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ABSTRACT. The Gibbs ensemble technique is an efficient method to study phase equi-
libria in a computer simulation. This Chapter gives an overview of this method. The focus
is on the principles underlying the method, the practical aspects related to the implemen-
tation of the technique, and questions regarding the interpretation of the results.

The practical use of the method is illustrated with applications ranging from polar
fluids to chain molecules. In particular, those systems are discussed which require special
tricks and extend the range of applicability of the Gibbs method significantly.

1. Introduction

Conceptually, most computer simulations are simple: specify an intermolec-
ular potential and press the ‘enter’ button. Typically, after a large amount of
CPU time the computer reveals everything there is to know about the sys-
tem. So why worry about techniques to calculate phase equilibria: when the
particles phase separate, the interface can be located and the coexistence
properties can be ‘measured’! Indeed, this would be the case if both the
computer and the computer budget were infinite. Unfortunately these limi-
tations make it particularly difficult to study phase equilibria by computer
simulations.

To see this, let us consider a system that phase separates into a liquid
and a vapour. Assume that the system is equilibrated for sufficiently long
so that two interfaces are formed. There are two points to note: firstly, the
equilibration requires a very large amount of computer time, often consid-
erably more than for the production run; secondly, since we assume that
periodic boundary conditions are used, the formation of two interfaces can
be expected. Since the properties of the fluid in the interfacial region dif-
fer substantially from the properties in the bulk, we have to discard all the

particles in the interfacial region for a ‘measurement’ of a bulk property.
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In Table I the percentage of the total number of particles in the interfacial
region is given. These numbers show that for a system smaller than 1000 par-
ticles the properties are dominated by the interfaces. It is therefore essential
to use relatively large systems to calculate reliable coexistence properties.
Unfortunately for large systems equilibration requires not only much more
CPU time because the systems are big, but also because the equilibration
times are longer compared to those of small systems.

A direct calculation of phase equilibria turns out to be ‘expensive’. An
alternative would be to simulate the vapour and liquid separately and to
determine the temperature at which the pressure and chemical potential are
equal. Although ‘thermal’ quantities like the pressure or temperature can be
calculated straightforwardly, a simulation does not yield quantities like the
free energy or chemical potential directly. The problem of calculating the free
energy can be compared with a survey. The percentage of statisticians who
believe that statistics are lies, can be determined by a simple poll. The total
number of statisticians who believe this, however, requires information on
the total number of statisticians. Obtaining this number requires additional
work. Similarly in a simulation, the pressure can be calculated from an
(extremely) small sample of all possible configurations of the system. The
free energy, which is related to the total number of configurations, requires
additional techniques. Various methods have been developed to calculate
the free energy or chemical potential (see [1] for a review).

TABLE I
The percentage of particles (Py¢) in the interfacial region. The interfacial region is
roughly defined as the volume within 2.50 from the interface. N is the total number
of particles.

N Pint
100 95%
500 55%
1000 44%
10000 20%

50000 10%

One of these methods is to determine the equation-of-state of the system.
From the equation-of-state the free energy can be calculated using standard
thermodynamic relations [2]. This way of determining the free energy is
identical to the experimental method. The method is simple and can be used
for almost all systems. However, it requires a large number of equation-of-
state points along a reversible path to a state with known free energy (for
example the ideal gas limit). With this method the phase diagram of the
Lennard-Jones fluid [3,4] and the two-dimensional Lennard-Jones fluid [5]
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have been determined.

A method which yields the excess chemical potential in a single simulation
is the Widom particle insertion method [6]. This method utilizes the fact
that the change in the free energy in going from N to N +1 particles can be
expressed as an ensemble average. This ensemble average is calculated by
adding test particles to the system. The simulations can now be restricted
to the coexistence region since both the pressure and the chemical potential
are known. The phase diagram of a quadrupolar Lennard-Jones fluid [7] has
been obtained with this method.

The methods described above require either long runs on large systems or
many different simulations. Consequently, the calculation of a phase diagram
is an elaborate task. A new technique proposed by Panagiotopoulos [8],
the so called Gibbs ensemble method, reduces the computer time required
for phase equilibrium calculations significantly. With this method, phase
equilibria can be studied in a single simulation. The method is particularly
useful for studying vapour-liquid and liquid-liquid equilibria. In its present
form the method can not be used to study phase equilibria which involve a
solid phase.

The Gibbs method utilizes two distinct simulation boxes, which are cou-
pled using Monte Carlo rules. These rules are chosen to ensure that these
subsystems are in equilibrium. When a conventional simulation is performed
in the two-phase region, droplets of liquid or gas will be formed. In the Gibbs
ensemble, the system can lower its free energy by filling one box with vapour
and the other with liquid. In this way the formation of interfaces, which in-
crease the free energy because of the interfacial tension between the liquid
and the vapour, is avoided. The coexistence properties can be obtained di-
rectly from the two boxes. Since this method avoids the interface, it can be
used with a relatively small number of particles.

In this Chapter, we study the Gibbs ensemble in detail. The introduction
of a new ensemble brings up the question whether it is a ‘proper ensem-
ble’, i.e. does it yield the same results as the conventional ensembles? To
prove it does, we derive in section 2 the partition function and use this func-
tion to define a free energy. This free energy is used to show that, in the
thermodynamic limit, the Gibbs ensemble and the canonical ensemble are
equivalent. This proof gives considerable insight into the ‘reason’ why the
method works.

Having established that the Gibbs ensemble is a sound ensemble, we turn
in section 3 to a more practical issue, namely how to sample this ensemble
using a Monte Carlo scheme. For this the appropriate acceptance rules are
derived. In sections 4 and 5 we describe how the results can be analyzed and
the kind of problems one can expect during the simulations. Some applica-
tions of the Gibbs ensemble technique are described in section 6. We focus
on those applications that involve extensions of the general Gibbs ensemble
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method, such as phase equilibria involving dense liquids, mixtures, or chain
molecules.

2. Theoretical aspects

In his original article [8], Panagiotopoulos introduced the Gibbs ensemble as
a combination of the constant- N VT ensemble, the constant- N PT ensemble,
and the constant-uVT ensemble. In this work we take a different point
of view, and consider the Gibbs ensemble as a new ensemble [9]. For this
ensemble we derive the partition function and define a proper free energy. By
considering this free energy we demonstrate that, in the two-phase region,
one of the boxes contains the liquid phase and the other the gas phase.
Furthermore, we prove that, in the thermodynamic limit, the Gibbs ensemble
is equivalent to the canonical ensemble.

2.1. THE PARTITION FUNCTION

Subsystem 1 Subsystem 2

n1, V1, T N'n1y V_Vp T

Fig. 1. A schematic picture of the Gibbs ensemble.

Consider a system at constant temperature (T), volume (V'), and number
of particles (V). This system is divided into two non-interacting subsystems
1 and 2 (see Fig. 1). In a simulation this implies that each box has peri-
odic boundary conditions and particles in one box do not interact with the
particles in the other box. The particles are distributed over the two sub-
systems keeping the total number of particles constant. The volume of each
subsystem may vary in such a way that the total volume remains constant.

In the partition function of this ensemble, we have to take into account
the number of possible distributions of N particles over the two subsystems,
to allow for the subsystems to change volume between 0 and V, and to
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consider all possible configurations in each subsystem [10-12]

- 1 (N Y
Qnvr = ‘—/FN—N!MX::O (nl)/(; % /;ldr;u exp [~fV1(m)]
 f A exp BV — o), (1)

where n; denotes the number of particles in box 1, V; denotes the volume of
box 1, r™ =ry,...,rn, and r) "™ =1, 41,..., Ty are the positions of the
particles in subsystem 1 and subsystem 2 respectively, A is the thermal de
Broglie wavelength, 5 = 1/kgT, and V(n;) is the intermolecular potential.

This partition function will be used in the next section to define the free
energy for the Gibbs ensemble, in section 2.3 to derive an expression for the
chemical potential, and in section 3 to derive the acceptance rules for Monte
Carlo simulations in this ensemble.

2.2. THE FREE ENERGY DENSITY

In this section we study the Gibbs ensemble, as introduced in the previous
section in the thermodynamic limit. Before we proceed, we first list a few
basic results for the free energy in the canonical ensemble.

2.2.1. Basic definitions and results for the canonical ensemble. Consider
a system of N particles in a volume V and temperature T' (the canonical
ensemble). The partition function is defined as (see Ruelle [13])

1
Qnvr = AN NI /VdrN exp [-BV(N)]. (2)
The free energy density is defined in the thermodynamic limit by
. 1 1
f(p) = Jim fv(p) = Jim 5V InQnvr, (3)
N/V=p

where p = N/V is the density of the system. For a finite number of particles
we can write

Qnvr = exp[-BV (f(p) + o(V))], (4)

where g(V) = o(V') means: g(V')/V approaches zero as V — oco. With this
free energy we can derive some interesting properties of a canonical system
in the thermodynamic limit.

For example, it can be shown that this free energy is a convex function
of the density p [13]

f(zpr+ (L= 2)p2) < zf(p1) + (1 - ) f(p2), (5)
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for every p1, p2, and = where 0 < # < 1. The equality holds in the case of a
first-order transition, if pg < p; < p2 < p1, where pg, p) denote the density of
the coexisting gas and liquid phases respectively (see Figs. 2 (a) and (b)).

(a) (b)

no phase transition a first-order phase transition

f(r) f(r)

O e

o
—
©

Fig. 2. The free energy density as a function of the density p.

Another interesting result, which plays a central réle in what follows, is
the well-known saddle-point theorem [14] (also called the steepest descent
method and discussed in Chapter 3). This theorem is based on the obser-
vation that, for a macroscopic system (N very large) in equilibrium, the
probability that the free energy density deviates from its minimum value is
extremely small. Therefore, when we calculate for such a system an ensem-
ble average, we have to take into account only those contributions where the
free energy has its minimum value. Assume that Q yy7 can be written as

Qnvr = /dal, .., dap exp[=BV (Fm(ar, ..., am) + o(V))], (6)

where aq, ..., a,, are variables which characterize the thermodynamic state
of the system. Furthermore, define

flp) = al@{‘lm fm(as,. .., am) (7)
and assume that f,(aj,...,an) and the term o(V') satisfy a few techni-
cal conditions [14], which hold for most statistical mechanics systems. The
saddle-point theorem states that in the thermodynamic limit the free energy
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of the system is equal to this minimum value f(p) or

1
Vh'_lgo 1% InQnvr = f(p). (8)
N/V=p

Moreover, this saddle-point theorem can also be used to calculate the
ensemble average of a quantity A

(Aay,...,am))y = 1 /dal,...,dam

QnvT
XA(ay,...,am)exp[—BV (fm(a1,...,am) + o(V))]. (9)
In the thermodynamic limit, this ensemble average only has contributions
from those configurations where f,,(a1,. .., an) has its minimum value. Let
us define S as the collection of these minima
S = {yl’ ey Ym fm(yh .. 1ym) = a.ln}AiIalm fm(alv teey am)} . (10)
We can now state the saddle-point theorem in a convenient form by intro-
ducing a function G(a,...,an) > 0 with support on the surface S and
normalization
/dal,...,damG(al,...,am):1 (11)
S

such that, for an arbitrary function A
(A(a1,...,am)) = VILH;O (A(a1,...,am))y

:/dal,...,damG(al,..‘,am)A(al,...,am). (12)
S

2.2.2. The free energy density in the Gibbs ensemble. The Gibbs ensemble
is introduced in section 2.1 as a constant- N VT ensemble to which an addi-
tional degree of freedom is added: the system is divided into two subsystems
which have no interactions with each other. We can rewrite the partition
function of the canonical ensemble as (eqn (2))

1 X (N v
QNVT: W Z ( )‘/0 di; /dr?l /drév'"l X exp [—,B(Vl(nl)

=0 \"1

4+ Va(N — ny) + interactions between the two volumes)]. (13)

The difference between this equation and the partition function of the Gibbs
ensemble, eqn (1), is that in eqn (2) we do have interactions between the
subsystems. In the case of short-range interactions, the last term in the
exponent of eqn (13) is proportional to a surface term. This already suggests
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that both ensembles should behave similarly in many respects. We expound
these ideas more rigorously in the following pages.
In the usual way, we define the free energy in the Gibbs ensemble as

_ . 1
flp) = VILH;O —B“;anNVT- (14)
N/V=p

In the partition function of the Gibbs ensemble, eqn (1), we can substitute
eqn (2)

Qnvr = Z/ﬂ dVi Qu, v, TQN-ny,V-V;,T- (15)

ny; =0

Introducing z = N;/N and y = V;/V, and assuming that the number of
particles is very large, we can write

Onvr = NV /0 de /0 dy On(z,9), (16)

where

Qn(2,y) = QuNyv.T Q-o)N,(1-y)V,T
= exp [-pv {uf (50) + 1= 0)f (7=20) +o0}] - (D)

Note that in this equation f(p) is the free energy of a canonical system. So,
we can apply the saddle-point theorem of the previous section (eqn (8)) to

calculate the free energy density of the Gibbs ensemble f(p)

1—-2
1-y

_ T T _

— mi z 1- 7% = mi 9)). (18

£(p) Jmin, {yf (yp) +(1-y)f (1 — yp)} Jmin {f(z,9)}. (18)
0<y<1 0<y<1

We now have to find the surface S on which the function f(z,y) reaches its

minimum. For this we can use the fact that f(p) is a convex function of the

density (eqn (5)). This gives for f(z,y)

fle,y) > f (yﬁp +(1- y)i—_gp) = f(p)- (19)

We first consider the case where there is only one phase. For this case
the free energy f(p) is shown schematically as a function of the density in
Fig. 2 (a). This figure demonstrates that any combination of  and y, which
result in densities p; and p; in the subsystems different from p, will give a
higher free energy. So, the equality in eqn (19) holds only if

T 1—-2

p, or z=uy. (20)
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Thus, in the case where there is only one phase, the free energy of the
Gibbs ensemble has its minimum value (in the thermodynamic limit) when
both boxes have a density equal to the equilibrium density of the canonical
ensemble. Therefore, the surface S is given by

S={(z,9)lz=y}. (21)

Secondly, we consider the case of a first-order phase transition, for which
the free energy as a function of the density is shown in Fig. 2 (b). Let p be
such that py < p < pg, and let us choose z and y such that

1-=

T
ps< P=ps<p and pe< T PP (22)

For this case the equality in eqn (5) holds and we can write for f(z,y)

f(z,y) = yf(ps) + (1 —y)f(pa),

= f(yps + (1 - y)pa). (23)
Note that
(yps + (1 = y)ps) = p, (24)
which gives
f(=z,9) = f(p)- (25)
It can be shown that, if 2,y do not satisfy eqn (22),
f(z,9) > f(p)- (26)

Therefore, the surface S in the case of a first-order phase transition is given

by

S = {(fc,y)

This result shows that, in the case of a first-order transition, the (bulk) free
energy of the Gibbs ensemble has its minimum value (in the thermodynamic
limit) for all values of z,y where there is vapour-liquid coexistence in both
boxes.

Equations (19) and (25) show that in the thermodynamic limit the free
energy of the Gibbs ensemble is equal to the free energy of the canonical
ensemble. In order to calculate an ensemble average, it simply remains to
determine the function G(z,y) (cf. eqn (12)).

In the case of a pure phase G(z,y) needs to be of the form

G(z,y) = g(z)6(z - 9)- (28)

z l-=2
S—p<p, pg< pSpl}- 27
pS y g 1___y ( )
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Fig. 3. A probability plot in the z,y plane (z = ny/N,y = V/V) for a
Lennard-Jones fluid at high temperature (T' = 5.21, N = 216 and V = 670).
The total number of cycles in this simulation was 6000 (see section 3 for details on
the simulations). After every 6 cycles the points (z;,y;) and (1 — z;,1 — ;) were
plotted in the z,y plane.

As shown the appendix of Ref. [9], g(z) = 1 for the ideal gas. We expect
the same to be true for an interacting gas. Fig. 3 shows a probability plot in
the z,y plane for a simulation of a finite system at high temperature. This
figure shows that z ~ y. We have not attempted to estimate g(z).

In the case of two phases we will show that the system will split into a
liquid phase, with density p), in one box, and a vapour phase, with density
Pg, in the other box.

Until now we have ignored surface effects, which arise from the presence of
a liquid-vapour interface in the boxes. When the density in one of the boxes
is between the vapour and liquid density, the system will form droplets of gas
or liquid. The interfacial free energy associated with these droplets has (in
the thermodynamic limit) a negligible contribution to the bulk free energy of
the Gibbs ensemble. Nevertheless, it turns out that this surface free energy
is the driving force that causes the system to separate into a homogeneous
liquid in one box and a homogeneous vapour phase in the other.

These surface effects are taken into account in the next significant term
in the expression for the free energy (eqn (4)), which is the term due to the
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surface tension. This gives, for the partition function,

Qnvr = exp [-B(V f(p) + TA + o(4))], (29)

where A denotes the area of the interface and v denotes the interfacial ten-
sion. For three-dimensional systems this area will in general be proportional
to V2/3, using this form of the partition function for the Gibbs ensemble,
eqn (9) can be written as

(Alz,9))y =
[f dedy A(z,y) exp [-B (V£(2,9) + 1V*/a(z,9) + o(V?/?))

QnNvT

where a(z,y) is a function of the order of unity.
We know from the saddle-point theorem that the most important con-

tribution to the integrals comes from the region S, defined by eqn (27).
Thus

(Alz,9)y ~
[[s dedy A(z,y) exp [—ﬂ (Vf(z,y) +4V?3a(z,y) + o(V2/3))]
[fsdedy exp [-B (V f(z,y) + yV?*/3a(z,y) + o(V2/3))]
3 J[s dzdy A(z,y) exp [—ﬂ (7V2/3a(:c,y) + o(V2/3))]

1
JIs dzdy exp [-B (YV*/%a(=, y) + o(V?/?))] (31
and, applying the saddle-point theorem again,
Jfs, dzdy A(z,y) exp [—,37V2/3a(:c, y)+ o(V2/3)]
(A(z,y))y = ffSA dzdy exp [-B7V?/3a(z, y) + o(V?/3)] (32)
and
Vle (A(z,y))y = //S dzdy G(z,y) A(z,y), (33)
o0 A
where the surface S4 is now given by
S4= {(m,y) alz,y) = Ii_ngla(z,g)}. (34)

In the infinite system it is easily seen that the area of the interface is zero, if
box 1 contains only gas (liquid) and box 2 only liquid (gas). Therefore, the
surface S, contains only two points, which corresponds to the vapour and
liquid density

z 1-2 z 1-2
— = pand = pg or — = py and :pl}. 35

Sa= {(f"’y)
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It is straightforward to show that this surface gives for G(z, y)

Glay) = %5(m_£§m) 5(y_m)

P PL— Pg P1— Pg
1 - -
+_5(z_ﬂu s(y—n=r). (36)
2 PP~ Pg PL— Pg

2.2.3. Summary. In this section, we have shown more formally that the
free energy density for the Gibbs ensemble, as defined by eqn (14), becomes
identical to the free energy density of the canonical ensemble.

Furthermore, it is shown that, at high temperatures, z = y, i.e. the
densities in the two subsystems of the Gibbs ensemble are equal, and equal
to the density in the canonical ensemble (see Fig. 3).

In the case of a first-order phase transition, if surface terms are unimpor-
tant, then z and y are restricted to the area defined by (cf. eqn (27))

z 1-2

P P=ps <o and pgs—l—_—ypEmSm- (37)
If we take surface effects into account, it is shown that this surface (eqn (37))
reduces to two points in the z,y plane. The densities of these points corre-
spond to the density of the gas or liquid phase in the canonical ensemble.

It is interesting to compare this with the results of an actual simulation
of a finite system. In Fig. 4 the results for a simulation at a temperature
well below the critical point are given. This shows that the surface reduces
to two points. This should be compared to the results of a simulation close
to the critical point (Fig. 5). At those conditions the interfacial tension is
very small and we see that the simulation samples the entire surface S. Note
that, due to the finite size of this system, fluctuations are also possible in
which the density of a subsystem becomes greater/smaller than the density
of the liquid/gas phase.

2.3. THE CHEMICAL POTENTIAL

One of the steps in the Gibbs ensemble involves the insertion of a particle in
one of the boxes. During this step, the energy of this particle has to be cal-
culated (see section 3). Since this energy corresponds to the energy of a test
particle, we can use the Widom insertion method [6] to calculate the chem-
ical potential without additional costs [15]. At this point, it is important to
note that the Gibbs method does not require computation of the chemical
potentials. However, in order to test whether the system under consideration
has reached equilibrium, or for comparison with other results, it is important
to calculate the chemical potential of the individual phases correctly. The
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Fig. 4. A probability plot in the z, y plane for a Lennard-Jones fluid well below the
critical temperature (T' = 1.15, N = 216, V = 670); see also the caption to figure 3.

(=]
(=]
-
w0 a
] :
e - = ke
L b
Ry z
- 4
e 33 % Foe
~N3 :
> o] L
g_' '
e n
i 24 ;«\ﬁ; »
g | G
o
o
S
= T T T
0.00 0.25 0.50 0.75 1.00
x=N, /N

Fig. 5. A probability plot in the z,y plane for a Lennard-Jones fluid slightly below
the critical temperature (T' = 1.30, N = 512, V = 1600). The solid lines show the
area S as defined in eqn (27); see also the caption to Fig. 3.
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original Widom expression is only valid in the canonical ensemble. It can be
modified for applications in the isothermal-isobaric ensemble [16,17] or the
microcanonical ensemble [1]. Here we derive an expression for the chemical
potential for the Gibbs ensemble. We restrict ourselves to temperatures suf-
ficiently far below the critical temperature such that the two boxes, after
equilibration, do not change identity. For the more general case we refer to
Ref. [11].

If we rescale the coordinates of the particles with the box length, the
partition function for the Gibbs ensemble, eqn (1), becomes

- 1 X (N gV .
- ny _ -ny
Qnvr = ————VAsNN!nE: . /0 AV, VM (V - V)

1=0

X

/dﬂ‘1 exp [—ﬂVl(nl)]/dﬁiv_"l exp [-BV2(N - ny)],

N v
= Z/o dVi VP (V = V)N "™ Q1 (n1, V1) Q2(N — my,V — V),

ny =0

(38)

where £ = r/L is the scaled coordinate vector of a particle, L is the box

length of the subsystem in which the particle is located, and Q;(n;, V;) is

the partition function of the canonical ensemble (see also section 2.2.2).
The chemical potential of box 1 can be defined as

N v
p1 = —kpTln Z/o AV, Vi (V — )N —m

n1 =0
Ql(nl + 11V1)
x( Ql(nl,Vl)

For the ratio of the partition functions of box 1 we can write
Qi(m+1,0) _ Vi AT exp[-BVi(m + 1)]
Q1(n1, V1) (n1+1)A3  [d€7? exp [-BV1(n1)]
Vi Jd€T! exp [—ﬂAvf] exp [—BV1(n1)]

)QZ(N"nlaV_Vl)- (39)

= , (40
( + DA A& exp[-AVs(m)] (40)

in which we have used the notation
Vl(nl + 1) = A‘Ui'_ + Vl(nl), (41)

where Av] is the test particle energy of a (ghost) particle in box 1. We can
write eqn (39) as an ensemble average restricted to box 1

exp [—ﬂAvﬂ> ) (42)

Gibbs, box 1

4y = —kpTln - <

A3 n1+1
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where (.. .)Gibbs, box i denotes an ensemble average in the Gibbs ensemble
restricted to box ¢ (note that this ensemble average is well defined if the
boxes do not change identity during a simulation).

3. Computational aspects

In section 2.1, the partition function of the Gibbs ensemble was derived and
it was shown that in the two-phase region one of the sub-systems contains
the vapour phase and the other subsystem the liquid phase. This property
makes the Gibbs ensemble a convenient ensemble to study vapour-liquid (or
liquid-liquid) phase equilibria. In this section we describe a Monte Carlo
procedure which samples the Gibbs ensemble.

3.1. ACCEPTANCE RULES

The problem of devising a procedure which generates configurations with a
specific probability distribution, can be formulated conveniently in terms of
the theory of stochastic processes (van Kampen [18]). For example, one can
generate a chain of configurations by specifying a Markov process, in which
a new configuration I, is obtained from the old configuration I',, with a
transition probability T(m|n)

r,= T(m|n)I‘n . (43)

Repetition of this procedure generates a chain of configurations (Markov

chain). The conditions which need to be fulfilled by this transition proba-

bility to obtain configurations with the desired probability distribution are

outlined by Feller [19, 20] or van Kampen [18]:

e the Markov chain needs to be ergodic, i.e. all possible configurations
must be within reach from any other configuration in a finite number
of steps;

o the transition probability must satisfy the condition of detailed balance,
i.e. the number of transitions from configuration m to n must be equal
to the number of transitions from n to m

K(njm) = K(min) - (44)
The number of transitions K, ) is the product of the statistical weight
of configuration n (N,) and the acceptance probability

K (njm) = Nnacc(n|m). (45)

The condition of detailed balance is stronger than strictly necessary to ob-

tain an equilibrium distribution [18]. However, it has an important practical

advantage. The condition of detailed balance guarantees that the equilibrium
distribution will be reached in the course of a Markov process irrespective
of the form of this distribution. Therefore, by imposing detailed balance we
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are guaranteed that the Markov chain will give the correct distribution of
configurations for the Gibbs ensemble.

From the partition function of the Gibbs ensemble, it follows that we
have to displace the particles in the two boxes, change the volume of the
subsystems, and exchange particles between the boxes. Here we consider
the version of the Gibbs ensemble where the total number of particles and
the total volume of the two boxes remains constant, i.e. the total system
is at constant-NVT conditions. The appropriate acceptance rules for the
constant- N PT version can be found in Ref. [15].

In the Gibbs ensemble, the statistical weight of a configuration m with
n, particles in box 1 with volume V;, and N — n, particles in box 2 with
volume V' — Vj is proportional to (cf. eqn (1))

V(v -
nl'(N - nl)'
where V,, is the total potential energy (sum of the energy of box 1 and box

2).

The acceptance rules can be derived from fluctuation theory (8, 15] or
directly from the partition function [10,11]. Here we derive the acceptance
rules using the condition of detailed balance.

For example, assume that state n is obtained from state m via the dis-
placement of a particle in box 1. The ratio of the statistical weights of these
two configurations is given by

= exp[-B(Vn — V)] (47)

m
Substituting eqn (47) into eqn (45), we find that the following acceptance
rule for a particle displacement will satisfy the detailed balance condition,
eqn (44)

acc(m|n) = min{1,exp[—B(Vr — Vm)]} . (48)
For a change of the volume of box 1 by an amount AV, the ratio of the
statistical weights of the configurations after and before the move is given
by

& _ (V1 + AV)"I(V - (V1 + Av))N—m

Nm - Vlnl(V _ Vl)N—m
Imposing the condition of detailed balance gives as acceptance rule for the
volume change

N,, x exp(—BVm), (46)

eXP{".B(Vn - Vm)] . (49)

acc(m|n) =
ny — N—n1
mind1, (Vi+ AV)n (V- (V1 4+ AV))
V(v - V)N-m

exp[~B(Vn - vm)]} .
(50)
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If the configuration n is obtained from configuration m by removing a par-
ticle from box 1 and inserting this particle in box 2, the ratio of statistical
weights is given by

N, (N - n )!Vlnl‘l(V — VA )N—(nl—l)
N,  (m - 1IN . (ny — 1))V (1V V)N exp[~B(Va—Vm)] .(51)

Again, imposing detailed balance for a particle exchange move leads to the
acceptance rule

nl(V - V]_)
(N bl (5] + 1)V1

acc(mln) = mjn{l, exp[—B(Vn — Vm)]} . (52)

The moves described above are identical to the ones proposed by Pana-
giotopoulos et al. in Refs. [8,15]. A more natural choice for generating a
new configuration in the volume-change step, is to make a random walk in
In(V1/(V — V1)) instead of in V; (see also Ref. [21] for the N PT ensemble).
This has the advantage that the domain of this random walk coincides with
the possible values of V;. Furthermore, the average step size turns out to
be less sensitive to the density. In order to adopt this method for the Gibbs
ensemble, the acceptance rule for the volume has to be modified. If we make
a random walk in In(V; /(V — V7)), the ensemble averages that are calculated
correspond to

A - ! 1
W = @Qnvr A3NN!,:L:‘O
§ (;Z) /_de (V‘_/IVI) Vl(VV* %) ViV - )N
x [d€r exp(-AVa(ns)] [4€Y ™ exp[-AVa(N — m)]A(EM)(53)

The statistical weight of a configuration m is now proportional to

V1"1+1(V _ VI)N—n1+1

N
x anl(N - n1)|

exp(—fVm) - (54)

Imposing detailed balance for this move leads to the acceptance rule

acc(m|n) =
. Vln m+l 7 Vln N-n;+1
- {1’ (7{7> (V - V{") XL =Vmllf, - (59)

in which V™ denotes the volume of box 1 of configuration m. The acceptance
rules for the particle displacement or particle exchange are not affected.
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3.2. COMPUTATIONAL ASPECTS

A convenient method to generate trial configurations is to perform a simula-
tion in cycles. One cycle consists of (on average) Ngisp attempts to displace
a (random) particle in one of the (randomly chosen) boxes, N, attempts
to change the volume of the subsystems, and N, attempts to exchange
particles between the boxes. It is important to ensure that at each step of
the simulation the condition of microscopic reversibility is fulfilled (see for
example the algorithm described in Fig. 6).

Npart1 : number of particles in box 1

Npart2 : number of particles in box 2

Nvol : number of attempts to change the volume
Ntry :number of attempts to exchange particles
Ncycle : number of Monte Carlo cycles

nvar = Nparti+Npart2+Nvol+Ntry
DO icl = 1,Ncycle
DO ivar = 1,nvar
ran = random_number
IF (ran .LE. Npartil/nvar) THEN
displace_particle_in_box_1
ELSE IF (ran .LE. (Nparti+Npart2)/nvar) THEN
displace_particle_in_box 2
ELSE IF (ran .LE. (Nparti+Npart2+Nvol)/nvar) THEN
change_volume
ELSE IF (ran .LE. (Nparti+Npart2+Nvol+0.5%Ntry)/nvar) THEN
exchange particle from_ box_1_to_box_2
ELSE
exchange particle from box_2_to_box_1
ENDIF
ENDDO
ENDDO

Fig. 6. The basic algorithm for a computer simulation in the Gibbs ensemble.

In most applications of the Gibbs ensemble, the simulations were per-
formed slightly differently; instead of making a random choice at each Monte
Carlo step which type of change (particle displacement, volume change, or
particle exchange) will be made, the simulations were performed in a strict
order. First, an attempt to displace each particle successively (the ‘NVT
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part’), then an attempt to change the volume (the ‘N PT part’), and finally
Niry attempts to exchange particles (the ‘uV'T part’). Although, with this
scheme, microscopic reversibility is not fulfilled at every step in the algo-
rithm, it can be expected that this method of generating new configurations
will also lead to the correct probability distributions. However, the scheme
described in the previous paragraph has some practical advantages. For ex-
ample, there is no ambiguity when to sample a configuration, one does not
have to make the choice of sampling after the NVT part, the N PT part, or
the uV T part, but one can simply sample after each n*® cycle.

A more serious disadvantage of the successive method is that in the latter
scheme, when the probability of acceptance of an exchange becomes greater
than 3%, erroneous can results occur. In Ref. [8] a bias in the liquid pressure
was observed, which disappeared when the number of attempts to exchange
particles was reduced. In section 4 it is shown that one should be extremely
careful with this, since a simulation in the Gibbs ensemble can become easily
trapped in such a region.

The details of the implementation of each step of the simulation depend
on the intermolecular potential and on the conditions of the system. A gen-
eral rule which should be considered in the implementation is that the sim-
ulation samples the configuration space efficiently. What efficient sampling
means can be illustrated with a quotation from Ref. [10]:

...In very vague terms, sampling is efficient if it gives you good value
for money. ‘Good value’ in a simulation corresponds to high statistical
accuracy and ‘money’ is simply money: the money that buys your com-
puter or even your own time. Let us assume that you are very poorly
paid. In that case we only have to worry about your computer bud-
get. Then we could use the following definition of an optimum sampling
scheme: A Monte Carlo sampling scheme can be considered optimum, if
it yields the lowest statistical error in the quantity to be computed for
a given expenditure of ‘computer budget’. ...it is reasonable to assume
that the mean-square error is inverse proportional to the number of ‘un-
correlated’ configurations visited in a given amount of CPU time. ...

Below, some general points are made concerning the efficiency of the various
steps in the Gibbs ensemble. However, one should be careful in applying
these general rules for a particular system. Various examples exist where the
optimal algorithm deviates significantly from these general rules. In section 6
some examples of these exceptions are described.

A particle displacement. In this step, a particle in one of the boxes is
chosen at random and given a random displacement. The maximum dis-
placement must be chosen in such a way that the sampling is efficient. For
example, in the case of the Lennard-Jones potential the amount of CPU re-
quired to calculate the energy difference for a given trial move is independent
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of whether this move is rejected or accepted. Therefore, in this case the max-
imum displacement is set to give an acceptance ratio of approximately 50%.
For other potentials, the optimum acceptance ratio can deviate significantly
from this 50% (see section 6).

A volume change. In this step the volume of the boxes is changed in
such a way that the total volume remains constant (in the case where the
constant-N PT version of the Gibbs ensemble is used, the volumes of the
two boxes are changed independently). For some systems, we can use the
scaling properties of the intermolecular potential to calculate the energy of
the new configuration efficiently (see Refs. [22,23]).

Again, the maximum change of the volume must be chosen using the
criterion of efficiency. In the case of the Lennard-Jones potential, there is no
difference in required CPU time between an accepted and a rejected move.
Therefore for this potential an acceptance ratio of approximately 50% is
appropriate.

A particle exchange. In this step, a particle is exchanged between the two
subsystems. Inspection of the main algorithm shows that a box, from which
a random particle is to be deleted, is chosen at random. This particle will
be placed at a random position in the other box.

The number of attempts to exchange a particle will depend on the condi-
tions of the system. For example, it can be expected that close to the critical
temperature the percentage of accepted exchanges will be higher than close
to the triple point. A possible check whether the number of attempts is suffi-
cient, is to calculate the chemical potential. Since the calculated energy of a
particle which is to be inserted corresponds to just the test-particle energy,
the chemical potential can be calculated without additional costs.

In Ref. [8] it is mentioned that close to the critical point some simulations
failed because one of the boxes became empty. However, inspection of the
partition function (eqn (1)) shows that one must allow for n; = 0 (box one
empty) and n; = N (box two empty) in order to calculate ensemble averages
correctly. So, it is important to ensure that the program does not fail because
of technical reasons when one of the boxes becomes empty. For example,
when one of the boxes is empty the addition of yet another particle to the
full box may cause a division by zero. This addition will lead to a situation
with N + 1 particles and inspection of the partition function shows that this
configuration should not be sampled. However, if one also calculates the
chemical potential during the exchange step one should be careful. In order
to calculate the chemical potential correctly (see section 2.3) one should also
add test particles when one of the boxes is full.
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4. Finite-size effects

Computer simulations are usually performed on a relatively small number
of particles. The results of these simulations will in general depend on the
system size. Because we are usually interested in the infinite system, it is
important to estimate the magnitude of the finite-size effects. For example,
it is well known that the critical temperature of a finite system decreases
when the system size is increased. For a finite system a true critical point
does not exist. However, one can observe a pseudo-critical temperature when
the fluctuations in the density are correlated over distances of the order of
the system size. For lattice models, these finite-size effects have been studied
in great detail using finite-size scaling techniques [24]. Here we analyze the
finite-size effects that are specific to the Gibbs ensemble using the theoretical
framework developed in section 2.

Droplet of ges in liquid Droplet of liquid in gas Double layer

’__} lquid F- j gae

Fig. 7. A schematic representation of one of the boxes in a Monte Carlo simulation
in the Gibbs ensemble slightly below the critical temperature.

For the infinite system we have shown that, in the case of a first-order
phase transition, one of the subsystems will contain the gas (liquid) phase
and the other subsystem will contain the liquid (gas) phase. For small sys-
tems we can expect to observe configurations that differ from the pure liquid
or gas densities. The penalty of these deviations is related to the free energy
increase caused by the formation of droplets of the other phase. Since the
chemical potentials of the two phases are equal, this free energy increase
arises from the surface between the two phases. For a finite system we have
to calculate the surface area, (A(z,y)), for a given z = n; /N and y = V1 /V,
The surface contribution of the free energy can be obtained from

Fout(z,y) = 7A(2,9), (56)

where 7 is the interfacial tension. In order to calculate A(z,y) we assume
that the surface area will have its minimum value for each z and y. If we
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perform a simulation with the normal periodic boundary conditions, we can
assume that the surface energy is minimized either by a drop of liquid, a
drop of gas, or a double layer (see Fig. 7). The volumes of the droplets or
double layer can be expressed easily in terms of z and y (see Ref. [9] for
details). In Fig. 8 we plotted the function A(z,y)/V?/? on the z,y plane.
This plot shows that there are two minima, which correspond to the case
where there is only vapour or liquid in the subsystems (no interface, so
A(z,y) = 0). Furthermore, it shows that there are large parts of the z,y
plane where the gradient towards these minima is very small. It is possible
that a simulation becomes trapped in such a region. An example of such a
simulation is described in section 5.

(=]
= . - ,
“v.00 0.25 0.50 0.75 1.00
x=N1/N
S Sian W i 2:33
_________ =2.a0 : Y =2 .m0
SR R 2.82

Fig. 8. A contour plot in the z,y plane (z = n;/N,y = Vi/V) of the surface
contribution (a(z,y)) to the free energy of the Gibbs ensemble. Note that the z,y
'values of the coexisting vapour and liquid phase are chosen arbitrarily.

It is interesting to calculate the probability of finding the density p in one
of the sub-volumes for a finite system. This should be given approximately
by

P( ) _ f.fS d.’bdy 6(% - P) €Xp [_ﬂFsurf(ma y)]

P = T ITs dedy exp [~ B Fuut(z,9)]

In order to study the temperature dependence, we have assumed that, close

(57)
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to the critical temperature, the interfacial tension depends on the tempera-
ture according to [25]

7 =7 (1= T/T)", (58)

where p is the critical exponent for the interfacial tension (for three dimen-

sional systems p = 1.26 [25]). The area S is defined by the densities of the

coexisting gas and liquid phases at the given temperature (cf. eqn (27)).
When the system is infinite, we have (combining eqns (36), (33), and

(57))
1 1
Pp) = 56(p = pg) + 58(p1 = p). (59)

However, for a finite system, function (57) exhibits interesting behaviour.

In Figs. 9 (a) and (b) we have plotted P(p) for a Lennard-Jones fluid
(70 = 2.71 [25] and T. = 1.32 [8]) for 64 and 216 particles respectively.
These figures demonstrate that, as the temperature is increased, the fol-
lowing transitions can be observed. Since at low temperature the surface
tension is large, it is unlikely that vapour and liquid will coexist in the same
sub-volume. Therefore, at low temperature there are two sharp peaks, which
correspond to the two coexisting phases. As the temperature increases, the
surface tension decreases and becomes comparable to the entropy associated
with the formation of an interface (there are simply more overall densities
where vapour and liquid can coexist). Note that around ¢ = y the interface
will be a double layer, and therefore small deviations around this line do not
change the surface free energy contribution (see Figs. 7 and 8). Furthermore,
¢ = y is the longest ‘strip’ in the z, y plane on the surface S. These entropic
considerations predict the appearance of a third peak at the average density
p. When the temperature is increased further this entropy effect will dom-
inate the surface contribution and the peaks of the coexisting phases will
disappear close to, but below, the critical temperature of the finite system.

Note that the temperature range over which these transitions occur de-
pends on the number of particles. Comparison with the results for 64 parti-
cles (Fig. 9 (a)) shows that the third peak exists over a larger temperature
range.

It is interesting to compare these results with probability distributions
for the densities obtained from simulations for the Lennard-Jones fluid. In
Fig. 10 the results are presented for simulations with 216 particles at T' =
1.30 (a) and T = 1.31. Comparison with the theoretical results (Fig. 9 (b))
shows not only that the transitions from two peaks at low temperatures
to three peaks and finally to one peak below the critical temperature are
observed but also that the temperature range of these transitions is in good
agreement with the theoretical predictions.
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Fig. 9. The calculated density probability functions for a Lennard-Jones fluid
(eqn (57)) at different temperatures for (a) N = 64 particles and (b) N = 216 par-
ticles. Note that in each figure the temperatures are different and that the curves

are drawn for px(T) < p < p1(T).
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Fig. 10. The density probability functions for a Lennard-Jones fluid as obtained
from simulations (N = 216) at two temperatures. These probability functions were
obtained by calculating each cycle the volumes of the subsystems and densities in

both subsystems and updating a histogram. At the end of the simulations these
histograms were divided by the total number of cycles.
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This theoretical analysis suggests that, in the Gibbs ensemble, finite-size
effects can be expected which result in an underestimation of the critical
temperature of the finite system. So, in the Gibbs ensemble, we are faced
with finite-size effects of the opposite sign which will partly cancel. Therefore
we can expect that the finite-size effects are smaller in this ensemble com-
pared with conventional simulations. This would lead to a better estimate of
the critical temperature of the infinite system. It would be interesting to see
whether the arguments given above can be put on a more rigorous footing
using finite-size scaling techniques.

In the above discussion it is assumed that eqn (58) is valid for a finite
system. This assumption breaks down close to the critical temperature where
we have to take into account finite-size rounding [26]. If we take these effects
into account the interfacial tension is given by

7y o y0(1 = T/T.)* F(L/€), (60)

‘where f(L /€) is a scaling function and £ is the correlation length. For tem-
peratures where L > £, eqn (60) reduces to eqn (58). However, close to T,
if L < € eqn (60) becomes

1 ¢ 1
7“70672‘X2~2=70ﬁ- (61)

As aresult, the interfacial contribution to the free energy does not go to zero
but to a constant value. If one takes this into account in the calculation of the
density probability function, compare eqn (57), a third peak will only occur
if 7o is sufficiently small. At present not much is known about the numerical
value of 7o, which will depend on the details of the intermolecular potential.
Therefore it remains to be seen whether a third peak can be observed in a
given system.

The finite-size effects for the simulations of phase coexistence in the Gibbs
ensemble have been studied in detail by Mon and Binder [26]. In contrast
to the theoretical arguments presented here, which predict that the Gibbs
ensemble suffers less from finite-size effects than other ensembles, Mon and
Binder conclude that the numerical magnitude of finite-size effects in the
Gibbs ensemble and in the grand-canonical ensemble are very similar. In
fact, detailed inspection of the results presented in Ref. [26] shows that the
finite-size effects in the Gibbs ensemble are slightly larger. An important
point is that Mon and Binder considered a two dimensional lattice gas.
Furthermore, a “restricted” version of the Gibbs ensemble technique was
used in which the volume fluctuations are suppressed. For this version of
the Gibbs ensemble, we can also estimate the shape of the P(p) curve using
the same arguments as described above. The difference is that we now have
to consider only the parameter z (no volume fluctuations, so y is constant).
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Fig. 11. The phase diagram of the Lennard-Jones fluid (with tail corrections, see
[27] for details). The solid lines are the fits to the scaling law and the rectilinear law.
The dashed line is the e.o.s. of Nicolas [3]. The points are the simulation results of
(8,9, 28], e is the estimate of the critical point. The simulation are performed with
108, 256, and 512 particles and show no systematic deviations.

As aresult, the entropic contributions, which give rise to the third peak and
result in an underestimation of the critical point, are completely suppressed.
As a result, the theoretical arguments described here for the restricted form
of the Gibbs ensemble would predict that the finite-size effects would be
comparable to those in other ensembles.

An interesting point that follows from the work of Mon and Binder is
the striking difference of the magnitude of the finite-size effects in lattices
and continuum systems. For example, the results of Mon and Binder for the
two-dimensional lattice gas show that a system of 100 spins overestimates
the critical temperature of the infinite system by 20%. While in the results
of Gibbs ensemble simulations of the two-dimensional Lennard-Jones fluid
could not be detected [29] (see Fig. 11). More careful studies of the finite-size
effects in continuum systems have been reported by Rovere et al. [30] and
Wilding and Bruce [31]. finite-size scaling techniques, as developed for lattice
models [24], are applied to the two-dimensional Lennard-Jones fluid. In lat-
tice models the critical density is usually known from symmetry arguments
and the critical point is can always be located by changing the tempera-
ture. In a continuum system the critical density has to be determined for
each system size very accurately before one can apply the scaling techniques.
Furthermore, these studies have been performed using many different cut-off
values of the Lennard-Jones potential which has a significant influence on
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the phase diagram [29, 32]. As a result, the importance of finite-size effects
in the simulation of a continuum model is still unclear. These studies do
show, however, that in contrast to lattice simulations, finite-size effects in
continuum systems are significantly smaller and harder to detect.

5. Analyzing the results

Assuming that we have a working algorithm for performing a Monte Carlo
simulation in the Gibbs ensemble, we should address the question as to
whether the numbers that are generated in a simulation are reliable. First
of all, the equilibrium conditions should be fulfilled:

e the pressure in both subsystems must be equal,;

e the chemical potential must be equal in both phases.

Unfortunately, the chemical potential and the pressure of the liquid phase
are subject to relatively large fluctuations, and therefore the observation
that the equilibrium conditions have been fulfilled (within the statistical
error) is not always sufficient. In this section we introduce some methods to
analyze the data and to judge whether a simulation has been successful.

5.1. IS THE SIMULATION RELIABLE?

An example of a simulation for which the chemical potential and the pressure
did not show significant deviations is shown in Fig. 12. In this figure an
(z,y) plot of the simulation is given. In section 2.2 it was shown that in the
thermodynamic limit the two points in the (z,y) plane which correspond to
the coexisting liquid and gas density are sampled. In Fig. 12 we see that,
in this simulation, a drift away from these two points has occurred. The
reason that these drifts can occur becomes clear if we consider Fig. 8. This
figure shows a contour plot of the surface contributions to the free energy of
each (z,y) point. Besides the two global minima, which correspond to the
densities of the coexisting gas and liquid phase, this figure shows that there
are large areas in this plane where the gradient towards the global minima
is small. Comparison with Fig. 12 shows that the simulation accidentally
became trapped in such an area.

These fluctuations are not immediately apparent when the density prob-
ability function is considered, but the average gas and liquid densities can
be influenced substantially. Therefore it is important to check for the con-
sistency of the results by making a probability plot in the (z,y) plane.

Another simple indication of a drift in the (z,y) plane can be obtained
from a probability distribution of the volumes. At a given temperature the
densities of the coexisting phases are determined (but unknown) and because
the total number of particles and total volume remain fixed, the probability
function of the volume must have two (sharp) peaks if the simulation samples
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Fig. 12. The probability plot in the (z,y) plane for a Lennard-Jones fluid below the
critical temperature (T = 1.20 and N = 216).

the (2, y) plane correctly. If this probability function does not give two sharp
peaks, it is likely that the simulation is trapped in some metastable region.

Generally, if a simulation in the Gibbs ensemble is performed far below
the critical temperature, it is not difficult to analyze the results. After the
equilibration it becomes clear which of the boxes contains the vapour phase
and which the liquid phase. The densities of the coexisting phases can simply
be obtained by sampling the densities at regular intervals. For the estimation
of the accuracy of the simulation one should be careful since these ‘measured’
densities are not sampled independently and in estimating the standard
deviations of the results one should take this into account (this aspect is
discussed in more detail in Appendix A of Ref. [33])

Close to the critical point, however, it is possible that the boxes con-
tinuously change ‘identity’ during a simulation. If, for such a system, the
average density is calculated by calculating the average density in the two
boxes, one would obtain the overall density. A more convenient method is to
‘make a probability plot for an observed density in one of the boxes. In sec-
tion 2.2 it was demonstrated that the two maxima of this curve correspond
to coexisting vapour and liquid densities. Because this curve is obtained
by sampling the density in both boxes, the results are not influenced when
the boxes change identity. From this curve, an estimate of the densities can
be obtained even very close to the critical temperature (see for example
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Fig. 10). Furthermore, it is also clear from section 4 that the appearance of
a third peak between the vapour and the liquid peak is an indication that
the temperature is very close to the critical temperature (see for example

Fig. 10(b)).

5.2. DETERMINING THE CRITICAL POINT

In section 4 it was shown that, due to finite-size effects which are specific to
the Gibbs ensemble, the coexistence of vapour and liquid cannot be observed
just below the critical temperature. Therefore, the highest temperature at
which the coexistence can be observed is not a proper estimate of the critical
temperature of the system. In order to estimate the critical temperature the
results can be fitted to the law of rectilinear diameters [34]

pl';pg-_—,pc-l-A,T"Tcla (62)
where pi(pg) is the density of the liquid (gas) phase, p. the critical density
and T, the critical temperature. Furthermore, the results are also fitted to
the scaling law for the density[25]

p—pg=BIT -T.J° (63)

where [ is the critical exponent (for three dimensional systems 8 = 0.32 and
for two dimensional systems 8 = 0.125 [25]). A and B depend on the system
and are obtained from the fit. Note that this scaling law is strictly valid only
close to the critical temperature and should be corrected at lower temper-
atures. In most practical applications the results of the Gibbs ensemble are
not sufficiently accurate to justify these higher order terms.

Vega et al. [35] used Gibbs ensemble data to determine the effective ex-
ponent 3 (the exponent is not fixed a priori but is a result of the fit). Vega
et al. observed that, within the limited accuracy, the data could be described
with an effective exponent 3 very close to the critical value of 0.32.

6. Applications

The Gibbs ensemble has been used to study the phase behaviour of a various
systems. The results of these simulations are reviewed in Ref. [12]. Here we
discuss those applications of the Gibbs ensemble for which the algorithm
that has been used differs significantly from the one described in section 3.

6.1. DENSE LIQUIDS

At high densities the number of exchange steps can become very large and
requires a significant amount of CPU time. This problem occurs also in
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conventional grand canonical Monte Carlo simulations. Various methods,
which are used to extend simulations in the grand canonical ensemble to
higher densities, can also be used in the Gibbs ensemble. An example of such
a technique is the so-called excluded volume map sampling. This technique,
is based on the ideas of Deitrick et al. [36] and Mezei [37], and adopted
by Stapleton and Panagiotopoulos [38] for the Gibbs ensemble. Before the
energy of the particle which has to be inserted is calculated, a map of the
receiving subsystem is made, by dividing this subsystem into small boxes
which can contain at most one particle. These boxes are labelled when they
contain a particle. This map can then be used as a look-up table to check
whether there is ‘space’ for the particle to be inserted. If such space is not
available the trial configuration can be rejected immediately.

6.2. POLAR AND IONIC FLUIDS

Because of the long range of the dipolar and Coulombic interactions, the
dipolar and Coulombic potential can not simply be truncated. Special tech-
niques, such as the Ewald summation or reaction field [39], have been devel-
oped to take into account the long-range nature of the potential in a sim-
ulation. It is a general (mis)belief that special techniques are only needed
for quantities like the dielectric constant. For thermodynamic quantities it is
‘commonly held that the differences between, for example, the Ewald summa-
tion and the minimum-image boundary conditions, are very small. It turns
out that the phase diagram is very sensitive to the details of the way the
long-range part of the potential is taken into account.

A study of the phase behaviour of the Stockmayer fluid (a Lennard-Jones
potential plus a point dipole) [23,40] using the Gibbs ensemble technique
has shown that, without the Ewald summation, the N-dependence is much
larger [41]. In fact, performing simulations in which the potential is simply
truncated at half the box size can lead to wrong results. When the poten-
tial is long ranged, and simply truncated at half the box size, the effective
potential is quite different for a large volume compared to a small volume.
Since in the Gibbs ensemble the volume of a subsystem varies significantly,
a situation can occur in which one volume is much larger than the other.
The system then tries to find equilibrium between two boxes with different
potentials.

Moreover, Panagiotopoulos [42] and Valleau [43,44] have performed sim-
ulations of the restrictive primitive model (a hard-core potential with a
point charge) to model an ionic solution. Panagiotopoulos used the Gibbs
ensemble technique with Ewald summation, while Valleau used the density
scaling technique [44] with the minimum image boundary condition. The
results of the two studies turned out to be different. This suggests that the
phase diagram is sensitive to the way the long-range interactions are taken
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into account. Also for the simple Lennard-Jones fluid it is observed that
the phase diagram is very sensitive to the details of the truncation of the
potential [27,29] and that these differences are by no means small.

6.3. HARD-CORE POTENTIALS

Most of the rules of thumb as described in section 3.2 are not valid for sys-
tems in which particles interact with a hard-core potential. A configuration
can immediately be rejected once one overlap between hard cores has been
detected. In general, rejecting a configuration takes much less computer time
than accepting of a configuration. For the hard-core fluids one can utilize
some of the techniques developed by Wood [45] for constant pressure sim-
ulations of hard disks and which have been extended by Frenkel [46] for
simulations of non-spherical convex bodies, to reduce the computer costs
significantly. Below, some of these techniques as used by Smit and Frenkel
for Gibbs-ensemble simulations of the hard-core Yukawa fluid [47] are de-
scribed.

A particle displacement. During the simulations a neighbour list for each
particle can be made without adding much additional computer time. This
list contains all particles within a radius equal to the maximum displace-
ment. This list can be used to test for possible overlaps before the energy of
the new configuration is calculated. As a result the computer time required
for a rejected move is much less than the time required for an accepted move.
Therefore, the optimum maximum displacement results in an acceptance ra-
tio which is far less than the normal 50%.

A volume change. It is straightforward to keep track of the minimum
distance between a pair of particles in each box during the simulations.
After a volume change, the attempt can be rejected immediately if one of
these minima becomes smaller than the hard-core radius.

A particle ezchange. Before the energy is calculated one can check whether
the particle that is inserted overlaps with one of the other particles.

6.4. MIXTURES

The Gibbs ensemble technique can also be extended to study the behaviour
of mixtures. The appropriate acceptance rules are given in Ref. [15]. Exam-
ples of mixtures that have been studied using the Gibbs ensemble technique
are mixtures of Lennard-Jones particles [15, 48, 49].

One of the main problems in studying liquid-liquid systems is that both
phases are relatively dense. It is therefore difficult to exchange particles be-
tween the two phases, in particular when the components differ significantly
in size. For phase equilibria in mixtures it is sufficient that the chemical po-
tential of one of the components, labelled 7, is equal in both phases and for
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the other components only the difference between the chemical potential and
the chemical potential of component ¢ needs to be equal in the two phases.
For a simulation this observation implies that it is sufficient to specify the
chemical potential of one of the components and the differences for the oth-
ers. Such simulations are called semi-grand canonical ensemble simulations
[50]. In a simulation one can ensure that the difference in chemical potential
between two components is constant by performing Monte Carlo moves in
which the identity of the particles is changed.

The ideas of the semi-grand canonical ensemble simulations have been
adopted by Panagiotopoulos [51] for the Gibbs ensemble. Instead of attempts
to insert and remove particles for both components, only the smallest parti-
cles are inserted, while for the larger particles only moves involving a change
of identity are used.

When mixtures are studied which are symmetric with respect to particle
interchange, the density or compositions of the two phases must be equal

by symmetry. As a result it is not necessary to perform volume changes [52,
53].

6.5. CHAIN MOLECULES

The applications of the Gibbs ensemble as described above are all limited to
model systems containing atoms or small molecules. Using the conventional
(random) sampling schemes, successful insertions can only be achieved for
small molecules. At typical liquid densities, the probability of a successful
insertion of a monomer is of the order of 0.5%; the probability of inserting a
chain of eight of these monomers is less than 1078, Such a low probability
of insertion would necessitate a prohibitive amount of computer time. Here
we show that configurational-bias Monte Carlo techniques (see Frenkel’s
contribution, Chapter 4 in this volume) can be combined with the Gibbs
ensemble method [54, 55].

We can use the configurational-bias scheme [56] to grow the chains in such
a way that the “holes” in the system are found. However, such a scheme of
insertion would bias the simulations if the ordinary acceptance rules were
used. The correct distribution of configurations can be sampled if the accep-
tance rule for this step is modified.

Consider a trial move to remove a molecule from one box (say, 1) and
insert it in the other box (2). To achieve this, we insert a chain molecule
in box 2, using a stepwise method. First, we attempt to insert a single
monomer in box 2. Next, k random trial segments are generated, such that
the next monomeric unit is located somewhere on a spherical shell around
the first monomer. For each of these trial segments, the potential energy due
to interaction with the other particles in the system is calculated, and one
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of the directions, say direction z, is selected with a probability given by

exp[—pvy(7)]
Yi=1 exp(—pvs ()]’

where § = 1/kgT and v(j) is the energy of a j-th trial direction and n
labels the position of the segment in the chain. The subscript (in this case,
2) indicates the box in which these quantities are calculated. In addition,
we compute a weight factor

Py(n) = (64)

k
Wa(n) = (Z eXP[—ﬂvz(J')]) Wa(n—1). (65)

i=1

Note that W(0), the weight factor for the monomer, is simply the Boltz-
mann factor associated with the random insertion of a monomer. At the
same time we calculate a corresponding weight factor Wi(n) for the chain
that we chose to remove from box 1

k
Wi(n) = (z_: exp[—ﬂvl(j)]) Wi(n-1), (66)

where the summation is over the same set of trial directions as in box 2,
with the restriction that the orientation that is selected in box 2 is replaced
by the actual orientation of the chain in box 1 of that particular segment.
This procedure is repeated until the chain has the desired length (n = 1).

To derive the appropriate acceptance rules, we impose detailed balance
on our Monte Carlo procedure. This implies that, in equilibrium, the rate
at which particles are moved from box 1 to 2 equals the reverse rate:

N(1) P(1]2) acc(1]2) = N(2) P(2]1) ace(2]1). (67)

Note that we now have to take into account the probability that, starting
from the current configuration, a configuration 2 is generated with n; — 1
particles in box 1 (P(1]2)) (compare section 3). The ratio of the statisti-
cal weights N(1) and N(2) follows from eqn (46). Substitution of this into
eqn (67), using eqns (64)-(66) we find that the following acceptance rule for
the exchange step will satisfy the detailed balance condition

nl(V— Vl) %)
(N—n1+1)V1 W1 '

ace(1]2) = min (1, (68)
This demonstrates that we can use the biased insertion and still sample the
correct distribution of configurations, provided that we use the acceptance
rules given by eqn (68). At this stage, it is worthwhile pointing out that,
with trivial extensions, the above scheme can be applied to mixtures of chain
molecules.
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Fig. 13. Liquid-vapour coexistence curve of a system of 200 chains of 8
Lennard-Jones monomers. The monomers are connected by bonds of a fixed
length 0. The bonds are allowed to rotate freely with respect to each other. The
monomer-monomer interaction is modeled by a Lennard-Jones potential that is cut
off at a radius R. = 2.50 and shifted. The estimate of the critical point is indicated
by a black dot. (Figure from Ref. [54])

An illustration of the scheme described above is shown in Fig. 13, This
figure gives the phase diagram of a chain of eight Lennard-Jones ‘monomers’
[64]. This scheme has also been applied successfully to determine the phase
diagram of alkanes by de Pablo et al. [55].
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