0.
The angle φ(t) is just a standard Brownian motion with
the auto-correlation 〈φ(t1)φ(t2)〉 = 2DR min{t1, t2}.

It is convenient to consider the complex coordinate
z(t) = x(t) + iy(t) which evolves as

ż = −µz + ξ(t) where ξ(t) = v0e
iφ(t) . (2)

The magnitude of the effective noise ξ(t) is clearly
bounded, |ξ(t)| ≤ v0 at all times t. Consequently, the
position of the particle also gets confined in a region
|z(t)| ≤ rb = v0/µ around the trap center. The noise ξ(t)
has an auto-correlation function [see the Supplemental
Material (SM) [26] for details],

〈ξ(t1)ξ̄(t2)〉 = v2
0 exp[−DR|t1 − t2|], (3)

where ξ̄(t) = v0e
−iφ(t) is the complex conjugate of ξ(t).

Clearly, for times shorter than the persistence time τR =
D−1
R , the noise ξ(t) is strongly correlated.

Probability distribution: We are interested in the posi-
tion probability distribution function (PDF) P (x, y, t) in
the 2d cartesian coordinates (or equivalently in P (r, θ, t)
in the radial coordinates), especially its time evolution
and approach to the stationary state. It can be obtained
from P (x, y, t) =

∫
P(x, y, φ, t) dφ where P(x, y, φ, t)

is the PDF in both position and orientational coordi-
nates. Starting from the Langevin equations (1), it
is easy to write down the Fokker-Planck (FP) equa-
tion for P(x, y, φ, t) (see [26]). Unfortunately, this FP
equation is hard to solve, even for the stationary state.
However, following an approach used in Ref. [27] in
a different context, namely for the (imaginary) expo-
nential functional of a Brownian motion, we were able
to derive an exact evolution equation for the moments
Mk,l(t) = 〈zk(t)z̄l(t)〉 where z̄(t) = x(t) − iy(t) (see [26]
for details). We get

Ṁk,l = −DR(k − l)2Mk,l + v0e
−µt[kMk−1,l + lMk,l−1] ,

(4)
with the initial condition Mk,l(0) = 0 for k, l > 0 and
M0,0(t) = 1 at all times. We also use the convention
Mk,l(t) = 0 for k, l < 0. It is easy to check that Mk,l(t) =
Ml,k(t). Eq. (4) allows us to compute the moments ex-
plicitly in a recursive fashion (see [26] for the first few
values of k, l). Using this moment evolution equation (4),
it is possible to calculate the time-dependent radial dis-

tribution Prad(r, t) =
∫ 2π

0
P (r, θ, t) dθ in the two limiting

cases, DR →∞ (strongly passive) and DR → 0 (strongly
active). The details of the computation are provided in
[26], here we quote only the main results.

In the limit DR →∞, Eq. (4) can be solved explicitly
at all times to obtain Mk,l(t) for all k and l, to leading

order in D−1
R (see [26]). From these moments we infer

the exact radial distribution function

Prad(r, t) ' 2µDR

v2
0(1− e−2µt)

exp

[
− µDRr

2

v2
0(1− e−2µt)

]
. (5)

Note that this solution is valid at all times t. In particu-
lar, at early times, when D−1

R � t� µ−1 the solution in
Eq. (5) corresponds to free isotropic diffusion with a diffu-
sion constant Deff = v2

0/2DR. This scenario corresponds
to the upper middle panel in Fig. 1. In contrast, when
t� µ−1, the radial distribution (5) approaches a station-
ary form. In addition, by analysing the decay of Mk,l(t)
for k 6= l, we find that the full position distribution be-
comes radially symmetric as t→∞. The stationary dis-
tribution is then given by Pstat(x, y) = 1/(2π)Prad(r, t→
∞), a simple Gaussian centred at the origin. One thus re-
covers the Boltzmann distribution with an effective tem-
perature Teff = v2

0/2DR = Deff, in full agreement with
the experimental observation [22].

A very different scenario emerges in the strongly active
limit DR → 0. Strictly for DR = 0, Eq. (4) can be
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FIG. 2: Stationary distribution Pstat(x, y) of an ABP in a harmonic trap for different values of DR = 0.1 (left), DR = 1.0
(centre) and DR = 10.0 (right). The left and middle panel show the delocalized state where the particle is most likely to
be accumulated away from the center. The right panel corresponds to the passive limit where the stationary distribution is
Gaussian. Here the trap stiffness µ = 1.0 and v0 = 1.0.

solved exactly and this gives an exact time-dependent
radial distribution [26]

Prad(r, t) =
µ

v0(1− e−µt)δ
[
r − v0(1− e−µt)

µ

]
. (6)

However, the full position distribution P (x, y, t) is actu-
ally highly anisotropic [see Eq. (S54) in [26]]: due to
the absence of rotational diffusion (DR = 0), the particle
keeps its initial orientation, even at late times. Hence, if
one switches on a small DR = 0+, for times t� D−1

R , the
particle still keeps its initial orientation as for DR = 0
(see middle panel of Fig. 1). However, for t � D−1

R ,
the stationary distribution approaches an isotropic form:

Pstat(x, y) = µ/(2πv0) δ
[√

x2 + y2 − v0/µ
]

where the

particle is strongly confined at the boundary of the trap
rb = v0/µ. This non-Boltzmann distribution results from
the strongly active nature of the dynamics.

Figure 2 shows the stationary distribution Pstat(x, y)
in the (x, y) plane obtained from simulations, for different
DR. As DR decreases, the stationary distribution shows
a crossover from the passive regime, with a single-peaked
Gaussian around r = 0, to the active regime, with a
delocalized state where the particle is confined around a
narrow ring away at rb = v0/µ.

The marginal radial distribution Prad(r, t), being an in-
tegral over the angular degree of freedom, is inadequate
to capture the anisotropy, present at early times, as vis-
ible from the simulations in the short-time regime (see
Fig. 1). To investigate how this anisotropy evolves in
time, we study the time-evolution of x and y compo-
nents separately, focusing in particular on the moments
and the first-passage properties. Since the anisotropy is
most pronounced at early times t� µ−1, where the effect
of the trap is negligible, we set µ = 0 in the following.
Starting from Eq. (1) with µ = 0, we calculate, exactly
for all t, the mean-squared displacements σ2

x = 〈x2〉−〈x〉2
(and similarly σ2

y) [see Eq. (S23) in [26]]. In particular,
at short times, we get

σ2
x ≈

1

3
v2

0D
2
Rt

4 − 7

15
v2

0D
3
Rt

5 + · · ·

σ2
y ≈

2

3
v2

0DRt
3 − 5

6
v2

0D
2
Rt

4 + · · · . (7)
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nents of the position of an ABP as a function of t for v0 = 1
and DR = 0.01. The symbols correspond to simulations and
the solid lines are the predictions from the exact calculations.

This reflects a strong anisotropy at early times in the
(x, y) plane: for small t, the fluctuations in the x-
direction (the initial direction) σ2

x ∼ t4 are much smaller
than in the y-direction σ2

y ∼ t3. Figure 3 compares the
exact result of Eq. (S23) of [26] (solid lines) with the
σ2
x,y obtained from simulations (symbols). At late times,

t � D−1
R (with µ = 0), both σ2

x,y ≈ 2Defft behave diffu-

sively where Deff = v2
0/2DR [see Eq. (S23) in [26]].

To understand the evolution of the process at short
times, we consider again the Langevin equations (1) with
µ = 0. At short times, φ(t) ∼

√
t is small. To leading

order for small φ(t), cosφ(t) ≈ 1 and sinφ(t) ≈ φ(t).
Consequently, ẋ ≈ v0, representing a ballistic motion for
the x-coordinate, with fluctuations σ2

x ∼ t4 [see Eq. (7)]
coming from the next order corrections. In contrast, the
y-coordinate evolves as ẏ ≈ v0 φ(t). Taking one time-
derivative and using Eq. (1c) gives an effective early time
evolution for the y-coordinate

ÿ ≈
√

2DRAP ηφ(t) , where DRAP = v2
0DR . (8)

This effective Langevin equation then corresponds to the
RAP, which has been studied extensively in the litera-
ture as one of the simplest possible non-Markovian pro-
cesses (for reviews see [28–31]). Note that the presence of
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tion from the RAP, Sy(t; y0) ∼ t−1/4 in Eq. (9). (c) Collapse
of the curves in (a) according to Eq. (10). (d) Collapse of
the curves in (b) following Eq. (12). Here v0 = 1 for all the
curves.

the second derivative in time in Eq. (8) makes the process
non-Markovian. One hallmark of this non-Markovian
nature is an anomalously slow decay of the persistence
(and the related first-passage probability). Indeed, it is
known that the persistence, i.e., the probability that the
process starting at some initial value y0 > 0 does not
cross the origin up to time t, decays as a power law
∼ t−1/4 for large t [28–31], in marked contrast to the
standard ∼ t−1/2 decay for the ordinary Brownian diffu-
sion [29, 30, 32]. Persistence/first-passage properties in
active systems have not been explored so much, except
very recently in a class of one-dimensional systems [33–
36]. The above mapping to the RAP for the y-component
of the 2d-ABP signals nontrivial persistence properties in
this 2d active system, which we now investigate in detail.

Persistence probability: Let Sy(t; y0) denote the persis-
tence, i.e., the probability that the y-component of the
ABP does not cross y = 0 up to time t, starting initially
at y0 > 0. To compute Sy(t; y0), we use the mapping to
the RAP, for which the result is known exactly [37] for all
y0. This result simplifies considerably in the limit y0 → 0
(see Eq. (D.7) in [38] where the result was expressed in
dimensionless units), to which we focus on here. Trans-
lating this result from [38] to our units we get

Sy(t; y0) ' 25/6Γ(−4/3)

32/3πΓ(3/4)

(
y0DR

v0

)1/6

(tDR)
−1/4

. (9)

Since the mapping to the RAP holds only for 1 � t �
D−1
R , we expect this RAP result (9) to hold for the y-

component of the ABP only in this time regime. In con-

trast, for t� D−1
R , we have already shown that the ABP

behaves as a standard Brownian motion with diffusion
constant Deff = v2

0/(2DR). Hence, for t � D−1
R , we

would expect Sy(t; y0) to decay as t−1/2. This suggests

a crossover from the early time ∼ t−1/4 to the late time
t−1/2 decay of Sy(t; y0), described by the scaling form

Sy(t; y0) =

(
y0DR

v0

)1/6

Fy (tDR) , (10)

where the crossover scaling function Fy(u) has the limit-
ing behaviours

Fy(u) ∼
{
u−1/4 for u� 1

u−1/2 for u� 1.
(11)

We have verified this scaling form (10) numerically. Fig-
ure 4(a) shows Sy(t; y0) vs. t, obtained from simulations,
for different values of DR. The uppermost dashed line is
the exact prediction from Eq. (9). The same data scaled
according to Eq. (10) are plotted in Fig 4(c). The ex-
cellent data collapse confirms the predicted scaling form
(10), along with the asymptotics in Eq. (11).

We have also studied the persistence of the x-
component of the ABP denoted by Sx(t;x0), i.e., the
probability that the x-component, starting at x0 > 0,
does not cross x = 0 up to time t. In this case, at early
times t � D−1

R , x(t) ≈ v0 t with v0 > 0 and therefore
x(t) stays positive with probability close to unity. How-
ever, at long times t� D−1

R , x(t) behaves diffusively and

we would expect a decay ∼ t−1/2 for Sx(t;x0). For sim-
plicity, we consider the limit x0 → 0 and in this case, we
would expect a crossover of the form

Sx(t;x0) = Fx (tDR) , (12)

where Fx(u) ∼ 1 for u� 1, while Fx(u) ∼ u−1/2 for u�
1. Figures 4(b) and (d) show the behaviour of Sx(t;x0)
for different values of DR, again a perfect data collapse
confirms the predicted crossover in Eq. (12).
Conclusion: In this Letter we have studied the dy-

namics of an active Brownian particle (ABP) in a 2d
harmonic trap. We have demonstrated that the compe-
tition between two time scales (the inverse of the rota-
tional diffusion coefficient D−1

R and the inverse of trap
strength µ−1) induces a rather interesting and anoma-
lous time evolution. At late times, the dynamics leads to
quite different stationary states depending on whether
the ABP is strongly passive (DR → ∞) or strongly ac-
tive (DR → 0). At short-times, the activity gives rise
to highly anisotropic motion – this is reflected in the
anomalous t−1/4 decay of the persistence probability for
the y-coordinate of the ABP. We have established this
behaviour using an exact mapping to the random accel-
eration process (RAP). We expect that this anomalous
persistence property of the RAP, which emerges at short
times for the 2d-ABP, should be experimentally visible.
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Supplemental Material for “Active Brownian Motion in Two Dimensions”

Effective Noise: The Langevin equation (2) in the main
text reads

ż = −µ z + ξ(t) (S1)

where ξ(t) = v0e
iφ(t). Here, φ(t) is a Brownian motion

with a diffusion constantDR [see Eq. (1) in the main text]
and starting from φ(0) = 0. Clearly, φ(t) is a Gaussian
process with two-point correlation

〈φ(t1)φ(t2)〉 = 2DR min(t1, t2) . (S2)

Since ξ(t) = v0e
iφ(t), the noise ξ(t) is bounded in time,

even though φ(t) grows with time as φ(t) ∼ √DR t. The
one and two-point correlation functions of the noise ξ(t)
can be computed using the fact that φ(t) is a Gaussian
process. In fact, we will use a well known identity for a
Gaussian process φ(t),〈

exp
(
i
∑
j

aj φ(tj)
)〉

= exp
(
− 1

2

∑
j,k

ajak〈φ(tj)φ(tk)〉
)

(S3)
where ai’s are arbitrary. The average 〈ξ(t)〉 is thus given
by

〈ξ(t)〉 = v0〈eiφ(t)〉 = v0e
−DRt , (S4)

where we used Eq. (S3) with a1 = 1 (and t1 = t), aj = 0
for j > 1 and 〈φ2(t)〉 = 2DR t. Similarly the two-point
functions can be obtained in a straightforward manner
from Eq. (S3) by appropriately choosing a1 and a2 and
keeping aj = 0 for j > 2. We get

〈ξ(t1)ξ(t2)〉 = 〈ξ̄(t1)ξ̄(t2)〉 (S5)

= v2
0 exp [−DR (t1 + t2 + 2 min(t1, t2))] (S6)

where ξ̄(t) = v0e
−iφ(t) is the complex conjugate of ξ(t).

Similarly we also obtain

〈ξ(t1)ξ̄(t2)〉 = 〈ξ̄(t1)ξ(t2)〉 (S7)

= v2
0 exp[−DR|t1 − t2|] . (S8)

This result is quoted as Eq. (3) in the main text. There-
fore one sees that the noise ξ(t) appearing in the Langevin
equation (S1), has a finite correlation time D−1

R , i.e., a
finite memory. This makes z(t) a non-Markovian process.

Fokker-Planck Equation: Let P(x, y, φ, t) denote the
probability that at any time t, the ABP has a position
(x, y) and orientation φ. P(x, y, φ, t) evolves according to
a Fokker-Planck equation,

∂tP(x, y, φ; t) =
∂

∂x

[
(µx− v0 cosφ)P

]

+
∂

∂y

[
(µy − v0 sinφ)P

]
+DR

∂2P
∂φ2

, (S9)

where have supressed the argument of P on the right
hand side for brevity. The marginal probability distribu-
tion of the position can then be obtained by integrating
over φ,

P (x, y, t) =

∫
dφ P(x, y, φ, t) . (S10)

In the long time limit the position distribution P (x, y, t)
converges to a stationary form which is denoted by

Pstat(x, y) = P (x, y, t→∞) . (S11)

While the Fokker-Planck equation (S9) is exact, un-
fortunately it is not easy to solve it explicitly. We will
see later however that one can actually derive explicit re-
sults for the moments of this probability distribution, at
least in some limiting cases. The probability distribution
P (x, y, t) in cartesian coordinates can also be expressed
in the radial coordinates as P (r, θ, t). For later purposes,
we define the marginal radial distribution Prad(r, t) as

Prad(r, t) =

∫ 2π

0

P (r, θ, t) dθ . (S12)

Note that the normalisation of the total probability
translates to ∫ ∞

0

r Prad(r, t) dr = 1 . (S13)

Mean-squared displacements: The mean-squared
displacement of the ABP can be exactly calculated from
the Langevin equations (1) or (2) in the main text. The
Langevin equation (2) in the text, for µ = 0, reads

z(t) =

∫ t

0

ds ξ(s) (S14)

where z = x + iy, ξ(s) = v0e
iφ(s) is the effective noise

mentioned above. The first two moments of the process
z(t) at a given time t read

〈z(t)〉 =

∫ t

0

〈ξ(s)〉 ds (S15)

〈z2(t)〉 =

∫ t

0

ds1

∫ t

0

ds2 〈ξ(s1)ξ(s2)〉 (S16)

〈z̄2(t)〉 =

∫ t

0

ds1

∫ t

0

ds2 〈ξ̄(s1)ξ̄(s2)〉 (S17)

〈z(t)z̄(t)〉 =

∫ t

0

ds1

∫ t

0

ds2 〈ξ(s1)ξ̄(s2)〉 . (S18)
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Using the one and two-point correlation functions of ξ(t)
in Eqs. (S4)-(S8), one can easily work out these moments
of z(t). We get, for example,

〈z(t)〉 = 〈z̄(t)〉 =
v0

DR

(
1− e−DR t

)
. (S19)

The mean of the x and the y component follows imme-
diately

〈x(t)〉 =
1

2
〈z + z̄〉 =

v0

DR

(
1− e−DRt

)
(S20)

〈y(t)〉 = 〈z − z̄〉/2 = 0 . (S21)

Similarly, the variances of x and y can also be computed

σ2
x = 〈x2〉 − 〈x〉2 =

1

4
[σ2
z + σ2

z̄ + 2〈zz̄〉 − 2〈z〉〈z̄〉]

σ2
y = 〈y2〉 =

1

4
[〈z2〉+ 〈z̄2〉 − 2〈zz̄〉] (S22)

where σ2
z = 〈z2〉 − 〈z 〉2 and σ2

z̄ = 〈z̄2〉 − 〈z̄ 〉2. Explicitly
evaluating the integrals in (S15) leads to,

σ2
x =

v2
0

DR
t+

v2
0

12D2
R

[
e−4DRt − 12e−2DRt + 32e−DRt − 21

]
σ2
y =

v2
0

DR
t− v2

0

12D2
R

[
e−4DRt − 16e−DRt + 15

]
. (S23)

At long times t � D−1
R , both σ2

x and σ2
x grow linearly

with time with an effective diffusion constant Deff =
v2

0/(2DR). In contrast, at short-times t � D−1
R , ex-

panding (S23) in Taylor series, we find

σ2
x ≈

1

3
v2

0D
2
Rt

4 − 7

15
v2

0D
3
Rt

5 + · · ·

σ2
y ≈

2

3
v2

0DRt
3 − 5

6
v2

0D
2
Rt

4 + · · · . (S24)

which gives the results in Eq. (9) of the main text. These
results reflect a strong anisotropy at early times in the
(x, y) plane since, for small t, σ2

y ∼ t3 � σ2
x ∼ t4.

Time-evolution in a harmonic trap and a statis-
tical recursion relation: In the presence of the har-
monic trap, the position of an ABP, expressed in terms
of z = x+ iy evolves following the linear Langevin equa-
tion (2) in the main text. Integrating this equation one
gets

z(t) = v0

∫ t

0

ds e−µ(t−s)eiφ(s) (S25)

where φ(s) is a standard Brownian motion with diffusion
constant DR and starting at φ(0) = 0. Our goal is to
evaluate the moment of the type

Mk,l(t) = 〈zk(t)z̄l(t)〉 . (S26)

In principle, one can use Eq. (S25) and the Gaussian
property (S3), to express Mk,l(t) as a (k + l)-fold mul-
tiple integral. However, evaluating this multiple integral

explicitly seems very hard. Instead, we will derive below
an exact recursion relation for the moments Mk,l(t).

In fact, to derive such a recursion relation, we find it
useful to use the Kesten variable representation used by
Gredat, Dornic, Luck (GDL) in Ref. [1] in a different
context. Indeed, GDL were interested in the imaginary
exponential functional of a Brownian motion and studied
an effective process given by

zGDL(t) = v0

∫ t

0

e−µs+iφ(s) ds . (S27)

These two processes, z(t) in (S25) and zGDL(t) in (S27),
look deceptively similar. However it turns out that they
have rather different properties and in fact the recursion
relation for the moments turn out to be rather different.

To derive these recursion relations, it is useful to first
recast the continuous time expression (S25) in a discrete-
time setting. We imagine the interval [0, t] consists of n
discrete intervals each of length ε > 0, such that t = nε.
We then split the time interval [0, t] in the integral in Eq.
(S25) into two separate intervals [0, ε] and [ε, t]. This
gives

z(t) = v0

(∫ ε

0

e−µ(t−s)+iφ(s) ds+

∫ t

ε

e−µ(t−s)+iφ(s) ds

)
.

(S28)
The first integral, to leading order in ε, gives e−µ tε,
where we used φ(0) = 0. In the second integral, we
make a change of variable s = ε + τ and rewrite it as,∫ t−ε

0
e−µ(t−ε−τ)+iφ(ε+τ)dτ . Next we write φ(ε + τ) =

φ(ε+τ)−φ(ε)+φ(ε), i.e., add and subtract φ(ε). Putting
this together, we get

z(t) ≈ v0

(
e−µtε+ eiφ(ε)

∫ t−ε

0

e−µ(t−ε−τ)+iφ̃(τ)dτ

)
,

(S29)
where

φ̃(τ) = φ(ε+ τ)− φ(ε) . (S30)

Now we will use the crucial property that φ̃(τ) is also a

Brownian motion starting at φ̃(0) = 0, and with corre-

lation function 〈φ̃(t1)φ̃(t2)〉 = 2DR min(t1, t2). Impor-

tantly, the statistical properties of φ̃(t) do not depend on
ε. In other words, one can write a statistical identity in
law

φ̃(τ) ≡ φ(τ) , (S31)

where ≡ means that the right hand side and left hand
side have identical distributions. Consequently, using
this identity (S31) and the definition of z(t) in Eq. (S25),
the integral∫ t−ε

0

e−µ(t−ε−τ)+iφ̃(τ)dτ ≡ z(t− ε) . (S32)

Hence, (S29) provides us with a statistical identity

z(t) ≡ v0 ε e
−µt + eiφ(ε)z(t− ε) . (S33)
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Denoting zn = z(t = nε) in the discrete-time setting, we
then obtain a Kesten type statistical recursion relation

zn ≡ v0 ε e
−µnε + ηn zn−1 (S34)

where ηn = eiφ(ε) is an effective noise, independent
of zn−1. Using the Gaussian property of φ(s) (S3),
one can easily evaluate the moments of the noise ηn.
For instance, one gets 〈ηn〉 = e−εDR and correlation

〈ηkn η̄ln〉 = e−εDR(k−l)2 , where η̄n = e−iφ(ε) is the complex
conjugate of ηn. Note that in the case of zGDL in Eq.
(S27), by following a similar scheme, one would instead
get the recursion relation [1]

zGDLn ≡ v0 ε+ e−µε ηn z
GDL
n−1 , (S35)

which is manifestly different from our recursion rela-
tion (S34).

An exact recursion relation for the moments. We
start with the discrete-time recursion relation (S34), to-
gether with its complex conjugate which reads

z̄n = v0 ε e
−µε + η̄n z̄n−1 . (S36)

Let us denote the moment Mk,l(n) = 〈zknz̄ln〉. We take
zkn in Eq. (S34) and z̄ln in Eq. (S36), multiply them
and then take the expectation value with respect to the
noise ηn. We use the independence of ηn and zn−1 and
the known moments of the noise ηn and then expand in
powers of ε. Keeping terms only up to order O(ε), we
get

Mk,l(n) ' [1− εDR(k − l)2]Mk,l(n− 1)

+v0εe
−µnε[kMk−1,l(n− 1) + lMk,l−1(n− 1)] .

(S37)

Taking the continuous-time limit ε → 0 and replacing
(Mk,l(n)−Mk,l(n−1))/ε by the time derivative dMk,l/dt
we arrive at the exact recursion relation

Ṁk,l = −DR(k − l)2Mk,l + v0e
−µt[kMk−1,l + lMk,l−1]

(S38)

with the conditions M0,0(t) = 1 at all times and
Mk,l(0) = 0 for k, l > 0. This gives Eq. (4) of the

main text. Note that, since the right hand side is ex-
plicitly time-dependent, it is not possible to obtain the
stationary state by simply equating Ṁk,l to zero, rather
one has to find the full time-dependent solution and then
take long-time limit to find the same. In contrast, for
the GDL case, the corresponding recursion relation for
the moments M̃k,l(t) = MGDL

kl (t) is given by [1]

d

dt
M̃k,l = −

(
µ(k + l) +DR(k − l)2

)
M̃k,l

+ v0

(
k M̃k−1,l + l M̃k,l−1

)
. (S39)

Note that there is no explicit time dependence on the
right hand side of this equation (S39) and the moments
in the stationary state can be simply obtained by setting
the time derivative to be zero on the left hand side of
(S39). As mentioned above, the situation in our case is
completely different.

Solution of the moment recursion relation. Con-
sider the time dependent recursion relation in (S38). We
can think of (k, l) as the grid points on the 2d lattice
with k, l ≥ 0. We note that by definition M0,0(t) = 1 at
all times t. As a result, it is easy to see from the recur-
sion relation (S38) that the solution Mk,l(t) is symmetric
under exchange of k and l, i.e.,

Mk,l(t) = Ml,k(t) . (S40)

Hence, it is sufficient to study Mk,l(t) only for k ≥ l.
The recursion relations for the first few values of k and l
read, for instance (with the convention that Mk,l(t) = 0
for k, l < 0)

Ṁ1,0(t) = −DRM1,0(t) + v0e
−µtM0,0(t)

Ṁ1,1(t) = 2v0e
−µtM1,0(t)

Ṁ2,0(t) = −4DRM2,0(t) + 2v0e
−µtM1,0(t) (S41)

and so on. These equations can be solved recursively, i.e.,
using the solution of the previous equation. The solution
of these first few moments can be written explicitly at all
times t,

M1,0(t) =
v0(e−µt − e−DRt)

DR − µ
M1,1(t) =

v2
0

(DR − µ)

[
1− e−2µt

µ
− 2(1− e−(DR+µ)t)

DR + µ

]

M2,0(t) =
v2

0 [(3DR − µ)e−2µt − 2(2DR − µ)e−(DR+µ)t + (DR − µ)e−4DRt]

(DR − µ)(2DR − µ)(3DR − µ)
. (S42)

As we see, the solutions quickly become long and cumber- some as k and l increase. To extract more specific infor-
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mations, we now investigate two limiting cases (DR →∞
and DR = 0) where Mk,l(t) can be obtained explicitly for
all k and l.
Strongly passive limit (DR → ∞): To solve the moment
evolution Eq. (S38) in the limit of DR → ∞ we inspect
the large DR behaviour of the first few moments pre-
sented in Eq. (S42) above. It turns out that these quan-
tities, to the leading order in 1/DR, are of the form,

Mk,l(t) '
vk+l

0 k!

[(k − l)!]2
[
e−µt

DR

]k [
eµt − e−µt

µ

]l
, k ≥ l .

(S43)
Indeed, substituting this ansatz in the recursion relation
(S38), it can be verified that Eq. (S38) is indeed satisfied
by Eq. (S43), up to leading order for large DR. Note
that this leading order result for Mk,l(t) in Eq. (S43) is
actually valid for all time t, including t = 0.

To extract further information, we consider the diag-
onal moments Mk,k(t) = 〈(z(t)z̄(t))k〉. Using z(t)z̄(t) =
x2(t) + y2(t) = r2(t), the diagonal element Mk,k(t) =
〈r2k(t)〉 is precisely the 2k-th radial moment of the full
distribution. In terms of the marginal radial distribution
Prad(r, t) defined in Eq. (S12), this moment reads

〈r2k(t)〉 =

∫ ∞
0

r2k+1 Prad(r, t) dr . (S44)

Setting l = k in Eq. (S43) we then get

〈r2k(t)〉 = Mk,k(t) ' Γ(k + 1)

[
v2

0

µDR

(
1− e−2µt

)]k
.

(S45)
Anticipating a Gaussian behaviour for the radial distri-
bution, we make the ansatz, and check a posteriori, that

Prad(r, t) has the form Prad(r, t) = A(t) e−B(t)r2 . Sub-
stituting this ansatz in Eq. (S44) and comparing to the
result in (S43), we see that

A(t) = 2B(t) , B(t) =
µDR

v2
0(1− e−2µt)

. (S46)

Finally, this gives

Prad(r, t) ' 2µDR

v2
0(1− e−2µt)

exp

[
− µDRr

2

v2
0(1− e−2µt)

]
.(S47)

which is quoted as Eq. (5) in the main text.
Note that, from Eq. (S43) it follows that for k 6= l,

Mk,l(t) decays exponentially with time and vanishes in
the long time limit. This indicates that the distribution
quickly loses the anisotropy and the stationary distri-
bution becomes radially symmetric. Consequently, the
stationary position distribution in Eq. (S11) is given by

Pstat(x, y) =
1

2π
Prad(r, t→∞) . (S48)

Using Eq. (S47), one gets the expected Botzmann distri-
bution

Pstat(x, y) =
µDR

πv2
0

exp

[
−µDR(x2 + y2)

v2
0

]
. (S49)

Note however that our result in Eq. (S47) contains the
full time-dependent solution (and not just the station-
ary limit) for the radial part of the position distribution
function.
Strongly active limit (DR = 0): In this case, the first
term on the rhs of Eq. (S38) drops out and it can be
checked that

Mk,l(t) =

[
v0

µ

(
1− e−µt

)]k+l

(S50)

solves the resulting equation at all times t. Again, setting
l = k in (S50) the time-dependent radial moments are
given by

〈r2k(t)〉 = Mk,k(t) =

[
v0

µ
(1− e−µt)

]2k

. (S51)

Comparing Eq. (S44) with Eq. (S51) gives the time-
dependent marginal radial distribution,

Prad(r, t) =
µ

v0(1− e−µt)δ
[
r − v0(1− e−µt)

µ

]
. (S52)

Note however that strictly for DR = 0, the position dis-
tribution P (x, y, t) is not radially symmetric. Indeed, in
this case, the Langevin equation (1) in the main text
reduces to a pair of deterministic equations:

ẋ = −µx+ v0 and ẏ = −µy , (S53)

with initial conditions x(0) = y(0) = 0. Solving these
equations give x(t) = (v0/µ)(1 − e−µ t) and y(t) =
0. Consequently, the position distribution function is
given by

P (x, y, t) = δ

(
x− v0(1− e−µt)

µ

)
δ(y) . (S54)

One can check that the moment Mk,l(t) computed with
this distribution is indeed given by (S50). Moreover, the
radial marginal distribution Prad(r, t) computed from this
two-dimensional distribution is indeed given by (S52).

Thus strictly for DR = 0 the position distribution in
the 2d-plane is highly anisotropic. This is true even in
the t→∞ limit, where we see from Eq. (S50) that

Mk,l(t→∞) =

(
v0

µ

)k+l

for all k, l . (S55)

Thus, the off-diagonal elements remain non-zero as t →
∞, indicating the presence of anisotropy in the stationary
state.

However, for any finite DR > 0, the rotational dif-
fusion spreads the particle position uniformly over the
angle [0, 2π]. Consequently, in the long time limit and
DR → 0+, the position distribution approaches a station-
ary form that is fully isotropic in the 2d plane. Indeed,
from the exact expression for the moments in (S42), it
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is easy to verify that, for DR → 0+, the off-diagonal el-

ements decay as Mk,l(t) ∼ e−DR(k−l)2 t at late times, for

k 6= l. In particular, for t� D−1
R , Mk,l(t)→ 0 for k 6= l.

In contrast, the diagonal elements approach to non-zero
values as t→∞. More precisely, we find

Mk,k(t→∞)→
(
v0

µ

)2k

Mk,l(t→∞)→ 0 , k 6= l (S56)

Note the difference with the strictly DR = 0 case in

Eq. (S55). Consequently, in this DR → 0+ limit, for
t� D−1

R , it follows from Eq. (S56) that the position dis-
tribution approaches an isotropic form in the stationary
limit and is given by

Pstat(x, y) =
µ

2πv0
δ

[√
x2 + y2 − v0

µ

]
(S57)

which is equivalent to Eq. (8) in the main text.
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