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ASYMPTOTICS OF WAVE FUNCTIONS OF THE STATIONARY

SCHRÖDINGER EQUATION IN THE WEYL CHAMBER

S. Yu. Dobrokhotov,∗† D. S. Minenkov,∗ and S. B. Shlosman‡

We study stationary solutions of the Schrödinger equation with a monotonic potential U in a polyhe-

dral angle (Weyl chamber) with the Dirichlet boundary condition. The potential has the form U(x) =
�n

j=1 V (xj), x = (x1, . . . , xn) ∈ R
n, with a monotonically increasing function V (y). We construct semi-

classical asymptotic formulas for eigenvalues and eigenfunctions in the form of the Slater determinant

composed of Airy functions with arguments depending nonlinearly on xj . We propose a method for

implementing the Maslov canonical operator in the form of the Airy function based on canonical trans-

formations.
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1. Introduction

The two-dimensional and three-dimensional Ising models in which a droplet of a phase contacts the
wall of the containing box were studied in [1]. To describe the contact surface, it was necessary to consider
a special boundary value problem for the n-dimensional Schrödinger equation

− h2

2
�Ψ + U(x)Ψ = EΨ, (x1, . . . , xn) ∈ R

n, (1.1)

with the potential U(x)=
∑n

i=1V (xi), x= (x1, . . . , xn)∈R
n, and a monotonically increasing V (x) : V (0)=0,

V ′(x) > 0, V ∈ C2. The Schrödinger operator was considered in the domain Ω = {x1 ≥ x2 ≥ · · · ≥ xn ≥ 0}
(Weyl chamber) with Dirichlet boundary conditions on ∂Ω,

ψ|∂Ω = 0. (1.2)

An important observation was that the eigenfunctions of problem (1.1), (1.2) are given by the Slater
determinant. Namely, we have the following assertion.
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Lemma 1. Let Ek and ψk(x) be the eigenvalues and the corresponding eigenfunctions of the one-

dimensional problem

− h2

2
ψ′′(x) + V (x)ψ = Eψ, x ≥ 0, ψ(0) = 0. (1.3)

We construct the Slater determinant composed of the functions ψj(xk):

ΨSK
k (x) =

1
n

det

⎛

⎜
⎜
⎝

ψk1(x1) · · · ψk1(xn)
...

. . .
...

ψkn(x1) · · · ψkn(xn)

⎞

⎟
⎟
⎠ . (1.4)

Then for the multi-index k = {k1, . . . , kn}, ki �= kj , i, j = 1, . . . , n, such a determinant is an eigenfunction

of problem (1.1), (1.2) in the domain Ω corresponding to the eigenvalue

Ek =
n∑

j=1

Ekj . (1.5)

This fact holds only for a Weyl chamber and is inapplicable to general polyhedrons, which indicates
that there is a certain “integrability” structure in the considered problem that allows reducing the study of
semiclassical asymptotic formulas for the multidimensional problem to a set of one-dimensional problems
and, moreover, allows constructing exact solutions of the studied problem for a potential of the form
V (x) = ax or V (x) = ax2. In the first case, the eigenfunctions ψk(x) and the eigenvalues Ek of one-
dimensional problem (1.3) can be expressed in terms of the Airy function and its zeros zk < 0, Ai(zk) = 0,
zk+1 < zk, k = 0, 1, . . . ,

ψk = Ai
(

x
3

√
2a

h2
+ zk

)

, Ek = |zk|
(ah)2/3

21/3
.

It is hardly possible to construct exact solutions for other functions V , and the asymptotic methods can
be used here. On the other hand, a semiclassical approximation, as a rule, does not work very effectively
in boundary value problems, because a variation of the domain Ω destroys the “integrability,” and there
are very few cases of boundary value problems that can be studied explicitly. It is intuitively clear that
this fact is connected with the integrability in the theory of billiards (see [2]). We therefore believe that
under the assumption that h is a small positive parameter, it would be rather interesting to consider this
boundary value problem in the Weyl chamber using a semiclassical approximation.

Here, we construct asymptotic solutions of problem (1.1), (1.2) for an arbitrary monotonically increasing
smooth potential V (x), V ′(x) > 0, x > 0. In Sec. 2, we present formulas for these solutions and discuss the
relation between the eigenvalues and the Bohr–Sommerfeld quantization condition. In Sec. 3, we present
their “geometric” derivation based on the Maslov canonical operator and its properties. To complete the
presentation, we discuss the required properties of the change of variables in the canonical operator in the
appendix.

2. Asymptotic eigenfunctions and eigenvalues of the
one-dimensional problem: Bohr–Sommerfeld quantization
conditions

We consider problem (1.3) with an arbitrary smooth monotonic potential V (x): V ′(x) > 0, x ≥ 0.
In this case, the asymptotic wave functions are expressed in terms of the Airy function Ai(z), and the
asymptotic eigenvalues are expressed in terms of the zeros of Ai(z) using quantization conditions similar
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to the Bohr–Sommerfeld quantization conditions. We first write the corresponding formulas and then give
their constructive proof.

We let x∗(E) denote a positive solution of the equation V (x) = E and introduce the functions

Y(x, E) = sgn(x − x∗)
∣
∣
∣
∣
3
2

∫ x

x∗

√
|2(V − E)| dx

∣
∣
∣
∣

2/3

(2.1)

and

R(x, E) =
Y(x, E)

V (x) − E
. (2.2)

It is easy to see that the constructed functions Y(x, E) and R(x, E) are infinitely differentiable for E > 0
and Yx = ∂Y(x, E)/∂x does not vanish (and of course does not go to infinity) on any finite interval of the
line Rx.

We recall that we let zk, zk+1 < zk, k = 0, 1, . . . , denote the zeros of the Airy function Ai(z). We
determine the numbers Ek, k = 0, 1, 2, . . . , from the equation

1
h

∫ x∗(Ek)

0

√
2(Ek − V ) dx =

2
3
|zk|3/2. (2.3)

We introduce the functions

ψk(x) =
C 4

√
|R(x, Ek)|

6
√

h
Ai

(
Y(x, Ek)

h2/3

)

. (2.4)

Proposition 1. 1. The functions ψk(x) and the numbers Ek, k = 0, 1, 2, . . . , determine the respective

asymptotic eigenfunctions and eigenvalues of problem (1.3) up to O(h5/6) and O(h2).
2. In determinant (1.4), the functions ψk are taken in form (2.4) with the numbers k = (k1, k2, . . . , kn),

and the numbers Ek in formula (1.5) are obtained from quantization condition (2.3). These functions and

numbers then approximate the respective eigenfunctions and eigenvalues of the operator up to O(h) and

O(h2).

Without conditions (2.3), formula (2.4) is contained in [3] and was obtained using the method of
reference equations. We derive it differently in Sec. 3 and now discuss equality (2.3). We recall (see,
e.g., [4]) that for large negative z, the asymptotic formula

Ai(z) =
1√

π 4
√
−z

sin
(

2
3
(−z)3/2 +

π

4

)

+ O((−z)3/2)

holds for the Airy function. Under the condition Y(x, Ek)/h2/3 � −1, this implies that

ψk(x) =
C

4
√

(E − V )
sin

(
1
h

∫ x

x∗

√
|2(Ek − V )| dx +

π

4

)

. (2.5)

This function naturally coincides with the WKB asymptotic form [5], [6] of the functions ψk(x) to the left
of the focal point x = x∗ (outside its neighborhood). The zeros of this function are determined by the
relation

1
h

∫ x∗(Ek)

0

√
2(Ek − V ) dx = π

(
3
4

+ k

)

, k = 0, 1, 2, . . . , (2.6)

which can be rewritten as follows. It is well known (see [6] and the next section) that the semiclassical asymp-
totic form of the eigenfunctions ψk(x) are related to the curves on the phase plane R

2
px (one-dimensional

Lagrangian manifolds) defined by the equations

Λ̃(E) =
{

p, x ∈ R
2
p,x :

p2

2
+ V (x) = E, x ≥ 0

}

.
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a b

Fig. 1. (a) Potentials V1(y) = y (solid line) and V2 = 2(y+0.1)2−0.02 (dashed line)). (b) Lagrangian

manifolds in the phase space Λk ∈ R
2
p,y corresponding to the energy Ek, k = 0, 2, 4, 6, 8, in Example 1

(solid lines) and in Example 2 (dashed lines).

In the studied case, it is reasonable to add a vertical segment to the arc Λ̃(E),

Γ(E) = {p, x ∈ R
2
p,x : −

√
E − V (0) ≤ p ≤

√
E − V (0), x = 0},

and construct a closed curve Λ(E) = Λ̃(E) ∪ Γ(E) (see Fig. 1). Equality (2.6) can then be written as the
Bohr–Sommerfeld quantization condition

1
2π

∮

Λ(Ek)

√
2(Ek − V ) dx = h

(
3
4

+ k

)

. (2.7)

The number 3/4 is Ind Λ(Ek)/4, where Ind Λ(Ek) is the Maslov index of a closed path on Λ(Ek) coinciding
with Λ(Ek). For smooth curves Λ(Ek), it is equal to 2, but the curve Λ(Ek) here is not smooth because
of the boundary condition, and its index is equal to 3. In a more general case, such manifolds (“horned
spheres”) and the quantization condition on them were described in [7]. If we now return to the original
n-dimensional problem and introduce the corresponding 2n-dimensional phase space, then the product
of the one-dimensional manifolds Λ(Ekj ) corresponding to different xj gives an n-dimensional nonsmooth
Lagrangian manifold of such a type, and the quantization conditions on it give the spectrum of the original
n-dimensional Schrödinger operator.

Finally, we note that the Bohr–Sommerfeld quantization condition generally holds for large k, namely,
for k ∼ 1/h. Replacing condition (2.3) with quantization condition (2.7) is in fact replacing zeros of the
Airy function with the zeros of its asymptotic approximation and gives a good approximation even for small
k. For example, the first root is z0 ≈ −2.338, and its asymptotic approximation is z̃0 ≈ −2.320, i.e., the
error is less than 1%. Therefore, to determine Ek even for k = 0, 1, . . . , we can use condition (2.7) instead
of condition (2.3).

We consider the following two examples:

1. V (x) = x and

2. V (x) = 2(x + 0.1)2 − 0.02 for h = 0.01.

We show plots of the potentials and the first ten eigenvalues and also the corresponding Lagrangian mani-
folds in Fig. 1.

In Figs. 2 and 3, we show the asymptotic behavior of the wave functions ψk(x) and the asymptotic
behavior of the functions ΨSK

{k,m}(x, y) for the two-dimensional angle (x, y) ∈ R
2
+, x ≤ y.
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Fig. 2. Asymptotic behavior of the wave functions ψk(x), k = 0, 1, 2, 4, 6, 8, for Example 1 (solid

lines) and Example 2 (dashed lines).

Fig. 3. Asymptotic behavior of the wave functions ΨSK
{k,m}(x, y) in the angle for k = 2, 3, 4, m = 1

and k = 8, m = 4 in Example 2.

3. Derivation of asymptotic formulas for wave functions by
canonical changes of variables in the Maslov canonical operator

Proof of Proposition 1. Formula (2.3) obviously follows from (2.4). Formulas (2.4) can in principle
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be obtained using the Langer method and reference equations (see [3], [8], and also [9]). Here, we show how
they can be derived directly from the Maslov canonical operator and its general properties.

We construct (formal) asymptotic approximations in the form of the canonical operator [6] that approxi-
mate the wave functions in the one-dimensional case. The asymptotic approximations are (locally) related to
a family of invariant curves, i.e., Lagrangian manifolds Λ on the phase plane R

2
y,p, which are similar to hori-

zontal parabolas and are trajectories of the Hamiltonian system with the Hamiltonian H(x, p) = p2/2+V (x)
at the energy level H = E:

Λ = {p = P (t, E), x = X(t, E), t ∈ [−T, T ]} ≡ {H(x, p) = E, x ≥ 0}.

The functions p = P (t, E) and x = X(t, E) are solutions of the Hamiltonian system

ṗ = −Hx = −vx, ẋ = Hp = p, p|t=0 = 0, x|t=0 = x∗(E). (3.1)

Here, x∗(E) is a solution of the equation V (x) = E, x∗ is a turning point on the curves Λ(E), the time
t, i.e., the coordinate on the curve, is chosen such that t = 0 corresponds to the turning point, and the
time t = ±T corresponds to the point x = 0 on the axis x. Positive values of t are associated with positive
values of P (t, E), negative values are associated with negative values, and P (t, E) = ±

√
E − V (X(t)) in

this case. It is natural to take dt as the measure on the curves Λ(E). The Jacobians of projections of points
on the curve Λ(E) on the axes x and p are respectively equal to J(t, E) = Ẋ ≡ P and J̃ = Ṗ ≡ −Vx. The
Jacobian J(t, E) vanishes at the turning point t = 0, and the Jacobian J̃ �= 0 for all t.

The manifold Λ(E) can be covered by a single chart, and the asymptotic solution of Eq. (1.1) (still
disregarding the Dirichlet condition for x = 0) can be written as the canonical operator Kh

Λ(E) applied to
a function equal to unity by the (single) integral

ψas(x, E) = Kh
Λ(E)1 ≡ C√

2πh

∫ ∞

−∞

e(t)
√

|J̃(t)|
exp

[
i

h

(∫ t

0

P dX + p(x − X(t))
)]∣

∣
∣
∣
t=t(p)

dp, (3.2)

where e(t) is a smooth cutoff function equal to unity on the interval [−T, T ] and to zero outside a neighbor-
hood of this interval, t(p) is a solution of the equation P (t) = p, C is a complex constant, and the canonical
operator ψas is defined up to O(h) and is independent of the choice of the partition of unity e(t). The value
of the spectral parameter E is chosen from the boundary condition ψ(0, E) = 0. A drawback of this formula
is that it is ineffective: in particular, it does not allow obtaining simple formulas for the spectrum of the
original problem. The goal in the further argument is to obtain an effective representation of function (3.2)
in the form of the Airy function with a complicated argument and an amplitude depending on x.

Integral (3.2) can in principle be represented in the form of the Airy function using the approach
proposed in [4], but we believe that the “geometric” approach proposed below turns out to be simpler and
more visual and, in addition, can be used in other situations. Namely, we assume that Λ is a Lagrangian
manifold on the phase plane, dμ is a measure, and A is a function on it. We assume that instead of
the variable x in the configuration space, we choose the variable y = Y (x), this change is nondegenerate,
and ∂Y/∂x > 0 for definiteness. This change induces a canonical change of variables on the phase plane
x → y, p → q: y = Y(x), q = p/Y ′(x). Conversely, x = X (y), p = q/X ′. Because the change of
coordinates is canonical, the Hamiltonian H − E in the new coordinates (denoted by H(q, y)) satisfies the
formula H(q, y, E) = H(P(q, y),X (y)) − E. We show that the change of variables can be chosen such that
H(q, y) = g(y)(q2 + y), where g(y) = G(X (y)) �= 0 is a smooth function. Indeed, we have

H(q, y, E) =
(

∂Y
∂x

)2
q2

2
+ V − E =

V − E

Y

[(
∂Y
∂x

)2 Y
2(V − E)

q2 + y

]

.
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We now choose the function Y from the condition

(
∂Y
∂x

)2 Y
2(V − E)

= 1 ⇐⇒
(

∂Y
∂x

)2

Y = 2(V − E). (3.3)

We supplement this equation with the initial condition Y(x∗) = 0 and integrate it to obtain

Y(x, E) = sgn(x − x∗)
(

3
2

∫ x

x∗

√
|2(V − E)| dx

)2/3

. (3.4)

It is easy to see that the constructed function Y(x, E) is infinitely differentiable and Yx = ∂Y(x, E)/∂x

does not vanish (and naturally does not go to infinity) on any finite interval of the line Rx. This function
thus determines a one-to-one transformation x → y, and

R(x) =
Y(x)

V (x) − E
≡ 2

Y2
x

(3.5)

is also a smooth nonvanishing function. Because the Hamiltonian is

H =
Y

V − E
(q2 + y) ≡ R(q2 + y),

the curve Λ in the coordinates (q, y) is defined by the relation

H = 0 ⇐⇒ q2 + y = 0. (3.6)

Because the function H is zero on the trajectories, the Hamiltonian system in the variables (q, y) becomes

q̇ = − 1
R

, ẏ = 2
q

R
.

If we introduce a new time τ by the formula dτ = dt/R, then this system and its solutions q = Q(τ),
y = Y (τ) take the simplest form (which is naturally consistent with (3.6)):

dq

dτ
= −1,

dy

dτ
= 2q

and
Q = −τ, Y = −τ2. (3.7)

We now construct the Maslov canonical operator [K̃h
Λ(E)A](y) acting on the function A on the curve Λ in

the new coordinate y in the configuration space (coordinates (q, y) in the phase space) and the coordinate
τ on the curve Λ with the measure dτ . Using formula (3.2) in this case with regard to the relation τ = −q,
we obtain

[K̃h
Λ(E)A](y) =

eiπ/4

√
2πh

∫ ∞

−∞
A(τ)e(τ) exp

[
i

h

(
2τ3

3
− τ(y + τ2)

)]∣
∣
∣
∣
τ=−q

dq.

We can now use the properties of the canonical operator with respect to changes of variables. Namely, the
general properties of the canonical operator (see [6], [7], and the appendix) imply the relation

Kh
Λ(E)1 =

√∣
∣
∣
∣
∂Y(x)

∂x

∣
∣
∣
∣

[

K̃h
Λ(E)

√∣
∣
∣
∣
dt

dτ

∣
∣
∣
∣

]

(y)
∣
∣
∣
∣
y=Y(x)

= 4

√
2
R

[K̃h
Λ(E)

√
R](y)|y=Y(x)
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up to terms of higher order in the parameter h (more precisely, up to O(h5/6)). We now note that the
function |R(X (Y (τ)))| under the action of the canonical operator is obtained from the smooth function
|R(X (y))|−1/2 defined in the configuration space. We can therefore interchange it with the canonical
operator and obtain

Kh
Λ(E)1 = 4

√
2|R(x)|[K̃h

Λ(E)1](y)|y=Y(x) =

= c
4
√
|R(x)|√

h

∫ ∞

−∞
e(−q) exp

[
i

h

(
1
3
q3 + Y(x)q

)]

dq,

c = 4
√

2eiπ/4/
√

2π, with formulas (3.3) and (3.5) and the definition of canonical operator taken into account.
The integral in the last expression is equal to 2πh1/3 Ai(Y(x)/h2/3) up to O(h∞), where Ai(y) is the Airy
function. This immediately implies (2.4). This formula gives a formal asymptotic approximation for the
wave function, i.e., an asymptotic approximation that leads to a small discrepancy after its substitution in
the original one-dimensional equation. The proof that (2.4) determines the “true” asymptotic approximation
of the eigenfunction practically repeats the reasoning in [10].

Appendix : Changes of variables in the Maslov canonical operator

We here present several facts in a compact form that are useful for practical calculations [6], [7].
We assume that the change of coordinates x = X (y) ⇐⇒ y = Y(x) is given on the real line x ∈ R

and ∂X/∂y > 0. This change induces the canonical change of variables (p, x) → (q, y), p = q/Xy on
the phase plane R

2
p,x with the coordinates (p, x). We assume that a smooth curve (Lagrangian manifold)

Λ = {p = P (α), x = X(α), α ∈ R}, where α are the coordinates on the curve Λ, is given on R
2
p,x. We also

assume that other coordinates β related to α by the equation α = A(β) ⇐⇒ β = B(α), ∂A/∂β > 0 are
given on Λ. We finally assume that a function A(α) is given on Λ. We use the Maslov canonical operator
on the curve Λ with the central point α0 to define the function ψ = [KΛA(α)](x). We pass from the
coordinates (p, x) on the phase plane to the coordinates (q, y). This transition gives a curve Λ̃ on the phase
plane with the coordinates (q, y). Choosing the coordinate β on Λ̃, we can write Λ̃ = {q = Q(β), y = Y (β)}
and Λ = {p = P (α) ≡ Q(B(α))/Xy(Y (B(α))), x = X(α) ≡ X (Y (B(α)))}. We now construct the Maslov
canonical operator on the curve Λ̃ with the coordinates β assuming that the central point is β0 = B(α0).
We then have

[KΛA(α)](x) =
1

√
Xy(y)

[
KΛ

(√
Aβ(β)A(α(A(β)))

)]
(y)

∣
∣
y=Y(x)

. (A.1)

We assume that a smooth function (symbol) Φ(p, x) and the corresponding pseudodifferential operator

Φ(
2
x,−ih

1

∂/∂x) are given in the phase space. We act with this operator on [KΛA(α)](x) and obtain the
formula of commutation of the pseudodifferential operator and the canonical operator

Φ
(

2
x,−ih

1

∂

∂x

)

[KΛA(α)](x) = [KΛ(Φ|λA(α) + O(h))](x),

where Φ|λ is the restriction of the function Φ to Λ. Of course, the inverse formula also holds, which allows
moving a part of the amplitude A or even the whole amplitude out of the canonical operator. In this case,

if Φ is polynomial in p, then Φ(
2
x,−ih

1

∂/∂x) is a differential operator, and if Φ is independent of p, then
this simply a function. Therefore, if

√
Aβ(β) in (A.1) can be represented as Φ(y), then (A.1) becomes

[KΛA(α)](x) =
Φ(y)

√
Xy(y)

[KΛA(α(A(β)))](y)
∣
∣
y=Y(x)

. (A.2)
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This relation means that we can construct the Maslov canonical operator using the new coordinates q, y in
the phase space, introducing the new coordinates β on the Lagrangian manifold, and then returning to the
coordinates x by formula y = Y(x). All formulas given above also hold in the multidimensional case if the
derivatives Xy(y) and Aβ are respectively replaced with detXy(y) and detAβ(β).
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