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Collision-dominated nonlinear hydrodynamics in graphene
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We present an effective hydrodynamic theory of electronic transport in graphene in the interaction-dominated
regime. We derive the emergent hydrodynamic description from the microscopic Boltzmann kinetic equation
taking into account dissipation due to Coulomb interaction and find the viscosity of Dirac fermions in graphene
for arbitrary densities. The viscous terms have a dramatic effect on transport coefficients in clean samples at high
temperatures. Within linear response, we show that viscosity manifests itself in the nonlocal conductivity as well
as dispersion of hydrodynamic plasmons. Beyond linear response, we apply the derived nonlinear hydrodynamics
to the problem of hot-spot relaxation in graphene.
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Physics at long time and length scales can be conveniently
described within the hydrodynamic approach [1]. The appeal
of this approach is hinged on its ability to describe a wide range
of physical systems [2,3] using the same, relatively small,
set of quantities and equations governing their behavior. At
the same time, the final form of the hydrodynamic equations
varies from system to system [1,3], reflecting the particular
symmetries and other physical features of the problem.

Traditional hydrodynamics [1] describes the system in
terms of the velocity field v. The equations describing the
velocity field (e.g., the Euler equation in the case of the
ideal liquid or the Navier-Stokes equation if dissipation is
taken into account) can be either inferred from symmetry
arguments or derived from the Boltzmann kinetic equation.
Both approaches require one to express the fluxes of conserved
quantities (energy, momentum, etc.) in terms of v. In particular,
the viscous terms appearing in the Navier-Stokes equation can
be traced to a particular approximation for the momentum
flux (or the stress tensor) �αβ . The specific form of �αβ

depends on whether one discusses a usual, Galilean-invariant
or a relativistic, Lorentz-invariant system.

Low-energy excitations in graphene [4] present a most
interesting case of a system that is neither Galilean nor Lorentz
invariant. This poses a significant challenge in establishing
the hydrodynamic description in graphene, which has to be
derived from first principles [5–19]. The resulting equations
should account for physical processes at time and length scales
that are much longer than the scales related to the microscopic
processes responsible for equilibration of the system. The issue
of scale separation is especially important in the vicinity of
charge neutrality in clean graphene. Without interaction, there
is no “intrinsic” energy scale other than temperature.

The interest in hydrodynamics in graphene has been under-
pinned by the tremendous promise for potential applications,
e.g., for optoelectronics [20,21], where the hydrodynamic
approach is particularly suitable for describing the low-
frequency optical response [8,22]. Linearized hydrodynamic
equations provide effective tools for evaluating transport

coefficients in graphene and graphene-based double-layer
devices [18,23–26]. At the same time, novel experimental
techniques [21,27–33] bring the studies of nonlinear effects
and nonlocal transport phenomena in graphene within reach,
while improved fabrication methods have yielded ultraclean
samples [34]. For example, graphene on hexagonal boron
nitride has been shown to support astonishingly homogeneous
charge densities [35].

In this paper, we derive a hydrodynamic description of
electronic transport in graphene in the collision-dominated
regime, where the shortest time scale in the problem is
provided by electron-electron interaction. On the contrary,
time scales associated with potential disorder are assumed
to be the longest in the system. Consequently, disorder plays
no role in our theory. Our derivation is based on the quantum
kinetic equation (QKE) approach, which has been previously
used to derive the macroscopic linear-response theory [18].

The transition from the microscopic, kinetic description
to the macroscopic, hydrodynamic equations is simplified by
the so-called “collinear scattering singularity” of the collision
integral [8,11,18,24,36–38] in the QKE, i.e., the observation
that kinematic properties of the Dirac quasiparticles lead to a
divergence in the collision integral for scattering processes
involving quasiparticles moving along the same direction.
Dynamical screening regularizes the divergence [18,24,38],
such that the resulting generic relaxation rates in graphene
contain a large factor τ−1

g ∝ | ln αg| � 1, where αg = e2/εvg

is the effective coupling constant (here, ε is the effective
dielectric constant of the substrate and vg is the “speed of
light” in graphene). Depending on the substrate, the coupling
constant may be small [26,39,40], αg < 1. There are, however,
three macroscopic currents [9,18] that are not relaxed at times
of order τg: (i) the energy current jE ; (ii) the electric current
j ; and (iii) the so-called imbalance current [10] j I .

The energy current jE in graphene is equivalent to the
total momentum of electrons and thus cannot be relaxed by
electron-electron interaction. The electric current in graphene
is determined by the velocity rather than the momentum
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and therefore is not a conserved quantity. However, it is
conserved in the collinear scattering processes and hence the
corresponding relaxation rate does not contain the logarithmic
enhancement. Finally, the imbalance current j I is proportional
to the sign of the quasiparticle energy and to the velocity.
Similarly to the electric current, it does not experience
logarithmically enhanced relaxation. The imbalance current is
related to the quasiparticle number or imbalance density [10]
nI = n+ + n−, where n+ and n− are the particle numbers in
the upper (conduction) and lower (valence) bands. Neglecting
the Auger processes, quasiparticle recombination due to, e.g.,
electron-phonon interaction, and three-particle collisions due
to weak coupling, one finds that n+ and n− are conserved
independently. In this case, which will be considered in the rest
of the paper, not only the total charge density n = n+ − n−,
but also the quasiparticle density nI is conserved.

At times longer than τg , physical observables can be de-
scribed within the macroscopic (or hydrodynamic) approach.
The existence of the three slow-relaxing modes in graphene
implies a peculiar two-step thermalization.

Short-time electron-electron scattering (at time scales
up to τg) establishes the so-called “unidirectional therma-
lization” [24]: the collinear scattering singularity implies that
the electron-electron interaction is more effective along the
same direction. Within linear response [18], one can express
the nonequilibrium distribution function in terms of the three
macroscopic currents j , jE , and j I . The currents can then be
found from the macroscopic equations. The currents j and j I

are not conserved and can be relaxed by the electron-electron
interaction. Close to charge neutrality, the corresponding
relaxation rates can be estimated as [6,40] τ−1

ee ∼ α2
gT � τ−1

g .
These rates enter the macroscopic equations as frictionlike
terms. The macroscopic linear-response theory has the same
form on time scales shorter or longer than τee.

Beyond linear response, the scattering processes character-
ized by the time scale τee play an important role in thermalizing
quasiparticles moving in different directions and thus lead to
establishing the local equilibrium. This is the starting point
for derivation of the nonlinear hydrodynamics, which is valid
at time scales much longer than τee. In view of conservation
of the particle number, energy, and momentum, as well as
independent conservation of the number of particles in the
two bands in graphene, we may write the local equilibrium
distribution function as [12,14]

f
(0)
λ,k(r) = (1 + exp{β(r)[ελ,k − μλ(r) − u(r)·k]})−1, (1)

where ελ,k = λvgk denotes the energies of the electronic
states with the momentum k in the band λ = ±, μλ(r) the
local chemical potential, the local temperature is encoded in
β(r) = 1/T (r), and u(r) is the hydrodynamic velocity field
which we define in the following (this field should not be
confused with quasiparticle velocities v). The distribution
function (1) follows from the standard argument similar
to the Boltzmann’s H-theorem [2]: the equilibrium state is
characterized by time-independent entropy. The particular
form (1) takes into account the symmetry properties of the two-
body electron-electron interaction and is valid for arbitrary
single-particle spectrum. The latter means that Eq. (1) relies
on neither Galilean nor Lorentz invariance.

Expanding the local equilibrium distribution function (1) up
to the leading order in deviations from the uniform, equilibrium
Fermi distribution, we recover the distribution function used in
the linear-response theory [18]. As we have already mentioned,
this linearized distribution has the same form also on time
scales shorter than τee. This is a property of the linear
approximation. Should we attempt to find the subleading
nonlinear terms in the distribution function for t < τee, the
result would not correspond to the Taylor expansion of Eq. (1).

Assuming the local equilibrium (1) for times t � τee, we
derive the nonlinear hydrodynamics in graphene similarly
to the standard Chapman-Enskog procedure [2,41–43]. The
important feature of our theory is the larger than usual number
of hydrodynamic modes (densities of conserved quantities):
total charge, energy, and quasiparticle imbalance densities and
the energy current. The independence of these modes can be
traced to the specific feature of the quasiparticle spectrum in
graphene: the inequivalence of velocity and momentum.

Having derived the hydrodynamic equations, we turn to
consider a representative example of nonlinear physics in
graphene, the relaxation of a hot spot. By this we mean a partic-
ular nonequilibrium state of the system that is characterized by
a locally elevated energy density. Such a state can be prepared
with the help of a local probe or focused laser radiation.
Evolving the system according to the hydrodynamic theory, we
find a rather surprising result. Although as expected [28,29],
the hot spot emits plasmonic waves that carry energy away,
a nonzero excess energy density remains at the hot spot.
Physically, this effect appears due to compensation between
the pressure and the self-consistent electric (Vlasov) field,
which leads to a quasiequilibrium. Taking into account the
dissipation leads to the decay of the quasiequilibrium energy
density at the hot spot. This decay, however, is characterized
by a longer time scale compared to the initial emission of the
plasmonic waves. At the same time, viscous effects lead to
damping of the plasmonic waves themselves.

The remainder of the paper is organized as follows. In Sec. I,
we develop the nonlinear hydrodynamic theory including
dissipative terms starting from the QKE. In Sec. II, we briefly
discuss linear response in graphene. Finally, Sec. III is devoted
to nonlinear hydrodynamics in graphene. Here, we present
results on the relaxation dynamics of a hot spot obtained
by a numerical integration of the hydrodynamic equations.
Technical details, e.g., the calculation of scattering rates for
the dissipative terms, are relegated to Appendixes.

I. HYDRODYNAMIC THEORY IN GRAPHENE

In this section, we develop a hydrodynamic theory of
transport in graphene in the collision-dominated regime. We
begin with a short overview of the microscopic mechanisms
responsible for establishing the hydrodynamic regime. The
resulting hydrodynamic equations are summarized in Sec. I D.

A. From the microscopic theory to hydrodynamics

1. Microscopic description

Microscopically, the electronic system is governed by the
Boltzmann kinetic equation

Lf = Stee[f ] − τ−1
dis (f − 〈f 〉ϕ), (2)
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with the standard Liouvillian form in the left-hand side,

L = ∂t + v · ∇r + [eE + e(v × B)] · ∇k, (3)

and the collision integral in the right-hand side. Scatter-
ing off potential disorder is described within the usual τ

approximation with τdis being the disorder mean-free time.
Electron-electron interaction is described by the collision
integral Stee[f ].

In graphene, the electronic states can be labeled by
the momentum k and the band index λ = ±. These states
are characterized by the energies ελk = λvgk and velocities
v = λvgk/k, where vg ∼ 106 m/s. Hereafter, we will work
with the units where vg = 1. Consequently, the distribution
function can be denoted as f = fλk(r). The angular average
in the disorder part of the collision integral is defined as the
average over the direction of k:

〈f 〉ϕ =
∫

ϕ

f =
∫ +π

−π

dϕ

2π
fλk. (4)

In the interaction-dominated regime, the scattering time
due to electron-electron interaction is much smaller than the
disorder scattering time

τee � τdis.

The same condition was previously used in the derivation
of the linear-response theory in graphene. Within linear
response, the role of disorder is to establish the steady state.
With the exception of the charge neutrality point (where in the
absence of magnetic field the steady state can exist without
disorder), electron-electron interaction alone is insufficient for
this task. Similarly, in this paper we keep in mind that infrared
divergencies should be cut by disorder. However, for physical
observables, e.g., optical response, in the frequency window
α2

gT � ω � τ−1
dis the impurity scattering is irrelevant.

We assume that local equilibrium is established at time
scales of the order of τee, i.e., the longest time scale
associated with two-particle electron-electron interaction. The
corresponding length scale lhydro ∼ vgτee defines the size of the
local fluid element [1]. Note that lhydro ∼ 1/(α2

gT ) � 1/T .
Following the standard line of argument [1], small de-

viations from the local equilibrium can be accounted for
by introducing a small correction δf to the distribution
function (1):

f = f (0) + δf.

Kinematic restrictions imposed by the linear spectrum in
graphene lead to the collinear scattering singularity [36,44]
in Stee[f ]. While the singularity is regularized by screening,
most eigenmodes of Stee[f ] decay at the shortest time scales
τg ∼ τee/| ln αg|. As a result, within the leading logarithmic
approximation [6,36] only three modes contribute to the
hydrodynamics and we can parametrize δf as

δf = T

(
−∂f (0)

∂ελk

)
[δf (1) + δf (2)], (5a)

where

δf (1) = vα

T

3∑
j=1

φjh
(j )
α , (5b)

δf (2) = vαvβ

T 2

3∑
j=1

φj g
(j )
αβ , (5c)

and the three modes φj are

φ1 = 1, φ2 = λ, φ3 = ε/T . (5d)

The nonequilibrium corrections (5) to the distribution
function should leave the conserved quantities unchanged [2].
As a result, the coefficient h(3) = 0 (which could be understood
as a shift of the velocity u), while the tensors g

(k)
αβ have to be

traceless [otherwise the three terms in Eq. (5c) would shift the
particle-number density n, imbalance density nI , and energy
density nE , respectively].

The coefficients h(i)
α and g

(i)
αβ are determined from the

QKE [6,44], which becomes a matrix equation in the restricted
subspace of modes φj . In what follows, we will use a shorthand
notation

Stee[f ] ≈ −Cδf, (6)

where the matrix C corresponds to the linearized collision
integral. The technicalities of inverting the matrix C are dis-
cussed in Appendix A, where we also relate the matrix collision
integral to the diagrammatic calculation of conductivity and
viscosity based on the Kubo formula.

Finally, macroscopic equations describing electronic trans-
port in graphene are obtained by integrating the kinetic equa-
tion with the distribution function (5). In the hydrodynamic
regime, i.e., at time scales much longer than τee, the natural
macroscopic variables are the modes that are not relaxed
by electron-electron interaction. All nonconserved quantities
should be expressed in terms of such “hydrodynamic” modes.
In graphene, these include the densities n, nI , and nE , and
the energy current jE . The electric and imbalance currents
can then be found using the equations of state. The emerging
hydrodynamics is valid as long as the macroscopic quantities
vary slowly on the scale lhydro set by interactions.

2. Macroscopic quantities

Most two-body electron-electron collisions in graphene
leave the particle number in each band unchanged. This is
the consequence of the linear dispersion relation. The only
exception is given by the so-called Auger processes, where
the direction of the momentum of all initial and final states in
each scattering event is the same (i.e., all four states belong to
the same straight line on the dispersion cone). In the absence
of disorder, the probability of Auger processes vanishes
within the random phase approximation. Even if impurity-
assisted processes are taken into account, the recombination
rate due to Auger processes remains small. Other processes
that may contribute to quasiparticle recombination include
electron-phonon interaction (by means of either two-phonon
or impurity-assisted scattering) and three-particle collisions.
All these processes introduce parametrically small relaxation
rates [10] (close to charge neutrality, at least of order α4

gT ).
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Here, we will neglect recombination and assume the densities
n± to be conserved independently.

The particle and energy densities n± and nE can be
calculated with the help of the distribution function in a
standard way

n+ =
∫

k
f+,k, (7a)

n− =
∫

k
(1 − f−,k), (7b)

nE =
∫

λ,k
ελ,kfλ,k − nE0. (7c)

Here, we introduced the shorthand notation∫
k
· · · ≡ N

∫
d2k

(2π )2
. . . ,

∫
λ,k

· · · ≡
∑
λ=±

∫
k
. . . ,

where N = 4 accounts for the spin and valley degeneracy in
graphene. In Eq. (7c), we measure the energy density nE with
respect to nE0,

nE0 =
∫

k
ε−,k →

∫
k<�

ε−,k, (8)

which is the total energy density at charge neutrality and
zero temperature. The ultraviolet cutoff � must be formally
included [also in Eq. (7c)]. However, it drops out of the
physical results.

The densities of the conduction and valence bands
[Eqs. (7a) and (7b)] can be combined into the total charge
and imbalance densities

n = n+ − n−, (9a)

nI = n+ + n−. (9b)

The macroscopic currents are defined

j+ =
∫

k
v+,kf+,k, (10a)

j− =
∫

k
v−,kf−,k, (10b)

jE =
∫

λ,k
ελ,kvλ,kfλ,k. (10c)

The electron and hole currents [Eqs. (10a) and (10b)] can be
combined into the electric and imbalance (or quasiparticle)
currents

j = j+ − j−, (10d)

j I = j+ + j−. (10e)

In graphene, the energy current jE is equivalent to the
momentum and is conserved, while the electric and imbalance
currents can be damped by electron-electron interaction.

B. Generalized Euler equation

In this section, we derive the macroscopic theory of electron
transport in graphene in the absence of dissipation. The
resulting hydrodynamic equations represent a generalization

of the Euler equation of an ideal liquid to Dirac fermions in
graphene.

1. Continuity equations in graphene

The hydrodynamic equations for the densities and currents
can be obtained by averaging the QKE (2) with respect to
the modes (5d). This yields the continuity equations for the
hydrodynamic densities

∂tn + ∇ · j = 0, (11a)

∂tnI + ∇ · j I = 0, (11b)

∂tnE + ∇ · jE = eE · j , (11c)

as well as the equation for the energy current

∂t jE,α + ∇β�E
βα − enEα − en(u × B)α = −jE,α/τdis. (12)

Using the local distribution function (1), we can express the
energy current in terms of the hydrodynamic velocity:

jE = 3nEu
2 + u2

. (13)

Equation (12) includes the momentum flux or stress tensor

�E
αβ =

∫
λk

ελ,kvαvβfλ,k . (14)

In the absence of magnetic field, we use the distribution
functions (1) and (5) to express �E

αβ in terms of u:

�E
αβ = nE

2 + u2
[δαβ(1 − u2) + 3uαuβ] + δ�E

αβ. (15)

Here, the last term δ�E describes the dissipative effects
that are considered in the next section. The first term is the
generalization of the usual stress tensor of an ideal liquid [1]
to the case of Dirac fermions in graphene. The unusual form
of Eq. (15) reflects the absence of Galilean as well as Lorentz
invariance in the system.

The electric and imbalance currents can be similarly related
to the hydrodynamic velocity

j = nu + δ j , (16a)

j I = nI u + δ j I . (16b)

Here again we have introduced the dissipative corrections
δ j , δ j I . Neglecting these terms along with δ�E

αβ , the equations
presented in this section describe the flow of the ideal
electronic liquid. Since we are describing charged particles,
the electric field should include the self-consistent electric
(Vlasov) field

EV (r) = −∇r

∫
d2r ′ V (r − r ′) δn(r ′). (17)

Here, δn(r) = n(r) − n0 is the local charge fluctuation, n0 is
the background charge density, and V (r) = e2/r is the three-
dimensional (3D) Coulomb potential.

2. Hydrodynamics of ideal electron liquid

In the traditional hydrodynamics [1], the ideal fluid is
described by the Euler equation. The Euler equation is nothing
but the continuity equation for the momentum density, where
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the stress tensor is expressed in terms of the velocity field. The
latter is typically done on the basis of Galilean invariance.

Similar equation can be formulated for the electron liquid
in graphene. The momentum density is equivalent to the
energy current which satisfies the continuity equation (12).
Substituting Eqs. (13) and (15) into Eq. (12) yields the Euler
equation

∂t

3nEuα

2 + u2
+ ∇α

nE(1 − u2)

2 + u2
+ ∇β

3nEuαuβ

2 + u2
= enEα. (18)

This equation is complemented by the continuity equa-
tions (11) and the self-consistency condition (17). This set
of equations generalizes the hydrodynamics of an ideal liquid
to Dirac fermions in graphene in the absence of dissipation.

C. Dissipative corrections

In this section, we extend in the hydrodynamic theory of
Dirac fermions in graphene by taking into account dissipative
effects. We use the explicit form of the nonequilibrium
distribution function (5) to evaluate the dissipative corrections
δ j , δ j I , and δ�αβ . Comparing our results with the canonical
form of the viscous terms in the stress tensor, we find the
expression for the viscosity coefficients in graphene. We
calculate the dissipative corrections to leading order in the
gradient expansion. The parameter controlling the expansion
is similar to the Knudsen number Kn = lhydro/l∇, where l∇ is
the characteristic length scale of hydrodynamic fluctuations.

1. Dissipative corrections to the currents

Macroscopic equations that describe the electric and imbal-
ance current densities j and j I can be obtained by integrating
the kinetic equation similarly to the derivation of Eq. (12).
However, as j and j I are not conserved, the resulting equations
contain nonvanishing contributions of the collision integral.
These contributions can be written in the form

(v,Lf ) = −(v,Cδf (1)), (19a)

(λv,Lf ) = −(λv,Cδf (1)), (19b)

where we have used a shorthand notation

(g,f ) =
∫

λ,k
gλ,kfλ,k. (19c)

Using the distribution function (5b) we can now construct
the explicit relation between the dissipative corrections to
currents and the coefficients h

(j )
α :

⎛
⎜⎝

δjα

δjI,α

δjE,α/T

⎞
⎟⎠ = M

⎛
⎜⎝

h(1)
α

h(2)
α

h(3)
α

⎞
⎟⎠, (20a)

where the matrix M is given by

M = 1

2T

⎛
⎜⎝

C1 Cλ Cε/T

Cλ C1 C|ε|/T

Cε/T C|ε|/T Cε2/T 2

⎞
⎟⎠, (20b)

with the matrix elements

CX = NT

∫ +∞

−∞
dε ν(ε)X

(
−∂f0

∂ε

)
. (20c)

The coefficients Cε/T , C|ε|/T , and Cε2/T 2 are proportional to
the macroscopic densities

Cε/T = 2n, C|ε|/T = 2nI , Cε2/T 2 = 3nE/T . (20d)

In Eq. (20c), T is the equilibrium background temperature.
The relation (20a) allows us to write the macroscopic

equations for the electric and imbalance currents in the matrix
form

∂t

(
j

j I

)
+ 1

2

( ∇n − eE∂μn

∇nI − eE∂μnI

)
= −CJ

(
δ j

δ j I

)
. (21)

The matrix CJ plays the role of the collision integral in the
reduced three-mode space. Its inverse is given by

C−1
J =

(
τ1 τ2

τ3 τ4

)
. (22)

The transport scattering times τj are obtained from the matrix
elements (φ,Cφ′) of the linearized collision integral C, where
φ and φ′ are the modes defined in Eq. (5d). The off-diagonal
times τ2,3 change their sign for n → −n. In the nondegenerate
regime μ � T the times τj are determined by temperature
and electron-electron interaction τj = fj (μ/T )/(α2

gT ), where
fj (μ/T ) is a smooth, dimensionless function. Close to the
Dirac point,

τ2 = τ3 = 0, (23a)

while

τ−1
1 = π

2T 2 ln 2
(vα,Cvα) ≈ 2.22 α2

gT (23b)

and

τ−1
4 = π

2T 2 ln 2
(λvα,Cλvα) ≈ 0.05 α2

gT . (23c)

Far away from the Dirac point, μ � T , the system behaves
similarly to the usual Fermi liquid, where the transport
mean-free time due to electron-electron interaction vanishes
(physically, because of the Galilean invariance). Techni-
cally, all macroscopic currents become equivalent and in
particular are characterized by the same transport relaxation
rate [45] ∼T 4/μ3 which is much smaller than the usual rate
τ−1
ee ∼ T 2/μ determining both the quasiparticle lifetime and

thermalization. Further details of the calculation are relegated
to Appendix A 1.

Solving Eq. (21) for the electric currents to leading order in
the gradient expansion (i.e., in the Knudsen number Kn), we
obtain the dissipative corrections in Eqs. (16a) and (16b):(

δ j

δ j I

)
= C−1

J νJ , (24)

where the vector νJ is given by

νJ =
(

n
3nE

∇nE − 1
2∇n − [

2en2

3nE
− e

2∂μn
]
E

nI

3nE
∇nE − 1

2∇nI − [ 2ennI

3nE
− e

2∂μnI

]
E

)
. (25)
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Here, we have neglected the frequency dependence formally
present in Eq. (21). While perfectly valid in the vicinity of
the Dirac point [where the hydrodynamic description is valid
at time scales much longer than the relaxation times due to
electron-electron interaction that form the matrix (22)], this
approximation should be abandoned in the degenerate regime.
For μ � T , the transport relaxation rates are suppressed (see
above) and the matrix (22) becomes nearly degenerate. In that
case the validity of the hydrodynamic regime is determined by
τ−1
ee ∼ T 2/μ and hence the frequency dependence in Eq. (24)

should be retained.
Individual terms in Eq. (25) allow for a simple physical

interpretation. The first term in each row describes the
thermoelectric effect; the second term describes diffusion of
electrons and quasiparticles; the last term leads to the finite
conductivity of graphene due to electron interactions [36].
The latter comprises a Drude-type term, which becomes more
apparent if we identify the mass density ρ ∼ 3nE/2n [see
Eq. (41) and the text following] and a second term that gives
rise to the finite conductivity at the Dirac point for vanishing
charge density n.

2. Dissipative corrections to the energy stress tensor

The macroscopic currents (10) are defined as the first-order
moments of the distribution function with respect to the three
modes (5d). The second-order moments yield the “generalized
stress tensors”

�
(l)
αβ =

∫
λk

φlvαvβfλk. (26)

Here, the term with l = 3 is (up to the factor of T ) the usual
stress tensor (14). We also define the corresponding dissipative
corrections

δ�(l) =
∫

λk
φlvαvβδfλk =

⎧⎪⎨
⎪⎩

δ�, l = 1

δ�I , l = 2

T −1δ�E, l = 3

(27)

where the latter has been already defined in Eq. (15).
The dissipative corrections (27) can be found by integrating

the kinetic equation similarly to what was done for the currents
above. This way we find the relation

⎛
⎜⎝

T δ�αβ

T δ�I
αβ

δ�E
αβ

⎞
⎟⎠ = 1

2
M

⎛
⎜⎜⎝

g
(1)
αβ

g
(2)
αβ

g
(3)
αβ

⎞
⎟⎟⎠ (28)

between δ�(l) and the coefficients g
(l)
αβ from Eq. (5c). The

matrix M is defined in Eq. (20b). Now, we can express the
right-hand side of the integrated kinetic equation in terms of
the δ�(l). The resulting matrix equation reads as [cf. Eqs. (19)
and (21)]

(φlvαvβ,Lf ) = −(φlvαvβ,Cδf (2)) = −Cπ,lnδ�
(n)
αβ . (29)

Inverting the matrix collision integral Cπ , we solve the
above equation and find the dissipative corrections (27)

similarly to Eq. (24):⎛
⎜⎝

δ�αβ

δ�I
αβ

T −1δ�E
αβ

⎞
⎟⎠ = C−1

π νπ,αβ, (30a)

where to leading order in the gradient expansion

νπ,αβ = 1

4

⎛
⎜⎝

δαβ∇ ·(nu) − ∇αnuβ − ∇βnuα

δαβ∇ ·(nI u) − ∇αnIuβ − ∇βnIuα

3
2T

[δαβ∇ ·(nEu) − ∇αnEuβ − ∇βnEuα]

⎞
⎟⎠. (30b)

The matrix collision integral Cπ is discussed in detail in
Appendix A 2. Hereafter, we restrict our discussion to the
nondegenerate regime μ � T . Close to the Dirac point we
find

Cπ = 2

⎛
⎜⎝
Cπ,11 0 0

0 Cπ,22 Cπ,23

0 Cπ,32 Cπ,33

⎞
⎟⎠, (31a)

with the matrix elements given by

Cπ,ij = 1

T
(φiIαβ,CφkIαβ)(M−1)kj . (31b)

The traceless tensor Iαβ is defined as

Iαβ = vαvβ − δαβ/2. (31c)

Close to charge neutrality (see Appendix A 2 for details), all
matrix elements in Eq. (31b) are of the same order

1

T 2
(εIαβ,CεIαβ) ∼ (λIαβ,CλIαβ)

∼ 1

T
(λIαβ,CεIαβ ) ∼ α2

gT
3. (32)

The dissipative correction to the stress tensor (15) is given
by the third component of Eq. (30a). To leading order in the
fluctuations of the densities, i.e., for δnE/nE � 1 as well as
T δnI /nE � 1 and T δn/nE � 1, the correction δ�E takes
the canonical form [1]

δ�E
αβ = −η[∇αuβ + ∇βuα − δαβ∇ ·u], (33)

with the viscosity coefficient

η = T

4
(0 0 1) C−1

π

⎛
⎝ n

nI

3nE/2T

⎞
⎠ (34)

[see Eqs. (30)]. Close to the Dirac point, this yields

η = T (τπ,1n + τπ,2nI )/4 + 3τπ,3nE/8. (35)

At the Dirac point, the first term in Eq. (35) drops out and we
are left with two contributions to the viscosity η. The times
τπ,1, τπ,2, and τπ,3 are obtained from inverting the collision
integral (31) where the charge density is decoupled from the
imbalance and energy densities:

τπ,1 = 0, (36a)
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τπ,2 = 1

2

Cπ,32

Cπ,23Cπ,32 − Cπ,22Cπ,33
∝ 1

α2
gT

, (36b)

τπ,3 = 1

2

Cπ,22

Cπ,22Cπ,33 − Cπ,23Cπ,32
∝ 1

α2
gT

. (36c)

As a consequence [11],

η(n = 0) = B T 2/α2
g, (37a)

where the numerical coefficient is

B = π

12
α2

gT τπ,2 + 9ζ (3)

4π
α2

gT τπ,3. (37b)

Here, we have used the relations nE = 6ζ (3)T 3/π and nI =
T 2π/3. Far away from the Dirac point, we recover the usual
Fermi-liquid viscosity [1,19] η ∝ 1/T 2.

Similarly to the classical hydrodynamics [1], the viscosity
is determined by the homogeneous equilibrium background
charge, imbalance, and energy density, or equivalently by the
equilibrium chemical potentials (μ0,±) and temperature T . The
expression (33) implies vanishing bulk viscosity in graphene.
This result is valid within the leading approximation in the
virial expansion that justifies the kinetic equation (2) as well
as the distribution function (5).

D. Canonical form of the hydrodynamic equations in graphene

In this section, we combine the dissipative terms (33)
and (24) with the equations of the ideal flow in graphene (see
Sec. I B 2). The resulting theory generalizes the Navier-Stokes
hydrodynamics to the Dirac fermions in graphene.

The complete hydrodynamic description includes the
equations of motion, continuity equations, and equations of
state [1]. Within the local equilibrium approach in graphene,
the expression for the hydrodynamic pressure in terms of the
energy density and the hydrodynamic velocity u is highly
nonlinear:

P = (1 − u2)nE

2 + u2
. (38a)

For small velocities, the pressure assumes the standard value
for a scale-invariant gas P0 = nE/2, however, for large
velocities approaching unity u � 1 it vanishes as ∼(1 − u2).
The enthalpy of the system W = nE + P is then given by

W = 2w

2 + u2
, w = nE + P0 = 3nE/2, (38b)

with the latter being the linear enthalpy of graphene.
The continuity equations (11) are now modified by the

dissipative terms (25):

∂tn + ∇ · (nu) = −∇ · δ j , (39a)

∂tnI + ∇ · (nI u) = −∇ · δ j I , (39b)

∂tnE + ∇ · (W u) = enE · u. (39c)

Finally, adding the dissipative part of the stress tensor (33)
to the Euler equation (18), we obtain a generalization of the
Navier-Stokes equation to Dirac fermions in graphene. Using
the equations of state (38), we can bring the resulting equation

to the canonical form (cf. Ref. [11])

W∂t u + W (u · ∇)u + ∇P + u∂tP + u(δ j · E)

= en[E − u(u · E)] + η∇2u. (40)

The term u∂tP in the left-hand side of Eq. (40) is reflection
of nearly relativistic nature of charge carriers in graphene. In
the limit u → 1, the electric field on the right-hand side of
Eq. (40) does not affect the absolute value of the velocity
which is limited by vg .

The complete system of the hydrodynamic equations in
graphene includes Eqs. (38)–(40), as well as the equations
defining the nonequilibrium corrections to the electric and
imbalance currents (24).

II. LINEAR RESPONSE

A. Nonlocal optical conductivity

Evaluation of the linear-response transport coefficients
within the hydrodynamic theory is straightforward. Lineariz-
ing the Navier-Stokes equation, we recover the linear-response
theory derived in Ref. [18] with the important addition
of time- and momentum-dependent contributions. Solving
these equations for μ � T , we find the expression for the
momentum-dependent optical conductivity in graphene up to
the subleading order in q/ω [and for 1/(ωτdis) → 0]:

σ (ω,q) = σ0 + 2ie2n2

3nEω

[
1 + iq2

ω2

(
1

2
− 2iηω

3nE

)]

+ iq2

ω

[
τ 2

1 + τ2τ3

2

(
2e2n2

3nE

+ e2∂μn

)

+ τ2(τ1 + τ4)

2

(
2e2nnI

3nE

+ e2∂μnI

)]
. (41)

Here, σ0 is the electron-electron contribution to the dc
conductivity in graphene [18,36]

σ0 = e2

[
τ1

(
∂μn

2
− 2n2

3nE

)
+τ2

(
∂μnI

2
− 2nnI

3nE

)]
. (42a)

In the above results, n, nI , and nE are the equilibrium
background densities; the scattering times τi follow from
Eq. (22) (see also Appendix A 2). At the Dirac point [50],
the electronic compressibility in graphene is ∂μn = 4T ln 2/π ,
and hence [5,7]

σ0 = Ae2/α2
g, (42b)

where we find A = 0.19 (previously, the value A = 0.12
was reported by Ref. [36], where both the Hartree and Fock
contributions were taken into account).

At q = 0, the conductivity (41) can be interpreted in terms
of the usual Drude formula, where the role of the effective
mass density is played by the ratio 3nE/(2n). The result (41)
suggests a possibility to measure the viscosity coefficient
in graphene in nonlocal transport measurements [30,31].
However, precisely at the Dirac point (n = 0), the optical
conductivity is independent of viscosity. Physically, viscosity
is associated with the momentum density, i.e., the energy
current. At the Dirac point, the energy and electric currents
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decouple [18] and hence the conductivity is unaffected by
viscous effects.

Finally, let us remark on the apparent contradiction between
Eq. (41) and the corresponding result of Ref. [8], where it was
found that the expansion of the optical conductivity in q/ω

contains linear terms missing in Eq. (41). The reason for this
disagreement is that we have calculated the response to the total
electromagnetic field, while the result of Ref. [8] represents
the response to the external field. In the latter case, one has
to take into account screening which leads to the linear in q

terms in nonlocal conductivity.

B. Hydrodynamic energy waves and plasmons

In a formally infinite system, the hydrodynamic the-
ory (38)–(40) admits solutions in the form of collective energy
waves with the dispersion relation (which we obtain as an
expansion in q/ω < 1 for μ � T [50])

ω(q) = − i

2τdis
+ iπq

αgσ0

e2
− iq2

(
η

nE

+ τ1 + τ4

4

)

+
[
q2

2

(
1 + 4αgn

2

3nEq

)

− q4

(
η

3nE

− σ0

2e2

αg

q
+ τ1 + τ4

4
+ 1

2τdisq2

)2] 1
2

.

(43)

These solutions can be interpreted as the hydrodynamic zero
modes corresponding to poles in the response functions (see
Appendix B). Here, we have also taken into account weak
disorder, which is absent in Eq. (40).

For pure systems in the absence of dissipation, the dis-
persion relation (43) greatly simplifies. At charge neutrality
(n = 0), the leading term is linear in q,

ω(n = 0,τdis → ∞,η → 0) ≈ vgq/
√

2. (44)

This acoustic energy wave [15] is analogous to the long-
wavelength oscillations in interacting systems of relativistic
particles [1], sometimes called “cosmic sound.” Such oscilla-
tions play an important role in astrophysics [51,52].

Away from charge neutrality, the collective modes of a
pure system exhibit the square-root spectrum typical for two-
dimensional (2D) plasmons:

ω(τdis → ∞,η → 0) ≈ n

√
2αgq

3nE

. (45)

Let us stress that this mode is not the usual random phase
approximation (RPA) plasmon. The crucial point is that the
hydrodynamic description developed in this paper is valid
at length scales much longer than the scale lhydro, associated
with electron-electron interaction, i.e., for very small momenta
q � l−1

hydro. In contrast, the usual RPA plasmons [23,37]
are discussed for momenta that are large compared to the
characteristic scales of both disorder and interaction.

In regular 2D electron systems, electric current is relaxed
by disorder and, as a result, the plasmon waves are damped at

the lowest momenta. The plasmon dispersion is given by [53]

ω

(
ω + i

τdis

)
= 1

2
�qv2

F ,

such that for momenta smaller than the inverse Thomas-Fermi
screening radius

ω(q � �) = − i

2τdis
+

√
1

2
�qv2

F − 1

4τ 2
dis

. (46)

As a result, for momenta much smaller than the inverse
mean-free path, the plasmon dispersion is purely imaginary, as
expected for diffusive systems. For energy waves in graphene
disorder scattering plays a similar role [see Eq. (43)].

Moreover, in graphene the electric current is relaxed also
by electron-electron interactions [6,18,24,36,37,54,55]. As
a result, the plasmon modes are damped [55] similarly to
Eq. (46) even in the absence of disorder:

ω = − i

2τee

+
√

ω2
p − 1

4τ 2
ee

,

where ω2
p = �q/2 for q � � with the inverse Thomas-Fermi

screening radius being � = 2παg(∂μn). Such plasmons exist
even at charge neutrality [37] (for T > 0). Thus, for small
momenta, the plasmons are overdamped in contrast to the
energy waves (43). However, away from charge neutrality, the
energy waves hybridize with the charge sector due to Vlasov
self-consistency leading to dynamic oscillations of the charge
density with the dispersion (45), that is similar to ωp, but with a
smaller prefactor. These oscillations should be experimentally
observable in the same way as usual plasmons [28,29],
provided that the samples (as well as the time scale of the
measurements) are in the hydrodynamic regime.

Far away from the Dirac point (μ � T ), the distinction
between the charge and energy sectors of the theory disap-
pears, such that the energy waves coincide with the usual
plasmon [15]: for μ � T , the dispersion (45) reproduces
ωp. Technically, the transport relaxation time due to electron-
electron interaction that determines the above plasmon damp-
ing becomes much longer than the usual electron-electron
scattering time that is responsible for thermalization in the
system [see discussion following Eqs. (23)].

Viscous forces influence the collective modes (43) in the
higher order in q/ω [cf. Eq. (41)]. Unlike the case of the optical
conductivity, here viscosity enters in a linear combination
with the scattering times τ1 and τ4. Consequently, measuring
the energy-wave dispersion might not be the best way to
find the viscosity in graphene. However, combining such
measurements with the measurement of nonlocal conductivity,
one can find experimental values for not only η, but also the
scattering times τi .

The above results are illustrated in Fig. 1, where we plot
the dispersion (43) for different chemical potential. The inset
illustrates the role of disorder [cf. Eq. (46)].
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FIG. 1. (Color online) Energy-wave dispersion (43), for different
chemical potentials. In the main panel (a), we compare the energy
waves in an ideal fluid (dashed lines) to the dissipative (viscous) flow
(solid lines). The inset (b) shows the effect of disorder scattering at
small momenta. The curves are calculated for 1/T τdis = 0.001.

III. NONLINEAR EFFECTS: RELAXATION
OF A HOT SPOT

In this section, we report results of a numerical integration
of the nonlinear hydrodynamic equations (38)–(40) describing
relaxation of a hot spot.

Let us prepare the system in a homogeneous, equilibrium
state characterized by the charge density n(0) (i.e., away from
charge neutrality), energy density n

(0)
E , and imbalance density

n
(0)
I . On top of this equilibrium background, we create a hot

spot: a locally elevated energy density. For simplicity, we
choose a Gaussian profile with the peak height nE = 1.8n

(0)
E

[see Fig. 2(a)]. The resulting nonequilibrium state will serve an
initial condition for the subsequent time evolution that follows
Eqs. (38)–(40).

The computer simulations are performed in a semi-implicit
scheme [56]. The diffusive and viscous corrections are dis-
cretized implicitly. This scheme is suitable for a wider class of
problems that are characterized by competing convective and
diffusive terms. Moreover, the simulations are performed on a
staggered grid to avoid unphysical density oscillations [57].

A. Ideal flow

We begin with the evolution of the hot spot in an ideal
system described by the Euler hydrodynamics (11)–(18). Here,
we assume that the system is not subjected to any external
fields.

1. Pure energy flow

Within the hydrodynamic approach, the energy flow is
coupled to the charge flow by means of the self-consistent
electric field (17). Turning off the Vlasov terms (i.e., setting
E = 0), we arrive at an essentially neutral system where the
energy flow is decoupled from the rest of the degrees of
freedom.

In such a system, creating an excess energy density leads
to excitation of ballistic (due to absence of dissipation) energy
waves with the linear dispersion (44). This flow is illustrated
in Fig. 2(b), where we plot the resulting energy density profile
along the line y = 0 as a function of the x coordinate and time.
In Fig. 2, we use arbitrary units since the time and length scales
associated with the ballistic propagation in an ideal system are
determined by the initial conditions.

The decay of the hot spot into the energy waves does not
lead to an immediate relaxation of the initial energy density
profile [see Fig. 2(b)]. In contrast to the three-dimensional
flow, the Green’s function of the 2D wave equation exhibits a
long-time tail ∼t−1. As a consequence, the relaxation of the
hot spot in the dissipationless limit without Vlasov field shows

FIG. 2. (Color online) Hot-spot relaxation of a neutral ideal fluid obtained from the Euler hydrodynamics (11)–(18) without the Vlasov
self-consistent electric field E = 0. The left panel shows the initial energy bump with the height nE = 1.8n

(0)
E . The right panel shows the

evolution of the energy density (in units of the equilibrium background nE/n
(0)
E ) as a function of the x coordinate and time (arbitrary units)

along the line y = 0.
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FIG. 3. (Color online) A snapshot of the charge density n. The
equilibrium value of the charge density is n(0) = 1.9 × 109 cm−2.
The initial height of the energy bump is nE = 1.8n

(0)
E . The inset (b)

illustrates the solitonlike composite profile that is established at the
origin. The blue curve shows the dip in the charge density and the red
curve shows the excess energy density. The arrows show the balanced
hydrodynamic forces: the pressure (red arrow) and the self-consistent
electric field (blue arrow).

power-law decay. This slow relaxation of the energy density
around the origin (afterglow) can be seen in Fig. 2(b).

2. Charge fluctuations

In a charged system, i.e., in the presence of the self-
consistent electric field, the cosmic sound wave shown in
Fig. 2 is accompanied by fluctuations of the charge density
(see Fig. 3).

The excess energy density generates the pressure force
described by ∇β�E

βα . This creates the initial energy flow
that corresponds to the nonzero hydrodynamic velocity u [see
Eq. (13)] and hence translates into an electric current (16a),
which is coupled to the charge density by means of the
continuity equation (11a). This way, the initial evolution of
the excess energy density leads to a depletion of the charge
density at the origin.

Now, the nonequilibrium charge density profile results in
the self-consistent electric field [due to Vlasov terms (17)].
Remarkably, in the absence of dissipation the electric field
partially compensates the pressure force leading to the ap-
pearance of a stable solitonlike composite density profile at
the origin: after the initial outflow of energy carried away by
the cosmic sound waves, some excess energy density remains
at the point of the initial perturbation accompanied by the
dynamically generated dip in the charge density (see Fig. 3).

The establishing of the depletion in the charge density is
accompanied by the charge flow shown in Fig. 4. Although that
figure shows the flow in the presence of dissipation, at the short
time scales used in the figure the dissipative effects are still
weak and the resulting flow can be considered dissipationless.

FIG. 4. (Color online) The charge density as a function of x along
the line y = 0 for short enough time scales such that the system is
effectively in the dissipationless limit.

B. Dissipative relaxation dynamics

Consider the hot-spot relaxation in a fully interacting
system, i.e., in the presence of dissipation. We start with the
same initial condition as before, but now the system evolves
under the Navier-Stokes hydrodynamics (38)–(40).

The hot-spot evolution now proceeds in two stages. The first
stage is similar to the ideal flow, where the quasistable charge-
energy density profile is established at the origin. During this
stage, some energy and charge are being carried away from the
hot spot by the emitted energy waves. The metastable patterns,
such as the charge-energy complex in Fig. 2(b), and the trav-
eling waves are formed due to the nonlinear interplay between
the charge and energy sectors. These patterns were stable in
the absence of dissipation, but now acquire a finite lifetime.

Dissipative effects are characterized by a distinctly longer
time scale compared to the initial evolution of the hot spot.
These effects are manifested during the second stage of
the hot-spot evolution. Here, the electron-electron interaction
leads to damping of the emitted waves, with the damping
rate given by the imaginary part of the spectrum (43). In the
clean limit, the dominant contribution to the damping rate is
linear in q (similar to the 2D Maxwell relaxation, but with
σ0 determined by electron-electron interaction). Furthermore,
the solitonlike charge-energy complex is no longer stable and
decays. However, the depletion of the charge density at the
origin remains visible for at least several picoseconds after the
initial perturbation (see Fig. 4) and hence should be detectable
by modern experimental techniques [28,29].

IV. CONCLUSIONS

In this paper, we have presented a hydrodynamic descrip-
tion of the electronic transport in graphene. Our formalism
allows for a consistent treatment of nonlinear hydrodynamic
effects as well as dissipative phenomena due to electron-
electron interaction. Our theory describes the following hydro-
dynamic modes: the energy, particle, and imbalance densities
and the energy current. The electric and imbalance currents
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are relaxed by electron-electron scattering and have to be
obtained from the equations of state. The resulting macro-
scopic description includes a generalization of the Navier-
Stokes equation in graphene (40), the nonlinear relations (38)
between the hydrodynamic pressure and enthalpy, and the
hydrodynamic velocity u that is related to the energy current.
These relations play the role of the equations of state. Finally,
the three macroscopic densities obey the set of continuity
equations (39).

Having derived the hydrodynamic theory from the Boltz-
mann kinetic equation, we are able to calculate explicitly the
set of scattering times that determine the coefficients in the
hydrodynamic equations, in particular the viscosity (37) and
the dc conductivity at charge neutrality (42b). The latter is
the manifestation of the non-Galilean-invariant nature of the
electronic system in graphene, where the electric current can
be relaxed by electron-electron interaction.

In laboratory experiments, viscous effects can be de-
tected, for instance, by measuring nonlocal conductivity in
graphene [30,31]. Within linear response, viscosity affects
the conductivity away from charge neutrality and at nonzero
momenta. Another experimentally detectable viscous effect
is the plasmon lifetime in graphene. Although the viscosity
coefficient enters the plasmon damping in a linear combination
with other interaction-dependent parameters [see Eq. (43)],
measuring both the plasmon lifetime and nonlocal conductivity
may give experimental access to several relaxation times
determined by electron-electron interaction.

Beyond linear response, we have considered the simplest
example of nonlinear phenomena in graphene: the relaxation
dynamics of a hot spot (see Fig. 2). This analysis takes
into account the convective nonlinearities and the residual
Coulomb interaction. In the macroscopic equations, the latter
manifests the self-consistent electric field due to charge
fluctuations and the dissipative corrections. We have found that
the hot-spot relaxation proceeds in two stages. The first stage,
lasting no longer than a few picoseconds, is characterized
by the metastable charge-energy profile at the origin and the
traveling energy waves that carry excess energy and charge
away from the hot spot (see Figs. 3 and 4). The emitted waves
exhibit characteristic modulation due to the self-consistent
Vlasov electric field. During the second stage, dissipative
effects start playing a definitive role in the process leading
to the diffusive charge propagation, damped energy waves,
and the decay of the solitonlike charge-energy profile at
the origin. The dissipative effects are much slower than the
initial evolution of the hot spot. In particular, the metastable
charge-energy profile remains visible at times of order 10 ps,
which should be detectable in laboratory (see Fig. 4).

The traveling energy waves are accompanied by fluctua-
tions of the charge density due to nonlinear coupling between

the energy and charge sectors in the theory away from charge
neutrality. Precisely at the Dirac point, the energy waves have
linear dispersion (44), similar to the cosmic sound [15]. For
finite background charge densities the dispersion of the energy
waves (45) becomes similar to the usual 2D plasmons [23],
with its intrinsic lifetime determined by electron-electron
interaction. However, as the hydrodynamic theory is valid only
for time and length scales that are much larger than the typical
scales associated with the electron-electron scattering, the true
plasmon modes remain overdamped [55]. However, far away
from charge neutrality (μ � T ), we recover the usual plasmon
in graphene.

The hydrodynamic theory presented in this paper is valid
as long as quasiparticle recombination processes remain slow
(technically, infinitely slow). At time scales exceeding the
recombination times, the imbalance density is no longer
conserved and the structure of the hydrodynamic equations
changes. However, the Navier-Stokes equation (40) is inde-
pendent of the imbalance density and remains valid even at the
longest time scales.

The problem of the hot-spot relaxation and traveling energy
waves considered in this paper is closely related to recent ex-
perimental imaging of plasmons in graphene [28,29,33]. While
the existing experiments are focusing on the high-frequency
optical phenomena, we hope that our investigation of the
energy waves in graphene will motivate future measurements
in the low-frequency, hydrodynamic regime. At the same
time, nonlocal transport measurements [30,31] may uncover
exciting manifestations of the nonlinear, viscous flow in
graphene including vortices and laminar wake.

Our hydrodynamic theory can be further applied to more
realistic, experimentally relevant geometries in order to study
possible realizations of the plethora of hydrodynamic phe-
nomena in graphene. After a straightforward generalization,
the theory allows us to consider the thermoelectric effects as
well as the effects of the external magnetic field. This work
will be reported elsewhere.
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APPENDIX A: THE ee-COLLISION INTEGRAL

The electron-electron collision integral in the QKE (2) is given by

Stee[f ] =
∑

ν,λ′,ν ′

∫
k, p′,k′

|M|2(2π )3δ(ελp + ενk − ελ′p′ − εν ′k′)δ( p + k − p′ − k′)

×{fλ′, p′fν ′,k′[1 − fν, p][1 − fλ,k] − fλ, pfν,k[1 − fν ′, p′][1 − fν ′,k′]}. (A1a)
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Here, the matrix element of Coulomb scattering is given by

|M|2 = N |V (ω,q)|2�λ p,λ′ p′�νk,ν ′k′ , (A1b)

with the graphene-specific Dirac factors

�λ, p;λ′, p′ = 1

2

(
1 + λλ′ p · p′

pp′

)
= 1

2
(1 + v̂λ, p · v̂λ′, p′ ), (A1c)

prohibiting backscattering. In Eq. (A1b), ω = ελ,p − ελ′,p′ is the transferred energy and q = p′ − p the transferred momentum.
Linearizing the collision integral (A1) with respect to the deviations (5) of the distribution function from the local

equilibrium (1), we obtain the operator [2,18]

Cδfλ,k =
∑

ν,λ′,ν ′

∫
k, p′,k′

|M|2(2π )3δ(εp + εk − εp′ − εk′)δ( p + k − p′ − k′)

× f
(0)
λ, pf

(0)
ν,k

[
1 − f

(0)
λ′, p′

][
1 − f

(0)
ν ′,k′

]
[δfλ, p + δfν,k − δfλ′, p′ − δfν ′,k′]. (A2)

1. Transport scattering times due to electron-electron interaction

In this section, we give explicit expressions for the scattering times τi constituting the matrix collision integral in the space
of macroscopic currents j and j I [see Eq. (21)]. These equations are obtained by averaging the QKE with respect to v and λv.
Therefore, the right-hand side of Eq. (21) is given by

CJ

(
δ j

δ j I

)
=

(
(v,Cδf (1))

(λv,Cδf (1))

)
. (A3)

The scalar product (. . . , . . .) was defined in Eq. (19c).
Dissipative corrections to the macroscopic currents δ j and δ j I are determined by the nonequilibrium contribution to the

distribution function (5) as

δ j k = (φkv,−T δf (1)∂εf
(0)), (A4)

such that

δ j = δ j1, δ j I = δ j2.

Here, we remind the reader that the terms proportional to u in Eqs. (16) follow directly from the local equilibrium distribution (1).
The functions φk are the modes (5d).

Now, we can use the definition (A4) to express the coefficients h(j ) in the nonequilibrium distribution (5) in terms of δ j and
δ j I . This allows us to find the explicit form of the matrix collision integral CJ [see Eq. (22)]. After some algebra, we find

[CJ ]lk =
2∑

j=1

[M−1]jk(φlvα,Cφjvα), (A5)

where the matrix M is given by Eq. (20b).
The matrix elements in Eq. (A5) can be evaluated explicitly using the methods of Refs. [18,24]. Noting that in the integrated

electron-electron collision integral the summation over scattering states {|λ,k〉,|λ′,k′〉} and {|ν, p〉,|ν ′, p′〉} separates, we express
the matrix elements as

(φvα,Cφ′vβ) = 1

16π

∫
dω

∫
d2q

|V (ω,q)|2
sinh2(ω/2T )

[
�

(2)
φφ′,αβ(ω,q)�(0)(ω,q) − �

(1)
φ,α(ω,q)�(1)

φ′,β (ω,q)
]
. (A6)

Here, the vertex functions are defined as [λ′ = sign(ελ,p + ω)]

�(0)(ω,q) = 1

T

∫
λ, p

δ(ελ,p − ελ′, p+q + ω)
(
f

(0)
λ,p − f

(0)
λ′, p+q

)
�λ p;λ′, p+q, (A7a)

�
(1)
φ,α(ω,q) = 1

T

∫
λ, p

δ(ελ,p − ελ′, p+q + ω)
(
f

(0)
λ,p − f

(0)
λ′, p+q

)
�λ, p;λ′, p+q[φλ′, p+q v̂λ′, p+q − φλ p v̂λ p]α, (A7b)

�
(2)
φφ′,αβ = 1

T

∫
λ, p

δ(ελ,p − ελ′, p+q + ω)
(
f

(0)
λ,p − f

(0)
λ′, p+q

)
�λ, p;λ′, p+q

× [φλ′, p+q v̂λ′, p+q − φλ p v̂λ p]α[φ′
λ′, p+q v̂λ′, p+q − φ′

λ p v̂λ p]β. (A7c)
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(a) (b) (c)

FIG. 5. (a) The Aslamazov-Larkin–type diagram corresponding to the term �(1)
α �

(1)
β . The product �(0)�

(2)
αβ comprises the Maki-Thompson–

type diagram (b) as well as self-energy correction (c).

The product �(1)
α �

(1)
β can be represented with the help of the Aslamazov-Larkin–type diagram in the Boltzmann limit, whereas

the product �(0)�
(2)
αβ contains the Maki-Thompson–type diagrams as well as self-energy corrections (see Fig. 5).

The resulting values (23) are most conveniently calculated in the local comoving frame, where the hydrodynamic velocity
entering the local equilibrium distribution functions in Eqs. (A7) vanishes. The obtained results are then valid in arbitrary
reference frame based on the principle that the relaxation is independent of the reference frame (generalizing the Galilean
invariance to the arbitrary spectrum).

2. Dissipative corrections to the stress tensor

The collision integral Cπ can be calculated along the same lines as CJ in the previous section. Averaging the QKE with respect
to the tensor quantities such as vαvβ , we find the contribution of the collision integral in the form similar to Eq. (A3):

Cπ

⎛
⎜⎝

δ�αβ

δ�I,αβ

T −1δ�E,αβ

⎞
⎟⎠ =

⎛
⎝ (vαvβ,Cδf (2))

(λvαvβ,Cδf (2))
(εvαvβ/T ,Cδf (2))

⎞
⎠. (A8)

The stress tensors were defined in Eqs. (26) and (27).
Defining the deviations from equilibrium as

δ�
(k)
αβ = (φkvαvβ, − δf (2)∂εf

(0)), (A9)

we can express the coefficients g
(j )
αβ in the nonequilibrium distribution function (5) in terms of δ�

(k)
αβ . Similarly to the arguments

presented in the previous section, this yields the explicit form of the matrix collision integral Cπ :

[Cπ ]lk = 2
3∑

j=1

[M−1]jk(φlIαβ,CφjIαβ). (A10)

Here, the matrix M is given by Eq. (20b) and the traceless tensor Iαβ is defined in Eq. (31c).
The matrix elements (φlIαβ,CφjIαβ) can be evaluated similarly to Eqs. (A7):

(φIαβ,Cφ′Iγ δ) = 1

16π

∫
dω

∫
d2q

|V (ω,q)|2
sinh2(ω/2T )

[
�

(2)
φφ′,αβγ δ(ω,q)�(0)(ω,q) − �

(1)
φ,αβ(ω,q)�(1)

φ′,γ δ(ω,q)
]
. (A11)

Here, the tensor vertex functions are [λ′ = sign(ελ, p − ω)]

�
(1)
φ,αβ(ω,q) = 1

T

∫
λ, p

δ(ελ,p − ελ′, p+q + ω)
(
f

(0)
λ,p − f

(0)
λ′, p+q

)
�λ, p;λ′, p+q[φλ′, p+q Iαβ, p+q − φλ p Iαβ, p], (A12a)

�
(2)
φφ′,αβγ δ(ω,q) = 1

T

∫
λ, p

δ(ελ,p − ελ′, p+q + ω)
(
f

(0)
λ,p − f

(0)
λ′, p+q

)
�λ, p;λ′, p+q

× [φλ′, p+q Iαβ, p+q − φλ p Iαβ, p][φ′
λ′, p+q Iγ δ, p+q − φ′

λ p Iγ δ, p]. (A12b)

For further calculations, it is useful to express the tensor Iαβ in terms of the basis vectors {q̂ = q/q,q̂⊥ = ẑ × q̂}:
Iαβ = Ak,q(2q̂αq̂β − δαβ) + Bk,q(q̂⊥,αq̂β + q̂αq̂⊥,β ) , (A13)

where

Ak,q =
(

(k · q)2

(kq)2
− 1

)
+ 1

2
= Ãk,q + 1

2
, Bk,q = (k · q⊥)(k · q)

k2q2
. (A14)
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Due to the conservation laws of the electron-electron interaction, we effectively have A → Ã. Using the δ function in Eqs. (A12a)
and (A12b), one obtains (ε = ελ,k)

Ãk,q = (ω2 − q2)
(2ε + ω)2 − q2

8ε2q2
. (A15)

Furthermore, the coefficient B drops out in the vertex function �(1) since it is antisymmetric in the angle between q and k. In the
tensor vertex function �

(2)
αβγ δ(ω,q) we get a separate contribution from A and B but they are orthogonal. For B we obtain with

the help of the δ functions (ε = ελ,k)

Bk,q = sign(k · q̂⊥)

√
(q2 − ω2)[(2ε + ω)2 − q2] (ω2 − q2 − 2εω)

4ε2q2
. (A16)

Finally, with the help of the angular averages ∫
dϕq q̂αq̂β q̂γ q̂δ = π

4
(δαγ δβδ + δαδδβγ + δαβδγ δ),∫

dϕq (2q̂αq̂β − δαβ)(2q̂γ q̂δ − δγ δ) = π (δαγ δβδ + δαδδβγ − δαβδγ δ),∫
dϕq (q̂⊥,αq̂β + q̂αq̂⊥,β )(q̂⊥,γ q̂δ + q̂γ q̂⊥,δ) = π (δαγ δβδ + δαδδβγ − δαβδγ δ)

and the projected quantities �(1,2) obtained after averaging Eqs. (A12) over the angle ϕq of the transferred momentum q,

�
(1)
φ (ω,q) = 1

T

∫
λ, p

δ(ελ,p − ελ′, p+q + ω)
(
f

(0)
λ,p − f

(0)
λ′, p+q

)
�λ, p;λ′, p+q[φλ′, p+q Ãk+q,q − φλ pÃk,q], (A17a)

�
(2)
‖,φφ′(ω,q) = 1

T

∫
λ, p

δ(ελ,p − ελ′, p+q + ω)
(
f

(0)
λ,p − f

(0)
λ′, p+q

)
�λ, p;λ′, p+q

× [φλ′, p+q Ã p+q,q − φλ p Ã p,q][φ′
λ′, p+q Ã p+q,q − φ′

λ p Ã p,q], (A17b)

�
(2)
⊥,φφ′(ω,q) = 1

T

∫
λ, p

δ(ελ,p − ελ′, p+q + ω)
(
f

(0)
λ,p − f

(0)
λ′, p+q

)
�λ, p;λ′, p+q

× [φλ′, p+q B p+q,q − φλ p B p,q][φ′
λ′, p+q B p+q,q − φ′

λ p B p,q], (A17c)

we can write the matrix elements as

(φIαβ,Cφ′Iγ δ) = 1

16π
(δαγ δβδ + δαδδβγ − δαβδγ δ)

∫
dω

∫
d2q

|V (ω,q)|2
sinh2(ω/2T )

× [
�

(2)
‖,φφ′(ω,q)�(0)(ω,q) + �

(2)
⊥,φφ′(ω,q)�(0)(ω,q) − �

(1)
φ (ω,q)�(1)

φ′ (ω,q)
]
. (A18)

Here, we can drop the terms proportional to δαβ since the energy stress tensors are traceless. Due to their symmetry in α ↔ β,
we effectively have

δαγ δβδ + δαδδβγ − δαβδγ δ → 2δαγ δβδ. (A19)

The matrix elements (A18) determine the quantities Cπ,ij [Eqs. (31)], which in turn determine the viscosity (35).

APPENDIX B: LINEAR-RESPONSE FUNCTIONS

In linear response, we linearize the hydrodynamic equations with respect to the linear fluctuations of the hydrodynamic
quantities δn, δnI , δnE , δu:

n → n + δn, nI → nI + δnI , nE → nE + δnE, u → δu. (B1)

We furthermore introduce the response functions to the external perturbation E = −iqϕ:

δn = χnϕ, δnI = χIϕ, δnE = T χEϕ, δu = −i
qT

qnE

χuϕ. (B2)
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Linearizing the continuity equations (39) and the Navier-Stokes equation (40), we find the matrix equation for the response
functions χi :⎛

⎜⎜⎜⎜⎝
−iω + τ1

2 q2 − 2πeqσ0
τ2
2 q2 −(

nτ1+nI τ2
3nE

T
)
q2 nT

nE
q

τ3
2 q2 − 2πeqσ ∗

0 −iω + τ4
2 q2 −(

nI τ4+nτ3
3nE

T
)
q2 nI T

nE
q

0 0 −iω 3
2q

− 4πe3n
3T

q 0 − q

3 −iω + τ−1
dis + 2η

3nE
q2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎝

χn

χI

χE

χu

⎞
⎟⎠ =

⎛
⎜⎜⎝

−q2σ0/e

−q2σ ∗
0 /e

0
2en
3T

q

⎞
⎟⎟⎠, (B3)

where [cf. Eq. (42a)]

σ0 = e2

[
τ1

(
∂μn

2
− 2n2

3nE

)
+τ2

(
∂μnI

2
− 2nnI

3nE

)]
, σ ∗

0 = e2

[
τ3

(
∂μn

2
− 2n2

3nE

)
+τ4

(
∂μnI

2
− 2nnI

3nE

)]
.

The dispersion (43) of the collective modes follows from zeros of the determinant of the matrix in the left-hand side of Eq. (B3).
In contrast to the energy waves and plasmons, which describe the response of the system to an external perturbation, the

conductivity of an infinite system is defined as the response to the total electric field. Consequently, in order to find the
conductivity (41), we need to consider the irreducible response functions, which satisfy the equation similar to Eq. (B3), but
without the Vlasov terms in the left column of the matrix in the left-hand side. Then, the conductivity is found from the Ohm’s
law

δ j = (−iqϕ)

[
σ0/e + 1

2
(τ1χn + τ2χI ) − nτ1 + nI τ2

3nE

T χE + nT

qnE

χn

]
, (B4)

where ϕ is now the total potential in the system (including the self-consistent Vlasov contribution).
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