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We show that presence of transport imposes constraints on matrix elements entering the Eigen-
state Thermalization Hypothesis (ETH) ansatz and require them to be correlated. It is generally
assumed that the ETH ansatz reduces to Random Matrix Theory (RMT) below the Thouless energy
scale. We show this conventional picture is not self-consistent. We prove that the energy scale at
which ETH ansatz reduces to RMT has to be parametrically smaller than the inverse timescale of the
slowest thermalization mode present in the system. In particular it has to be parametrically smaller
than the Thouless energy. Our results indicate there is a new scale relevant for thermalization
dynamics.

Thermalization of isolated quantum systems has at-
tracted significant attention recently. For the quantum
ergodic systems without local integrals of motion it is
currently accepted that thermalization can be explained
with the help of the Eigenstate Thermalization Hypoth-
esis (ETH) [1–8]. At the technical level ETH can be
understood as an ansatz for the matrix elements of ob-
servables in the energy eigenbasis [5],

Aij = Aeth(E)δij +Ω−1/2(E)f(E,ω)rij , (1)

E = (Ei + Ej)/2 , ω = Ei − Ej . (2)

Here A is an observable satisfying ETH, Ω(E)dE is the
density of states, Aeth and f are smooth functions of their
arguments, and rij are pseudo-random fluctuations with
the magnitude one. The diagonal part of the ETH ansatz
explains thermalization, at least in the sense that the
expectation value of A in some state of mean energy E,
averaged over time, is equal to the thermal expectation
value with effective temperature β−1(E) = d lnΩ/dE .
The dynamics of thermalization is encoded in the off-
diagonal matrix elements rij , as well as in the initial state
Ψ, and is not universal. In this paper we show that the
locality of interactions imposes constraints on the rij ,
which depend on the type of transport present in the
system.
Numerical studies confirm that the rij behave “ran-

domly” and oscillate around zero mean seemingly with-
out any obvious pattern. Certainly the rij can not be
random in the literal sense as the form of Aij is fixed
once the Hamiltonian and A are specified. Moreover, A
often has to satisfy various algebraic relations. For ex-
ample, in a spin lattice model one can choose A to be
a Pauli matrix acting on a particular site. In this case
A2 = I, which requires rij to be correlated. Similarly,
the rij can be constrained by the expected behavior of
the four-point correlation function [9], etc.
While the whole matrix rij can not be random, there

is an expectation that fluctuations rij can be treated as
such if the indexes i, j are restricted to belong to a suffi-

ciently narrow energy interval. Assuming the interval is
centered around some E, we define ∆ERMT as the largest
possible interval size such that rij for i, j constrained by

|Ek − E| ≤ ∆ERMT , k = i, j , (3)

can be treated for physical purposes as being random
and independent (without necessary being normally dis-
tributed). The expectation that rij reduces to a Gaus-
sian Random Matrix inside a sufficiently narrow inter-
val is consistent with numerical studies which confirm
that the rij are normally distributed [10–12] and that
the form-factor f becomes constant for ω smaller than
the Thouless energy ∆ETh [13–16]. Furthermore, for
real symmetric Aij the variances of the diagonal and
off-diagonal elements have been numerically shown to
satisfy 〈r2ii〉 = 2〈r2ij〉 [17, 18], which is consistent with
and necessary for the rij being a GOE. Random behav-
ior of rij also naturally emerges in a recent attempt to
justify ETH analytically [19]. From the physical point
of view the “structureless” form of Aij inside a small
energy interval is expected on the grounds of the hypo-
thetical universal behavior of observables at late times
[20–22]. The conventional picture of thermalization of
ergodic systems with an approximate translational sym-
metry suggests that the system is fully thermalized af-
ter the Thouless time ∆E−1

Th , necessary for the slowest
transport mode to propagate across the system. Thus,
for systems with diffusive transport and characteristic
size L one expects that after time t ∼ L2 the system
is fully ergodic in the sense that local physical observ-
ables do not depend on the initial state. This qualitative
picture suggests that rij should become structureless for
∆ERMT ∼ ∆ETh ∼ 1/L2 [14]. We show below this is not
the case, and ∆ERMT has to be parametrically smaller
than the Thouless energy ∆ETh. Our findings raise the
question of identifying the correct scaling of ∆ERMT with
the system size and understanding the significance of the
associated timescale ∆E−1

RMT from the point of view of
thermalization dynamics.
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Systems with local interactions have a finite maximal
velocity of physical signals [23, 24]. As a result a quasi-
classical configuration with an extensive amount of en-
ergy distributed locally would require at least time t >∼ L
to thermalize. To avoid possible subtleties due to pos-
sible large energy variance of the initial state, in which
case the system may equilibrate, but will not thermalize,
we construct the initial state explicitly. For concrete-
ness we consider a one-dimensional spin lattice model
of length L with short-range interactions. We split the
system into two non-interacting subsystems of approxi-
mately equal lengths L/2 by removing the corresponding
interaction terms from the original Hamiltonian H . The
desired initial state can be chosen as a tensor product
|Ψ〉 = |E−〉⊗|E+〉 of two energy eigenstates of the corre-
sponding subsystems. By choosing different E− and E+

with an extensive difference |E+ − E−| ∼ L, one creates
a configuration of two adjacent subsystems with differ-
ent effective temperatures. We will show now that it will
take an extensive time for this state to thermalize. In-
deed, |Ψ〉 is an eigenstate of the HamiltonianH0, which is
the original HamiltonianH with the interactions between
the two subsystems removed. Hence, from the point of
view of the original Hamiltonian the energy variance of
|Ψ〉 is bounded by the norm of Hint = H −H0 which is
sub-extensive. In terms of the decomposition

|Ψ〉 =
∑

i

Ci|Ei〉 , (4)

where |Ei〉 are the eigenvalues of H , this means that
most |Ei〉 contributing to (4) will correspond to the same
energy density and therefore this state will thermalize
rather than merely equilibrate [6]. To describe the time
evolution of |Ψ〉 it is convenient to first switch to the
Heisenberg picture and then employ the interaction pic-
ture splitting H into H0+Hint. Then the thermalization
of |Ψ〉 is due to the growth of the local operator Hint

under the time-evolution induced by H0. For a local op-
erator A located a distance z away from the location of
Hint in the center of the chain the Lieb-Robinson bound
[23] guarantees that 〈Ψ|A(t)|Ψ〉 will remain constant to
within an exponential precision at least up to times t ∼ z.
Unless the thermal expectation value 〈A〉β of A is iden-
tically the same for all temperatures, the deviation

δA(t,Ψ) = 〈Ψ|A(t)|Ψ〉 −Aeth(EΨ), EΨ = 〈Ψ|H |Ψ〉,(5)

will have a non-zero L-independent value at t = 0 and
will remain approximately the same for times t >∼ z ∼ L,
after which it will go to zero. In other words we have
shown that the expectation value of a general local oper-
ator A in the state Ψ will take an extensive time τ >∼ L to
relax to its thermal value. (For local operators A located
near the middle point z ≪ L it is easy to construct a
somewhat different initial |Ψ〉 reaching the same conclu-
sion.)

The key observation of this paper is that the ETH
ansatz (1) with random mutually-independent rij is con-
strained by presence of states with long thermalization
times. The strongest constraint is provided by the slow-
est mode probed by A. If the system exhibits diffusive
transport, provided A is coupled to the diffusive quantity,
the time that the deviation (5) will remain of order one
is even longer, t ∼ L2. In one dimensions the step-like
profile discussed above can be decomposed into Fourier
series with the n-th harmonics decaying as e−n2Dt/L2

,
where D is the diffusion coefficient. At late times only
the slowest mode survives with (5) behaving as ∼ e−t/τ ,
τ = L2/D. This quasi-classical behavior for the state
|Ψ〉 described above was recently confirmed numerically
in [25]. In what follows we will focus on the constraints
provided by the diffusive modes. A generalization for
different types of transport is straightforward.
To connect thermalization time to matrix elements of

A we introduce a T -dependent average quantity, which
is conceptually similar to the “average distance” used in
[26] to characterize thermalization time,

〈δA〉T ≡
∫ ∞

−∞

δA(t,Ψ)
sin(πt/T )

πt
dt. (6)

Here T is a free parameter. When the thermalization
time τ of Ψ, which is the characteristic time necessary
for δA(t) to become zero, is smaller than T , (6) reduced
to the conventional average over time T ,

〈δA〉T ≈ 1

T

∫ T/2

−T/2

δA(t,Ψ) dt . (7)

After performing the integral in (6) using (1) we find

〈δA〉T = 〈Ψ|AT |Ψ〉+ (8)
∑

i

|Ci|2
(

Aeth(Ei)−Aeth(EΨ)
)

,

where the operator AT written in the energy eigenbasis
has the form

(AT )ij =

{

Ω−1/2(E)f(E,ω)rij , |Ei − Ej | ≤ π/T
0, |Ei − Ej | > π/T

(9)

In other words the matrix (AT )ij has a band structure,
it coincides with Aij (after subtracting the non-random
diagonal part) inside a diagonal band of size π/T , and is
zero outside. This is schematically shown in Fig. 1.
For systems admitting a thermodynamic limit the

function Aeth(E) is a smooth function of the energy den-
sity E/V . Second term in (8) is small, it scales with the
volume as O(∆EΨ/V ), where ∆EΨ is the energy vari-
ance of |Ψ〉. In our case this is O(1/L), which is also
the discrepancy between different definitions of thermal
expectation value of A in 1D. First term 〈Ψ|AT |Ψ〉 can
be bounded by the largest eigenvalue of (AT )ij . Let us
define the function x(E,∆E, T ) to be the maximal (by
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absolute value) eigenvalue of the sub-matrix (AT )ij with
indices i, j satisfying

|Ek − E| ≤ ∆E , k = i, j . (10)

When ∆E is smaller than π/(4T ), i.e. the sub-matrix is
fully inside the band, the inverse of x(E,∆E, T ) reduces
to the canonical universality function ∆E(x) introduced
in [17]. Since the initial state |Ψ〉 has sub-extensive en-
ergy variance, for physical purposes we assume |Ψ〉 can be
restricted to belong to some large but sub-extensive en-
ergy interval. Then 〈Ψ|AT |Ψ〉 in (8) can be bounded by
x(EΨ,∆E, T ) with a sufficiently large but sub-extensive
∆E ≪ EΨ. We show in the appendix that in full gener-
ality maximal eigenvalue x(EΨ,∆E, T ) is bounded by

x(EΨ,∆E, T ) ≤ 2 x(E′, π/(2T ), T ) + x(E′′, π/(4T ), T ),

(11)

where E′ and E′′ are some energies inside the interval
[EΨ − ∆E,EΨ + ∆E]. On physical grounds we expect
x(E,∆E) to depend on energy density E/V specifying
effective temperature, and theretofore the precise values
of E′, E′′ are unimportant.
Let us assume now that T is sufficiently large such that

π/(2T ) ≤ ∆ERMT . Then the sub-matrices (AT )ij as-
sociated with x(E′, π/(2T ), T ) and x(E′′, π/(4T ), T ) are
small enough to satisfy ∆ERMT ≥ ∆E. Then the cor-
responding sub-matrices are band random matrices with
independent (but not necessarily normally distributed)
δAij and their respective largest eigenvalues are con-

trolled by the variance function δA2
ij(ω) [27]. In par-

ticular largest eigenvalue satisfies the inequality [17]

x2(E,∆E, T ) ≤ 8

∫ π/(2T )

0

f2(E,ω) dω. (12)

Here we have assumed that β∆E ≪ 1 so that the density
of states Ω(E) within the interval (10) can be taken to be
constant. The inequality (12) is a uniform bound which
does not depend on ∆E provided ∆E ≥ π/(4T ), i.e. the
sub-matrix is wider than the band. With help of (1) the
integral (12) can be related to the connected autocorre-
lation function of A associated with the effective inverse
temperature β−1 = d lnΩ/dE [13–15],

〈A(t)A(0)〉β ≡ 〈E|A(t)A(0)|E〉 − 〈E|A2(0)|E〉. (13)

Combining everything together and ignoring for now the
O(1/L) contribution from the second term of (8), we find
the inequality

∣

∣

∣

∣

∫ ∞

−∞

δA(t,Ψ)
sin(πt/T )

πt
dt

∣

∣

∣

∣

2

≤

36

∫ ∞

−∞

〈A(t)A(0)〉β
sin(πt/(2T ))

πt
dt , (14)

β−1 = d lnΩ/dE
∣

∣

EΨ

, (15)

which should be satisfied for T ≥ π/(2∆ERMT).
The inequality (14) is our main technical result, which

implies strong limitations on ∆ERMT. We first notice
that the right-hand-side of (14) becomes very small for
large T even after taking thermodynamic limit. Assum-
ing the effective temperature β remains fixed as we scale
the size of the system to infinity, the autocorrelation func-
tion of a local diffusive operator A normally behaves as
〈A(t)A(0)〉β ∼ (tD/|t|)α for large t ≫ tD, where con-
stants α > 0 and tD are L-independent. Thus, for 1D
diffusive systems α = 1/2 and tD is related to the diffu-
sion constant at temperature β−1. The polynomial decay
of 〈A(t)A(0)〉β is believed to persist until the Thouless
time τ ∼ L2/D, after which the two-point function be-
comes zero [14, 15]. Hence for T ≫ tD, up to an unim-
portant overall numerical coefficient, the right-hand-side
of (14) can be approximated as

∫ ∞

−∞

〈A(t)A(0)〉β
sin(πt/(2T ))

πt
dt ∼

{ √

tD/T , τ >∼ T ≫ tD√
tDτ/T , T >∼ τ

(16)

For large T ≫ tD (16) is very small for any value of τ .
The behavior of the left-hand-side of (14) in the thermo-
dynamic limit is quite different. For the diffusive state
discussed above δA(t,Ψ) ∼ e−|t|/τ . Then

∫ ∞

−∞

δA(t,Ψ)
sin(πt/T )

πt
dt =

2

π
arctan

(πτ

T

)

. (17)

For large T ≫ τ this reduces to 2τ/T , which is in agree-
ment with the approximate expression (7) and the qual-
itative picture that δA(t,Ψ) remains of order one for the
time t ∼ τ and then can be taken to be zero. When T
is large but not necessarily larger than τ (17) remains of
order one and the inequality (14) can not be satisfied.
For (14) to be satisfied T has to be parametrically larger
than τ ,

( τ

T

)2
<∼

√
tDτ

T
⇒ T >∼ t

−1/2
D τ3/2 ∼ L3. (18)

It is interesting to note that the scaling T ∼ L3 coin-
cides with the condition that the first and second terms
in (8) are of the same order. In other words this is the
strongest bound one can consistently obtain from (14)
using the state |Ψ〉 introduced above. To summarize, we
see that the inequality (14) imposes a stringent bound
on the energy scale ∆ERMT, which should be parametri-
cally smaller than the Thouless energy ∆ETh = τ−1. In
particular, for the 1D diffusive systems we find

∆ERMT
<∼ L−3 . (19)

For a translationally-invariant system it is also illus-
trative to consider an operator Ak with constant mo-
mentum. Keeping in mind a 1D spin lattice system of
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length L, we denote by A(m) a local operator A located
at the site m. Then

Ak =
21/2

L1/2

L
∑

m=1

cos (km)A(m), (20)

where L is dimensionless. The normalization factor
(2/L)1/2 is chosen such that the connected autocorre-
lation function is L-independent in the thermodynamic
limit

〈Ak(t)A−k〉β ≃ e−k2Dt . (21)

With the same normalization the expectation value (5)
in the diffusive state will be

δA(t,Ψ) ∼ L1/2e−k2Dt (22)

Although the t-dependence in (21) and (22) is the same,
different L-dependent prefactor will result in a constraint
for ∆ERMT. For large T ≫ 1/(k2D) we can estimate

∫ ∞

0

sin(πt/T )

πt
e−k2Dtdt ∼ 1

k2DT
(23)

After ignoring unimportant numerical prefactors (14)
yields

L

k2DT
<∼ 1 ⇒ T >∼ L/(k2D). (24)

For fixed k, the initial configuration with the character-
istic wavelength 1/k will require a finite L-independent
time 1/(k2D) to thermalize. Thus, we have shown
that for Ak the inverse Random Matrix Theory scale
∆E−1

RMT
>∼ L/(k2D) is parametrically longer than the

thermalization time.

Conclusions. We have shown that the energy scale
∆ERMT at which the ETH ansatz reduces to Random
Matrix Theory has to be parametrically smaller than the
inverse characteristic time of the slowest mode probed by
the corresponding operator A. For the 1D diffusive sys-
tem and local operator A coupled to the diffusive quan-
tity we found ∆ERMT to be bounded by L−3, where L
is the system size. Our findings suggest that the con-
ventional picture of thermalization of quantum ergodic
systems, which assumes universal behavior of local ob-
servables at the scales below Thouless energy, is incom-
plete. In particular, there is an additional scale ∆ERMT

relevant for thermalization dynamics.
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FIG. 1. Schematic visualisation of band matrix δAT and vec-
tor |χ〉 represented as a sum of

∑
N

I=1
|χI〉.

APPENDIX

Let us consider a band matrix δAT such that (δAT )ij =
0 unless |Ei −Ej | ≤ π/T , and indices i, j satisfy (10) for
some E and ∆E. The largest eigenvalue of (δAT ) is a
monotonically non-decreasing function of ∆E. It will be
convenient to assume that 2∆E = Nπ/(2T ) for some in-
teger N , which can be always achieved by appropriately
increasing ∆E. Such matrix with N = 5 is schematically
shown in Fig. 1, where for the illustrative purposes we as-
sume Ei are continuous and parametrize matrix elements
using unfolded energies Ei, dE = Ω(E)dE. The largest
eigenvalue of δAT can be defined via maximization prob-
lem

λ(δAT ) = max
χ

〈χ|δAT |χ〉 (25)

where maximization is over all normilzed |χ|2 = 1 states
|χ〉 = ∑

i ci|Ei〉 with Ei ∈ [E −∆E,E +∆E] and other-
wise arbitrary ci. We would like to introduce N projec-
tors PI acting on |χ〉 as follows

|χI〉 ≡ PI |χ〉 =
∑

|4(Ei−E)T/π+(N+1−2I)|<1

ci|Ei〉, (26)

where I = 1 . . .N . Clearly |χ〉 =
∑N

I=1 |χI〉, which
is schematically depicted in Fig. 1. We also introduce
|χI,I+1〉 ≡ |χI〉+ |χI+1〉. The band structure of δAT en-
sures that 〈χI |δAT |χJ〉 = 0 unless |I−J | ≤ 1. Therefore

〈χ|δAT |χ〉 =
N−1
∑

I=1

〈χI,I+1|δAT |χI,I+1〉 −
N−1
∑

I=2

〈χI |δAT |χI〉.

The matrix elements above can be bounded by (here E′′
I

are the centers of the small blue squares in Fig. 1)

|〈χI |δAT |χI〉| ≤ |χI |2 x(E′′
I , π/(4T ), T ),

E′′
I = E + (2I −N − 1)π/(4T ) ,
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and similarly 〈χI,I+1|δAT |χI,I+1〉 is bounded by
|χI,I+1|2 x(E′

I , π/(2T ), T ), where

E′
I = E + (2I −N)π/(4T ) (27)

are the centers of the large blue dashed squares in Fig. 1.
We introduce E′′ as the value of E′′

I for I = 2 . . .N − 1
for which x(E′′

I , π/(4T ), T ) is maximal, and similarly E′

for x(E′′
I , π/(2T ), T ) and I = 1 . . .N − 1. As a result we

find

〈χ|δAT |χ〉 ≤
N−1
∑

I=1

|χI,I+1|2x(E′, π/(2T ), T ) +

N−1
∑

I=2

|χI |2x(E′′, π/(4T ), T ). (28)

Finally, from

N−1
∑

I=1

|χI,I+1|2 = 2− |χ1|2 − |χN |2 , (29)

N−1
∑

I=2

|χI |2 = 1− |χ1|2 − |χN |2 , (30)

and (28) we find the bound (11).
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