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Abstract

Seismology of the gas giants holds the potential to resolve long-standing questions about their internal structure
and rotation state. We construct a family of Saturn interior models constrained by the gravity field and compute
their adiabatic mode eigenfrequencies and corresponding Lindblad and vertical resonances in Saturn’s C ring,
where more than 20 waves with pattern speeds faster than the ring mean motion have been detected and
characterized using high-resolution Cassini Visual and Infrared Mapping Spectrometer stellar occultation data. We
present identifications of the fundamental modes of Saturn that appear to be the origin of these observed ring
waves, and we use their observed pattern speeds and azimuthal wavenumbers to estimate the bulk rotation period
of Saturn’s interior to be -

+10 33 38sh m
1m19s
1m52s (median and 5%/95% quantiles), significantly faster than Voyager and

Cassini measurements of periods in Saturn’s kilometric radiation, the traditional proxy for Saturn’s bulk rotation
period. The global fit does not exhibit any clear systematics indicating strong differential rotation in Saturn’s outer
envelope.
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1. Introduction

The prototypical gas giants Jupiter and Saturn offer an
opportunity to study the processes at work during planet
formation and the chemical inventory of the protosolar disk, as
well as constituting astrophysical laboratories for warm dense
matter. Inferences about these planets’ composition and
structure rely on interior models that are chiefly constrained
by their observed masses, radii and shapes, surface abundances,
and gravity fields (Stevenson 1982b; Fortney et al. 2016).
While the latter have been measured to unprecedented
precision by Juno at Jupiter and the Cassini Grand Finale at
Saturn, in the interest of long-term progress there is a need to
identify independent observational means of studying gas giant
interiors, and seismology using the planets’ free oscillations
appears to be the most promising such avenue.

While preliminary detections of Jupiter’s oscillations have been
made from the ground by Gaulme et al. (2011), the resulting
power spectrum lacked the frequency resolution necessary to
identify specific normal modes responsible for the observed
power, a necessary step before the frequencies can be used to
probe the interior in detail. Saturn, on the other hand, provides a
unique opportunity for seismic sounding of a Jovian interior
owing to its highly ordered ring system, wherein gravity
perturbations from Saturn’s free oscillations can resonate with
ring orbits. Saturn ring seismology is the focus of this work.

1.1. Background

The concept of ring seismology was first developed in the
1980s. Stevenson (1982a) suggested that Saturnian inertial
oscillation modes, for which the Coriolis force is the restoring
force, could produce regular density perturbations within the
planet that might resonate with ring particle orbits and open
gaps or launch waves, but he did not calculate specific mode
frequencies. Later in the decade in a series of abstracts, a thesis,
and papers Marley, Hubbard, and Porco further developed this
idea. Marley et al. (1987), relying on Saturn oscillation
frequencies computed by Vorontsov (1981), suggested that

acoustic mode oscillations, which differ from inertial modes in
that their restoring force is ultimately pressure, could resonate
with ring particle orbits in the C ring. They recognized that
mode amplitudes of a few meters would be sufficient to perturb
the rings. Marley & Hubbard (1988) focused on low angular
degree ℓ f-modes, which have no radial nodes in displacement
from the surface to the center of the planet (unlike p-modes), as
the modes that had the potential to provide the most
information about the deep interior of a giant planet. Marley
et al. (1989) compared the predicted resonance locations of
such modes with newly discovered wave features in the C ring
found in radio occupation data by Rosen (1989). They
suggested that the Maxwell gap and three wave features found
by Rosen that had azimuthal wavenumbers and propagation
directions consistent with such resonances were in fact
produced by Saturnian f-modes with ℓ�4. As we will
summarize below, we now know that these specific f-mode
−ring feature associations were correct, although the story for
the ℓ=2 and ℓ=3 waves is complicated by g-mode mixing
(Fuller 2014; Fuller et al. 2014).
These ideas were ultimately presented in detail in Marley

(1990, 1991) and Marley & Porco (1993). Marley computed
the sensitivity of Saturn oscillation frequencies to various
uncertainties in Saturn interior models, including core size and
regions with composition gradients, and discussed the
sensitivity of ring resonance locations to these uncertainties.
As we will show below, the overall pattern of resonance
locations within the rings first presented in Marley (1990)
agrees well with subsequent discoveries. While Marley
recognized the impact of regions with nonzero Brunt–Väisälä
frequency N on f-mode frequencies and the possibility of
g-modes (for which the restoring force is buoyancy), he did not
consider mode mixing between f- and g-modes. Marley &
Porco (1993) presented the theory of resonances between
planetary oscillation modes and rings in detail, derived
expressions for the torque applied to the rings at horizontal
(Lindblad) and vertical resonances, and compared these torques
to those of satellites. They also suggested several more specific
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ring feature−oscillation mode associations, many of which
have subsequently turned out to be correct. Marley and Porco
concluded by noting that because the azimuthal wavenumbers
of the Rosen wave features were uncertain, only additional
observations by the planned future Saturn mission Cassini
could ultimately test the hypothesized oscillation mode–ring
feature connection. Consequently, there was an essentially two-
decade pause in ring seismology research until those results
became available.

Optical depth scans of the C ring from Cassini radio
occultations and Ultraviolet Imaging Spectrograph stellar
occultations presented by Colwell et al. (2009) and Baillié
et al. (2011) confirmed all the unexplained waves reported by
Rosen et al. (1991b) and identified many more. Hedman &
Nicholson (2013) followed up with Visual and Infrared
Mapping Spectrometer (VIMS) stellar occultations, combining
scans taken by Cassini at different orbital phases to determine
wave pattern speeds and azimuthal wavenumbers m at OLRs,
making seismology of Saturn using ring waves possible for the
first time. As alluded to above, the detection of multiple close
waves with m=2 and m=3 waves deviated from the
expectation for the spectrum of pure f-modes. In light of this
result, Fuller et al. (2014) investigated the possibility of shear
modes in a solid core, finding that rotation could mix these core
shear modes with the f-modes and in principle explain the
observed fine splitting, although they noted that some fine-
tuning of the model was required. The most compelling model
for the fine splitting to date was presented by Fuller (2014),
who showed that a strong stable stratification outside Saturn’s
core would admit g-modes that could rotationally mix with the
f-modes and rather robustly explain the number of strong split
m=2 and m=3 waves at Lindblad resonances, as well as
roughly explain the magnitude of their frequency separations.

Subsequent observational results from the VIMS data came
from Hedman & Nicholson (2014), who detected a number of
additional waves, including an m=10 wave apparently
corresponding to Saturn’s ℓ=m=10 f-mode. French et al.
(2016) characterized the wave in the ringlet within the Maxwell
gap (Porco et al. 2005) and argued that it is driven by Saturn’s
ℓ=m=2 f-mode, supporting the prediction by Marley et al.
(1989). The remainder of C ring wave detections that form the
observational basis for our work are the density waves reported
by Hedman et al. (2019) and the density and bending waves
reported by French et al. (2019).

1.2. This Work

Here we seek to systematically understand the ring wave
patterns associated with Saturn’s normal modes. In particular,
we aim to identify the modes responsible for each wave, make
predictions for the locations of other Saturnian resonances in
the rings, and ultimately assess what information these modes
carry about Saturn’s interior. We describe the construction of
Saturn interior models in Section 2. Section 3 summarizes our
method for solving for mode eigenfrequencies and eigenfunc-
tions, as well as our method for accounting for Saturn’s rapid
rotation. In Section 4 we recapitulate the conditions for
Lindblad and vertical resonances with ring orbits and describe
which f-modes can excite waves at each. Section 5 presents the
main results, namely, f-mode identifications and a systematic
comparison of predicted f-mode frequencies with the pattern
speeds of observed waves and its implications for Saturn’s
interior, principally its rotation. The separate question of mode

amplitudes and detectability of ring waves is addressed in
Section 6, which also lists the strongest predicted waves yet to
be detected. Discussion follows in Section 7, and we
summarize our conclusions in Section 8.

2. Interior Models

Our hydrostatic planet interior models are computed using a
code based on that of Thorngren et al. (2016) with a few
important generalizations. To model arbitrary mixtures of
hydrogen and helium, we implement the equation of state
(EOS) of Saumon et al. (1995) (the version interpolated over
the plasma phase transition, henceforth “SCvH-i”). Heavier
elements are included using the ab initio water EOS of French
et al. (2009), extending the coverage to T<103 K using the
analytical model of Thompson (1990) for water. The density ρ
(Y, Z) is obtained assuming linear mixing of the three
components following

r
r r

= +
-- ( )

( )
( )Y Z

Z Z

Y
,

1
, 11

Z HHe

where in turn

r
r r

= +
-- ( ) ( )Y

Y Y1
. 2HHe

1

He H

Here Y and Z are the mass fractions of helium and heavier
elements, respectively, and the densities ρH, ρHe, and ρZ are
tabulated as functions of pressure P and temperature T in the
aforementioned equations of state.
The outer boundary condition for our interior models is

simply a fixed temperature at P=1 bar, namely, =T 140 K1 ,
close to the value derived by Lindal et al. (1985) from Voyager
radio occultations and mirroring that used in previous Saturn
interior modeling efforts (e.g., Nettelmann et al. 2013). The
envelope is assumed to be everywhere efficiently convective so
that the deeper temperature profile is obtained by integrating
the adiabatic temperature gradient:

 ò= + ( ) ( ) ( )T m M T P T Y T d P, , ln , 3r
M

m

c 1 ad
r

with the core itself assumed isothermal at ( )T Mc . Here mr denotes
the mass coordinate and the adiabatic temperature gradient  ºad
¶
¶( )T

P

ln

ln ad
is assumed to be that of the hydrogen–helium

mixture alone.3

Following common choices for models of Saturn’s interior
(e.g., Nettelmann et al. 2013), the distribution of constituent
species with depth follows a three-layer piecewise homoge-
neous structure: heavy elements are partitioned into a core
devoid of hydrogen and helium (Z= 1) and a two-layer
envelope with outer (inner) heavy-element mass fraction Z1
(Z2). The helium content is likewise partitioned with outer
(inner) helium mass fraction Y1 (Y2) subject to the constraint
that the mean helium mass fraction of the envelope match the

3 This simplification is necessary because the water tables of French et al.
(2009) do not provide an entropy column. While these tables have been
extended with entropies calculated from separate thermodynamic integrations
(N. Nettelmann 2018, private communication), the entropies are accurate only
up to an additive offset and so cannot be used to write the total entropy of even
an ideal H–He–Z mixture. Within the core where Z=1, the entropy is
straightforward to calculate, and there we use these extended tables to calculate
the sound speed in pure water. See Baraffe et al. (2008) for a discussion of the
significance of heavy elements in setting ad in the envelope.
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protosolar nebula abundance Y=0.275. The Z and Y
transitions are located at a common pressure level P12, a free
parameter conceptually corresponding to the molecular–
metallic transition of hydrogen, although in SCvH-i itself this
is explicitly a smooth transition. We only consider Z2>Z1 and
Y2>Y1 to avoid density inversions and to reflect the natural
configuration of a differentiated planet.

The particular choice of this three-layer interior structure
model is motivated by the desire for a minimally complicated
model that simultaneously (a) satisfies the adopted physically
motivated EOS, (b) includes enough freedom to fit Saturn’s
low-order gravity field J2 and J4, and (c) does not introduce
significant convectively stable regions in the envelope, such as
those that might arise in cases where composition varies
continuously. Requirement (c) precludes a viable class of
configurations for Saturn’s interior (e.g., Leconte & Chabrier
2013; Fuller 2014; Vazan et al. 2016), but it significantly
simplifies the formalism and interpretation because in this case
the normal modes in the relevant frequency range are limited to
the fundamental and acoustic overtone modes. While the
isothermal cores of our models are stably stratified and so do
admit g-modes, the stratification is such that the maximum
Brunt–Väisälä frequency attained there is only N≈σ0, where
s = ( )GM R0

1 2 is Saturn’s dynamical frequency. Since
g-modes have frequencies at most N, and f-mode frequencies
follow σ≈ℓ1/2σ0 (Gough 1980), g-modes in such a core will
not undergo avoided crossings with the ℓ�2 f-modes. As will
be discussed in Section 5 below, a spectrum of purely acoustic
modes is sufficient to explain the majority of the spiral density
and bending waves identified in the C ring that appear to be
Saturnian in origin.

2.1. Gravity Field

We generate rigidly rotating, oblate interior models by solving
for the shape and mass distribution throughout the interior using
the theory of figures formalism (Zharkov & Trubitsyn 1978). The
theory of figures expresses the total potential, including gravita-
tional and centrifugal terms, as a series expansion in the small
parameter = WWm R GM2 3 , where Ω is the uniform rotation rate,
R is the planet’s volumetric mean radius, and GM is the planet’s
total gravitational mass. Retaining terms of  W( )m n provides a
system of n algebraic equations that describe the shape and total
potential as integral functions of the 2D mass distribution, while
the mass distribution is in turn related to the potential by the
condition of hydrostatic balance. A self-consistent solution for the
shape and mass distribution in the oblate model is obtained
iteratively, yielding the corresponding gravitational harmonics J2n
in the process. To this end we use the shape coefficients given
through ( )m4 by Nettelmann (2017) and implement a similar
algorithm. For our Saturn models we adopt R=58,232 km
(Seidelmann et al. 2007) and GM=37,931,207.7 cm3 s−2

(Jacobson et al. 2006).
For a given combination of the parameters Z1, Z2, Y1, P12,

and Wm , an initially spherical model is relaxed to its rotating
hydrostatic equilibrium configuration. The mean radii of level
surfaces are adjusted during iterations such that the equatorial
radius a of the outermost level surface for a converged model
matches a=60,260 km following Seidelmann et al. (2007).
As the mean radii are adjusted and the densities are recalculated
from the EOS, the total mass of the model necessarily changes;
therefore, the core mass Mc is simultaneously adjusted over the

course of iterations such that the converged model matches
Saturn’s total mass. These models include 4096 zones, the
algorithm adding zones late in iterations if necessary to speed
convergence to the correct total mass.
The values for the gravity used for generating interior

models are those of Jacobson et al. (2006), appropriately
normalized to our slightly smaller adopted reference equatorial
radius according to ¢ = ¢( )J a a Jn n2 2 . Although dramatically
more precise harmonics obtained from the Cassini Grand
Finale orbits will soon be published, the values of J2 and J4
from Jacobson et al. (2006) are already precise to a level
beyond that which can be used to put meaningful constraints on
the deep interior using our fourth-order theory of figures, where
in practice solutions are only obtained with numerical precision
at the level of d d» -∣ ∣ ∣ ∣J J J J 102 2 4 4

4.
For the purpose of fitting the gravity field, we create models

using =Wm 0.13963 corresponding to the 10h39m24s (10 657)
rotation period measured from Voyager kilometric radiation
and magnetic field data by Desch & Kaiser (1981). We sample
interior models from a bivariate normal likelihood distribution
in J2 and J4 using emcee (Foreman-Mackey et al. 2013)
assuming a diagonal covariance for these gravity harmonics.
Because the numerical precision to which our theory of figures
can calculate J2 exceeds its observational uncertainty, the
former is used in our likelihood function. We take uniform
priors on Z1 and Z2 subject to the constraint that
0<Z1<Z2<1, a uniform prior on 0<Y1<0.275, and a
uniform prior over < <P0.5 Mbar 2 Mbar12 . The mass
distributions and sound speeds for models in this sample are
illustrated in Figure 1.

3. Mode Eigenfrequencies and Eigenfunctions

Our approach is to perform the pulsation calculation for
spherical models corresponding to the converged theory of
figures models, with the various material parameters defined
on the mean radii r of level surfaces. The influence of Saturn’s
rapid rotation is accounted for after the fact using a
perturbation theory that expresses the full solutions in the
presence of Coriolis and centrifugal forces and oblateness in
terms of linear superpositions of the solutions obtained in the
nonrotating case.
For spherical models, we solve the fourth-order system of

equations governing linear, adiabatic oscillations (Unno et al.
1989) using the open-source GYRE stellar oscillation code
suite (Townsend & Teitler 2013). The four assumed boundary
conditions correspond to the enforcement of regularity of the
eigenfunctions at r=0 and the vanishing of the Lagrangian
pressure perturbation at the planet’s surface r=R (Unno et al.
1989, Section 18.1). The three-layer nature of the interior
models considered in this work involves two locations at which
the density and sound speed are discontinuous as a result of
discontinuous composition changes (see Figure 1). Additional
conditions are applied at the locations of these discontinuities;
these amount to jump conditions enforcing the conservation of
mass and momentum across these boundaries.
As will be discussed in Section 5, comparison with the full

set of observed waves in the C ring requires f-modes with
angular degree in the range ℓ=2–14, and we tabulate results
for the f-modes through ℓ=15.
In what follows, we adopt the convention that m>0

corresponds to prograde modes—those that propagate in the
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same sense as Saturn’s rotation—so that the time-dependent
Eulerian perturbation to, e.g., the mass density corresponding
to the ℓmn normal mode in the planet is written as

r q j r q j¢ = ¢ s-( ) ( ) ( ) ( )r t r Y e, , , , , 4ℓmn ℓmn ℓ
m i tℓmn

where sℓmn is the mode frequency in the frame rotating with the
planet, and r, θ, and j denote radius, colatitude, and azimuth,
respectively. Analogous relations hold with the pressure P or
gravitational potential Φ in place of density. The q j( )Y ,ℓ

m are
the spherical harmonics, here defined in terms of the associated
Legendre polynomials Pℓ

m as

q j
p

q

= -
+ -

+

´ j
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⎡
⎣⎢
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( ) ( ) ( ∣ ∣)!

( ∣ ∣)!
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ℓ m

P e

, 1
2 1

4

cos . 5

ℓ
m

ℓ
m im

1 2
m m

2

The solution for the displacement itself has both radial and
horizontal components, with the total displacement vector

given by

x q j x x q
q

j
q j

q j

= +
¶
¶

+
¶
¶

´ s-

⎡
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⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( ) ( ) ˆ ( ) ˆ ˆ

( ) ( )
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Y e
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1

sin

, . 6

r h

ℓ
m i tℓmn

3.1. Rotation

In reality, Saturn’s eigenfrequencies are significantly mod-
ified by the action of Saturn’s rapid rotation because of Coriolis
and centrifugal forces and the ellipticity of level surfaces. We
account for these following the perturbation theory given by
Vorontsov & Zharkov (1981; see also Saio 1981) and later
generalized by Vorontsov (1981) to treat differential rotation,
using the eigenfunctions obtained in the nonrotating case as
basis functions for expressing the full solutions. In this work
we calculate corrected eigenfrequencies for a range of rotation
rates, treating Saturn as a rigidly rotating body.
Denoting by s̃ℓmn the eigenfrequency obtained for the ℓmn

mode in the nonrotating case, we write the corrected
eigenfrequency as an expansion to second order in the small
parameter

l
s

º
W
˜

( )7
ℓmn

S

so that the corrected frequency as seen in inertial space is
given by

s s s l s l l= + + +˜ [ ( )] ( )1 . 8ℓmn ℓmn ℓmn ℓmn,1 ,2
2 3

For Saturn’s f-modes, λ≈0.3 for ℓ=2 and decreases to
λ≈0.1 by ℓ=15. The dimensionless factor sℓmn,1 includes the
effects of the Coriolis force and the Doppler shift out of the
planet’s rotating reference frame. sℓmn,2 includes the effects of
the centrifugal force and ellipticity of the planet’s figure as a
result of rotation. In the limit of slow rotation, it is appropriate
to truncate the expansion at first order in λ, in which case
Equation (8) reduces to the well-known correction of Ledoux
(1951) in which the Coriolis force breaks the frequency’s
degeneracy with respect to the azimuthal order m.
Expressions for sℓmn,1 and sℓmn,2 are obtained through the

perturbation theory; in practical terms they are inner products
involving the zeroth-order eigenfunctions and operators
describing the Coriolis and centrifugal forces and ellipticity.
Corrections related to the distortion of equipotential surfaces
require knowledge of the planetary figure as a function of
depth, and these are provided directly by the theory of figures
as described in Section 2.1.
This formalism is constructed to retain the separability of

eigenmodes in terms of the spherical harmonics Yℓ
m, so that

each corrected planet mode may still be uniquely specified by
the integers ℓ, m, and n and expressions (4) and (6) hold for the
corrected eigenfunctions. Generally speaking, distinct modes
whose frequencies are brought into close proximity by the
perturbations from rotation may interact, yielding modes of
mixed character. In the second-order theory applied to rigid
rotation, selection rules limit these interactions to pairs of
modes with the same m and with ℓ differing by −2, 0, or +2.
Vorontsov & Zharkov (1981) found that for f- and p-modes
with ℓ�8 these additional frequency perturbations do not

Figure 1. Saturn interior models with two-layer envelopes of varying Y and Z
distributions, surrounding pure-Z cores. Models are sampled based on J2 and J4
from Iess et al. (2019). Mass density (top panel) and sound speed (bottom
panel) are shown as functions of the mean radii of level surfaces (bottom
horizontal axes) and pressure coordinate (top horizontal axes).
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exceed 0.5%, roughly an order of magnitude smaller than the
second-order corrections themselves, and indeed generally
smaller than the truncation error associated with neglecting
higher-order correction terms (see below). There is thus little to
be gained from incorporating mode−mode interactions given
the accuracy of the present theory, but mode−mode interac-
tions could be meaningfully taken into account in a third-order
perturbation theory. The present work neglects mode−mode
interactions.

Further details on the calculation of these rotation corrections
are given by Marley (1990), which the present implementation
follows closely.4 The interior density and sound speed
discontinuities described above necessitate additional second-
order corrections accounting for the ellipticity of these
transitions and the gravitational potential perturbation felt
throughout the planet as a result (Vorontsov & Zharkov 1981,
Section 5).

Equation (8) provides the mode frequency as seen in inertial
space. This frequency can in turn be related to a pattern speed
—the rotation rate of the full m-fold azimuthally periodic
pattern—according to

sW = ( )
m

1
, 9ℓmnpat

which is suitable for direct comparison with the pattern speeds
observed for waves in the rings. For completeness, the mode
frequency in the planet’s corotating frame is related to the
frequency seen in inertial space by

s s= + W ( )m , 10ℓmn ℓmn
corot

S

i.e., modes that are prograde in the planet’s frame (m> 0)
modes appear to have larger frequencies in inertial space as a
result of Saturn’s rotation.

As an illustration of the relative importance of these various
contributions to the modeled pattern speed, we may substitute
frequency expansion (8) into Equation (9) to write

s s s
s

W = +
W

+
W˜

˜
( )

m m m
. 11ℓmn ℓmn ℓmn

ℓmn
pat

,1 S ,2 S
2

These three contributions are shown in Figure 2, which
demonstrates that the second-order rotation corrections affect
the pattern speeds at the level of 50 deg day−1 for modes with
ℓ below 15. These corrections are thus essential for comparison
with the observed wave pattern speeds, whose uncertainties are
no larger than approximately 0.1 deg day−1 (P. D. Nicholson
2018, private communication).

Higher-order terms in the series expansion are potentially
also significant. A third-order theory would include in the
expansion (11) a λ3 term

s
s

W º
W

˜
( )( )

m
, 12ℓmn

ℓmn
pat
3 ,3 S

3

2

where the nondimensional prefactor sℓmn,3 involves significant
mathematical complexity (Soufi et al. 1998; Karami 2008). To
establish an upper limit for the magnitude of third-order
corrections, noting that s s<∣ ∣ ∣ ∣ℓmn ℓmn,2 ,1 for all modes we

consider, we suppose that similarly s s∣ ∣ ∣ ∣ℓmn ℓmn,3 ,2 and thus
adopt s s=∣ ∣ ∣ ∣ℓmn ℓmn,3 ,2 as an upper limit. The resulting upper
limits on third-order contributions to f-mode pattern speeds are
indicated in Figure 2, which demonstrates that the truncation
error associated with our second-order theory may be as large
as 30 deg day−1 for ℓ=m=2, but decaying with increasing
m. As discussed in Section 5 below, these error estimates are
taken into account in our analysis to ensure that the systematic
dependence of the truncation error on m does not bias our
estimate of Saturn’s bulk rotation rate.

4. Saturnian f-modes in the Rings

This section briefly summarizes the formalism (Marley &
Porco 1993) connecting Saturn’s nonradial oscillations with
orbital resonances in the rings.

4.1. Resonance Conditions

The condition for a Lindblad resonance is (Goldreich &
Tremaine 1979)

kW - W = ( ) ( )m q , 13pat

with the upper sign corresponding to an inner Lindblad
resonance (ILR) and the lower sign corresponding to an outer
Lindblad resonance (OLR), and with q a positive integer.
Taking the lower sign in Equation (13) to consider an OLR, it
physically represents the condition that the perturbing pattern
overtakes an orbiting ring particle once every m/q epicycles.
This prograde forcing in phase with the ring particles’ epicycles
leads to a deposition of angular momentum that may launch a
spiral density wave propagating toward the planet, assuming
that self-gravity is the relevant restoring force. At an ILR an
orbiting particle instead overtakes the slower perturbing pattern
once every m/q epicycles, leading to a removal of angular
momentum that may launch a spiral density wave that
propagates away from the planet. Such waves are common in
Saturn’s rings at mean motion resonances with Saturnian
satellites.

Figure 2.Magnitude of the contributions made to the modeled pattern speed by
each of the four terms in Equation (11), as well as estimate (12) for the
magnitude of third-order corrections. For these prograde modes the first-order
corrections (Doppler plus Coriolis; blue solid curve) take positive values, the
second-order corrections (centrifugal force and ellipticity; green dashed curve)
take negative values, and the estimated third-order intrinsic corrections (purple
solid curve) have no assumed sign.

4 Marley (1990) corrected several typographical errors from Vorontsov &
Zharkov (1981) and Vorontsov (1981), and one error was introduced: Equation
(A1.27) for the ellipticity correction I5 is missing a factor of two in the
second term.
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Vertical resonances satisfy an analogous condition, namely,
that the perturbing pattern speed relative to the ring orbital
frequency is simply related to the characteristic vertical
frequency μ in the rings:

mW - W = ( ) ( )m b , 14pat

where b is a positive integer and the vertical frequency μ(r) in
the ring plane can be obtained from (Shu et al. 1983)

m k+ = W ( )2 . 152 2 2

As with Lindblad resonances, there exist both inner and outer
vertical resonances (IVRs and OVRs), depending on the sign of
W - Wpat. Self-gravity waves excited at vertical resonances
generally propagate in the opposite sense from those excited at
Lindblad resonances, so that bending waves at IVRs propagate
toward the planet and those at ILRs propagate away. IVRs are
common in the rings as a result of Saturnian satellites, namely,
those whose inclinations provide resonant vertical forcing.

In the above, the positive integer q or b is sometimes referred
to as the “order” of the resonance. This work focuses on
first-order (q= 1 or b= 1) resonances; higher-order resonances are
possible (Marley 2014), but the wave structures they produce may
destructively interfere (P. D. Nicholson 2018, private communica-
tion), and these resonances do not appear to need to be invoked to
explain the waves considered here (see Section 5 below).
Furthermore, in what follows we limit our attention to OLRs
and OVRs because, in practice, the prograde f-modes of modest
angular degree have pattern speeds that exceedΩ(r) throughout the
C ring.

The orbital and epicyclic frequencies Ω and κ for orbits at
low inclination and low eccentricity can generally be written as
a multipole expansion in terms of the zonal gravitational
harmonics J2n, namely,

åW = +
=

¥
⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( )r

GM

r
A J

a

r
1 16

n
n n

n
2

3
1

2 2

2

and

åk = +
=

¥
⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( )r

GM

r
B J

a

r
1 , 17

n
n n

n
2

3
1

2 2

2

with the J2n values scaled to the appropriate reference equatorial
radius a. The A2n and B2n are rational coefficients and are
tabulated by Nicholson & Porco (1988). We use the even
harmonics of Iess et al. (2019) through J12 for the purposes of
locating resonances in the ring plane, although the gravity field
only affects radial locations of resonances and has no bearing on
f-mode pattern speeds. We therefore use the latter for quantitative
comparison between model f-modes and observed waves.

The above relations constitute a closed system allowing the
comparison of planet mode frequencies to the frequencies of
waves observed at resonances in the rings. In cases where we
do compare resonance locations, the resonant radius for a
Lindblad or vertical resonance is obtained by numerically
solving Equation (13) or Equation (14).

4.2. Which Modes for Which Resonances?

Each planet mode can generate either density waves or bending
waves. The type of wave that the ℓmn mode is capable of driving
depends on its angular symmetry, and in particular the integer
ℓ−m=(0, 1, 2, 3,K). Modes with even ℓ−m are permanently

symmetric with respect to the equator and so are not capable of
any vertical forcing. However, they are antisymmetric with
respect to their azimuthal nodes and so do contribute periodic
azimuthal forcing on the rings. The reverse is true of modes with
odd ℓ−m, whose perturbations are antisymmetric with respect to
the equator and so do contribute periodic vertical forcing on ring
particles. Meanwhile, their latitude-averaged azimuthal symmetry
as experienced at the equator prevents them from forcing ring
particles prograde or retrograde.
In what follows, we restrict our attention to prograde f-modes,

namely, the normal modes with m>0 and n=0. Acoustic
modes with overtones (n> 0; p-modes) are not considered
because they contribute only weakly to the external potential
perturbation due to self-cancellation in the volume integral of the
Eulerian density perturbation; see Equation (34). We further limit
our consideration to prograde modes, because while f-modes that
are retrograde in the frame rotating with the planet can in principle
be boosted prograde by Saturn’s rotation (see Equation (10)), we
find that the resulting low pattern speeds (500 deg day−1) would
place any Lindblad or vertical resonances beyond the extent of
even the A or B rings. Finally, azimuthally symmetric (m= 0)
modes do not lead to Lindblad or vertical resonances.

5. Results for Rigid Rotation

Figure 3 summarizes the OLR and OVR locations of
prograde model Saturn f-modes with ℓ−m between 0 and 5,
together with locations of 17 inward-propagating density waves
and four outward-propagating bending waves observed in
Cassini VIMS data. A visual comparison in this diagram
provides a strong indication that the f-modes are responsible for
the majority of the wave features shown. In particular, we can
make unambiguous identifications for the f-modes at the origin
of 10 of the 17 density waves, as well as all four of the bending
waves; these visual identifications are summarized in Table 1.
The remaining seven density waves at m=2 and m=3

exhibit frequency splitting that is likely attributable to mixing with
deep g-modes as proposed by Fuller (2014), and which our
model, lacking a stable stratification outside the core, does not
attempt to address. We thus omit all m=2 and m=3 waves
from the quantitative analysis that follows, although we note that
the predicted ℓ=m=2 and ℓ=m=3 f-mode OLR locations
do generally coincide with the locus of observed density waves
for these m values, the sole exception being the close-in W76.44.
This wave was only recently detected in VIMS data (French et al.
2019), and while coupling with deep g-modes is a possible
interpretation (E. Dederick 2018, private communication), this
wave may be particularly challenging to explain owing to its large
splitting from the other three m=2 waves. We also note that the
frequency and m value of the outermost m=2 density wave in
the ringlet within the Maxwell gap (French et al. 2016) were
predicted by Fuller (2014).
As discussed in Section 3, the density and sound speed

discontinuities inherent to the three-layer interior structures
assumed for Saturn affect the f-mode frequencies. Their effect
is strongest for the lowest-degree f-modes, which have
significant amplitude at these deep transitions. This is evident
in Figure 3 in the considerable spread of predicted locations for
resonances with the ℓ={2, 3} f-modes. By ℓ4 the f-modes
have low enough amplitudes at these deep density transitions
that their frequencies are not strongly affected.
The model f-modes whose resonance locations coincide with

the remainder of the observed waves contain a striking range of
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radial and latitudinal structures, including the rest of the
sectoral (ℓ=m) sequence up to ℓ=m=10, as well as seven
nonsectoral ( ¹ℓ m) modes with ℓ−m={1, 2, 3, 4, 5}. These
waves are evidently the result of time-dependent tesseral
harmonics resulting from Saturn’s nonradial oscillations.

Although general agreement for these is evident at the broad
scale of Figure 3, the observed wave pattern speeds are known to
a precision better than 0.1 deg day−1 for the weakest waves yet
measured (P. D. Nicholson 2018, private communication). This
high precision warrants a closer inspection of the pattern speed
residuals with respect to our predictions. What follows in the
remainder of this section is an analysis of these residuals and their
dependence on the assumed interior model and rotation rate.

5.1. Saturn’s Seismological Rotation Rate

Saturn’s bulk rotation rate has to date been deduced from a
combination of gravity field and radiometry data from the
Pioneer, Voyager, and Cassini spacecraft (e.g., Desch &
Kaiser 1981; Gurnett et al. 2005; Giampieri et al. 2006;
Anderson & Schubert 2007). Along different lines, Helled et al.
(2015) optimized interior models to the observed gravity field
and oblateness to extract the rotation rate. Since we have
demonstrated that the frequencies of Saturnian f-modes depend
strongly on WS through the influence of the Coriolis and
centrifugal forces and the ellipticity of level surfaces, a natural
question is, what interior rotation rate is favored by the waves
detected so far that appear to be associated with modes in
Saturn’s interior?

Given an observed C ring wave with a pattern speed Wpat
obs

that appears to be associated with a predicted Saturn model
f-mode resonance with pattern speed Wpat and azimuthal order
matching the observed number of spiral arms m, we calculate
the pattern speed residual DW º W - Wpat pat pat

obs. For each
Saturn interior model and rotation rate considered, we calculate
a weighted rms value ofDWpat over the set of mode–wave pairs

according to

åDW º DW
⎡
⎣⎢

⎤
⎦⎥∣ ∣ ( )wrms , 18

i
i ipat pat,

2

where the weights wi are assigned in inverse proportion to the
maximum magnitude of third-order corrections as described in
Section 3.1, the weights sum to unity, and i indexes the set of
waves that we have identified with Saturn f-modes, namely,
those with ℓ values and model pattern speeds listed in Table 1.
The resulting curves are shown in Figure 4 for rotation periods
between 10h30m and 10h42m. The relation between rms DWpat

and WS always exhibits a distinct minimum, owing to the
strongly correlated response of the f-mode frequencies to
varying WS. In particular, the predicted pattern speeds increase
uniformly with faster Saturn rotation.
The optimal Saturn rotation period depends on the interior

model chosen, as does the quality of that best fit: interior
models favoring longer rotation periods generally achieve a
slightly better bit. To account for this in our estimate of
Saturn’s bulk rotation period, we weight the optimized rotation
period from each interior model in inverse proportion to the
value of DWrms pat obtained there. The cumulative distribution
of rotation rates resulting from our sample of interior models is
shown in Figure 4. This distribution may be summarized as

= =-
+

-
+P 10.561 h 10 33 38sS 0.022

0.031 h m
1m19s
1m52s, where the leading

value corresponds to the median and the upper (lower) error
corresponds to the 95% (5%) quantile. This may be expressed
in terms of a pattern speed as p = -

+ -P2 818.13 deg dayS 1.70
2.41 1.

Although these seismological calculations vary the assumed
rotation rate, the underlying interiors randomly sampled against J2
and J4 using the theory of figures as described in Section 2.1
assumed the Desch & Kaiser (1981) Voyager rate, in principle an
inconsistency of the model. As a diagnostic we generate a new
sample from the gravity field, but adopting =Wm 0.14201
consistent with the 10 561 median rotation period derived here.
Repeating the remainder of this analysis, we find a very similar

Figure 3. Locations of resonances with our model Saturn’s f-modes (colored horizontal spans) and wave features observed in Saturn’s C ring using stellar occultations
in Cassini VIMS data (open symbols; see references in Table 1). The number of spiral arms m (or equivalently, the azimuthal order of the perturbing planet mode) is
shown vs. distance from Saturn’s center in the ring plane. Left panel: OLRs, which can excite inward-propagating spiral density waves in the rings. The three roughly
vertical model sequences correspond to modes with m=ℓ, m=ℓ−2, and m=ℓ−4 from right to left. The three observed m=3 density waves are offset vertically
for clarity. Right panel: OVRs, which can excite outward-propagating bending waves in the rings. The three vertical model sequences correspond to m=ℓ−1,
m=ℓ−3, and m=ℓ−5 from right to left. Model resonances are colored by the assumed Saturn rotation rate as described in the legend; the resonances indicated
for each rotation rate are slightly offset vertically for clarity.
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distribution of optimal rotation periods, the median shifting to
longer periods by approximately 1 minute as a result of the
slightly different interior mass distributions obtained. The

frequencies of the f-modes themselves are inherently more
sensitive to Saturn’s assumed rotation rate than are the low-order
gravity harmonics J2 and J4, a consequence of the f-modes
extending to relatively high m where Saturn’s rotation imparts a
larger fractional change to the frequency (see Figure 2).

5.2. Is Rigid Rotation Adequate?

The lack of any perfect fit among the range of interior
structures and rotation rates we have considered is evident in
Figure 4, where the rms pattern speed residuals reach
approximately 1.2 deg day−1 at best, an order of magnitude
larger than the typical observational uncertainty of approxi-
mately 0.1 deg day−1 associated with even the weakest waves
we compare to here (P. D. Nicholson 2018, private commu-
nication). The absolute residuals are shown mode by mode in
Figure 5, including the full span of residuals obtained over the
sample of interior models, each one evaluated at its optimal
rotation rate. Points lie on both sides of zero by construction,
but again no model provides an entirely satisfactory fit.
First, it is notable that the model pattern speed covariance

(the diagonal elements of which set the vertical spans in the
residuals of Figure 5) varies so strongly and nonmonotonically
with m. This can be understood as a consequence of the trade-
off between the decreasing zeroth-order frequency and the
increasing contribution from the first-order rotation correction
with increasing ℓ, as can be seen from Figure 2 for the sectoral
modes. At high ℓ, the zeroth-order frequency loses out to the
first-order correction. Since the latter is proportional to WS, the

Table 1
C Ring Wave Patterns and Saturn f-mode Associations

Observed Model Prediction

Referencea Wave Symbolb m Wpat
c Type ℓ Wpat

c DW -( )model obspat
c

F+19 W76.44d , 2 2169.3 OLR L L L
HN13 W84.64d ♢ 2 1860.8 OLR L L L
HN13 W87.19d ♢ 2 1779.5 OLR L L L
F+16 Maxwelld ! 2 1769.2 OLR L L L
HN13 W82.00d ♢ 3 1736.7 OLR L L L
HN13 W82.06d ♢ 3 1735.0 OLR L L L
HN13 W82.21d ♢ 3 1730.3 OLR L L L
HN13 W80.98 ♢ 4 1660.4 OLR 4 1657.87–1673.41 −2.49–13.05
H+19 W81.02a " 5 1593.6 OLR 5 1592.08–1596.05 −1.54–2.43
H+19 W81.43 " 6 1538.2 OLR 6 1537.10–1539.51 −1.13–1.28
H+19 W81.96 " 7 1492.5 OLR 7 1491.73–1493.72 −0.73–1.26
F+19 W76.46 , 7 1657.7 OLR 9 1655.86–1657.35 −1.86 to −0.37
H+19 W82.53 " 8 1454.2 OLR 8 1453.93–1455.23 −0.30–1.00
H+19 W83.09 " 9 1421.8 OLR 9 1421.83–1422.55 −0.01–0.71
F+19 W76.02 , 9 1626.5 OLR 13 1626.48–1627.46 −0.02–0.96
HN14 W83.63 ♢ 10 1394.1 OLR 10 1394.03–1394.71 −0.03–0.65
H+19 W81.02b " 11 1450.5 OLR 13 1451.53–1453.07 1.04–2.58
F+19 W74.93 , 4 1879.6 OVR 5 1871.22–1875.42 −8.42 to −4.22
F+19 W74.67 , 7 1725.8 OVR 10 1723.99–1725.28 −1.77 to −0.48
F+19 W76.24 , 8 1645.4 OVR 11 1644.89–1645.81 −0.54–0.38
F+19 W74.94 , 9 1667.7 OVR 14 1667.72–1668.85 −0.01–1.12

Notes.
a HN13: Hedman & Nicholson (2013); HN14: Hedman & Nicholson (2014); F+16: French et al. (2016); F+19: French et al. (2019); H+19: Hedman et al. (2019).
b See Figure 3.
c Units of deg day−1.
d Member of a multiplet of waves of the same type having the same m but different frequencies, possibly the result of resonant coupling between the f-mode of the
same m identified here and a deep g-mode as demonstrated by Fuller (2014). Thus, no unambiguous identification with our pure f-mode predictions is possible. See
discussion in Section 5; for the relevant ℓ=m=2 f-mode we predict 1743.34–1845.28 deg day−1, and for the ℓ=m=3 f-mode we predict
1729.29–1777.28 deg day−1.

Figure 4. Saturn’s rotation rate from fits to the set of observed C ring waves
identified with Saturnian f-modes. The rms pattern speed residuals across the
full set of waves are shown as a function of Saturn’s assumed rotation rate.
Each black curve corresponds to a single interior model from the sample shown
in Figure 1. The thick blue curve shows the cumulative distribution of rotation
periods minimizing the weighted rms pattern speed residuals for each model;
its median and 5%/95% quantiles are given in Section 5.1. Vertical lines with
shaded errors indicate Saturn rotation rates in the literature, references to which
are given in the text. For visual clarity the Helled et al. (2015) result of
10h32m(45 ± 46)s referred to in the text is omitted from the diagram.
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overall pattern speeds vary more strongly with rotation than at
intermediate ℓ. At low ℓ, where the frequency is dominated by
the zeroth-order contribution and so rotation plays a smaller
role, the large model covariance is due mostly to sensitivity to
the locations of the core boundary and envelope transition,
sensitivity that decays rapidly with increasing ℓ as modes are
confined increasingly close to the planet’s surface.

A significant observational development has been made by
Hedman et al. (2019) in their detection of density waves
corresponding to the full set of Saturn’s sectoral f-modes from
ℓ=m=2 up to ℓ=m=10, constituting frequency measure-
ments for modes that possess the same latitudinal symmetry but
sample an uninterrupted sequence of depths within Saturn. On
the other hand, the nonsectoral ( ¹ℓ m) f-mode waves reported
by Hedman et al. (2019) and French et al. (2019) extend the
detections up to ℓ=14 but also importantly sample a variety of
latitudinal structures inside the planet by virtue of the range in
their values of ℓ−m. Thus, in principle the available modes
serve to constrain differential rotation inside Saturn.

With this in mind, the second panel of Figure 5 is a valuable
illustration because any strong differential rotation as a function of
depth or latitude would generally manifest as systematic trends in
the residuals DWpat as a function of ℓ or ℓ−m, respectively,
when referred to the rigid model. Instead, the residuals exhibit no
obvious systematic dependence on ℓ, although small systematic
departures as a function of ℓ−m may indicate the presence of
differential rotation as a function of latitude. In particular, in each
of the four cases where two modes belonging to the same
multiplet have been observed (ℓ= 5, 9, 10, and 13), the two
frequencies are offset by between 1 and 5 deg day−1.

More firm conclusions regarding the presence or strength of
differential rotation are not possible given the present
theoretical accuracy limitations discussed in Section 3.1. A
more accurate treatment of rotation effects could potentially
increase the predicted pattern speeds of the low-m modes by as
many as tens of deg day−1 (see Figure 2), which could produce
a spectrum consistent with a spin frequency increasing by
several percent toward the planet’s surface. Indeed, this
systematic uncertainty motivates the weighted fit that we carry

out in our estimate of Saturn’s bulk rotation in Section 5.1.
Ultimately a more accurate perturbation theory, or else
nonperturbative methods (e.g., Mirouh et al. 2019), will be
required to fully interpret the implications for differential
rotation inside Saturn.

6. Strength of Forcing

The adiabatic eigenfrequency calculation that forms the basis
for this work provides no information about excitation or
damping of normal modes, processes that have yet to be
adequately understood in the context of gas giants.
Stochastic excitation of modes by turbulent convection such as

in solar-type oscillations is one obvious candidate for Jupiter and
Saturn, where convective flux dominates the intrinsic flux in each
planet. However, the expectation from simple models for resonant
coupling of f- and p-modes with a turbulent cascade of convective
eddies (e.g., Markham & Stevenson 2018 following the theory of
Kumar 1997) is that these modes are not excited to the amplitudes
necessary to provide the mHz power excess that Gaulme et al.
(2011) attributed to Jovian p-modes.
Recent work from Dederick & Jackiewicz (2017) demon-

strated that a radiative opacity mechanism is not able to drive
the Jovian oscillations, although they noted that driving by
intense stellar irradiation is possible for hot Jupiters. Dederick
et al. (2018) and Markham & Stevenson (2018) each focused
on water storms as a mode excitation mechanism, finding this
too insufficient for generating a power spectrum akin to that
reported by Gaulme et al. (2011). Markham & Stevenson
(2018) further demonstrated that deeper, more energetic storms
associated with the condensation of silicates were viable.
In lieu of a complete understanding of the amplitudes of

acoustic modes in gas giants, we simply adopt equal mode
energy across the f-mode spectrum following

xsµ =∣ ∣ ( )E constant, 19ℓmn ℓmn
2 2

corresponding to the “strong coupling” case cited by Marley &
Porco (1993). Less efficient coupling of the turbulence with the
f-modes could result in a steeper decline of equilibrium mode

Figure 5. Pattern speed residuals (predicted minus observed) for models each calculated at their optimal Saturn rotation period. Left panel: all residual frequencies,
including those for the m=2 and m=3 sectoral f-modes for which identification with specific m=2 or m=3 density waves is not possible. For these modes
residuals are shown with respect to each of the nearby density waves having the correct m value. The domain of the right panel is indicated. Right panel: frequency
residuals for the 14 waves identified with Saturn f-modes and used to constrain Saturn’s rotation. Circular markers are for one interior model randomly chosen from
our sample, while vertical lines show the span of residuals obtained for the full sample. These vertical spans thus indicate the amount of freedom available from the
low-order gravity field as applied to three-layer Saturn models, when the rotation rates are tuned using the seismology. Note that these spans do not represent random
uncertainties because the residuals for the various modes are highly correlated. The vertical axis at right expresses the residuals in terms of minutes of Saturn rotation,
i.e., the degree to which Saturn would need to be spun up or down to fit a given wave’s observed pattern speed. Four pairs of modes that are members of same-ℓ
multiplets are evident (see discussion in Section 7); the pairs with ℓ=9, 10, and 13 are slightly offset horizontally for clarity.
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energy with frequency; Marley & Porco (1993) adopted
sµ -Eℓmn ℓmn

13 2 as a limiting case.
Because the scaling relation (19) is only a proportionality, it

remains to set an overall normalization by choosing the
amplitude of a single mode. Marley & Porco (1993) proposed
that the ℓ=m=2 f-mode OLR is the origin of the Maxwell
gap and accordingly anchored their amplitude spectrum by
assuming that this mode had an amplitude sufficient to produce
the OLR torque TL/Σ∼1016 cm4 s−2 necessary to open a gap
(Rosen et al. 1991a). The corresponding displacement ampl-
itude was of order 100 cm; we follow suit and adopt 100 cm as
the amplitude of this mode.5

In what follows we normalize our f-mode eigenfunctions in
accordance with the amplitude estimate of Equation (19) and
derive the resulting torques applied at OLRs and OVRs. While
this amplitude law is but one of many plausible scenarios, any
similar scaling relation will yield the same general dependence
of Lindblad and vertical torques on ℓ, m, and position in the
ring plane. In particular, the magnitudes of the torques decline
monotonically with ℓ for a given ℓ−m and also with ℓ−m for
a given m. This is sufficient for a basic prediction of the relative
strengths of waves at the f-mode resonances calculated here,
which will allow us to identify locations that may harbor
hitherto-undetected waves.

6.1. Torques and Detectability

In deriving the magnitudes of torques applied at ring
resonances, we follow the approach of Marley & Porco
(1993). In a ring of surface mass density Σ, the linear torque
applied at a Lindblad resonance is (Goldreich & Tremaine
1979)
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and F¢ℓmn is the magnitude of the perturbation to the
gravitational potential caused by the ℓmn mode, evaluated at
the Lindblad resonance r=rL in the ring plane q =cos 0.
Similarly, the linear torque applied at a vertical resonance
r=rV is (Shu et al. 1983; Marley & Porco 1993)
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and qF¢( )d dℓmn is to be evaluated at the vertical resonance r=rV
and q =cos 0. In the expressions for DL and DV the upper
(lower) signs correspond to inner (outer) Lindblad or vertical
resonances, as in Equations (13) and (14). An expression for F¢ℓmn

is derived as in Marley & Porco (1993); this is reproduced in the
Appendix for completeness. These expressions rely on integrals of
the Eulerian density perturbation r¢ℓmn over the volume of the
planet. While accuracy to second order in Saturn’s smallness
parameter Wm would demand that this density eigenfunction
include second-order corrections from the perturbation theory
described in Section 3.1, the fact that only an order-of-magnitude
calculation of the torques is required for the present purpose leads
us to simply calculate these using the zeroth-order density
eigenfunctions.
To illustrate which modes are likely to excite the strongest ring

features, Figure 6 summarizes the torques applied by the f-modes
at OLRs and OVRs in the C and D rings assuming that mode
amplitudes follow equipartition per Equation (19). Because the
torques (Equations (20) and (22)) are proportional to ring surface
mass density Σ, itself strongly variable across the rings at a variety
of spatial scales, we instead plot the normalized torques TL/Σ and
TV/Σ. These are straightforward quantities to calculate even with
imperfect knowledge of the mass density itself. When comparing
to detected wave patterns, it should be kept in mind that Σ can
play an important role in whether a given wave is likely to be
driven to detectable amplitudes.
Saturnian waves can also be obscured by more prominent

eccentric features, such as those associated with satellite
resonances. Of particular importance is the strong Titan 1:0
apsidal resonance, which Nicholson et al. (2014) studied in
Cassini radio and stellar occultations and found responsible
for driving the m=1 wave in the Titan/Colombo ringlet
(77,879 km) and also dozens of other m=1 features from
74,000 to 80,000 km. Their test-particle model (see their
Figure 19) predicts maximum radial deviations in excess of
100 m as much as 3500 km away from that resonance, posing
a serious challenge for the reconstruction of weaker wave
features from stellar occultation profiles obtained at different
phases. This substantial region of the C ring thus may be
concealing waves driven at Saturn resonances, and Figure 6
accordingly indicates the region where the maximum radial
deviations are larger than 300 m according to the model of
Nicholson et al. (2014).
For context, the torques associated with four satellite

resonances that open gaps or launch waves in the C ring are
also shown in Figure 6. Prometheus 2:1 ILR opens a gap in the
C ring, while the Mimas 4:1 ILR launches a wave. The Mimas
3:1 IVR opens a gap, while the Titan −1:0 nodal resonance
launches a wave. Estimates for the strengths of these satellite
torques are taken from Rosen et al. (1991a, 1991b) and Marley
& Porco (1993).

5 While the connection between the = =ℓ m 2 f-mode and the Maxwell gap
itself has yet to be fully understood, it is tantalizing, as this mode yields the
largest gravity perturbations out of any of the Saturn f-modes for any simple
amplitude spectrum (see Section 6.1). Furthermore, the ringlet within the gap
harbors an m=2 density wave (French et al. 2016) as predicted from the
Saturn mode spectrum calculated by Fuller (2014).
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6.1.1. Conspicuously Missing Waves?

Inspection of Figure 6 reveals a few f-mode resonances that
this simple excitation model predicts to experience strong
forcing, but where no waves have yet been detected. Four of
the OLRs with m=ℓ−2 have normalized torques predicted
to be greater than that of the detected (ℓ, m)=(13, 11) OLR.
The most obvious of these is the (8, 6) OLR, which this model
predicts to lie at 74,940 km, happening to be almost exactly
coincident with the detected W74.93 and W74.94 OVR
features (French et al. 2019). The fact that these OVR waves
apparently dominate the signal at this position betrays some
tension with the spectrum of amplitudes we have assumed,
which predicts W74.93 and W74.94 to have torques one to
three orders of magnitude lower than that predicted for the
(8, 6) OLR. Given the close proximity of these resonances, an
appeal to the spatial dependence of Σ seems unlikely to resolve
this tension.

Of the remaining m=ℓ−2 OLRs stronger than (13, 11),
none among (10, 8), (11, 9), or (12, 10) have had associated
wave detections. This may be attributable to strong perturba-
tions from the Titan apsidal resonance as discussed above.
Among the predicted m=ℓ−4 resonances, the (12, 8) OLR
at 74,556 km is quite close to the inner boundary of the C ring,
where there are a series of gaps that have yet to be fully
understood. Falling in such a gap could render such a
resonance unobservable, although within the model uncertainty
this resonance could lie between the gaps or on gap edges.

As for the OVRs, the only resonances that yield waves that
have been detected so far in the C ring are the four that fall
closest to Saturn, and indeed the strongest predicted waves in
each ℓ−m have been observed. It warrants closer attention
that three of the four strongest OVRs predicted in the C ring
have not been associated with any wave feature, while waves
have been observed at what should be weaker OVRs with
ℓ−m=3 and ℓ−m=5. These three “missing waves”
correspond to the (ℓ, m)=(6, 5), (7, 6), and (8, 7) Saturn
f-modes. Because of their location, it is possible that these
waves are present but obscured by the Titan apsidal resonance.

To aid in the search for Saturnian resonances in the C ring,
Table 2 lists the pattern speeds of all model OLRs and OVRs in
the C ring with predicted torques comparable to or larger than

than the smallest predicted torque associated with a wave that
has already been observed. Likewise, Table 3 reports
resonances predicted to lie in the D ring, although it is not
clear whether any wave patterns there will ultimately be
detectable given the ring’s faintness.

7. Discussion

This work offers interpretations for the set of inward-
propagating density waves and outward-propagating bending
waves observed in Saturn’s C ring in terms of resonances with
Saturnian f-modes. It also demonstrates that Saturn’s rotation
state is of critical importance for Saturn ring seismology, a fact
made evident by the systematic mismatch with the observed
pattern speeds of these waves obtained assuming that Saturn

Figure 6. Strengths of torques per surface mass density exerted on the C and D rings by model Saturnian f-modes, with amplitudes assigned according to equal energy
per mode following Equation (19). Model points (filled circles; shown for one randomly drawn interior model) are colored by their value of ℓ−m. Arrows highlight
model f-modes that we have identified with observed waves as in Table 1. The gray shaded region in both panels represents the region where maximum radial
variations in ring orbits caused by the Titan 1:0 apsidal ILR exceed 300 m, making the detection of wave features more difficult; see Section 6. A subset of resonances
have been labeled to their left by their azimuthal wavenumber m for ease of identification. Torques associated with waves or gaps at example satellite ILRs or IVRs in
the C ring are indicated with dotted horizontal lines.

Table 2
Predicted OLRs and OVRs in the C Ring without Associated Wave Detections

ℓ m Type Wpat (deg day
−1) Remark (See Section 6)

11 11 OLR 1368.5–1371.5
12 12 OLR 1346.9–1349.7
13 13 OLR 1327.7–1330.1
8 6 OLR 1742.1–1747.6 Coincident with W74.93, W74.94
10 8 OLR 1586.9–1591.0 Near Titan apsidal
11 9 OLR 1532.9–1536.4 Near Titan apsidal
12 10 OLR 1488.4–1491.6
14 12 OLR 1419.3–1421.8
12 8 OLR 1695.6–1699.5 Among gaps
14 10 OLR 1568.6–1571.6 Near Titan apsidal
15 11 OLR 1521.4–1524.1 Near Titan apsidal
6 5 OVR 1737.0–1743.6 Near Titan apsidal
7 6 OVR 1646.4–1652.1 Near Titan apsidal
8 7 OVR 1578.0–1582.8
9 8 OVR 1523.9–1528.1
10 9 OVR 1479.8–1483.5
11 10 OVR 1443.0–1446.3
12 9 OVR 1581.1–1584.6 Near Titan apsidal
13 10 OVR 1530.1–1533.1 Near Titan apsidal
15 10 OVR 1604.7–1607.6

Note.Pattern speeds can be mapped to physical locations given Saturn’s
equatorial radius and J2n using the relations in Section 4.1.
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rotates rigidly at the Voyager System III magnetospheric period
of Desch & Kaiser (1981) or slower (see Figure 4). The interior
configurations considered to arrive at this conclusion accounted
somewhat generously for the freedom in the low-order gravity
field, because the likelihood function used to obtain our
posterior distribution of interior models assumed an inflated
variance on J2 to accord with the numerical precision of our
theory of figures implementation (see Section 2.1). Because the
resulting distribution included a diversity of heavy-element and
helium distributions, envelope transition locations, and core
masses, the seismology suggests a tension with the Voyager
rotation rate commonly assumed for Saturn’s interior that
different three-layer interior models seem unlikely to resolve.
This conclusion based on the ring seismology adds support to
the notion that periodicities in Saturn’s magnetospheric
emission (e.g., Desch & Kaiser 1981; Gurnett et al. 2005;
Giampieri et al. 2006) may not be consistently coupled to the
rotation of Saturn’s interior (e.g., Gurnett et al. 2007; Read
et al. 2009).

The present model is potentially oversimplified in two major
ways. First, the model is not suited to address the close
multiplets of waves observed to have the same azimuthal
wavenumber m, namely, the multiplets of waves in the C ring
with m=2 and m=3. The bulk of these seem naturally
explained by the model of Fuller (2014), wherein avoided
crossings between the f-modes and deep g-modes of higher
angular degree give rise to a number of strong perturbations
with the same m value. However, in the wealth of new OLR
and OVR wave patterns that have been measured from
increasingly low signal-to-noise VIMS data since Hedman &
Nicholson (2014), it seems that only two waves add to the
mixed-mode picture, both with m=2: the close-in W76.44
wave, and the Maxwell ringlet wave whose frequency and m
number were predicted by Fuller (2014). The f-modes of higher
angular degree have less amplitude in the deep interior and so
are less likely to undergo degenerate mixing with any deep
g-modes strongly. Indeed, there is not yet any direct evidence
for f-modes with ℓ>3 undergoing avoided crossings with
deep g-modes, although the outlying (5, 4) OVR warrants
closer scrutiny in the mixed-mode context.

The second major simplification of the present model is the
assumption that Saturn rotates rigidly. While upper limits can

be established for the depth of shear in Jupiter or Saturn’s
envelopes on magnetohydrodynamic grounds (Liu et al. 2008;
Cao & Stevenson 2017), evidence gathered from spacecraft
indicates that zonal wind patterns do penetrate to significant
depths (Smith et al. 1982; Kaspi et al. 2018). It has been
proposed that the insulating molecular regions of these
planets may be rotating differentially on concentric cylinders
(Busse 1976; Ingersoll & Pollard 1982; Ingersoll & Miller
1986), the zonal winds being the surface manifestation of
these cylinders of constant angular velocity.The mode
identifications made in Section 5 and Table 1 reveal that
the seismological data set now samples a variety of radial (via
the angular degree ℓ) and latitudinal (via the latitudinal
wavenumber ℓ−m) structures within Saturn and so should
strongly constrain differential rotation in Saturn’s interior.
If our rigid model systematically underpredicted f-mode
frequencies toward high ℓ, this would indicate that Saturn’s
outer envelope rotates faster than the bulk rotation. Such a
result would be qualitatively consistent with the expectation
for rotation on cylinders or an eastward equatorial jet that
extends to significant depth, as well as with the rotation
profiles that Iess et al. (2019) deduced from the Cassini Grand
Finale gravity orbits. As discussed in Section 5.2, the lack of
any such obvious systematic dependence of wave pattern
speed residuals on ℓ (see Figure 5) offers a preliminary
indication that Saturn does not experience strong differential
rotation as a function of radius within the volume sampled
by the ℓ�4 f-modes considered in this analysis, although
we emphasize that the inclusion of higher-order rotation
corrections is necessary to confirm this.
The modes identified here also contain four instances of a

pair of modes belonging to the same multiplet, i.e., a pair
described by the same angular degree ℓ but different azimuthal
order m. This carries significance for the prospect of deducing
Saturn’s rotation profile from the frequency splitting within
each multiplet, although the important centrifugal forces and
ellipticity due to Saturn’s rapid rotation complicate the picture
compared to the first-order rotation kernels commonly applied to
helioseismology (Thompson et al. 2003) and asteroseismology
(e.g., Beck et al. 2012). The frequency offsets that remain
between modes with the same ℓ but different ℓ−m may point to
a latitude-dependent spin frequency, although the manner in
which this would fit in with a radius-independent spin frequency
is unclear. Quantitative constraints on differential rotation via the
f-modes await future work.

8. Conclusions

We have presented new Saturn interior models and used
them to predict the frequency spectrum of Saturn’s nonradial
acoustic oscillations. Comparison with waves observed in
Saturn’s C ring through Cassini VIMS stellar occultations
reveals that the majority of these waves that are driven at
frequencies higher than the ring mean motion are driven by
Saturn’s fundamental acoustic modes of low to intermediate
angular degree ℓ.
The frequencies of Saturn’s f-modes probe not only its

interior mass distribution but also its rotation state, especially
those modes of higher ℓ. We used the frequencies of the
observed wave patterns to make a seismological estimate of
Saturn’s rotation period assuming that it rotates rigidly. Using
these optimized models, we proposed that small but significant

Table 3
Predicted OLRs and OVRs in the D Ring

ℓ m Type W -( )deg daypat
1

5 3 OLR 2314.3–2324.3
6 4 OLR 2034.3–2042.2
7 5 OLR 1861.1–1867.6
9 5 OLR 2063.1–2069.4
10 6 OLR 1901.5–1906.8
11 7 OLR 1784.6–1789.0
2 1 OVR 3359.2–3400.7
3 2 OVR 2423.7–2433.4
4 3 OVR 2061.8–2070.8
7 4 OVR 2177.3–2185.2
8 5 OVR 1968.1–1974.5
9 6 OVR 1826.1–1831.4
11 6 OVR 1970.5–1975.6
12 7 OVR 1841.5–1845.9
13 8 OVR 1743.8–1747.5
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residual signal in the frequencies of the observed waves as a
function of ℓ suggests that Saturn’s outer envelope may rotate
differentially, although we are unable to draw quantitative
conclusions given the accuracy with which the present theory
accounts for rotation in predicting the f-mode frequencies.

Saturn ring seismology is an interesting complement to
global helioseismology, ground-based Jovian seismology, and
asteroseismology of solar-type oscillators. Because the rings
are coupled to the oscillations purely by gravity, they are
fundamentally sensitive to the modes without nodes in the
density perturbation as a function of radius, and the observation
of modes from ℓ=2 to ℓ∼15 stands in contrast with
helioseismology where the vast majority of detected modes are
acoustic overtones (p-modes) and f-modes only emerge for
ℓ100 (e.g., Larson & Schou 2008). Likewise, ground-based
Jovian seismology accesses the mHz-range p-modes, and
Saturn ring seismology fills in the picture for frequencies down
to ∼100 μHz. Because of their point-source nature, main-
sequence and red giant stars with CoRoT and Kepler
asteroseismology mean that typically only dipole (ℓ= 1) or
quadrupole (ℓ= 2) modes are observable because of geometric
cancellation for modes of higher ℓ (Chaplin & Miglio 2013). In
contrast, the proximity of the C and D rings to Saturn renders
them generally sensitive also to higher ℓ so long as the modes
exhibit the correct asymmetries. We finally reiterate that Saturn
is a rapid rotator (WS/σ0∼ 0.4), more in line with pulsating
stars on the upper main sequence (Soufi et al. 1998) than with
stars with CoRoT and Kepler asteroseismology, and to our
knowledge this is the most complete set of modes characterized
to date for such a rapidly rotating hydrostatic fluid object.

This work buttresses the decades-old hypothesis
(Stevenson 1982a) that Saturn’s ordered ring system acts as a
sensitive seismograph for the planet’s normal mode oscilla-
tions. The set of Saturnian waves detected in the C ring so far
thus provide important constraints on Saturn’s interior that are
generally independent of those offered by the static gravity
field. Future interior modeling of the solar system giants will
benefit from joint retrieval on the gravity harmonics and normal
mode eigenfrequencies.

We thank Philip Nicholson and Matthew Hedman for
extensive discussions about the detection and characterization
of waves in the occultation data, Nadine Nettelmann for
invaluable guidance in the theory of figures, and the
anonymous referee for thoughtful comments that greatly
improved the quality of the paper. C.M. further thanks Andrew
Ingersoll, Stephen Markham, Ethan Dederick, Jim Fuller, and
Daniel Thorngren for helpful conversations. This work was
supported by NASA through Earth and Space Science
Fellowship program grant NNX15AQ62H to C.M. and Cassini
Participating Scientist program grant NNX16AI43G to J.J.F.
The University of California supported this work through
multicampus research award 00013725 for the Center for
Frontiers in High Energy Density Science. Some of these
calculations made use of the Hyades supercomputer at UCSC,
supported by NSF grant AST-1229745 and graciously
administered by Brant Robertson.

Facility: ADS.
Software:GYRE (Townsend & Teitler 2013), emcee

(Foreman-Mackey et al. 2013), Matplotlib (Hunter 2007),
SciPy (Jones et al. 2001), NumPy (Oliphant 2006).

Appendix
Perturbations to the External Potential

The density perturbations associated with nonradial planet
oscillations generally lead to gravitational perturbations felt
outside the planet. These perturbations can be understood as
time-dependent components to the usual zonal and tesseral
gravity harmonics, and these are derived here following Marley
& Porco (1993).
As in the standard harmonic expansion for the static

gravitational potential outside an oblate planet (Zharkov &
Trubitsyn 1978), the time-dependent part of the potential
arising from nonradial planet oscillations can be expanded as
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Notice from the symmetric integrand over azimuth that the ¢Jℓ

only have contributions from axisymmetric (m= 0) modes,
while the ¢Cℓm and ¢Sℓm only have contributions from nonax-
isymmetric ( ¹m 0) modes. Using the orthogonality of the
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associated Legendre polynomials
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The coefficients Sℓm are identical to the Cℓm up to a phase offset
and can thus be ignored. These expressions for the coefficients
¢Jℓ and ¢Cℓm can be substituted into expansion (24) to write the

ℓmn component of the external potential perturbation as

As above, we restrict our attention to prograde f-modes,
namely, those normal modes having m>0 and n=0. Thus,
for the modes of interest the amplitude of the potential
perturbation felt at a radius r outside Saturn is simply
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where the time dependence and azimuthal dependence are
omitted for the purposes of estimating the magnitudes of
torques on the rings.
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