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AND B I O L O G I C A L  SCIENCES 
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Catastrophe theory is a mathematical theory which, allied with a new and controversial 
methodology, has claimed wide application, particularly in the biological and the social 
sciences. These claims have recently been heatedly opposed. This article describes the debate 
and assesses the merits of the different arguments advanced. 

1. Introduction. The last two years have seen a most unusual explosion of 
controversy within a branch of mathematics. It is unusual in two senses: 
first, mathematicians can usually settle their differences without resort to 
rhetoric and invective; second, where deep differences do exist, they are 
usually decently confined to the purdah of the technical literature. Almost 
from its inception some fifteen years ago, catastrophe theory has seemed to 
break these precedents. Its catchy name, its consequent publicity and its 
widely advertised potential for applications combined to give it an image 
that was, before the evidence was in, one of bounteous promise. 

Perhaps inevitably, a reaction set in. Catastrophe theory, it was claimed, 
was over-advertised, unrewarding, unhelpful, and even immoral. The 
controversy has become indeed a heated one; nor is it confined to the 
mathematical  literature. 

The present paper aims to set out the bases on which this dispute rests, 
to guide the reader through the various claims and counterclaims, to 
suggest methods whereby the debate might be arbitrated, and to present 
the author's own views. 
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There are now so many presentations of elementary catastrophe theory 
extant that another is felt to be redundant. The reader is referred to my 
articles (Deakin, 1977, 1978) and the literature there cited. An excellent 
paper, which came to my notice since the publication of Deakin (1977), is 
that by Chillingworth (1976). Two good and readily available 
popularisations of the theory are those by Stewart (1975) and Zeeman 
(1976a). This latter article, however, has attracted some trenchant 
criticism--so much so that its author took the unusual step of publishing 
the draft on which it was based (Zeeman, 1977a). Both versions are 
interesting and important. There is also available the recent text by Poston 
and Stewart (1978). 

Many accounts (e.g. Deakin, 1977) distinguish between elementary 
catastrophe theory and generalised catastrophe theory, a dichotomy first 
introduced by Thom (1975). The present debate, and hence this paper, is 
concerned with the former of these. The claims, or more precisely, the 
expectations of generalised catastrophe theory are open to discussion--a 
discussion indeed likely to be more profound and useful than the current 
debate, but not yet joined, and thus outside the scope of this article. 

Our present concern is with a number of quite precisely posed objections 
to a number of relatively precisely stated models produced in the context 
of elementary catastrophe theory. Indeed, almost all the furore resolves 
itself around the single special case of the cusp catastrophe, the simplest, if 
one excepts the mathematically trivial fold. 

2. The Two-Fold Way. Thom (1976a) distinguishes two approaches to 
applied (elementary) catastrophe theory. On the one hand, there is the 
"physical way", characterised by our relatively secure knowledge of 
quantitative governing laws for the system under study. Here the part 
played by catastrophe theory is that of a powerful heuristic; it suggests 
new viewpoints and alternative formalisms and allows the use of a "ready- 
made" mathematical apparatus. In fact, the role of catastrophe theory here 
is precisely the role traditionally played by mathematics in the exact 
sciences. 

Thom's "metaphysical way", by contrast, is speculative. Its domain of 
application tends to be the socio-biological sciences. In its pure form, it 
postulates the applicability of some elementary catastrophe, usually the 
cusp, and analyses the situation at hand in these terms. Such postulation is 
not, of course, unsupported, although the strength of the supporting 
evidence varies considerably from case to case. In practice, the analyses using 
this methodology differ considerably in their impact, and although one can 
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say much in general terms, it remains necessary to evaluate each case 
individually. 

Most of the present controversy concerns itself with applications of this 
more speculative type. 

3. The Physical Way. The expanding corpus of its successful physical 
application is now generally recognised as the main argument in favour of 
the scientific importance of catastrophe theory. This aspect of the discipline 
has progressed most impressively in the last year or two. The first such 
application was the work of Berry on optical caustics (Berry, 1976), and 
Berry has remained in the forefront of application of the theory in this and 
related areas. 

Particularly impressive here is a novel investigation of oscillatory 
integrals, due initially to Arnol'd (1972) and Duistermaat (1974). But this is 
now only one of a number of interesting studies, which include other 
optical studies, atomic scattering from crystals, molecular collisions, 
statistics of twinkling starlight, elastic buckling, gravity waves and other 
fluid phenomena, laser physics and the stability of ships. The recent text by 
Poston and Stewart (1978) concerns itself, as far as applications are 
concerned, almost exclusively with such studies, and includes an extensive 
reference list. Another important review in this area is that by Golubitsky 
(1978). 

By and large, the physical applications are uncontroversial. This fact has 
led to their being emphasized by those involved in applied catastrophe 
theory. Recently, the widely mooted potential of catastrophe theory as a 
useful and applicable branch of mathematics has received trenchant (and at 
times intemperate) criticism. H. J. Sussman and R. S. Zahler (Sussman and 
Zahler, 1977, 1978; Zahler and Sussman, 1977) have led a determined 
attack on applied catastrophe theory. This has been the subject of a 
number of articles (see, e.g. Kolata, 1977; Guckenheimer, 1978) and has 
also generated debate in the pages of Nature and Science, (Senechal et al., 
1977; Sussman, 1977; Zeeman et al., 1977; Thom and Dodgson, 1977; 
Zahler, 1978). An earlier attack by Croll (1976) anticipated some of 
Sussman and Zahler's objections. However, most of these articles are 
concerned with the more speculative social and biological applications. 
Zahler (1978) explicitly states that the main objections are to the models in 
the biological and social sciences. The objections brought by Croll against 
the physical way are rather cautions against the use of models before they 
have been adequately tested. Thus, by and large, the physical applications 
are uncontroversial. There are now many of them, most to be found in 
Poston and Stewart's (1978) text or its references. 
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4. The Metaphysical Way. An application follows the metaphysical way if 
the analysis proceeds in terms of the properties of one o f  the elementary 
catastrophes whose relevance is postulated. This postulation is not, of 
course, a completely arbitrary matter, but proceeds from consideration of 
the likely behaviour of the situation under study. Such considerations rest 
less on the classification of potential functions than on notions of what is 
expected of a scientific theory. 

At the very simplest level, catastrophe theory has served to emphasize 
that some of the procedures in sociological and biological analyses depend 
upon the fitting everywhere of one-valued functions and thus may be 
inadequate to situations of sudden change. A number of archetypes 
(notably the pleated surface associated with the cusp catastrophe) are now 
more widely available and have received useful publicity. The technical 
difficulties involved in fitting such surfaces are considerable (but see Cobb, 
1978), and most current studies at this semi-empirical level restrict 
themselves to the adumbrat ion of qualitative possibilities. 

However, as indicated in my earlier article (Deakin, 1977) the much 
stronger claim is often made that the metaphysical way offers real promise 
of a new mathematical methodology in the socio-biological sciences. This 
suggestion rests on a complex interplay of mathematical and philosophical 
notions first advanced by Thom (1972) and since the subject of other 
expositions (Zeeman, 1972a; Poston, 1978, and in press; Poston and 
Stewart, 1978). Before embarking on an assessment of the metaphysical 
way, it is necessary to examine this body of theory. This will be done in 
the context of the cusp catastrophe, which is relatively simple and 
extensively used. 

5. The Cusp Catastrophe. The cusp catastrophe arises most naturally 
from a consideration of the potential well defined by 

y = X  4 + a x  2 + b x .  (1) 

The shape of this well depends upon the values assigned to the parameters 
(control variables) a, b. The state of the system is uniquely given by Xp, the 
value of x that minimises y in (1)xp is referred to as the state variable. 

We thus have 

4x~ + 2aXp + b = O. (2) 

The dependence of Xp on a, b is then given by (2), represented by Fig. 1. 
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Figure 1. The standard diagram for the cusp catastrophe, indicating the 
dependence of the state variable xp on the control variables a and b 
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Projection of this surface onto the a-b plane produces the cusped curve 

8a 3 q- 27b 2 = 0 (3) 

separating the "pleat" from the single-valued surface. Points on this surface 
may be classified into three types. These are: 

(a) points for which (3) does not hold--here a tangent plane may be 
constructed, and the surface is perfectly regular; 

(b) points (other than the origin) for which (3) holds--here the surface is 
locally parabolic in cross-section; 

(c) the origin, characterised by the meeting of the two folds in the 
surface. 

Equation (2) is the simplest surface exhibiting points of all three types. 
Other more complicated surfaces could be envisaged--for example, there 
could be two pleats. Indeed the surface could become more complicated in 
the sense that if (for example) two pleats both had their heads at the same 
point, a point of a typ6,qot listed above would be generated. Such a point, 
however, would be classed as "non-generic", i.e. a small perturbation to the 
form of the surface would separate it into two points of type (c). 

It is also possible to have surfaces less complicated than that given by 
(2). If, for example, we considered 

4x 3 + 2axp + b 3 - - - -  0, (4) 
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no point of type (c) would exist. This situation is shown diagrammatically 
in Fig. 2. For  such a surface, the equality 

8a 3 -t- 27b 6 = 0 (5) 

corresponds to (3). This is the parabola 

2a + 3b 2 = 0, (6) 

Figure 2. A surface akin to that of Fig. 1, but without a singular point. 
Redrawn after Zahler and Sussmann (1977) 

whose smoothness eliminates the cusp of (3). However,  such a surface is 
also classifiable as non-generic because the perturbation 

4x 3 + 2aXp + (b 3 +Eb)=O (7) 

replaces the parabola  by the triply-cusped curve shown diagrammatically 
in Fig. 3 for the case e < 0  (for e >0,  another cusped curve appears). I n  the 
neighbourhood of any one of the cusps, the form (5) is generated locally. 

The following theorems hold for a situation described by two control 
variables: 

1. only one state variable is generically involved in the formation of a 
�9 point where linear and quadratic approximations break down;  

2. the most pathological behaviour that can be exhibited generically is 
that of the origin in (2); 

3. in the neighbourhood of such a point, the surface can be reduced 
locally to that of (2). 



Figure 3. 

APPLIED CATASTROPHE THEORY 

a 

A generic perturbation of the parabola in Fig. 2. 
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[Fuller accounts are given in heuristic versions by Poston and Stewart 
(1976, 1978) and Lu (1976). Complete details are available in Br6cker's 
(1975) text among others.] 

These results underly most of the claimed applications using the 
"metaphysical way". 

6. A Methodological Principle. The rationale for the "metaphysical way" 
has been expounded by Thom (1972a, b, 1976a, b) and, perhaps more 
clearly, by Poston (1977 and in press). Thom (1972b) has expressed the 
underlying methodological principle as a "genericity assumption": 
"[-Nature] realizes the local morphology which is the least complex 
possible with respect to the given local initial data". Elsewhere (Thom, 
1976b), he has expressed the view that catastrophe theory is not so much a 
mathematical theory as an attitude of mind encapsulated in the phrase 
"Nature is almost everywhere welt behaved". Poston (1978) has seen the 
principle involved as a "honing of Occam's razor". Zeeman, whose papers 
on applied catastrophe theory constitute the most determined attempt to 
demonstrate the utility of the "metaphysical way" has presented several 
analyses, of which the best is to be found in his paper on the heartbeat and 
the nerve impulse (Zeeman, 1972a). 

In essence, the argument follows these lines. Suppose a phenomenon 
depends locally upon for example two control variables. Then, under 
plausible continuity and genericity assumptions, at most one state variable 
will fail to depend upon these in a smooth way. If such a variable exists, its 
local behaviour should, in the first instance, be sought in the graph of (2), 
as this alone of the possible surfaces we might draw, satisfies the genericity 
we expect of nature, and its employment of a single cusp is suggested by 
Occam's razor, i.e. the choice of the simplest available model. 
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This methodology does not, of course, guarantee secure results. As 
Thom (1975)~ has remarked: "In no case has mathematics any right to 
dictate to reality. The only thing one might say is that, due to such and 
such a theorem, one has to expect that the empirical morphology will take 
such and such a form. If reality does not obey the theorem--that  may 
happen--this proves that some unexpected constraints cause some lack of 
[genericity], which makes the situation all the more interesting." 

The concordance between the genericity view and that proceeding from 
potential functions is exact for the simpler catastrophes, but breaks down 
when the codimension (the number of control variables) exceeds five. This 
means that the genericity arguments used to produce catastrophes in the 
simple cases entail the existence of locally valid potential functions which 
are infinitely differentiable. This does imply some restriction on the validity 
of the enterprise. 

An excellent discussion of the methodology and its underlying principles 
has recently appeared in the book by Woodcock and Davis (1978). 

7. Aside on Physical Applications. Although there are physical situations 
in which the catastrophe theoretical formalism is known to be as exact as 
any other mathematical account, there are others to which the formalism 
does not apply. If 

y = V(x ,  a) (8) 

is taken to be the governing potential, involving the (vector) state variable 
x and the (vector) control variable a, we are restricted to those V values 
which possess Taylor expansions about the point under consideration. 

It is a sobering thought, however, that many potentials in common use 
do not satisfy these requirements. This includes the standard 1/r potential 
of gravitation and electrostatics. 

Change of state phenomena have been investigated in catastrophe 
theoretic terms. The cusp catastrophe formalism produces a version 
already familiar as the Landau theory. The case of the Van der Waals' gas 
law has been discussed by Fowler (1972), Lavis and Bell (1977) and others. 
Lavis and Bell point out that thermodynamic potentials obtained by 
Fowler's approach do not produce, in any natural way, those familiar to 
thermodynamicists [see, however, Poston and Stewart (1978) for a fuller 
discussion of this matter]. 

In more complicated cases, phenomenological theories such as the Van 
der Waals equation break down. In one such case, a version of the two- 
dimensional Ising model for a ferromagnet, an exact potential was 
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calculated by Onsager (1944); this potential has no Taylor expansion 
about the critical point. (I am indebted to Mr. S. Carnie for this remark.) 
Hence, we are not able, even in the relatively simple physical cases, to infer 
universally the application of standard catastrophe theoretic models. 

These known limitations should be kept in mind as one assesses the 
more speculative models in the biological and social sciences. 

8. Zeeman's Heartbeat Model. Zeeman's paper on the heartbeat and the 
nerve impulse (Zeeman, 1972a) remains his most impressive and most 
complete study using the "metaphysical way". Even H. J. Sussman, 
Zeeman's sternest critic, has called this a "beautiful paper" (Sussman, 
1975). It gives phenomenological accounts of the systems studied, and 
suggests itself as archetypal for biological studies over a wide range of 
other situations. "The novelty of the approach lies in modelling the 
dynamics (which is relatively simple) rather than the biochemistry (which is 
relatively complicated). This approaGh might be useful for a large variety of 
phenomena in biology, whenever there is a trigger mechanism leading to 
some specific action." 

Three qualities are displayed by heart muscle fibres, which Zeeman lists 
as: (1) stable equilibrium; (2) threshold, for triggering an action; (3)"jump" 
return to equilibrium. 

He considers the surface as given by (2) but in a slightly different form, 
achieved by scaling the parameters. Set 

f ( x , a , b ) - x 3  +ax +b=O.  (9) 

The surface represented by (9) is still, in essence, that depicted in Fig. 1. 
This surface is achieved by the extremisation of a potential 

~p = 1/4x 4 + 1/2x 2 + bx, (lO) 

a form very similar to that of (1). 
Now consider the response of a system which is governed by the 

extremisation of a potential such as 4). If such a description is to be useful 
in a dynamic and not merely a static sense, the response of the particle 
representing the system must be rapid to alterations that remove it from 
the surface and relatively slow to displacements on the surface. The 
problem involves two time-scales, as we see in many physical situations 
[e.g. the Euler arch (Zeeman, 1976b) and the Zeeman Catstrophe Machine 
(Zeeman, 1972b) among others]. 
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To a first approximation, the dynamics are given by 

2oc dq~ 
d x '  (11) 

but this approximation does not allow for variation of a, b with time. This 
effect must be supplied by giving equations for ci, /~ or both. As these will 
be slower, the initial description (11) is modified by the inclusion of a small 
constant e, 

e2= - f (x ,a ,b) .  (12) 

(The minus sign is chosen for notational convenience.) Equation (12) is 
said to give the dynamic of the system. The slower response of the 
equations for d, /~ are said to give the feedback flow on the surface 

3 x. +axa+b=O. (13) 

This surface is referred to as the slow manifold, while the trajectories of the 
system that return the reference particle to this surface are called, 
collectively, the fast foliation. Equation (13), by genericity, is a general one 
for a two-parameter system. 

Zeeman now takes x for a particular heart muscle fibre to be its length, 
- a  to be its tension, and b to be the value of some chemical control. The 
simplest control system for b makes /~ proportional to (in suitable units 
equal to) the deviation of x from its equilibrium value xa : 

b = x  - x  a. (14) 

No equation for d is given, it being supposed that a alters in response to 
external forces, so that the value of a is taken to be, in the ideal case, a 
given constant. 

The heartbeat takes the form of a cycle of rhythmic contractions and 
relaxations of the fibres. The contraction (systole) alternates with the 
relaxation (diastole). Zeeman supposes an equilibrium value of b, b0 for the 
diastolic or relaxed, fibre, but a trigger, or switch, adjusts the value to a 
new value b I for the systolic, or contracted, state. Fit with the subsequent 
data  leads him to suppose b o < 0 < b l ,  a hypothesis he believes could be 
tested experimentally. (He tentatively identifies b with membrane 
potential.) 
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His model may now be summarized as in Fig. 4, with governing 
equations (12), (13), (14). We may now envisage four cross-sections for 

par t icu lar  values of a. 
Firstly, consider a value of a large enough to ensure a unique value of 

xa for all b. Here the distinction between systolic and diastolic states is 
inoperative, but we may still envisage the switching mechanism between 
the two values b o, b 1. Suppose the system initially to be given by b = b  o. 

Figure 4. 

e a t ~  

f 
J bo J bl ~Z~b. chemica I 

f a, tension 
The geometry of Zeeman's model of the heartbeat. Redrawn after 

Zeeman (1972a) 

Then the switch adjusts the value to  bl, so that the system responds, by 
(14), to the appropriate new value of x a. When this is attained, the 
equilibrium value of b reverts to b o, and again the system responds. No 
beat, properly called, is produced, but the smooth changes in x give a 
series of contractions and relaxations, known as "heaving". Heaving is 
observed in the surgically bypassed heart  and in art experimental situation 
first described by Rybak and B6chet (1961). 

Secondly, consider a value of a for which there is a small section of two- 
valued surface lying between b 0 and b 1. As the system responds to the 
switching mechanism, it includes in that response a small beat in both 
parts of the cycle, i.e. the trajectory of the system includes a part due to 
the fast foliation, given by (12). This Zeeman takes to be a description of 
the weak atrial beat. 

Thirdly, take an increase in tension, so that for the case tbol<lb,I,  which 
Zeeman implicitly assumes, x a is single-valued at b~, but multivalued at b 0. 
The beat is now larger, and overshoots b o on the return, as the equilibrium 
lies on the upper, rather than the lower, surface. That  the strength of the 
beat increases with the applied tension is a classical observation, referred 
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to as "Starling's Law of the Heart".  Zeeman takes this third case to be a 
description of the strong ventricular beat. 

Fourth,  consider a value of a such that the surface is multivalued for 
both  b =  b o and bl. In this case, the trajectory no longer includes a port ion 
of the fast foliations and the fibre remains in diastole. This is regarded as a 
description of the response of an overstretched fibre. The four cases are 
summarised in Fig. 5. 

b~ 
i - 

(a) ( b )  

( c )  ( d )  

Figure 5. A summary of the four types of heartbeat allowed by the Zeeman 
model: (a) bypassed heart, (b) artrial fibre, (c) ventricular fibre, (d) 

overstretched fibre. Redrawn after Zeeman (1972a) 

The above describes the response of an individual fibre. Zeeman's 
analysis continues beyond this to present a global description of the heart's 
response to a pacemaker wave of s t imulat ion--an account which seems to 
accord with observation, at least in its major features. 

9. Zeeman's Nerve Impulse Model. In the case of the nerve impulse, 
Zeeman's model postulates a different feedback flow, allowing for slow, 
rather than "jump" returns to equilibrium. This theory competes with 
several others, notably that for which Hodgkin  and Huxley (1952) won a 
Nobel  Prize. Zahler (Sussman and Zahler, 1978) has compared the two 
theories in detail to the detriment of Zeeman's. It should be pointed out, 
however, that much of this criticism is incorrect in detail, and some points 
in fact apply equally well to the Hodgkin-Huxley  theory. 
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Other defects in the Zeeman account have been noted by Stewart (1975 
and personal communication), who with Woodcock, has prepared a full 
account of the matter (Stewart and Woodcock, in press). The present paper 
will thus not consider the nerve impulse theories in any detail. 

It is apposite to remark, however, that the Hodgkin-Huxley theory is 
tested in considerable detail at the biochemical level. My own view is that 
such theories will and should tend to be preferred to purely 
phenomenological ones. It is probably not unfair in the present case to say 
that the balance of the evidence is in favour of the Hodgkin-Huxley 
account. 

10. Embryological Theories. The most ambitious of Zeeman's biological 
work is concerned with a number of embryological questions. In this, 
Zeeman follows Thom, whose early development on catastrophe theory was 
much influenced by embryology. Zeeman's papers in the field are the most 
informed by experimental data and there is now some evidence (Elsdale, 
Pearson and Whitehead, 1976) in their support. The three relevant papers 
(Zeeman, 1974a, 1976c; Cooke and Zeeman, 1976) are ambitious and 
technical, although rather more speculative than the models so far 
discussed. They can only be briefly summarised here. 

We begin by considering a mass of tissue E as it develops in an interval 
of time T. Zeeman sees four aspects as fundamental to an account of the 
development. 

(a) Homoeostasis---each cell is in a state of equilibrium, which may change 
with time. 

(b) Continuity--the conditions in different cells are to be represented by 
functions smooth over E. 

(c) Differentiation---cells of one type are to give rise to cells of two 
distinctly different types. 

(d) Repeatability--the qualitative outcome of the  process is to remain 
the same if the initial conditions are slightly perturbed. 

From these conditions, Zeeman deduces the existence of a "wave"--a 
frontier that forms in E, moves and deepens, slows up and stabilises, and 
finally deepens further. I take him to mean by the word "deepen" that the 
distinction between the two types of cell on either side of the frontier 
becomes more pronounced. 

The wave in question is, in Zeeman's terminology, a primary wave, i.e. 
one whose passage produces a (possibly hidden) determination of cell 
types. This primary wave may or may not be accompanied by a secondary 
wave whose passage marks the appearance of observable differences. 
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The proof of the existence of the primary wave proceeds via a 
translation of the four desiderata into mathematical form. The translation 
is plausible, but not forced upon us, so that the word "proof'  is perhaps a 
little strong. Nevertheless, at least a powerful heuristic argument results. 

From this argument a version of the cusp catastrophe emerges. The 
spatial organisation of E is seen as one-dimensional and Fig. 5 emerges 
from the analysis. Note that the alignment of the cusp has altered, which 
allows the existence of the point c2. Figure 7 shows how cells at different 

Figure 6. The model 

t 

underlying Zeeman's main embryological theorem. 
Redrawn after Zeeman (1974a) 

positions ultimately differentiate and stabilise. The heuristic or proof of the 
primary wave result is essentially an argument that Figs. 6 and 7 (which 
produce the stated behaviour) are generic. 

Some semi-quantitative aspects of the process are analysed, giving local 
approximations to the speed of the wave, and other details. 

This describes the major theoretical work of Zeeman's (1974a) first and 
longest paper on the subject. The remainder is taken up with plausible and 
reasonably detailed applications to quite specific situations. Some twenty- 
two experiments, some of them capable of testing aspects of the theory, are 
proposed. I am unable to comment in detail on the plausibility or the 
significance of the resulting descriptions and predictions, and suspect that 
most developmental biologists would be put off by the mathematics of the 
paper. Its significance may thus remain hard to assess for some time to 
come. 
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Figure 7. 

, 

t o 

The stabilisation of the frontier in Zeeman's embryological model. 
Redrawn after Zeeman (1974a) 

The other two papers are shorter and more specialised, but depend on 
the basic ideas adumbrated above. They concern the formation of somites 
(segments) in amphibian and bird embryos. Aspects of this work have been 
confirmed in that some of its specialised predictions have been found to 
hold in experiments and that some researchers in the area find it a useful 
conceptual framework. 

11. The Prison Riot  Model. The attempt by Zeeman et al. (1976) to 
describe prison riots in catastrophe theoretic terms has generated much 
interest and attention. Apart from the morbid fascination of the subject 
matter, which is also more amenable to popular exposition than those so 
far treated, the study is important for its quantitative character, its 
inclusion of a stochastic element, and for the methodological questions it 
raises. 

Figure 8 shows two aspects of the model adopted. Hypothesis one of the 
major paper postulates the applicability of the cusp catastrophe. The 
reasoning is, in essence, that previously applied to the heartbeat. 

We are interested in a variable which measures the state of disorder in a 
prison and we plausibly seek to calculate this from two others, 
representing, to a first approximation, the actions of the guards and the 
state of mind of the prisoners. These variables are called "alienation" and 
"tension" respectively. We now suppose that disorder, in general, is a 
smooth function of tension and alienation, but that if alienation is 
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Figure 8. The cusp surface and feedback flow for the catastrophe theoretic 
prison riot model. Redrawn after Zeeman et al. (1976) 

sufficiently high, small triggering increases in tension can cause sudden 
increases in disorders, i.e. riots can occur. (It is important  to note in this 
regard that riots are sudden increases in disorder in response to trivial 
initiating incidents.) Genericity now ensures a cusp description and 
simplicity restricts us to a single cusp. This argument makes the hypothesis 
plausible, although again it does not  compel our acceptance. 

Hypothesis two, "l-there] is a tendency for an institution as a whole to 
avoid the extremes of 'quiet' and 'disturbance'",  is used to provide the 
feedback flow shown diagrammatically in Fig. 8. 

The third hypothesis is a new one. It allows for the incorporation of a 
certain stochastic noise component,  as shown in Fig. 9. The dotted 
component  of the sectioned surface separates two regions of the fast 
foliation. Above it, the dynamic returns the system to the upper surface; 
below it to the lower. 

Elaborate indices for tension and alienation were constructed and an 
at tempt was made to measure disorder. A tentative cusp was fitted to the 
data. The results are not  clean mathematically in that two cusps were 
drawn, and it was hypothesised that the cusp had moved. 

Since the initial study, a monitoring system has been in force at Gartree, 
the prison first analysed. (It does not  involve the hidden cameras 
mentioned by Panati  (1976), but continues retrospective analyses of 
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The addition of stochastic noise to the prison riot model. Redrawn 
after Zeeman et al. (1976) 

tension, alienation and disorder.) I am privately informed that the model 
has had a predictive success in that the one riot occurring during the 
follow-up study corresponded with the single time at which tension and 
alienation had values such as to lead to its prediction. 

12. Stock Exchange Crashes. Of Zeeman's elaborated models in the 
social and biological sciences, that discussing the behaviour of share indices 
(Zeeman, 1974b) is the least developed and the least impressive. Once 
again, a cusp catastrophe is plausibly, but not compellingly, pressed into 
service. The state variable, J, is the rate of change of a share index (such as 
the well-known Dow-Jones); the control variables C, F represent 
respectively the proportion of money held by "chartists" (investors whose 
policy is based on trend analyses) and the excess demand for stock by 
"fundamentalists" (those whose policy is based on more traditional 
economic indicators of soundness). 

The paper proceeds by an elaboration of hypotheses (seven in all) of 
varying plausibility. The result is the model of Fig. 10 with a feedback flow 
analogous to that of the nerve impulse model. There is virtually no 
validation (despite the enormous literature the subject has generated), but a 
few tentative predictions are offered. 

13. Other Models. Thom (1972a) has advanced a number of models, 
mostly of a highly speculative character, and often more for the purpose of 
illustrating the methodology of Section 6 than for discussing the situation 
being modelled. The elaborated models are mostly due to Zeeman. Besides 
those already discussed, we find discussions on: 
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(d) the embryological models; 
(e) aspects of the prison riot study; 
(f) aspects of the stock exchange analysis. 
In an earlier paper (Deakin, 1977), I wrote of the dog that occurs in 

several of Zeeman's papers "This example is effective didactically both for 
the apprehension of the cusp catastrophe and for the understanding of the 
ethological question. Whether it possesses any significance beyond this is 
doubtful." This is still my position on the matter. Zeeman, in my view, 
overworks the dog a little, but Sussman and Zahler (1978) devote a fifth of 
their paper to this trivial and unelaborated model. It is not worth this 
amount  of effort. The same may be said of the war model. Ten per cent of 
their paper attacks this brief and relatively simpleminded analysis of war 
and public opinion. Sussman (1979) uses the war model as the main target 
in a condemnatory review of Zeeman (1977b). 

Neither of these models deserves to be treated as a serious scientific 
account of its subject. Lorenz's original discussion of the dog (Lorenz, 
1966) says everything that Zeeman tries to say and does it more simply. 
The war model seems to add nothing to the vast literature of non- 
mathematical work on the subject. While there is some evidence that 
Zeeman overstates his case, these simple models do not deserve the 
attention Sussman and Zahler give them. 

The other three cases deserve more serious consideration and will be 
dealt with in separate sections. The heartbeat model is not criticised. 

16. Objections to the Embryological Models. The major criticism brought 
against Zeeman's embryological papers concerns the "Main Theorem" of 
Zeeman's (1974a) paper. Apart from minor quibbles, Sussman and Zahler 
(1978) criticise the proof of the "theorem" and produce diagrams alleged to 
depict counter-examples. 

Zeeman's procedure in his "proof '  is to model the situation by a smooth 
(i.e. infinitely differentiable) potential. This is probably a dubious 
assumption, although Sussman and Zahler do not seriously challenge it. 
This potential must be such that initially it possesses a single minimum 
and later this bifurcates. The simplest available such potential is that 
modelled by the cusp catastrophe. On these grounds, Zeeman chooses it. 
Sussman and Zahler object to this, but it is a reasonable step, although 
perhaps unusual in what is presented as a "proof ' .  

The major criticism is directed at what follows, which strikes me as 
unexceptionable (apart from the caveats I raise below). The next point of 
Zeeman's proof concerns the alignment of the cusp surface. The axis of 
symmetry of the cusp is typically (generically) not parallel to the time axis 
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These studies will not be discussed in detail here. They are mentioned to 
give the reader an idea of the scope of such work. Several are of very poor 
quality. 

Woodcock and Davis (1978) give a number of other minor models, 
which they refer to as "invocations". As distinct from true applications of 
the theory, or even illustrations (production of known results in a new 
way), invocations are tentative but employ catastrophe theory on account 
of the suggestiveness of its images. The terminology is due to Michael 
Berry. 

14. The Reaction. The widespread use of catastrophe theory in the 
"metaphysical" mode has generated a reaction, centering particularly in the 
criticisms of Sussman and Zahler (Sussman, 1976; Sussman and Zahler, 
1977; Zahler and Sussman, 1977; Sussman and Zahler, 1978; Sussman, 
1979). These authors have publicly and vociferously criticised applied 
catastrophe theory, particularly when applied according to the "meta- 
physical way", and most particularly when applied by Zeeman. 

Their approach is haphazard, their style somewhat self-righteous, but 
their work contains the germs of some sound criticism. One might also say 
that Zeeman's style has a tendency to flamboyant advertisement that, to 
say the least, is not publicly admired in scientific writing. 

The most ambitious of the critical papers is the lengthy attack on some 
of Zeeman's models published in the journal SynthOse (Sussman and 
Zahler, 1978). This article makes a number of general points and enters 
into detailed criticism of a number of models. Its most detailed criticism, to 
which 2 0 ~  of the text is devoted, concerns the nerve model, and thus lies 
outside the scope of this discussion. The remainder, and the criticisms of 
their other papers, will be dealt with, although not always in detail. 

The uneven quality and carping tone of much of the Sussman-Zahler 
critique is unfortunate. Criticism of several of the catastrophe theoretical 
models is certainly called for, and the methodology of the "metaphysical 
way" is a new departure that needs to be carefully evaluated. An article on 
Thom's work is promised by Sussman and Zahler (1978) and their article 
does indicate the source of some of their unease--however, their major 
criticisms are directed at Zeeman. 

15. Specific Criticisms. Sussman and Zahler (1978) advance a number of 
criticisms against specific studies. In particular, they attack: 

(a) the account of the nerve impulse; 
(b) the discussion of canine behaviour; 
(c) the Isnard-Zeeman war model; 

BMB - C 
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(d) the embryological models; 
(e) aspects of the prison riot study; 
(f) aspects of the stock exchange analysis. 
In an earlier paper (Deakin, 1977), I wrote of the dog that occurs in 

several of Zeeman's papers "This example is effective didactically both for 
the apprehension of the cusp catastrophe and for the understanding of the 
ethological question. Whether it possesses any significance beyond this is 
doubtful." This is still my position on the matter. Zeeman, in my view, 
overworks the dog a little, but Sussman and Zahler (1978) devote a fifth of 
their paper to this trivial and unelaborated model. It is not worth this 
amount  of effort. The same may be said of the war model. Ten per cent of 
their paper attacks this brief and relatively simpleminded analysis of war 
and public opinion. Sussman (1979) uses the war model as the main target 
in a condemnatory  review of Zeeman (1977b). 

Neither of these models deserves to be treated as a serious scientific 
account of its subject. Lorenz's original discussion of the dog (Lorenz, 
1966) says everything that Zeeman tries to say and does it more simply. 
The war model seems to add nothing to the vast literature of non- 
mathematical work on the subject. While there is some evidence that 
Zeeman overstates his case, these simple models do not deserve the 
attention Sussman and Zahler give them. 

The other three cases deserve more serious consideration and will be 
dealt with in separate sections. The heartbeat model is not criticised. 

16. Objections to the Embryological Models. The major criticism brought  
against Zeeman's embryological papers concerns the "Main Theorem" of 
Zeeman's (1974a) paper. Apart from minor quibbles, Sussman and Zahler 
(1978) criticise the proof of the "theorem" and produce diagrams alleged to 
depict counter-examples. 

Zeeman's procedure in his "proof '  is to model the situation by a smooth 
(i.e. infinitely differentiable) potential. This is probably a dubious 
assumption, although Sussman and Zahler do not seriously challenge it. 
This potential must be such that initially it possesses a single minimum 
and later this bifurcates. The simplest available such potential is that 
modelled by the cusp catastrophe. On these grounds, Zeeman chooses it. 
Sussman and Zahler object to this, but it is a reasonable step, although 
perhaps unusual in what is presented as a "proof ' .  

The major criticism is directed at what follows, which strikes me as 
unexceptionable (apart from the caveats I raise below). The next point of 
Zeeman's proof concerns the alignment of the cusp surface. The axis of 
symmetry of the cusp is typically (generically) not parallel to the time axis 
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(and not perpendicular to it, either). This again is an assumption, but a 
reasonable one. Its justification is as given in Section 6. 

Once we incline the two axes, the existence of a unique point c2 is an 
immediate consequence, as may readily be verified from (3). The existence 
of a stabilised frontier that deepens follows also from the geometry of the 
surface described by (2). 

One difficulty, however, remains. The point c2 may, in fact, be a long 
way from the apex (Cl) of the cusp (arbitrarily far away), and as Thorn's 
theorem refers to the local geometry of the surface, the point c2 may not 
exist within the neighbourhood of validity of the cusp representation. The 
same objection applies to the deepening after the stabilisation. It may be 
that this is what Sussman and Zahler have in mind in their criticism of 
these conclusions. 

Omitted from consideration here are petty details on the more specific 
applications. Some general objections will be considered in Sections 21 and 
22. 

17. Critiques of  the Prison Riot Study. Zahler and Sussman (1977) 
criticise the prison riot model as also does Rosenhead (1976). Both 
critiques emphasize inadequacies in the statistics and the data analysis. 
Rosenhead goes beyond this to criticise the endeavour itself as repressive. 

Zeeman et al. (1976) list weekly values of alienation and tension over a 
period of a year for Gartree prison (their Table 1). In Table 2 of their 
paper, the more serious incidents are listed and assessments measuring 
disorder are given. Thus, disorder (measured by its symptomatic incidents) 
is not assessed weekly as are the control variables. The incidents listed fall 
into three categories: 

(a) incidents involving nearly all the inmates in some new mode of 
protest; 

(b) incidents assessed at seriousness greater than 5 not listed in the first 
category; 

(c) other incidents listed in their Table 2. 
There were 5 incidents in category (a), 10 in category (b), and 5 in 
category (c). 

In order to fit the cusp surface to this data, Zeeman et al. consider first a 
cross-section of the surface postulated (Fig. 8 of this paper). Incidents in 
category (a) are presumed to constitute riots and to correspond to 
observed positions of the point R 2. Now let a represent the alienation, t 
the tension, and d the disorder. The locus of the point R 2 is now given 
(subject to suitable placement of the origin) by the surface analogous to 
(13) 
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with the further condition 

d 3 = t + a d ,  (15) 

27t 2 = 4 a  3. (16) 

Eliminating t from (15) and (16), we find 

(3d 2 :- 4a)(3d 2 - a) 2 = 0, 

so that the locus appropriate to the point R 2 is 

3d 2 = a ,  (17) 

a parabola connecting a and d. 
Curve fitting begins by fitting a parabola to the incidents corresponding 

to riots. It should be possible to fit a parabola to the five category (a) 
incidents, although the small number of sample points is a problem. 
Zeeman et al. do not, however, take this road. They plot all incidents on 
an a-d  plane, notice that the minimum observed disorder (for a category 
(c) point) is 2.3, hypothesise a vertex for the parabola at a disorder level of 
1, and draw a parabola whose whole vertex lies on the line d =  1, "paying 
particular attention to the solid circles" [-i.e. category (a) incidents]. There 
is no attempt to do anything more rigorous than this, nor are confidence 
limits discussed. 

Clearly this methodology is less than ideal. Rosenhead's (1976) s t r ic ture--  
"The vertex of the cusp is only located with the aid of a breath-taking 
piece of parabolic extrapolation through a cluster of points which support 
almost any curve fitting exercise--or none"--clear ly  carries some weight. 
Figure 4 of Zeeman et al. (to which Rosenhead is referring) would look 
more impressive, however, if category (b) and (c) points were omi t t ed - -  
especially the minor incident used (in small part) to locate the vertex (this 
incident--"Inmate  found in possession of counterfeit s note"-- is  hardly 
riotous). 

The above exercise, which Zeeman et al. "emphasize is largely 
guesswork", yields an alienation value at the cusp point (i.e. the unique 
point of type (c), in the sense of Section 5) of 92 + 10. (The error attributed 
would seem also to be the result of guesswork.) This argument is now held 
to justify their Fig. 3, which plots the year's events in the t -a  plane, and 
finds most to lie within a curve somewhat reminiscent of a cusp. 

In fact, two such curves are drawn. One encompasses events for the first 
16 weeks, the other those for the next 32. The second is drawn with a 
vertex at an alienation value of 92 (despite the fact that one category (a) 
incident and two category (b) incidents occurred during the first 16 weeks, 
fitted by a curve with vertex at an alienation value of 97). In other words, 
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the parabolic fitting which established the value of 92 involves one point  
out  of five (incidentally, that  lying closest to the curve) for which the fit is 
discarded. (I am indebted to Mr. P. McIntosh  for this remark.) 

There are two other disturbing features of Zeeman e t  al. 's Fig. 3. In the 
first instance the axes of symmetry of the "cusped" curves are not  parallel 
to the alienation axis. This need not  be a criticism (see Section 18), but  in 
the present context it is, as (17) and the subsequent  parabolic fit involved 
estimations of R z. Thus category (a) points should lie near the right edge 
of the fitted cusp (see Fig. 8 of this paper). Figure 11 (redrawn from 
Zeeman e t  al . 's  Fig. 3) shows how far this condit ion is from being 
satisfied. 

T e n s i o n  
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Figure 11. Cusps and riot incidents in the prison riot study. Redrawn after 
Zeeman et al. (1976) 

The prison riot model  is criticized by Sussman and Zahler (1977) and by 
Zahler and Sussman (1977). I would agree with these critics that  the fitting 
is most  unsatisfactory and would also agree that  it is desirable in such 
studies to produce a statistic saying how good one's fit is. Zeeman e t  al. do 
not. I would not  however join Sussman and Zahler (1977) in their 
content ion that  "other possibilities fit the data  at least as well as Zeeman's  
cusps. (A pair of parallel lines, for instance, does a very good job.)". This 
begs the question of how we test the claim. Fur thermore  Sussman and 
Zahler offer no underlying model  for this theory at all. 

Nor  would I agree with Rosenhead (1976) that  this model  constitutes a 
repressive misuse of mathematics.  I see no evidence of repressive intent in 
the paper under  discussion, and fur thermore hold that  repressive instincts 
do not  require catastrophe theory. An earlier analysis of prison riots, due 
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to Fox (1971) includes the following analogy: "The way to make a bomb is 
to build a strong perimeter and generate pressure inside." We cannot press 
this too far, or we shall find difficulties of detail. Nonetheless, we do not 
regard it as a misuse of engineering theory; it strikes me as anti-repressive. 

18. Mathematical  Problems of  Catastrophe Fitting. The question of 
deriving accurate fits for cusp (and other) catastrophes is a difficult and 
largely unsolved one. It arises critically in the case of the prison riot model. 
To simplify discussion, suppose the terminology of that model, but with a 
more satisfactory measure of disorder. (The use of reportable incidents can 
leave us without a measure, or greatly bias the measure-- there  is no "truce 
incident" reported by Zeeman et al. Nor  could their scale measure one.) 

Let us now distinguish alienation, tension and disorder as we happen to 
measure them from the same terms as ideal quantities satisfying (15). 
Continue to use lower case symbols for the ideal quantities of the model 
and use A, T and D to represent respectively alienation, tension and 
disorder as measured. 

Assuming, as is reasonable, that we can distinguish clearly between a 
control variable and a state variable, we must still allow for coordinate 
transformations 

a=O(A, T)  (18) 

t = ~b(A, T) (19) 

d = ~ ( D ) ,  (20) 

before we can apply (15) or some canonical variant. 
Here 

O(A, T)  = 0oo + 01 o A + Oo i T + higher order terms, (21) 

and corresponding equations apply for ~b, 0- The zeroth order terms serve 
to fix the origin. (This is the only point of what quantitative work Zeeman 
et al. undertake.) The linear terms of 0, ~b serve to rotate the cusp in the 
alienation-tension plane. (For present purposes, assume the matrix 

1~ 0~ (22) 

to be regular-- the  case of singular matrices is discussed in Section 23.) 
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The surface-fitting problem may now be stated as: 

Given n experimental points (Ai, Ti, Di),find functions O,~p,~ in such a way 
that the transformations (18)-(20) yield, in some sense, the best fitting 
surface (15). 

One could, of course, arbitrarily truncate the series (21), etc. at terms of 
some order and thus reduce the problem to a standard one of (in general) 
non-linear regression. This is, at best, a partial solution. The general 
problem remains unsolved and urgently in need of solution. 

Lewis (1977) claimed some initial success in this area, and Cobb (1978, 
in press a,b) has made some progress. On a related question--testing for 
the appropriateness of the catastrophe model - -Cobb (personal 
communication) reports partial success in that he has a relevant existence 
theorem. 

Prior to the prison riot model, it was fashionable to introduce either a 
diagonal matrix (22) (described by the disjunction between the "normal 
factor" t and the "splitting factor" a) or the composition of this with a 45 ~ 
rotation [producing the "competing factors" of (e.g.) the dog's behaviour]. 
These two situations are [as Zeeman himself (1974a) pointed out] non- 
generic. The cusp is likely to be inclined at a different angle in the A - T  
plane. 

The urgency of the problem is highlighted, even if one merely takes the 
minimalist view suggested by Poston (1978). "Much numerical work in 
sociology, psychology, etc. consists of fitting data to a few standard forms, 
such as linear relationship and bell-shaped curves . . . .  Addition of the 
elementary catastrophes to the forms used is pure gain." Without adequate 
techniques for the fitting of the catastrophe surfaces, much of the point of 
this, otherwise admirable, remark is lost. 

19. Stock Exchanges Revisited. The main criticism to be raised against 
the stock market model begins with the observation that stock markets 
and their behaviour have been extensively studied. The prediction of 
crashes in the market is a large industry. Previous crashes have been 
subjected to much retrospective analysis. Zeeman's analysis refers to none 
of this. It is quite unclear how his catastrophe theoretic account accords 
with existing wisdom; virtually none of the enormous bank of accumulated 
data is quoted in support of his model. 

Surprisingly, this is not Sussmann and Zahler's (1978) main criticism. 
They confine their remarks to the relatively specific objection that the 
model involves an unrealistic feature. They claim that, on Zeeman's model, 
a purely speculative market will never crash. This claim is based on an 
interpretation of Fig. 10. If C is increased for zero F, the state of the 
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market can be represented by a point on (in some cases) the upper surface. 
If these constraints are imposed, the market will not crash. However, this 
argument neglects the feedback flow on the catastrophe surface which 
decreases F at such points, so that purely speculative markets are very 
transitory phenomena preceding crashes. This feedback flow also prevents 
the "anti-crash" mentioned by Deakin (1977) in criticism of the model. 

Nonetheless, the model appears unconvincing. A crash is a drop in the 
rate of change of the index, rather than a drop in the value of the index. 
This usage strikes some readers as unusual. The restriction to two control 
variables also seems less assured than in the prison riot model. 

20. Protein Denaturation. One model, not by Zeeman, is criticised at 
some length by Zahler and Sussman (1977). This is an account of protein 
denaturation by Kozak and Benham (1974) (since extended by those 
authors--Benham and Kozak, 1976, 1977, 1978). This uses the cusp 
catastrophe to discuss what is essentially a change of state phenomenon. In 
some cases, the cusp appears in a distorted form, i.e. inverses of (18}-(20) 
are used to present a modified cusp. 

In view of catastrophe theory's limitations in describing change of state 
phenomena (see Section 7 above), this theory may well not be correct in 
detail. Dodgson (1977) adduces further reasons for scepticism here. 

Nonetheless, Zahler and Sussman's critique seems to depend upon a 
misreading of Kozak and Benham's (1974) paper. They regard the 
transformed cusp as no longer generic, which is wrong. The misreading is 
apparent from the subtle differences between Kozak and Benham's Fig. 2 
and Zahler and Sussmann's redrawing of it (their Fig. 2). 

The usefulness of this model awaits expert evaluation. 

21. More General Criticisms. Inherently more important than criticisms 
of specific studies are those objections to the methodology on which such 
studies rest. Sussmann and Zahler (1978) raise a number of trenchant 
points in opposition to the philosophy outlined in Sections 4, 6 of this 
paper. Thus, they find in some of Thom's writing "an attitude of contempt 
by the pure thinker towards those who busy themselves with almost 
meaningless tasks, such as deciphering the genetic code" instead of 
adumbrating grand syntheses. "Thom has a vision to offer, that of the 
mathematician's Platonic dreamworld, a world of pure ideas uncorrupted 
by the intrusion of treacherous facts." 

There is a certain justice in some of these complaints--yet they are also 
somewhat exaggerated. Thorn does have a vision to offer, but visions are 
notiriously difficult to assess, as Guckenheimer (1978) noted in the present 
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case. The core of that  vision would seem to be a view of a science as being 
(ultimately) successful when it is absorbed into Pure Mathematics,  as has 
happened  with geometry (see Thom,  1975). Thom's  phi losophy of science is 
novel and controversial.  A full review of it lies outside the scope of this 
paper, but  see Deakin (to appear). The passage quoted in Section 6 above, 
however, shows that  it is oversimplifying the mat ter  to speak of Thom's  
methodology  as a claim "that  the world can be deduced by pure thought"  
(Zahler and Sussman, 1977). 

Two excellent accounts by Pos ton (1978, in press) investigate the 
mathematical  basis of Thorn's  genericity assumption.  Its novelty is likely to 
cause reaction and scepticism, but it should be recognised that  it is not  
without  an intellectual ancestry. The axiom outlawing phenomena  which 
depend upon  the satisfaction of a precise equality among parameters has 
been termed by Hardin  (1960) the axiom of inequality. This is widely used 
in b iomathemat ical  work. Thom's  genericity assumption is no more  than 
an extension of this. 

Sussman and Zahler  (1978) attack in t renchant  terms Zeeman's  use of 
the genericity assumption,  particularly in reference to his embryological  
theories. Their  sub-heading here is "How to Prove, by Pure Thought ,  that  
Everything Moves".  One section of Zeeman's  main theorem (see 
Section 10) is parodied as "If nothing exceptional happens,  then the 
frontier moves". Zeeman's  proof  is restated: "If it did not move, that  would 
be exceptional. By hypothesis,  exceptional things do not  happen.  Hence it 
moves." A further paraphrase  reads: "everything moves (except for those 
exceptional objects which, at exceptional times, do not)". 

The principle of genericity does need to be used with some care, and can 
never lead to secure results. This is not, however, to say that  it is useless. 
Once this is realised, it is perfectly possible to accept that  Zeeman's  result 
has essentially the status ascribed to it by Sussmann and Zahler, wi thout  
regarding this (as they appear to do) as a reductio ad absurdum of the 
whole enterprise. 

The status of the principle may be appreciated in terms of another  
Sussmann and Zahler criticism (Sussmann and Zahler, 1978); " . . .  take any 
event at all, such as the fact that  yesterday I got up at 8.00a.m. Let T be 
the time when I got up yesterday. Appealing to genericity, we can justify 
assuming that  T is not  8 :00a .m. ,  since the proper ty  ' T @ 8 : 0 0 a . m . '  is 
generic. In fact, we can justify assuming that  T@ 7", no mat ter  what  7" is, 
since, for any particular 7", the proper ty  'T@7"'  is generic. So actually, we 
can justify assuming that  I did not  get up at all!" 

The conclusion is, of course, fallacious. What  is true is that, if a theory 
depended upon  the statement,  or led inexorably to the s tatement  "T  
= 8 : 0 0  a.m.", it would be most  unlikely to be true. The s tatement  
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" T = 8 : 0 0 a . m . "  is a strong one. It is perhaps relevant to note that 
Popper (1959) regards it as the hallmark of a good scientific theory that it 
makes strong statements such as this. Thom (1975 and elsewhere) disputes 
this criterion. In practice, the problem is solved by interpreting the state- 
ment " T = 8 : 0 0  a.m." as (for example) 

T e (7 : 59.5 a.m., 8 : 00.5 a.m.), 

which is generic. 
There remains the problem first raised by Berlinski (1975) as to why so 

many well attested physical laws do not obey the genericity requirement. 
Thom's (1977) answer that this expresses the sociological constraint that 
several different observers can communicate  is an interesting one, which I 
hope to discuss in a later paper. 

22. Smoothness and Genericity. One telling criticism of the genericity 
assumption is raised by Sussmann and Zahler (1978) against the use of 
smooth functions. As they point out, "within the class of continuous 
functions, the class of nowhere smooth functions is generic, and the class 
of smooth ones is not". The use of Thorn's theorem, according to the 
"metaphysical way" is only justified if we first assume our functions to be 
smooth. 

That  this apparently harmless assumption can lead to difficulties has 
already been noted (see, e.g. Section 7 above). The restriction to C ~ 
functions is a severe limitation of the theory and one which, to my mind at 
least, deserves wider prominence as a criticism. It should always be borne 
in mind when the applicability of some elementary catastrophe is 
postulated. Catastrophe theoretic accounts of phenomena require 
experimental test like any other, not only because genericity may be 
violated, but because smoothness may not apply. 

23. Scale Changes. Zahler and Sussmann (1977) point out that (4) gives a 
surface different from that of Fig. 1 and state that in consequence of this, 
the postulation of a cusp is unjustified. This may be answered by 
considering b 3 to be replaced by the generic cubic b 3 +eb, which reinstates 
the cusp, but this does not entirely meet the objection. 

It is assumed that however we measure the control variables, a cusp 
results. This is perhaps an optimistic expectation, for the geometry is 
altered by any transformation of the form 

b o b  ~ (23) 
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for e r  We are by no means assured that the particular system of 
measurement  we use corresponds to e = 1. What  is experimentally natural  
may not be most convenient mathematically. 

On the other hand, the precise cusp geometry is not always required. 
The curve fitting exercise for the prison riot model is so poor that this 
discussion can hardly be said to depend on i t - -much  would remain valid if 
a parabola replaced the cusp. In the case of the "main theorem" of the 
embryological discussion, however, significant differences would appear in 
the account. 

Again the question of the local nature of the theory is at issue. The 
parabolic cross-section produced by Fig. 2, becomes, if we alter b 3 to b 3 
+eb, a cusped curve such as that shown in Fig. 3. Looked at in very fine 
detail, this presents a cusp geometry. However if looked at on a larger 
scale, it might well be seen, in an experimental situation, as a parabola. 

The question of axis scaling has, in fact, been raised by Thom (1977) as 
an objection to attempts to quantify the "metaphysical way". He sees it as 
a priori implausible that we could arbitrarily multiply all the control 
variables by some scale factor and keep the basic geometry intact, as 
happens with, e.g., (3). Hence the cusp situation so represented requires 
specially chosen coordinates and the choice of a cusp appears arbitrary. As 
Thorn sees catastrophe theory as a development in the structuralist 
tradition of"reduct ion of arbitrariness" (see Deakin, to appear) such use does 
not appeal to him. 

24. Mathematical Metaphors. When Thom's (1972) book first appeared 
many reviewers looked on its applications as being not so much 
applications in the usual sense of that word, but rather "mathematical  
metaphors". Thom does not dispute this. Indeed, he writes (Thorn, 1975): 
"When narrow-minded scientists object to [catastrophe theory-] that it 
gives no more than analogies or metaphors, they do not realise that they 
are stating the proper aim of [catastrophe theory-] which is to classify all 
possible types of analogous situations." 

Such views are likely to be regarded as most controversial and are 
unlikely to be assessed fully in the near future. In another paper (Deakin, 
in press) I at tempt a more thorough description of these and related 
positions. 

Nonetheless, metaphor  should not be seen as necessarily unscientific. 
Fox's (1971) statement, quoted in Section 17 above, is clearly metaphor,  
but not on that account unhelpful, imprecise or incomprehensible. Zeeman 
et al. (1976) produce a model that may also be viewed as metaphor.  The 
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real test wilt be found in whether or not this metaphor turns out to be 
useful to people. 

25. Conclusion. Catastrophe theory, applied according to the 
"metaphysical way" leads to speculative or often qualitative models. While 
none of these compel our acceptance, some are elegant, suggestive and 
seemingly useful. Some have been validly criticised in recent papers but 
other criticisms advanced are incorrect or overstated. 

Catastrophe theoretic models need evaluation like any others, 
particularly in the social and biological sciences. This evaluation process 
takes time and is unlikely to yield results of either a wholly positive or a 
wholly negative character. This paper is a contribution to that process. 

The above discussion has been greatly helped by correspondence with L. 
Cobb, T. Poston, I. Stewart, H. Sussmann, R. Zahler and E. C. Zeeman, 
who do not necessarily agree with the ideas expressed. Discussions with S. 
Carnie, P. McIntosh and D. Paterson have assisted me in understanding 
aspects of the published analyses. 
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