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Charge transport is a revealing probe of the quantum properties of materials. Strong interactions
can blur charge carriers resulting in a poorly understood “quantum soup”. Here we study the
conductivity of the Fermi-Hubbard model, a testing ground for strong interaction physics, in a clean
quantum system - ultracold 6Li in a 2D optical lattice. We determine the charge diffusion constant
in our system by measuring the relaxation of an imposed density modulation and modeling its
decay hydrodynamically. The diffusion constant is converted to a resistivity, which exhibits a linear
temperature dependence and exceeds the Mott-Ioffe-Regel limit, two characteristic signatures of a
bad metal. The techniques we develop here may be applied to measurements of other transport
quantities, including the optical conductivity and thermopower.

In conventional materials, charge is carried by quasi-
particles and conductivity is understood as a current of
these charge carriers developed in response to an external
field. For the conductivity to be finite, the charge carri-
ers must be able to relax their momentum through scat-
tering. The central importance of scattering processes
is already apparent in the semiclassical Drude theory,

which predicts σ = ne2

m∗Γ , where Γ is the momentum re-
laxation rate, n is the density, e is an elementary charge,
and m∗ is the quasiparticle mass. More generally, the
Boltzmann kinetic equation in conjunction with Fermi
liquid theory provides a detailed description of transport
in conventional materials, including two trademarks of
resistivity. The first is the Fermi liquid prediction that
the temperature-dependent resistivity ρ(T ) should scale
like T 2 at low temperature [1]. The second, based on the
idea that the mean free path of a quasiparticle cannot be
less than the lattice spacing, is that the resistivity should
not exceed the so called Mott-Ioffe-Regel limit [2, 3].

Strong interactions can modify the above picture in
several ways. First, they may destroy quasiparticles,
leading to a breakdown of Fermi liquid theory. One sig-
nal of this is anomalous scaling of ρ with temperature,
including the linear scaling observed in the strange metal
state of the cuprates [4] and other anomalous scalings in
d- and f- electron materials [5]. Another is the viola-
tion of the Mott-Ioffe-Regel limit, which is observed in a
wide variety of materials [6]. Second, interactions may
also lead to a situation where the momentum relaxation
rate alone does not determine the conductivity. This is
a radical change, as generalizations of the Drude formula
hold for a large class of systems called coherent metals
[7], which include Fermi liquids. A variety of approaches
have been introduced to understand these anomalous be-
haviors, including the notion of hidden Fermi liquids [8],

marginal Fermi liquids [9], proximity to quantum crit-
ical points [10] which has recently led to holographic
approaches [11], and many numerical studies of model
systems, most notably the Hubbard [12] and t − J [13]
models.

Disentangling strong interaction physics from other ef-
fects, such as impurities and electron-phonon coupling, is
difficult in real materials. Cold atom systems are free of
these complications, but transport experiments are chal-
lenging due to the finite and isolated nature of these sys-
tems. Most fermionic charge transport experiments have
focused on either studying mass flow through optically
structured mesoscopic devices [14–17] or bulk transport
in lattice systems [18–22]. Here, we explore bulk trans-
port in a Fermi-Hubbard system by studying charge dif-
fusion, which is a microscopic process closely related to
conductivity. The Nernst-Einstein equation formalizes
the relationship between the two according to σ = χcD,

where D is the diffusion constant and χc =
(
∂n
∂µ

)∣∣∣
T

is

the compressibility. This approach takes advantage of
the contact nature of atomic interactions. In real mate-
rials an electronic charge density inhomogeneity does not
diffuse at long wavelengths but instead excites plasmons,
due to the long-range Coulomb interaction [7].

We realize the 2D Fermi Hubbard model using a de-
generate spin-balanced mixture of two hyperfine ground
states of 6Li in an optical lattice. For details of the prepa-
ration scheme, see [23]. Our lattice beams produce a
harmonic trapping potential, which leads to a varying
atomic density in the trap. To obtain a system with
uniform density, we flatten our trapping potential over
a circular region of diameter 30 sites using a repulsive
potential created with a spatial light modulator. We su-
perimpose an additional sinusoidal potential that varies
slowly along one direction of the lattice with a control-
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FIG. 1. Measuring transport in the Hubbard model. (A) Exemplary single shot fluorescence image of the atomic
density for one spin component. Field of view diameter is ≈ 60 µm. Schematic representation of the setup for generating
optical potentials. Far-off-resonant light is projected onto a digital micromirror device (DMD) and the resulting pattern is
imaged onto the atoms using a high-resolution objective. We project a sinusoidally modulated potential along one direction.
(B) One dimensional cuts along the projected potential. The DMD is used to flatten the trap and project a sinusoidally
modulated potential (leftmost image). The confining potential comes from the optical lattice. After initial preparation, the
sinusoidal potential is suddenly turned off, but the flattening potential is not. (C) Average density of a single spin component,
〈n↑〉, versus time for ≈ 30 images. Initially the system is in thermal equilibrium with a spatially modulated density (leftmost
image). Immediately after the sinusoidal potential is turned off, the system is no longer in equilibrium but the density has not
yet changed (second from left). The density modulation decays with time (third from left) until it is no longer visible (fourth
from left). The central flattened region of the potential is marked by a white ellipse. The field of view is ≈ 75 µm × 75 µm.
(D) Atomic density averaged along the direction orthogonal to the modulation in the central flattened region of the potential.

lable wavelength (Fig. 1A,B). By adiabatically loading
the gas into these potentials, we prepare a Hubbard sys-
tem in thermal equilibrium with a small amplitude (typ-
ically 10%) sinusoidal density modulation. Next, we sud-
denly turn off the added sinusoidal potential and observe
the decay of the density pattern versus time (Fig. 1C,D),
always keeping the optical lattice at fixed intensity. We
measure the density of a single spin component, 〈n↑〉 us-
ing techniques described in [23], giving us access to the
total density through 〈n〉 = 2 〈n↑〉.

We work at average total density 〈n〉 = 0.82(2). This
value is close to a conjectured quantum critical point in
the Hubbard model [24]. Our lattice depth is 6.9(2) Er,
where ER/h = 14.66 kHz is the lattice recoil, leading to a
tunneling rate of t/h = 925(10) Hz. We adjust the scat-
tering length, as = 1070(10)ao, by working at a magnetic
bias field of 616.0(2) G, in the vicinity of the Feshbach
resonance centered near 690 G. These parameters lead
to an on-site interaction to tunneling ratio U/t = 7.4(8),

which is chosen in the strong-coupling regime and near
the value that maximizes antiferromagnetic correlations
at half-filling [25].

We observe the decay of the initial sinusoidal density
pattern over a period of a few tunneling times. The short
timescale ensures that the observed dynamics are not af-
fected by the inhomogeneous density outside of the cen-
tral flattened region of the trap. To obtain better statis-
tics, we apply the sinusoidal modulation along one dimen-
sion and average along the other direction (Fig. 1A,C).
We fit the average modulation profile to a sinusoid, where
the phase and frequency are fixed by the initial pattern
(Fig. 2A). We plot the amplitude of the sinusoid versus
time to quantify the decay of the density modulation, as
in Fig. 2B.

We study the decay of the sinusoidal density pattern
versus the wavelength of the modulation [26], and find
that it becomes consistent with diffusive transport at long
wavelengths. Diffusion predicts that the amplitude of a
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FIG. 2. Decay of modulation pattern versus time. (A) Cloud profiles averaged along the direction of the modulation
(points) and sinusoidal fits (lines) for several different times and modulation wavelength 8.1 sites. The average value obtained
from the sine fit has been subtracted. (B) Sinusoid fit amplitudes (points) versus decay time for modulation periods 8.1 (blue),
11.8 (green), 15.6 (yellow), and 18.7 (red) sites. Each curve is scaled by the initial modulation amplitude. Lines are obtained
from a simultaneous fit of the diffusion constant, D, and momentum relaxation rate, Γ, to all wavelengths and times. Different
shaped points for period 8.1 correspond to different panels in A, 0 h̄/t (square), 0.6 h̄/t (triangle), 1.7 h̄/t (pentagon), and
3.8 h̄/t (diamond). Error bars sem.

density pattern at wave vector k = 2π/λ will decay ex-
ponentially with time constant τ = 1/Dk2, where D is
the diffusion constant. We observe exponential decaying
amplitudes with diffusive scaling for wavelengths longer
than 15 sites. However, the decay curves are flat at early
times, showing clear deviation from exponential decay.
For short wavelengths, we observe deviations from dif-
fusive behavior in the form of underdamped oscillations,
which can be understood as the damped limit of sound
waves. Both of these effects are related to the fact that
it takes a finite amount of time to establish a particle
current. This inertial effect is not described by the dif-
fusion equation. To unify the description of modulation
decay at all wavelengths, we developed a hydrodynamic
description which accounts for conservation of density
and a finite momentum (or current) relaxation rate [27].
This approach leads to a differential equation for the den-

sity decay,

∂2
t n+ Γ∂tn+ ΓDk2n = 0,

where Γ is the momentum-relaxation rate and D is the
diffusion constant. To determine these two parameters
from our data at a fixed temperature, we simultaneously
fit the amplitude as a function of time for all wavelengths
with a common diffusion constant D and momentum re-
laxation rate Γ. An example of such a fit is shown in
Fig. 2B. Our model neglects possible coupling between
density and energy. We justify this approximation based
on the empirical fact that our simple model fits the data
and that we have not been able to detect any measur-
able temperature modulation in the gas [27]. In addition,
theoretical work suggests that the thermopower (Seebeck
coefficient) is negligible near our doping [13, 28].

We study the variation of the hydrodynamic param-
eters versus temperature by controlled heating of our
cloud. After initial preparation of the cloud, we hold
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FIG. 3. Hydrodynamic model parameters. (A) Exper-
imental diffusion constant, D, versus temperature (red) and
Mott-Ioffe-Regel bound (grey). (Inset) Results for the mo-
mentum relaxation rate, Γ, including experimental data (yel-
low), single-site DMFT results for 〈n〉 = 0.825 and U/t = 7.5
(green), and FTLM results on a 16-site cluster for 〈n〉 =
0.8 − 0.85 and U/t = 7.5 (blue band). (B) Results for the
charge compressibility, χc. Experimental results (red points),
FTLM (blue band), DQMC at 〈n〉 = 0.83 and U/t = 7.5
(grey points), single-site DMFT at 〈n〉 = 0.825 and U/t = 7.5
(green points), cellular DMFT (purple squares), and the high-
temperature limit 1/T scaling (black dashed line). Exper-
imental error bars sem. For an explanation of the DMFT
error bars, see [27].

the atoms in the trap or modulate the lattice amplitude
for a controlled time to heat the system. To determine
the temperature of the cloud after the system has equili-
brated, we measure the singles density or local moment,
〈ns〉 = 〈n↑ + n↓ − 2n↑n↓〉, and the correlations between
spin-up atoms C↑(d) = 4 (〈ni+d,↑ni↑〉 − 〈ni+d,↑〉 〈ni↑〉),
where i = (ix, iy). We compare these quantities to
determinantal quantum Monte Carlo (DQMC) simula-

tions to extract the temperature [27]. For temperatures
at the low end of the range we can access, between
0.3 < T/t < 1, the density correlations are a sensitive
thermometer. At hotter temperature the singles den-
sity becomes a better thermometer. We have compared
the temperature of the gas before switching off the po-
tential modulation and after the density modulation has
decayed, and find no measurable increase in the temper-
ature of the gas.

We find that the diffusion constant, D, increases
rapidly with decreasing temperature as shown in Fig. 3A.
At high temperatures, D is expected to saturate, even-
tually approaching an infinite temperature limiting value
[29]. As the temperature is lowered, Pauli blocking closes
scattering channels, leading to an increased rate of dif-
fusion. The Mott-Ioffe-Regel limit, which is a lower
bound on the mean free path of a quasiparticle system,
also provides a lower bound on the diffusion constant,
D >∼ ta2/h̄. Our measured diffusion constants approach
the MIR limit at high temperatures, but do not violate
it. Due to the difficulty of measuring diffusion constants
in materials, a direct test of the MIR limit in the strict
mean-free-path sense has not been performed in real bad-
metals. The diffusion constant is not directly accessible
in exact theory as it requires working in the limit λ→∞
[27], and exact techniques such as diagonalization of finite
systems and DQMC are limited to small system sizes.
Even determining the infinite temperature limiting value
is a non-trivial quantum dynamics problem [30, 31].

In a clean system like ours, momentum relaxation can
only occur due to umklapp scattering, where the net mo-
mentum is not conserved in a collision but changes by
a reciprocal lattice vector. We find that the momentum
relaxation is strong at our interaction, leading to oscil-
lations that are slightly underdamped for the shortest
modulation wavelengths, and overdamped for the longer
wavelengths. In this regime, our model is more sensitive
to D than to Γ, as Γ drops out of the model entirely
in the overdamped limit. We find the momentum relax-
ation rate, Γ, increases weakly with increasing tempera-
ture (Fig. 3, Inset). This trend may again be understood
as Pauli-blocking suppressing momentum relaxation at
low temperatures and becoming less important at higher
temperatures. At the largest temperatures (T/t >∼ 4) we
reach in this experiment Γ is difficult to extract because
the modulation decay oscillations are nearly overdamped
for all measured modulation periods. We compare the
experimental Γ to results from finite-temperature Lanc-
zos method (FTLM) and dynamical mean-field theory
(DMFT) simulations by estimating the momentum re-
laxation rate as the half-width half-max of the Drude
peak in the optical conductivity. The optical conduc-
tivity also has an additional peak at ω ∼ U , but this
does not affect Γ significantly [27]. Our experimental Γ
agrees reasonably with the DMFT results, but exceeds
the FTLM results by up to a factor of two. FTLM is



5

an exact technique, and expected to give correct results
at high temperature. One possible explanation for the
discrepancy is that Γ is sensitive to the amplitude of the
density modulation. To test this, we measured Γ and D
versus modulation amplitude [27]. We found D is insen-
sitive to the amplitude in the range explored. Γ shows
some amplitude dependence but, due to the large error
bars we can not conclusively say if this is the source of
the discrepancy between experiment and FTLM.

We determine the charge compressibility in a separate
experiment by measuring the variation of total density
versus position in a harmonic trap and converting the
position to chemical potential in the local density ap-
proximation [27, 32, 33]. The measured compressibil-
ity increases with decreasing temperature (Fig. 3B). For
our hottest experimental temperatures, χc approaches
n(1− n/2)/T , as expected in the high temperature limit
[29]. At very low temperatures χc is expected to sat-
urate, but we find no evidence of saturation down to
T/t = 0.3. We compare our experimental results with
DQMC, FTLM, and DMFT results. The DQMC and
FTLM compressibilities agree well with the experimental
data and do not saturate at low temperatures. In con-
trast, the single-site DMFT compressibility saturates at
T/t ≈ 1. The increasing compressibility below this tem-
perature may be associated with short-range correlations
[34], which are not accounted for by single-site DMFT.
Cellular DMFT results using a 2×2 cluster agree with the
DQMC compressibility, supporting this interpretation.

We use the Nernst-Einstein relation to determine the
conductivity from the measured diffusion constant and
charge compressibility (Fig. 4A). We examine the tem-
perature dependence of the resistivity ρ = 1/σ in Fig. 4B,
and observe that it rises without limit, showing no sign
of saturation. We estimate the MIR limit for resistivity,

ρ < ρMIR ≈
√

2π
n (h̄), and find our resistivity violates this

bound for temperatures above T/t ∼ 1.3. This behavior
is similar to that observed in bad metals at high tempera-
tures [6]. In this case, the violation of the MIR resistivity
bound is not associated with the mean free path becom-
ing shorter than the lattice spacing but rather with the
temperature dependence of the compressibility [34]. We
observe ρ exceeds the MIR limit near the Brinkman-Rice
temperature scale, defined by TBR = (1 − n)W , where
W = 8t is the bandwidth. Similar violation of the MIR
limit at TBR has been observed in DMFT studies [35, 36].
The Brinkman-Rice scale is an estimate of the degener-
acy temperature of the quasiparticles in the doped Mott
insulator.

To further elucidate the temperature dependence of ρ,
we fit our results to the form ρ(T ) = ρo+AT +BT 2. We
find the temperature dependence is linear to good ap-
proximation as we obtain ρo = 1.1(1)h̄, A = 1.55(15) h̄t ,

and B = 0.03(3) h̄t2 . Alternatively, a power law fit to
the form ρ(T ) = ρo + (CT )α yields ρo = 1.2(2)h̄, C =

1.4(2) h̄t , and α = 1.1(1). Similar fits show the inverse
diffusion constant 1/D scales with α = 0.6(1) and the
inverse charge compressibility scales with α = 0.85(20).
In our temperature range, the linear resistivity is a com-
bined result of the temperature dependence of the diffu-
sivity and compressibility, both of which behave in a non-
trivial way. This behavior should be contrasted with the
high-temperature regime, T �W , where D saturates to
a limiting value and the resistivity inherits its temper-
ature dependence from the compressibility, which scales
as χc ∝ 1/T [29]. It should also be contrasted with the
low-temperature regime usually considered in condensed
matter where the compressibility has saturated and the
resistivity inherits its temperature dependence from the
diffusion constant.

At our hotter experimental temperatures we compare
the measured resistivity with FTLM, which is an exact
technique, and find reasonable agreement (Fig. 4). The
experimental resistivity is systematically smaller than the
FTLM calculation but within error bars. This may be
a result of the uncertainty in determining U/t. At our
coldest experimental temperatures, FTLM suffers from
finite size effects which become relevant as correlation
lengths approach the cluster size. For the 4× 4 site clus-
ter considered here, these effects limit FTLM resistivity
calculations to T/t >∼ 1.

Because our experiment explores low temperatures
which are inaccessible to FTLM, we also compare with an
approximate technique, single-site DMFT [37] (Fig. 4).
We find the DMFT tends to overestimate the experi-
mental resistivity at high temperatures. At our hottest
experimental temperatures, the DMFT resistivity is lin-
ear with a positive zero-temperature intercept. This lin-
ear scaling crosses over to a second linear scaling with
a negative zero-temperature intercept around T/t = 2.
This second linear region continues down to about T/t =
0.8 where the resistivity acquires a significant quadratic
component. These regimes coincide with two different
regimes observed in the DMFT compressibility (Fig. 3B).
Previous DMFT studies at stronger interaction strengths
have also observed these two linear regimes at interme-
diate temperatures, finding evidence for resilient quasi-
particles in the lower temperature regime [35, 36]. We do
not observe the predicted change of slope in the resistivity
expected near T/t = 2 in either the experimental data
(within uncertainties) or the FTLM results. This sug-
gests a need for comparison between more refined DMFT
techniques and exact techniques in the regime where this
is possible.

Our experimental study of conductivity in the 2D
Fermi-Hubbard model reveals linear scaling of the resis-
tivity in the intermediate temperature regime and vio-
lation of the Mott-Ioffe-Regel resistivity bound at high
temperatures through observations of previously unex-
plored Hubbard model hydrodynamics. We compare
these results to state-of-the-art numerical techniques, in-
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cluding an exact technique (FTLM) in the regime where
this converges, and an approximate technique (DMFT)
at lower temperatures. This experiment paves the way
for future studies of the optical conductivity and ther-
mopower, which can be examined near equilibrium using
a similar approach. Both of these quantities might be
expected to show anomalous scalings, as in the cuprates
[4, 9]. In line with theoretical work such as [35, 36],
searching for direct signatures of resilient quasiparticles
using spectroscopic techniques [38] would also be very
interesting. Further experimental studies will also pro-
vide important benchmarks for approximate theoretical
methods, as the combination of low temperature, finite-
doping, and dynamics is challenging for exact techniques.
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SUPPLEMENTARY MATERIAL

Methods

We work with an equal spin mixture of 6Li hyperfine ground states |1〉 and |3〉, numbered up from the lowest
energy state, which we label as spin up, |↑〉, and spin down, |↓〉, respectively. Our system is well described by the
Fermi-Hubbard model with the Hamiltonian,

H− µN = −t
∑
〈i,j〉,σ

c†i,σcj,σ + U
∑
i

ni,↑ni,↓ − µ
∑
i,σ

ni,σ, (S1)

where c†i,σ is the creation operator for a fermion on site i = (ix, iy) with spin σ ∈ {↑, ↓}, ni,σ = c†i,σci,σ, t is the hopping
rate, U is the on-site interaction, and µ is the chemical potential.

The experimental setup and basic parameters are described in detail in the supplement of ref. [23]. After preparing
a 2D degenerate Fermi gas, we simultaneously load the optical lattice to a final depth of 6.9(2) Er and the sinusoidally
modulated potential with a 50 ms intensity ramp. We then turn off the sinusoidal modulation in approximately 10 µs
using the spatial light modulator and observe the decay of the density pattern.

We work at a field of 616.0(2) G. At this field and lattice depth, we find U/t = 7.4(8) from a band structure
calculation, which yields t = 925(10) Hz, and spectroscopic measurement of U = 7.0(7) kHz.

To prepare clouds of variable temperature, we use two different protocols. To reach temperatures in the range
T/t = 0.3− 2, we hold the cloud in the final trapping configuration for variable time. The gas heats due to technical
noise at a rate of 3t per second. To reach even hotter temperatures, we modulate the lattice depth at a frequency of
2 kHz. To avoid losses, we perform this modulation at 595 G where the interaction is weaker. Finally, we ramp the
field to its final value, turn on the DMD potential, and follow the same protocol as before.

For low temperatures, our lattice provides all of the radial confinement. For temperatures hotter than T/t ≈ 3, the
compressibility of the gas is reduced and we must provide extra confinement to reach appropriate filling. Therefore
we increase our trapping frequency using a 1064 nm beam.

To image the density of a single spin state, we freeze the motion of the lattice by ramping the lattice depth to
60 ER in approximately 100 µs. We checked that this ramp effectively freezes the atomic motion by comparing the
measured amplitude modulation without turning off the DMD potential and with turning off the DMD potential
and then immediately ramping the lattice depth for our shortest wavelength at our lowest temperatures (where the
modulation decays fastest). The modulation depths agreed, indicating that the atomic motion is effectively frozen
well before the lattice reaches 60 ER.

DMD calibration

We engineer our deconfining and sinusoidally modulated potential using up to 15 mW of 650 nm coherent light
derived from a tapered amplifier fed by a diode laser. Our spatial light modulator is a DLP Discovery 4100 with a
DLP7000 digital micromirror device (DMD) in an imaging plane configuration. We image this light onto our atoms
using two stages of demagnification. First, we demagnify the DMD image by a factor of 5, then we combine the
DMD projection path with our imaging path on a dichroic mirror. Our imaging system demagnifies the light by an
additional factor of 30. A single DMD micromirror has a pitch of 13.68 µm, so approximately 8× 8 mirrors determine
the potential at a single lattice site. Our imaging system spatially filters the binary image, resulting in a smooth
potential at the atoms.

Before each experiment, we load a series of two images into the DMD memory. The first is the sum of a deconfining
Gaussian potential for flattening the atomic density in the central part of the cloud with a sinusoidal modulation
pattern. The second is only the deconfining potential. The DMD displays these images successively after receiving a
trigger. We use the ALP-4.2 API “uninterruptible binary mode” to keep the image on the DMD until the next trigger.
The DMD transitions between images in approximately 10 µs. During this time, all mirrors go to the off state, and
then the mirrors needed for the next image are turned to the on state. The motion of the mirrors is underdamped,
and we observe the mirrors bouncing by measuring diffracted light on a photodiode.

We produce binary images from continuous potential profiles using the Floyd-Steinberg error diffusion algorithm
[39].
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Hydrodynamic model

Hydrodynamics applies at long wavelengths and low frequencies when there are few conserved quantities, typically
only mass, momentum, and energy. In most real materials, electrons cannot be treated hydrodynamically because of
couplings to phonons and lattice defects which can absorb energy or momentum. For strongly interacting systems
with no external couplings, hydrodynamics is applicable. In lattice systems the momentum is not conserved due to
umklapp scattering, and only energy and particle number are conserved. In systems with weak enough umklapp
(momentum relaxation) rate, we can also write down a “momentum conservation” equation with this relaxation rate.
In the limit of strong momentum relaxation rate, this equation has no content. For a detailed discussion of when
strongly interacting systems can be treated hydrodynamically, see [11].

The simplest hydrodynamic theory we can write down accounts for conservation of mass, weak relaxation of mo-
mentum, and assumes that energy is decoupled from these two. The two equations describing this are

∂tn(r, t) = −∇ · J(r, t) (S2)

∂tJ(r, t) = −Γ (D∇n(r, t) + J(r, t)) , (S3)

where the first equation is the number conservation equation. The second equation can be viewed several ways. In
one guise, it is the simplest differential equation that reduces to the diffusion equation when ∂tJ = 0. In another, it is
the momentum “conservation” equation (Navier-Stokes equation) with a weak momentum relaxation rate Γ, and zero
viscosity where we have neglected terms of higher order (e.g. terms that go like velocity squared) in linear response.

We spatially Fourier transform these equations and eliminate J to find,

∂2
t nk + Γ∂tnk + ΓDk2nk = 0, (S4)

which is the equation that appears in the main text.
In the overdamped limit, Γ�

√
ΓDk, we recover diffusive behavior nk(t) ∝ e−Dk2t for finite k. In the underdamped

limit, we have sound-waves whose amplitude decays at rate Γ/2. If we take the limit k = 0, the current decays
exponentially at rate Γ, identifying this as the momentum relaxation rate. The sound-wave and current relaxation
rates differ because the sound wave carries both kinetic and potential energy, shared equally, whereas the uniform
(k = 0) current excitation carries only kinetic energy. As only the kinetic energy is damped, the sound-wave loses
energy at half of the rate of the uniform current excitation.

Linear response theory

To connect our hydrodynamic model for the density response of our Fermi-Hubbard system to quantities which can
be calculated in theory, we consider the effect of perturbing our system with a time and spatial dependent potential,
vi(t) = F (t) sin(k · ri). In this experiment we suppose F is turned on slowly starting at t = −∞ and switched off
suddenly at t = 0, leading to F (t) = eηtθ(−t), where η parametrizes the slow turn on. If we suppose that Ho is the
Fermi-Hubbard Hamiltonian in the absence of this, perturbation, then the full Hamiltonian is H(t) = Ho+H ′(t). We
can write the perturbation term as

H ′(t) = −
∑
i

vi(t)ni (S5)

= −
∑
k

vk(t)n−k, (S6)

where ri is the position of site i and nk is the spatial fourier transform of the density.
In linear response theory we think of v as the force which is conjugate to the density response. Given a Hamiltonian

of the form in eq. S6, we can write the density reaction in terms of a response function Φ

〈δnk(t)〉 =

∫ t

−∞
dt′ Φ(k, t− t′)vk(t′) (S7)

Φ(k, t− t′) = − i
h̄

Θ(t− t′) 〈[nk(t), n−k(t′)]〉 , (S8)

where we used translational invariance of the unperturbed system, which ensures that only vk contributes to the
density response at k. This equation says that the response of the density to the applied field is given by the density
correlations, encapsulated in the retarded Green’s function Φ.
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Fourier transforming eq. S7 in time and space leads to,

〈δnk(ω)〉 = χ(k, ω)vk(ω) (S9)

χ(k, ω) =

∫ ∞
−∞

dt′ eiωt
′
Φ(k, t′) (S10)

= − i
h̄

∫ ∞
0

dt′ ei(ω+iη)t′Θ(t′) 〈[nk(t′), n−k(0)]〉 , (S11)

where we added an small positive imaginary part, η, to the frequency so that the integral converges. We refer to
χ(k, ω) as the density response function. χ is analytic in the upper-half plane, its real part is symmetric in ω, and its
imaginary part is antisymmetric in ω.

Nernst-Einstein equation

In our experiment we have direct access to χ(k, ω) because we control the potential which is the generalized force
that couples to the density. We want to measure the charge conductivity, σ, which is the response function for the
current. The current is conjugate to the vector potential, which we do not control in this experiment. Fortunately,
there is a general linear response formula which connects the density response function with the conductivity,

σ′(ω) = lim
k→0

ω

k2
χ′′(k, ω), (S12)

where σ′(ω) is the real part of the conductivity and χ′′(k, ω) is the imaginary part of the density response function.
To apply this expression, we need to know the form of χ. This is provided by our hydrodynamic model. Adding a

force term to eq. S4 and using the definition of the response function from eq. S9 leads to the expression

χ(k, ω) =
χc

1− iω
k2D −

ω2

k2DΓ

, (S13)

where χc is the charge compressibility, D is the diffusion constant, and Γ is the momentum relaxation rate [40]. Using
this expression for χ in eq. S12 and taking the limit ω → 0 leads to the Nernst-Einstein relationship for the DC
conductivity,

σ = χcD. (S14)

The Nernst-Einstein relation is a special case of eq. S12 which holds if the density has a diffusive mode at long
times and large wave vectors. The Nernst-Einstein relation does not require the exact form for χ in eq. S13. We can,
for example, add k2-dependence to D or Γ.

Linearity

To assess the possibility of non-linear effects which are not included in our hydrodynamic model, we varied the initial
amplitude of the density modulation at a fixed wavevector. For each curve, we fit a value for Γ and D, to test how the
fitted model parameters change with amplitude. The amplitude versus time curves are shown in Fig. S1A for λ ≈ 12
sites and temperature T/t = 0.4(1). For each initial amplitude, we fit values for Γ and D using our hydrodynamic
model. The fit results are shown in Fig. S1B,C. We find that the apparent Γ increases with increasing amplitude, and
the apparent D is weakly effected by increasing amplitude. To establish an upper bound on the size of this effect, we
perform a linear fit to the hydrodynamic parameters versus amplitude and extrapolate a ‘zero-amplitude’ value. We
normalize the curve fit parameters by these values in Fig. S1B,C. Based on the statistical error in our fit lines, we
find that at a typical experimental amplitude of δn↑ = 0.07, Γ is increased by a factor of 1.4(4) and D by a factor of
1.06(10). Our extracted values for Γ appear to increase with amplitude, but the statistical error bar is quite large.
This is due to the weak dependence of our model on the value of Γ. In the main text, we are able to obtain smaller
error bars on Γ by simultaneously fitting decay curves at different modulation wavelengths. That approach is not
feasible here because the degree of linearity may depend on modulation wavelength.

A related but distinct type of non-linearity is dependence of the charge compressibility on density. As the total
density approaches half-filling, the compressibility decreases. Therefore, the chemical potential modulation we apply
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tends to decrease the density at the minimum chemical potential values more than it increases the density at the
maximum chemical potential values. This can lead to the density modulation deviating from a sine wave. At T/t = 0.4,
the compressibility decreases by ≈ 20 % between 〈n〉 = 0.8−0.9. At higher temperature, T/t = 4, the compressibility
decreases by ≈ 2 %. We resolve this effect as a shift in the average density between the initial density modulation
pattern and the long-time equilibrium density. This effect is largest at the coldest temperatures, and is at most
δn↑ ≈ 0.03, which is comparable to the uncertainty in our density.
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FIG. S1. Linearity of the density response. (A) Modulation amplitude versus decay time curves for selected initial
amplitudes, δn↑(t = 0) = 0.12 (red), 0.08 (blue), 0.055 (green), and 0.035 purple. We see a collapse after scaling the curves to
the initial modulation amplitude, δn↑(0), obtained from a fit. (B) Variation in fit parameter Γ versus amplitude for the curves
shown in a (red) and a linear fit to the results (dashed line). Γ is normalized by the extrapolated zero-amplitude value, Γo. (C)
Variation in fit parameter D versus amplitude for the curves shown in a (red) and a linear fit to these results (dashed line). D
is normalized by the extrapolated zero-amplitude value, Do. Error bars sem.

Temperature fitting

We determine the temperature of our clouds by fitting to Determinantal Quantum Monte Carlo (DQMC) results.
Spin resolved density 〈n↑〉 , 〈n↓〉, correlation functions 〈n↑(r)n↑(0)〉c, and singles density 〈ns〉 data is generated at
U/t = 8 on a grid of chemical potentials and temperatures. The total density and correlation functions are then
interpolated on a regular grid of density and temperature points.

We use these interpolating functions to simultaneously fit the singles density and the single-spin component corre-
lations versus the total density. The only free parameter is the temperature. We apply an imaging fidelity correction
of f = 0.97 based on our measured hopping and loss rates during imaging. An example fit is shown in Fig. S2.

Compressibility

We measure the compressibility of our gas in a harmonic trap with no additional potential provided by the DMD.
For low temperatures, the lattice beams provide all the radial confinement, leading to ω̄ = (2π)185(10) Hz. For hotter
temperatures, we use a circular beam to provide extra confinement, leading to ω̄ = (2π)280(10) Hz.

We determine the harmonic trapping frequencies by fitting the density and nearest-neighbor density correlation
profiles of a weakly interacting gas obtained at a field of 568.0(1) G, near the noninteracting point of the |1〉 − |3〉
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FIG. S2. Temperature fitting. (A) Experimental density versus singles density (points) and DQMC results (line). The
DQMC results have been corrected for the experimental detection efficiency. This fit yields T/t = 0.5(1). (B) Spin-up spin-up
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mixture, to the expected values for a non-interacting Fermi gas. These are determined from

n↑ =
1

N

∑
k

f(εk − µ, T ) (S15)

1

4
C↑(d) = − 1

N2

∣∣∣∣∣∑
k

f(εk − µ, T )e−ik·d

∣∣∣∣∣
2

, (S16)

where f(ε, T ) is the Fermi function, and k runs over the N allowed lattice momenta. Distance and energy scales
are measured in units of the lattice constant and hopping respectively. We assume a harmonic trapping potential,
µ(r) = µo − 1

2mω
2r2 and fit our cloud profiles with µo, ω, and T as free parameters.

After determining the trapping frequency, we compute the compressibility according to,(
∂n

∂µ

)∣∣∣∣
T

= − 1

mω2

(
1

r

∂n

∂r

)
. (S17)
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Error bars sem.

Our cloud is slightly elliptic, with an aspect ratio of ωx/ωy ≈ 1.2. Prior to determining the trapping frequency we

perform an azimuthal average, which effectively rescales our coordinates (x, y)→
(
x
√

ωx

ωy
, y
√

ωy

ωx

)
. We measure r in

these coordinates above, therefore our fitting procedures yields ω̄ =
√
ωxωy.

At high temperatures, the compressibility is expected to scale as 1/T with Tχc(T ) = n(1− n/2), for finite U [29].
We plot the compressibility times the temperature, Tχc(T ) in Fig. S3. Tχc has not yet saturated in the temperature
range considered here. We expect that saturation occurs at temperatures much hotter than the bandwidth, T � 8t.

Thermoelectric effects

We prepare our sample in thermal equilibrium, therefore there are initially no thermal gradients. However, thermal
gradients may be generated during the subsequent dynamics. To check this possibility, we looked at a wave vector
with underdamped oscillations at our lowest temperature. We measured nearest-neighbor correlations, C↑(0, 1), at
the time where the amplitude first crosses zero. Here the density is flat, and any spatial variations in the correlator
must be due to thermal gradients. We did not find any evidence for generation of thermal gradients.

Thermoelectric coupling is primarily due to two effects. The first is thermodynamic, and is described by the

thermoelectric susceptibility, ζ = − ∂2Ω
∂µ∂T = ∂n

∂T

∣∣
µ

= ∂S
∂µ

∣∣∣
T

, where Ω = ε−ST −nµ is the grand potential and S is the

entropy. This is a static quantity, and can be computed, e.g., by FTLM. In the whole temperature regime accessible
by FTLM we find |ζ| <∼ 0.015t−1. This is small in the sense that generating a density gradient of 0.01a−1 requires a
large temperature gradient of ∇T ≈ 0.8ta−1.

The Seebeck coefficient is more difficult to calculate. Using the Mott-Heikes approximation [28, 41] or the Kelvin
formula [42–44] gives a small Seebeck coefficient due to a maximum of entropy which occurs close to 〈n〉 ≈ 0.83. This
is in agreement with previous observations using different models or techniques [13, 28]. A detailed description of
particle diffusion in the presence of thermoelectric effects can be found in Ref. [7]. In the bad-metallic or high-T regime
where the Kelvin formula is a good approximation for the Seebeck coefficient [42, 44], the effect of thermoelectric
coupling on particle diffusion is negligible.
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FIG. S4. Optical conductivity Real part of the optical conductivity σ(ω) for several T , U = 7.5t and n = 0.83 as calculated
with the FTLM on a 16 site cluster. With dashed black line a Lorentzian fit in the low frequency regime (0 < ω < 2.5t/h̄) is
shown.

Determinantal quantum Monte Carlo (DQMC)

We perform DQMC calculations using the Quantum Electron Simulation Toolbox (QUEST) [59] on an 8 × 8
homogeneous square lattice. The inverse temperature is split into L = 40 imaginary time slices, where L∆τ = β. We
perform 5000 warm up sweeps, 50000 measurement sweeps and between 100 and 1000 passes to accumulate adequate
statistics. We find that the sign problem at 〈n〉 = 0.83 and U/t = 7.5 becomes important below T/t = 0.5. Reliable
results in the range T/t = 0.3− 0.5 can be obtained with additional statistics. Below T/t = 0.27, the sign approaches
zero.

Finite-temperature Lanczos method (FTLM)

The finite-temperature Lanczos method (FTLM) [13, 45] is an exact diagonalization approach on small clusters
(4×4 in our case). The method employs Lanczos diagonalization, which yields exact extremal eigenstates and effective
or approximate eigenstates in the middle of the many-body spectrum. These states are together with the aid of the
sampling over random initial vector used to calculate finite-T properties. Results have unwelcome finite size effects,
which are large below some temperature Tfs, but are negligible at T > Tfs due to shorter correlation lengths at high
T . To reduce the finite size effects we employ averaging over twisted boundary condition [46] (with NΘ = 64 different
boundary conditions) and summation over all symmetry sectors, e.g., we use grand canonical ensemble. We do not
show FTLM results for T < Tfs, which are potentially affected by finite size effects.

Dynamical quantities like the optical conductivity σ(ω) are calculated as correlation functions via evaluation of
matrix elements of, e.g., the current operator, between the effective many body eigenstates, which are in this case
obtained from two separate Lanczos procedures [13, 34]. The spectra, represented as a sum of weighted delta functions
δ(ω−ωi), needs to be further smoothed or broadened by η. Due to the exponential number of many body states and
a very dense spectra, particularly at elevated T , the broadening can be relatively small and in our case η ∼ 0.1t� Γ.

Optical conductivity (Fig. S4) for our parameters exhibit a Drude peak at low ω and separated Hubbard band at
ω ∼ U . We fit the low-ω Drude peak to Lorentzian σD(ω) = σ/(1 + (ω/Γ)2), and extract the momentum relaxation
rate Γ presented in the main text.
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Dynamical mean-field theory (DMFT)

We describe the dynamical mean-field theory self-consistency loop and then the various impurity solvers used in
this paper.

Self-consistency

Dynamical mean-field theory is exact in infinite dimension [47]. In finite dimension, it approximates the interacting
problem by solving a self-consistent quantum impurity problem. A quantum impurity problem is the problem of a
single site connected to an infinite bath of non-interacting electrons. The self-consistency is achieved by taking the
same self-energy for both the quantum impurity problem and the lattice Green’s function, and then requiring that the
lattice Green’s function projected on a single site equals the impurity Green’s function. This takes into account both
the localized physics of the atom and the itinerant character of the metal, in competition. When spatial correlations
become important in low dimension, a cluster replaces the single site. The latter is known as Cellular Dynamical
Mean-Field Theory (CDMFT) [48].

We describe the CDMFT procedure. Single site DMFT is a special case where the cluster is replaced by a single
site. For the Hubbard Hamiltonian, defined in eq. S1, we write formally an effective action containing an hybridization
function ∆̂(τ − τ ′) that describes the degrees of freedom outside the cluster (the bath) as a time-dependent hopping
within the cluster (which is easily pictured from a Feynman path integral point of view),

Seff =

∫ β

0

dτdτ ′Ψ†d(τ)
[
(∂/∂τ + µ− t̂)δ(τ − τ ′)− ∆̂(τ − τ ′)

]
Ψd(τ

′) + U
∑
µ

∫ β

0

dτnµ↑nµ↓. (S18)

Hats denote matrices in the cluster degrees of freedom labeled by the greek letters µ, ν. Here, t̂ is the hopping
of the original Hamiltonian within the cluster. For the case of a 2 × 2 plaquette, the spinor is defined by Ψ†d ≡
(d†1↑, . . . , d

†
4↑, d

†
1↓, . . . , d

†
4↓). Physically, this action corresponds to a cluster embedded in a self-consistently determined

medium.
Given the effective action with a starting guess for ∆̂(τ − τ ′), the cluster propagator Ĝc is solved with three

methods: Two variants of continuous-time quantum Monte Carlo, and exact diagonalization, on which we comment
further below. Once the cluster Green’s function is obtained, we extract the cluster self energy from Σ̂c = Ĝ−1

0 − Ĝ−1
c

where G−1
0 is the quantity in square brackets in the quadratic part of the action, while Gµν,σ ≡ −〈Tdµσ(τ)d†νσ(0)〉 is

the imaginary-time-ordered Green’s function. Using the self-consistency condition in Matsubara frequency,

iωn + µ− t̂− ∆̂(iωn) =

[
Nc

(2π)2

∫
dk̃ Ĝ(k̃, iωn)

]−1

+ Σ̂c(iωn) (S19)

with

Ĝ(k̃, iωn) =
[
iωn + µ− t̂(k̃)− Σ̂c(iωn)

]−1

, (S20)

we recompute the hybridization function ∆̂(iωn) and iterate till convergence. Here t̂(k̃) is the Fourier transform of

the superlattice hopping matrix, Nc is the number of sites within the cluster and the integral over k̃ is performed over
the reduced Brillouin zone of the superlattice.

Impurity solvers

The continuous-time quantum Monte Carlo solvers sample observables with a Markov chain defined in the space of
Feynman diagrams of all orders. In the continuous-time auxiliary field method (CT-AUX) [49], the action is expanded
in powers of the Hubbard interaction. This approach works better when U is less than the bandwidth. Expansion in
powers of the hybridization function generates the so-called CT-HYB solver [50–52], which works better at values of
U larger than the bandwidth [53]. For CT-HYB, we use a program that contains several improvements for speed [54].
The results are obtained from an average over the last 20 converged iterations and typically between 108 and 3× 109

Monte Carlo updates. High frequency tails are usually of higher quality in the CT-AUX approach.
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In the exact-diagonalization approach [55] that we used for single-site DMFT, the impurity problem is represented
by an Anderson-like Hamiltonian Himp with a discrete number of bath orbitals (here 5 for each spin component)
coupled to the impurity

Himp ≡
∑
mσ

εmσa
†
mσamσ +

∑
mσ

(Vmσa
†
mσcσ + h.c.) + Un↑n↓. (S21)

Here, m = 1...5 for each spin component such that we have 10 bath energy levels εmσ coupled to the impurity via the
bath-cluster hybridization matrix Vmσ. The hybridization function is obtained from

∆σ(iωn) =
∑
m

V 2
mσ

iωn − εmσ
. (S22)

The parameters εmσ and Vmσ are determined by imposing the self-consistency condition in Eq. S19 using a conjugate
gradient minimization algorithm with a distance function

d =
1

Nmax

Nmax∑
n=0

∣∣∣(Ĝ′−1
0 (iωn)− Ĝ−1

0 (iωn)
)∣∣∣2 (S23)

where Nmax is the largest Matsubara frequency index, determined by choosing a high-energy cutoff of about 2000
(energies are given in units of hopping t, and we take h̄ = 1 and kB = 1). The distance function in Eq.(S23) is
computed on the imaginary frequency axis since the hybridization function is a smooth function on that axis. We
take a convergence criterion of 10−5 for the distance. We checked that the compressibility agrees with the continuous-
time solvers to three significant digits.

Conductivity calculation

Since in single-site DMFT the vertex corrections vanish, the optical conductivity is calculated from the single-
particle spectral weight using

σ′(ω) =
χ′′jj(ω)

ω
= π

∑
σ

∫ 4t

−4t

dε

∫
dω′ T (ε)A(ε, ω′)A(ε, ω′ + ω)

× [f(ω′)− f(ω′ + ω)]

ω
, (S24)

where f is the Fermi-Dirac distribution, χ′′jj(ω) is the imaginary part of the current response function, and A(k, ω)
is the spectral function containing the non-interacting square-lattice dispersion εk and the impurity self-energy, and
normalized so that

∫
dωA(k, ω) = 1. Here, the usual integral over wave-vectors has been replaced by an integral over

the band energies ε weighted by the longitudinal transport function [56]

T (ε) =
∑
k

(
∂εk
∂kx

)2

δ(ε− εk) = −1

2

∫ ε

−4t

zN0(z) dz (S25)

containing the non-interacting density of states N0, normalized so that
∫
N0(z) dz = 1.

The real part of the conductivity obeys the f -sum rule in the following form [57]∫
dω

π
σ′(ω) =

1

N

∑
kσ

∂2εk
∂k2

x

〈nkσ〉 = −1

2
Ekinetic, (S26)

where 〈nkσ〉 is the expectation value of the occupation number in state kσ and Ekinetic is the expectation value
of the kinetic energy for this two-dimensional system with nearest-neighbor hopping only. This means that even in
situations where the optical conductivity is dominated by a Drude peak whose width is temperature independent, as
in the range 4 < T < 8 in the inset of Fig. 3, the DC conductivity can decrease with temperature because at high
temperature the kinetic energy decreases as 1/T [58].

The exact diagonalization method, which is used to obtain the momentum relaxation rate and conductivity presented
in the main text, allows one to obtain results directly on the real axis. However, the discrete nature of the bath
introduces some uncertainty because the discrete energy levels must be broadened as Lorentzians of width η. When
there is a range of η where the results are independent of η, one can be confident of the results. The error bars on the
DMFT results in the main text correspond to the difference between η = 0.1 and a five times smaller value, η = 0.02.
The estimate of of the momentum relaxation rate Γ is much less sensitive to η than the DC conductivity.
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