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Breaking Lorentz reciprocity to
overcome the time-bandwidth
limit in physics and engineering
K. L. Tsakmakidis,1*†‡ L. Shen,2* S. A. Schulz,1§ X. Zheng,3 J. Upham,1 X. Deng,2

H. Altug,4 A. F. Vakakis,5 R. W. Boyd1,6‡

A century-old tenet in physics and engineering asserts that any type of system, having
bandwidth Dw, can interact with a wave over only a constrained time period Dt inversely
proportional to the bandwidth (Dt·Dw ~ 2p). This law severely limits the generic capabilities of
all types of resonant and wave-guiding systems in photonics, cavity quantum electrodynamics
and optomechanics, acoustics, continuum mechanics, and atomic and optical physics but
is thought to be completely fundamental, arising from basic Fourier reciprocity. We propose
that this “fundamental” limit can be overcome in systems where Lorentz reciprocity is broken.
As a system becomes more asymmetric in its transport properties, the degree to which the
limit can be surpassed becomes greater. By way of example, we theoretically demonstrate
how, in an astutely designed magnetized semiconductor heterostructure, the above limit can
be exceeded by orders of magnitude by using realistic material parameters. Our findings revise
prevailing paradigms for linear, time-invariant resonant systems, challenging the doctrine
that high-quality resonances must invariably be narrowband and providing the possibility of
developing devices with unprecedentedly high time-bandwidth performance.

M
ore than 100 years ago, K. S. Johnson intro-
duced the concept of the now-ubiquitous
quality factor (Q factor) to characterize the
sharpness of a resonance (1, 2). In that
work, a practical way to characterize the

quality of a resonant system was introduced by
defining a unitless numberQ ¼ w0=G, wherew0 is
the system’s resonance frequency and G the decay
rate of the wave energy (1, 2). Since then, it has
been understood that the higher the Q factor of a
resonant system, the narrower its bandwidth—
higher Qs lead to sharper resonances (1).
This notion, that high-quality (high-Q) reso-

nances must invariably be narrowband, has not
been challenged since Johnson’s original work
and pervades an extremely broad range of res-
onant and wave-guiding systems in physics and
engineering (Fig. 1). Its justification arises from

basic Fourier-reciprocity considerations (3–5):
Inside any linear, passive (lossy and time-invariant)
resonant system, e.g., in a cavity micro- or nano-
resonator, the excited-wave amplitude a(t) will
decay asaðtÞºcosðw0tÞ $ e%ð1=2ÞGt, where G can
be due to nonradiative (inelastic or dephasing)
and/or radiative processes (coupling to the con-
tinuum of the surrounding medium). Hence, in
the resonance approximation and in the usual
underdamped regime (G/2 << w0) (3, 4), the in-
tensity I in the frequency domain will be given by

IðwÞºjaðwÞj2º
G
2

! "2

ðw% w0Þ2 þ G
2

! "2 ð1Þ

from which it is immediately seen that Dw around
w0 is Dw ¼ ðw0 þ G=2Þ % ðw0 % G=2Þ ¼ G. Thus,
by definition, the bandwidth of the resonant sys-
tem is the loss rate G. Any attempt to reduce the
overall losses and, hence, store the wave for an
increased time Dt will automatically decrease
Dw—a limitation that arises from simple time-
harmonic considerations.
We show that this “fundamental” time-bandwidth

limit characterizing resonant devices can be overcome
by breaking Lorentz reciprocity, i.e., by conceiving
(asymmetric) systems whose responses change when
the source and the receiver are interchanged

∭
V
J1E2dV≠∭

V
J2E1dV ð2Þ

where J1 and J2 are two sources within a volume
V generating the electric fields E1 and E2, respec-
tively. Specifically, we introduce and analyze a

realistic system that exceeds the time-bandwidth
limit anticipated by the system’s Q factor by
orders of magnitude.
The time-bandwidth limitation is a completely

general phenomenon, characterizing the storage
capacity of all linear, time-invariant resonant and
wave-guiding devices, from photonics to acous-
tics, cavity quantum electrodynamics and opto-
mechanics, and atomic and molecular physics,
as well as mechanical and structural systems
(Fig. 1). It should not be confused with the mathe-
matical time-bandwidth limitst2sW2 ≥ 1=4, where
st2 is the time variance of a signal xðtÞ∈L2ðℜÞ
and sW2 its frequency variance, i.e., with the un-
certainty principle characterizing Fourier-integral
pairs in signal analysis and communications (6)
and which, among others, only has a lower bound.
Although both limits often bear the same name,
the time-bandwidth limit in physics and engi-
neering characterizes the storage capacity of the
devices themselves, not the mathematical Fourier
properties of the respective signals. In addition
to resonant physical devices outlined above, the
physical time-bandwidth limit described in this
study also arises in guiding structures, such as slow-
light wave guides or bulk media (e.g., electromag-
netically induced transparency in ultracold atomic
gases) (7–12). Here, a number of works have shown
that any such passive structure can support slow
waves over a finite bandwidth Dw inversely pro-
portional to the group index ng. Hence, a struc-
ture of fixed length L cannot delay a wave packet
of bandwidth larger than Dw by more than a
time Dt ~ ngL/c, where c is the speed of light in
vacuum. In other words, the “delay-bandwidth
product” Dt·Dw, characterizing a linear, time-
invariant slow-wave structure, has an upper limit
C (13–15). This threshold is quite stringent: De-
pending on the specifics of the particular slow-
wave structure, it can vary between C ~ 10 and
100, to within an order of magnitude (7–10, 13–15),
and cannot be broken by means of a nonlinear
or gain mechanism, such as stimulated Raman
or stimulated Brillouin scattering, because such
fundamental effects as gain saturation, group-
velocity, and attenuation dispersions make Dt
inversely proportional to a power of Dw—e.g., Dt ~
Dw–a, a = 2 or 3 (7, 9, 14)—an even stricter lim-
itation. A further adverse consequence of the
time-bandwidth limit in physics and engineer-
ing is that it constrains the response time of the
above devices because the higher the Q factor of
a system (i.e., the narrower the bandwidth), the
longer it takes to respond to an external signal.
However, a high Q factor is a prerequisite for
high sensitivity (16). Thus, short response times
and high sensitivity tend to counteract each other,
and a compromise has to be found between the
two. A well-known manifestation of this limita-
tion concerns microfabricated quartz tuning forks,
currently the most successful and widespread
method for shear-force detection. With a Q fac-
tor at ambient conditions of the order of 103 to
104—necessary for probing interaction forces
less than ~200 pN—the response time of a tuning
fork, t ¼ 2

ffiffiffi
3

p
Q=w0, is limited to being greater than

~300 ms (16), i.e., the scanning speeds are slow.
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To overcome the time-bandwidth limit by
breaking Lorentz reciprocity, consider a wave s+
impinging (either from a surrounding uniform
medium or from a guiding structure) on a recip-
rocal system and exciting a mode of amplitude a
inside it (Fig. 2A). The key idea is that although
the basic Fourier-transform reciprocal relations do,
in general, remain valid, they can be applied sepa-
rately at the input and output ports of a system if
it is asymmetric (nonreciprocal) in its transport
properties, i.e., if Lorentz reciprocity is broken. The
equation describing the time evolution of a(t) is (17)

da
dt

¼ iw0a% 1
t0

þ 1
tout

$ %
aþ rinsþ ð3Þ

where 1/t0 and 1/tout are, respectively, the in-
ternal (owing, e.g., to dissipative losses) and out-
coupling (owing, e.g., to radiative loss to the
surrounding medium) decay rates, and rin is the
rate of in-coupling of energy from the s+ wave
to the resonant system. Here, following the stan-
dard convention of temporal coupled-mode theory,
we assume that |s+|

2 is normalized to the incident
power, whereas |a|2 is normalized to the incident
energy (i.e., the units of |s+| are

ffiffiffiffiffiffiffiffiffiffiffiffi
2W=s

p
) (17). The

rate of in-coupling of energy into the resonant
system rin is proportional to the Dw of the sys-
tem (prin ↔ Dw) (17, 18) [see also (19)], whereas
the lifetime Dt of the excited mode is, as shown
from Eq. 3, Dt = 1/(1/t0 + 1/tout) ≈ tout because
we normally operate in the overcoupled (under-
damped) regime where the rate of energy escape
from (and energy coupled into) the excited res-
onant system is greater than the rate of internal
dissipation, 2/tout >> 2/t0. The key point is that,
because of time-reversal symmetry, it can be
shown rigorously that the in-coupling rate rin is
always tied to the out-coupling rate rout through
the exact relation (in units of |a|) (17):

jrinj ¼
2
tout

ð4Þ

Thus, the product between the system’s bandwidth
and the wave-system interaction time (lifetime)
Dt is always, for reciprocal systems, of the order
of DwDt ↔ p|rin|tout ~ 2p, i.e., we recover the
aforesaid physical time-bandwidth limitation, in
which Dw and Dt characterizing a resonant or
guiding device are reciprocally related. However,
if Lorentz reciprocity is by some means broken
in this passive, linear, and time-invariant reso-
nant system, |rin| and tout can become completely
decoupled, in which case the product DwDt (or,
equivalently, |rin|tout) can be engineered at will
and take on arbitrarily large values—i.e., in such
a case we can exceed the conventional time-
bandwidth limit by an arbitrarily large factor.
Consider a heterostructure made of a dielectric

layer (silicon, Si) bounded asymmetrically by a
gyroelectric semiconductor (indium antimonide,
InSb) on the bottom and a metal layer (silver, Ag)
on the top (Fig. 2B). Lorentz reciprocity in this
linear, passive, and time-invariant system can be
broken by applying a static magnetic field B0 in
the –y direction (20–22), causing a precession of
the electron magnetic dipole moments in the

semiconductor with a frequency wc ¼ eB0=m'
(where e and m* are the charge and effective
mass of the electrons, respectively). A small ac
magnetic field propagating along the hetero-
structure also causes a precession of the semi-
conductor electrons’ dipole moments around the
B0 (–y) axis at the frequency of the ac field. The
interaction of the ac field with the semicon-
ductor is thus, overall, captured by the following
asymmetric permittivity tensor (23)

e ¼ e0e∞

" e1ðB0Þ
0

%ie2ðB0Þ

0
e3
0

ie2ðB0Þ
0

e1ðB0Þ

#

ð5Þ

where e1 ¼ 1%ðwþ inÞwp
2=fw½ðwþ inÞ2 %wc

2)g;
e2 ¼ wcwp

2=fw½ðwþ inÞ2 % wc
2)g; e3 ¼ 1% wp

2=

½wðwþ inÞ), with the plasma frequency of InSb
taken to bewp = 4p × 1012 rad/s ( fp = 1/Tp = 2THz);
e∞ ¼ 15:6;wc ¼ 0:2wp; and B0 = 0.2 T [where e,
permittivity; v, the (permittivity) loss factor;
p, plasma; T, (time) period]. For the other two
layers, we take eSi ¼ 11:68 and eAg ¼ 1%wpe

2=
½wðwþ iwtÞ), withwpe = 1.367× 1016 rad/s andwt =
2.733 × 1013 rad/s (20, 21, 23). Because of the
application of the external magnetic bias, the
heterostructure supports one-way edge (mag-
netoplasmon) modes, robust against surface im-
perfections and roughness, whose dispersion
relation is governed by (20, 21, 23)

tanhðaddÞ ¼ %
as þ e2

e1
kþ eVam

em

as þ e2
e1
k

& '
eram
emar

þ eVad
er

ð6Þ
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Fig. 1. The “fundamental” time-bandwidth limit, in various forms, in reciprocal systems in
physics and engineering. (A) In all types of slow-light wave guides, the attained delays Dt are
inversely proportional to the guide’s bandwidth, Dw (Dt º Dw−1) or, even more severely, to a power
of it (e.g., Dt º Dw–a, a = 2 or 3) (7–15). (B) In atomic and molecular physics, the linewidth g of an
atomic transition is inversely proportional to the decay rate arising from dephasing and inelastic
or spontaneous-emission processes (3). Likewise, the time required to perform the transformation
|Yi > → |Yf > = e-iHt|Yi >, where |Yi > and |Yf > are two orthogonal states and H is the (time-
independent) Hamiltonian, is ttr ~ |(Ef – Ei)/ħ|−1, where Ef and Ei are the corresponding eigenvalues
of H (24). (C) In all types of (dielectric or plasmonic) cavity resonators, higher finesses F result in
narrower resonance bandwidths (3–5, 16–18). (D) In crystal (quartz) oscillators; piezoelectic,
micro-/nanomechanical, or elastic systems; and energy-harvesting devices, the response times
are directly proportional to the system’s Q factor, trsp º Q. Higher Q factors lead to enhanced
sensitivities but also to larger response times (16). (E) In acoustic devices and systems, such as
in ultrasound, elastic-wave, or wave-modulation spectroscopies, increased quality factors give rise to
narrower spectral responses.
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where ad ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 % erk02

p
; k0 ¼ w=c is the vac-

uumwave number; er ¼ eSi andd ¼ 0:08lpðlp ¼
2pc=wpÞ are the relative permittivity and thickness
of the Si layer, respectively; as ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 % eVk02

p
;

eV ¼ e∞ðe1% e22=e1Þ is the Voigt permittivity;

and am ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2t % emk02

p
, where em is the rela-

tive permittivity of Ag.
Upon solving Eq. 6, we plot in Fig. 2C the band

structure of this type of surface state, showing
clearly that the band diagram is asymmetric with

respect to the wave vector –k axis, giving rise to a
frequency region where no backward-propagating
(k < 0) states exist (breaking of Lorentz reciproc-
ity). For a carefully designed structure, that region
can be made to be below the continuous band(s)
of the bulk modes in the semiconductor and
above the band associated with surface states
at the semiconductor-metal interface. Thus, in
that frequency region, complete unidirectional
propagation (CUP) is rigorously attained: An
excited edge state can propagate strictly only in
the forward (positive z, k) direction and cannot
be back-reflected or couple either to bulk modes
in the semiconductor or to semiconductor-metal
surface states. The two frequencies, w%

CUP
and wþ

CUP
,

bounding the CUP region (see Fig. 2C) can be
identified analytically from Eq. 6 by letting |k|→∞
[see (19)]

wT
CUP

¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wc

2 þ 4wp
2 e∞
e∞ þ er

r
T wc

$ %
ð7Þ

from which we see that the bandwidth of the
CUP region is simply BWCUP ¼ wcð¼ eB0=m'Þ.
Figure 3A illustrates successive snapshots

from full-wave simulations of the propagation
of a pulse, whose bandwidth is within the CUP
region, along the heterostructure shown in Fig.
2B. The structure is terminated in the z direc-
tion by the Ag cladding (which also covers the
end of the heterostructure), creating an impen-
etrable barrier for the pulse along z. Because in
that frequency region there are no surface modes
allowed at the Ag-InSb interface and the pulse
cannot scatter to bulk modes inside InSb or to
backward modes in the –z direction (see Fig. 2C),
the pulse eventually localizes near the Si-Ag in-
terface, where it decays with time until it is com-
pletely absorbed (right-hand graph of Fig. 3A).
As seen in Fig. 3A, initially, at t = 15 ps (= 30Tp),
the pulse broadens (because of dispersion) to a
longitudinal length of dl

i ≅ 215.5 mm [and a
transverse size of dT

i ≅ 12.1 mm; see also fig. S1,
A and B, (19)], but when it reaches the right-
most end, it gives rise to a strongly localized
plasmonic resonance. At t = 50 ps (= 100Tp),
the pulse is spatially compressed to a deep-
subwavelength spot of dl

f ≅ 0.165 mm (and dT
f ≅

0.02 mm), i.e., it is spatially squeezed by a factor
of ~0.79 × 106 in two dimensions, while its peak
intensity is enhanced by a factor of ~103 [see
also fig. S1, D and E, (19)] (where T, transverse;
p, period; l, length in the longitudinal direc-
tion; i, initial; f, final). The localized field thus
behaves exactly as if it were confined inside
a subwavelength, “zero-dimensional” (24) cavity
resonator perfectly matched to the incident-wave
medium: It is confined in a specified region of
space—where it was in-coupled without reflec-
tions, decaying with time inside (but not propa-
gating within or escaping from) this region—and
with the field amplitude being dramatically en-
hanced inside this zero-dimensional cavity. Figure
3B further shows that the so-trapped field can be
released on demand by reversing the direction of
the external magnetic bias B0 (B0 = 0.2 T → B0 =
–0.2 T) at any point while the field is localized.
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Fig. 2. Concept and
structure for overcom-
ing the time-bandwidth
limit. (A) In a reciprocal
system (left), the rate rin
with which energy enters
the system is equal to
the rate rout with which
energy exits the system.
This leads to the interac-
tion time being inversely
proportional to the
system’s bandwidth,
Dt º Dw−1. By contrast,
in a nonreciprocal system
(right) the in-coupling
time, tin, can be much
shorter than the out-
coupling time, tin << tout
(or, equivalently, rin >>
rout), leading to an inter-
action time Dt that can
be completely decoupled
from the bandwidth Dw. Consequently, the product Dt·Dw can now take on arbitrarily large
values—much larger than the standard 2p limit. In both cases, the Fourier-transform reciprocity,
relating tin (tout) to rin (rout) and to Dw (Dt−1), is always valid, but is applied separately to
the input and the output of the system. (B) Schematic illustration of the nonreciprocal
configuration used for breaking the time-bandwidth limit. It consists of a Si layer sitting on top
of a gyroelectric semiconductor, InSb. The two layers are bounded by Ag on three sides. The
external, static magnetic field B0 is applied in the –y direction. A pulsed magnetic-current
source excites a surface magnetoplasmon, which propagates unidirectionally, without
back-scattering or back-reflections, from left to right, all the way until the rightmost Si-Ag
interface where it is spatially compressed, greatly enhanced in amplitude, and robustly
localized (compare to Fig. 3A). There are no propagating states allowed in the –z direction,
inside InSb, or along the InSb-Ag interface [see also (C)]. Once localized at the rightmost
end, a pulse can only decay with time owing to dissipative losses, exactly as if it were confined
inside a passive, zero-dimensional (24) cavity resonator (right inset). (C) Band diagram of the
structure of (B) for the case where the external magnetic field is applied in the –y direction
(B0 = 0.2 T). Shown are, for both positive and negative longitudinal wave vectors k, the dispersion
curve of the herein studied surface magnetoplasmons (SMPs), the surface wave at the
InSb-Ag interface (SW), and the region of the bulk modes in InSb. The area shaded in blue
indicates the band region where CUP of the considered surface magnetoplasmon is attained. The
part of the SMP dispersion curve inside that region is indicated in red.
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A somewhat reminiscent light-trapping, storage,
and releasing scheme also exists, e.g., for ultra-
slow and stored light in atomic electromagnet-
ically induced transparency (EIT) (8, 11, 12) but
with the fundamental difference being that therein
the bandwidth is narrow (25) and/or the attained
storage times are inversely proportional to the
bandwidth (or to a power of it) (7, 9, 13–15).
Figure S2 (19) shows how in this linear, time-
invariant system the whole broad spectrum of
the pulse is progressively stored in its trapping
region.
Because of the above Lorentz reciprocity–

breaking characteristics, the rates of in-coupling
(rin) and out-coupling (rout) of energy in this
open cavity are not equal: Whereas rin is pro-
portional to the system’s in-coupling band-
width (rinºDwin), the out-coupling rate tends
to zero (rout = 1/tout → 0) because the light
wave cannot radiatively escape from the region
it is confined in. Thus, on the basis of our previous
analysis, we expect that in this system the inter-
action time Dt = 1/(1/t0 + 1/tout) ≈ t0 and the
resonant bandwidth Dw should be completely
decoupled, not inversely proportional as in all
conventional (reciprocal) resonant and wave-
guiding systems. In other words, we expect that
our system can be extremely broadband even in
the limit of ultrahigh Q factors where the total
losses may tend to zero and the storage times to
infinity (Dt → ∞).
To demonstrate that Dt and Dw are inde-

pendent of one another, Fig. 4 summarizes the
results of successive full-wave simulations for
the cases where (i) the loss rate n is progres-
sively increased, but B0 remains constant and
(ii) B0 progressively increases, but n remains
constant. We see from Fig. 4, A and B, that
while n is increased, the total optical losses of

the system also progressively increase as expected,
but the bandwidth of the effective cavity remains
constant in all cases, Dw ≈ 2.5 THz, unaffected by
the gradually increased loss rate. Even in the case
where an extremely low-loss InSb film (n=wp ¼
10%4 ) with realistic material parameters is used
[e.g., electron density Ne = 1.1 × 1016 cm−3; see
(26) and (19)], we find that whereas the energy
decay rate G is ~109 s−1 and therefore the band-
width Dw should conventionally be anticipated to
be small, ~10−3 THz (Dw = G, see discussion im-
mediately after Eq. 1), the actual bandwidth of
the nonreciprocal zero-dimensional cavity at the
rightmost end of our structure is still large and
~2.5 THz—more than three orders of magnitude
above the fundamental time-bandwidth limit of
reciprocal (linear and passive) systems. Further-
more, we find that the pulse is seamlessly in-
coupled to the localization point (whereas for
any reciprocal, lossless resonant system, the
in-coupling time would have tended to in-
finity for progressively smaller losses), where
it is rigorously confined (Fig. 3A and leftmost
parts of Fig. 4, A and B). Thus, the perform-
ance of this system, both in terms of bandwidth
and response time, exceeds that of any stan-
dard reciprocal system (4, 5, 16–18, 23, 24) by
orders of magnitude.
For case (ii), where the external static mag-

netic field B0 progressively increases, Fig. 4, C
and D, shows that the bandwidth of the zero-
dimensional cavity increases accordingly (by
100%), as expected from Eq. 7, but the optical
losses (and hence the storage times) remain
approximately constant, increased only by ~5%—
unaffected by the bandwidth increase. The small
increase in the total optical losses that we ob-
served in our simulations for this latter case is
because the slope of the band (i.e., the pulse’s

group velocity) reduces with increasing B0, leading
to higher overall optical losses (27). We see from
Fig. 4, C and D, that, in this case too, the non-
reciprocal cavity is above the fundamental time-
bandwidth limit of conventional (reciprocal) resonant
systems by more than two orders of magnitude.
The results presented in Fig. 4, therefore, con-
vincingly show that in this system, the inter-
action time (lifetime) Dt and the bandwidth
Dw are independent and decoupled of one an-
other, owing to the breaking of Lorentz reci-
procity (rin >> rout), giving rise to an, in principle,
unlimited time-bandwidth performance—i.e.,
to breaking of the Q-factor limit in the sense
that Dt and Dw are not inversely proportional
to one another anymore [although Fourier un-
certainty (6) is still obeyed when considered
separately at the input and output ports, as
shown in Fig. 2A and discussed above].
Finally, in existing, reciprocal ultraslow- and

stored-light configurations (e.g., those exploiting
dark states in EIT or in coherent population
trapping), the storage time is fundamentally in-
versely proportional to the system’s bandwidth
or to a power of it (7–15). In contrast, in the pres-
ent nonreciprocal scheme, the storage time is
solely determined by the loss rate (which, as
shown in Fig. 4, is decoupled from the band-
width) and/or the time until which we switch
off the external magnetic field, releasing the
localized pulse (Fig. 3B). Because both of these
parameters (loss rate and duration of B0 being
“on”) are, here, completely independent of the
system’s bandwidth, the attained delay-bandwidth
products can now, in principle, become arbitrarily
large. For instance, Fig. 3B demonstrates storage
times of up to ~400Tp for a pulse of bandwidth
0.2 THz, whereas conventionally, for reciprocal-
guiding structures, the anticipated maximum
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Fig. 3. Open-cavity localization and overcoming the “fundamental”
delay-time–bandwidth limit. (A) One-dimensional snapshots of the
propagation of a pulse of central frequency 1.5 THz and bandwidth
0.2 THz, exciting a one-way surface magnetoplasmon in the hetero-
structure of Fig. 2B, at successive time instants. Shown on the right are
close-up views around the localization region at the rightmost end of
the heterostructure of Fig. 2B. Note the change in the scale of the
vertical axis and the dramatic ensuing field enhancement upon entering
that zero-dimensional open-cavity region. E-field, electric field.
(B) Electromagnetic energy as a function of time in an imaginary box

surrounding the pulse’s localization region. When the external static
magnetic field B0 = 0.2 T is constantly in the –y direction, the energy of
the localized pulse inside the box simply decays with time (red curve)
owing to dissipative losses, as expected [and as shown in (A)]. By
contrast, when the direction of the B0 field is suddenly reversed
(B0 = –0.2 T), the pulse may now escape in the backward (–z) direction
(compare to Fig. 2C), as a result of which the wave energy inside the
box rapidly diminishes. Two examples of this are shown here, one
at t = 200Tp (blue dotted line) and another at t = 400Tp (green dashed
line), demonstrating storage times of up to ~400Tp.
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delay and storage times would be (7–15) Dtmax ~
(Dw)−1 or less, i.e., Dtmax ~ 5 ps = 10Tp. Thus, our
nonreciprocal device is above the conven-
tional delay time–bandwidth limit of state-
of-the-art slow-light systems by more than a
factor of 40.
The consequences of our findings carry over

to all resonant and wave-guiding systems in
physics and engineering where the above time-
bandwidth limit appears in disguise, including
subdiffraction imaging systems (where there is
always a trade-off between spatial and temporal
resolution) (28) and broadband invisibility cloak
devices (where there is a trade-off between scat-
tering reduction and broadband operation) (29, 30).
On a more basic level, our results reveal that the
time-bandwidth and Q-factor limits characteriz-
ing the storage capacity of (passive, linear) guiding
and resonant systems in physics and engineering
are not as “fundamental” as has conventionally
been thought and can be broken to an arbitrarily
large degree, so long as Lorentz reciprocity is
broken in those systems. To this end, further
means of breaking unidirectionality (22), such as
parity-time–symmetry media (31) or topological
insulators (32–34), might also be of interest. We be-
lieve that it is now possible to design ultrahigh-Q
resonant systems in atomic, optical, and condensed
matter physics, as well as in mechanical and
electrical engineering, with unprecedentedly high
bandwidths and ultrafast response times, in
addition to ultraslow- and stopped-light systems
with unusually high delay-bandwidth products,

for a wide range of applications in those fields
(3, 8–10, 16–18, 23, 24).
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Fig. 4. Decoupling of interaction time and
bandwidth and overcoming the Fourier-
reciprocity (Dw ~ Dt−1) limit. (A) and (B) For
increasing scattering losses v in the semi-
conductor, the decay rate of the localized pulse’s
energy progressively increases (A), signifying
reduced interaction (storage) times, as expected,
whereas in all cases the bandwidth Dw of the one-
way effective cavity remains constant (B) (blue
line). The energy decay rate sets the fundamental
bandwidth limit [Dw = G ~ Dt−1, time-bandwidth
(T-B) limit] characterizing conventional, reciprocal
systems and which is here broken by more than
three orders of magnitude, as shown in (B). By
contrast, for increasing values of the static
magnetic bias B0, the energy decay rate remains
approximately constant (C), whereas the
bandwidth of the zero-dimensional open cavity
progressively increases (D) (blue line) [see also
fig. S3B for further clarity (19)]. Note from (D)
that in this case, the bandwidth of the zero-
dimensional cavity is more than two orders of
magnitude above the fundamental time-bandwidth
limit of reciprocal resonant devices—i.e., larger
than the energy decay rate by more than two
orders of magnitude. All the results shown here
have been obtained from full-wave and analytic
calculations, as detailed in (19). In both (B)
and (D), the dashed red lines are the solid red
lines shown in (A) and (C), respectively.
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