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Final exam : Physics of complex systems

Correction

Coupled order parameters (Y. Imry 1975)

Notations and reasoning inspired by D. Arovas Lecture Notes.

1. The free energy must satisfy the M → −M and φ → −φ symmetries and is an expansion for small M
and φ. Thus, the lowest non-trivial coupling is M2 × φ2 and the other terms are usual φ4 theory terms.

2. For g = 0 : at large T , the disorder phase will correspond to M = φ = 0. When T is lowered, first
t < 0 < τ so M gets ordered first, then, when t < τ < 0, φ gets ordered and both order are non-zero
(mixed phase). There are at least two transitions on this line.

3. When M = φ = 0, the coupling is ineffective. When M 6= 0, g < 0 favours the ordering of φ, it increases
the critical temperature of the mixed phase while g > 0 decreases this temperature. The last phase could
be a (M = 0, φ 6= 0) phase. This could be possible for T < T2 if the ordering of φ is much faster than
that of M and g sufficiently positive to disfavour M while keeping φ finite.

4. One obtains

r =
a

α

√
δ

d
, ε =

aα√
dδ

; λ =
g√
dδ

(1)

5. The rescaling is m̃→ m = m̃× r1/4 and φ̃→ ϕ = φ̃/r1/4 so that q =
√
r.

6. We can write

f =
1

4

(
m2 ϕ2

)(1 λ
λ 1

)(
m2

ϕ2

)
+

1

2

(
qt τ/q

)
·
(
m2

ϕ2

)
(2)

The free energy must be bound from below in the positive quarter of the plane since the vector ~v =

(
m2

ϕ2

)
has positive components. Diagonalizing the A =

(
1 λ
λ 1

)
matrix, we get the eigenvalues/eigenvectors

1 + λ/~v+ =

(
1
1

)
and 1 − λ/~v− =

(
1
−1

)
. On the two axis ϕ = 0 and m = 0, the free energy diverges

thanks to the positive coefficients of the quartic terms of the expansion. In the first quarter, divergence

along the ~v+ direction is ensured by requiring that 1 + λ > 0. We get the following condition : λ > −1 .
NB : we don’t have to take into account the ~v− direction and the corresponding eigenvalue since it does
not affect the stability in the first quarter of the plane.

7. Minimization of the free energy gives :

∂f

∂m
= 0 = qtm+m3 + λmϕ2 (3)

∂f

∂ϕ
= 0 = q−1τϕ+ ϕ3 + λm2ϕ (4)

8. We obtain, after some basic algebra :

phase I (m = 0, ϕ = 0) fI = 0
phase II (m2 = −qt, ϕ = 0) fII = −(qt)2/4
phase III (m = 0, ϕ2 = −τ/q) fIII = −(τ/q)2/4

phase IV
(
m2 = λτ/q−qt

1−λ2 , ϕ2 = λqt−τ/q
1−λ2

)
fIV = 1

4(1−λ2)

(
2λtτ − q2t2 − q−2τ2

)
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9. In order to find the phase diagram, we must look for the lowest free energy among the four possible
phases and check that m2 > 0 and ϕ2 > 0 whenever they are non-zero. We always have τ > t since
T1 > T2.

a) When τ > t > 0, phases II and III are not possible because m2 > 0 or ϕ2 > 0 not possible.

b) We take λ > 1. Phase IV is possible provided m2 > 0 and ϕ2 > 0, which translates into

phase IV :λ > 1 ⇒ λτ < q2t and λq2t < τ . (5)

In general, one has to be careful that λ, t and τ can be either positive or negative so dividing these
inequalities will change the order depending on the respective signs. Here, we can write λ < x = q2t/τ
and λ < 1/x = τ/q2t. Necessarily, either x or 1/x is smaller than one so λ < 1, which contradicts the
hypothesis.

c) Here, we have :

phase IV :λ2 < 1 ⇒ λτ > q2t and λq2t > τ (6)

which yields λ > x and λ > 1/x so λ > 1, in contradiction with the hypothesis. In conclusion, phase
IV cannot be stabilized and the only stable phase for t > 0 is phase I.

10. In the case where τ > 0 > t :

a) As t < 0, fII < 0 = fI = fIII (since τ > 0) so only phases II and IV can compete. Computing their
energy difference gives

fIV − fII = − 1

1− λ2
(τ/q − λtq)2

(7)

Consequently, λ > 1⇒ fIV > fII so II is realized in this case.

b) we have τ = t+ ∆Tc so τ > 0 > t⇒ −∆Tc < t < 0.

c) we then assume λ2 < 1 so that fIV < fII. Still, one must also satisfy (6). Taking care that τ > 0 while
t < 0, they can be rewritten as an interval

λ−(t) =
q2t

t+ ∆Tc
< λ < λ+(t) =

t+ ∆Tc
q2t

(8)

d) λ+(t) = 1
q2 + ∆Tc

q2t decreases from 1/q2 to −∞ as t → 0 while λ−(t) = q2 − q2∆Tc

t+∆Tc
is an increasing

function, starting at q2 at t→ −∞, diverging at t = −∆Tc and reaching 0 when t→ 0. The crossing

points are solutions of the equation q2t
t+∆Tc

= t+∆Tc

q2t , which roots are tG = − ∆Tc

1+q2 and tK = − ∆Tc

1−q2 .

In (8), G of abscissa tG corresponds to λ = −1 while K corresponds to λ = 1 with tK < 0 only for
q < 1. Notice that tK < −∆Tc < tG < 0 so that only tG matters for the current interval (though
these results will be reused below).

e) From the above graphical analysis, we understand that (8) is fulfilled when −∆Tc ≤ t ≤ tG in which
−1 < λ < λ+(t). This is the region where IV is realized and has the minimum energy. For λ > λ+(t),
only phase II is possible (see Fig. 1).

11. Last, in the case where 0 > τ > t :

a) phases II and III have negative free energies so I has to be excluded.

b) In addition to (7), we obtain

fII − fIII =
1

4

(
(τ/q)2 − (qt)2

)2
(9)

fIV − fIII = − 1

4(1− λ2)
(qt− λτ/q)2

(10)

Clearly, for λ > 1, phase IV cannot be stabilized. It remains the competition between II and III. The
boundary between phase II and III is given by the equation (τ/q)2 − (qt)2 = 0 which is the same as
the roots for the crossing points. Since we had tK < −∆Tc < tG < 0 and are working in the interval
t < −∆Tc, the boundary corresponds to a vertical line of abscissa tK , provided it exists, ie. provided
q < 1. Otherwise, only phase II is realized.
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c) we consider λ2 < 1 so that fIV < fII, fIII. Still, one must also satisfy (6). Taking care that now τ < 0
while t < 0, we obtain the conditions

λ < λ−(t) =
q2t

t+ ∆Tc
and λ < λ+(t) =

t+ ∆Tc
q2t

⇔ λ < min(λ−(t), λ+(t)) (11)

From the previous graphical analysis, we must distinguish two cases : when q > 1, then λ−(t) < λ+(t)
in this range so the boundary is simply the continuation of the λ−(t) curve. When q < 1, we have
λ−(t) < λ+(t) for tK < t < tG while λ+(t) < λ−(t) for t < tK so that λ+(t) becomes the boundary
in this range (see Fig. 1).

12. From the previous analysis, we can put the phases number on Fig. 1 corresponding to q > 1 and q < 1.
Otherwise, using the λ = 0 intuitive results and the discussions of questions 2 and 3, we can name the
phases.
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Figure 1 – Typical phase diagrams for q > 1 (left) and q < 1 (right). The full lines are second order and the
dashed line is first order.

Cahn-Hilliard equation

Statics

1. The g corresponds to an elastic energy cost in deforming the order parameter. For T > Tc, fL(φ) has
a single minimum at φm = 0 with curvature f ′′L(0) = 2ã > 0. For T < Tc, φm = 0 becomes a local

maximum with curvature f ′′L(0) = 2ã < 0, while two minima appear at φm = ±
√
− ã

2d with curvature

f ′′L(φm) = −4ã > 0.

2. It satisfies δF
δφ = 0⇒ −2g∆φ0 + f ′L(φ0) = 0.

3. Using f ′L(φ0 + δφ) ' f ′L(φ0) + f ′′L(φ0)δφ, we have −2g∆φ0 − 2g∆δφ + f ′L(φ0) + f ′′L(φ0)δφ = 0 ⇒
[−2g∆ + f ′′L(φ0)]δφ = 0

4. Above Tc : the equation can be written [−∆ + 1
ξ2 ]δφ = 0 with ξ =

√
2g

f ′′
L(0) =

√
g
ã . Perturbation typically

decreases with distance over a length scale ξ which is the correlation length (growing solutions are possible
with some confining).

Below Tc : for the local maximum we get [−∆ − 1
ξ2 ]δφ = 0 with ξ =

√
2g

−f ′′
L(0) =

√
− gã . The solutions

are oscillatory meaning that perturbations are stable, they propagate with distance, corresponding to
the fact that the system is not stable. For the two oter minima, we get again [−∆ + 1

ξ2 ]δφ = 0 with

ξ =
√

2g
f ′′
L(φm) =

√
− g

2ã .
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Dynamics

5. We compute

∂φ

∂t
=

1

V

ˆ
V

∂φ

∂t
(~r, t) d~r = − 1

V

˚
V

~∇ · ~J d~r =

‹
S(V )

~J · d~S = 0 (12)

where S(V ) is the surface of the system. Since the system is closed, the surface integral is zero. Close to

equilibrium, the fluxes ~J are opposed to the cause so, physically, Γ > 0.

6. In the lecture, we have seen the time-dependent Ginzburg-Landau equation :

∂φ

∂t
= −Γ

δF

δφ
(13)

for non-conserved order parameter. If one starts from a uniform state, it gives an evolution with a
relaxation to the equilibrium uniform state. In Cahn-Hilliard, if we set φ = const., then ~J = ~0 and there
is no evolution, even if φ is not the equilibrium order parameter.

7. We get ~∇ · ~J = −Γ~∇2 δF
δφ

∂φ

∂t
= Γ∆ (−2g∆φ+ f ′L(φ)) (14)

8. Injecting φ(~r, t) = φm + δφ(~r, t) with f ′L(φm) = 0, ∂φm

∂t = 0 and ∆φm = 0, we get

∂δφ

∂t
= Γ∆ (−2g∆δφ+ f ′′L(φm)δφ) =

[
−2gΓ∆2 + Γf ′′L(φm)∆

]
δφ . (15)

9. Consider the situation where φm is a minimum :

a) For a minimum, we can use f ′′L(φm) = 2g/ξ2 so that the equation reads :[
∂

∂t
+ 2gΓ∆2 − 2gΓ

ξ2
∆

]
δφ = 0 . (16)

b) By Fourier transformation, we get

−iω + 2gΓ(i~k)4 − 2gΓ

ξ2
(i~k)2 = 0 ⇒ ω(k) = −i2gΓ

ξ2
k2
(
1 + ξ2k2

)
(17)

The dispersion relation is of the form ω(k) = −i/τ~k with τ~k = ξ2

2gΓ
1

k2(1+ξ2k2) . It means that the time-

evolution of the modes will be of the form e−t/τ~k : they will all be damped with time, in agreement
with the fact that we expect the system to relax to the minimum (equilibrium). Still, the ~k = ~0 mode
has an infinite relaxation rate so it is good to get the Green’s function to have a better understanding.

c) If we neglect the ∆2 term, we get a diffusion equation, writing D =
2gΓ

ξ2
(diffusion coefficient), the

dispersion relation reads ω(k) = −iDk2 and the Green’s function equation (by considering adding a
source term in the right hand side, not in fL) :[

∂

∂t
−D∆

]
χ(~r, t) = δ(~r )δ(t) . (18)

In Fourier space, we obtain

χ̂(~k, ω) =
1

Dk2 − iω
(19)

Inverse Fourier transform starts by computing

ˆ
dω

2π

e−iωt

Dk2 − iω
= Θ(t)e−Dk

2t (20)
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with the residue theorem (similar to the lectures). As in the lecture, the integral over ~k is computed
using Fourier transform of gaussian integrals.

χ(~r, t) = Θ(t)
1

(4πDt)
d/2

e−~r
2/(4Dt) . (21)

d) We can use, for t > 0, the fact that ∆χ = 1
D
∂χ
∂t to estimate the ∆2 term. First, we have

∂χ

∂t
=

[
~r 2

4Dt2
− d

2t

]
χ ⇒ ∆2χ =

1

D2

∂2χ

∂t2
=

1

D2

[(
~r 2

4Dt2
− d

2t

)2

−
(

~r 2

2Dt3
− d

2t2

)]
χ (22)

In the long times regime, the contributions from the ∆2 are then negligible w.r.t. the diffusive kernel.
Physically, as the diffusion process smooths the profile, it is logical that high wave-length become
negligible first.

10. Consider the situation where φm is a local maximum :

a) For the maximum, we can use f ′′L(φm) = −2g/ξ2 so that the equation now reads :[
∂

∂t
+ 2gΓ∆2 +

2gΓ

ξ2
∆

]
δφ = 0 . (23)

It only changes the sign of the ∆ term, but this has profound physical implications.

b) By Fourier transformation, we get

−iω + 2gΓ(i~k)4 +
2gΓ

ξ2
(i~k)2 = 0 ⇒ ω(k) = iDk2

(
1− ξ2k2

)
(24)

Now, the imaginary part of ω(k) is positive for small k and negative at large k. The curve has an
intermediate maximum corresponding to

kmax =
1√
2ξ

. (25)

c) Modes with positive imaginary part of the dispersion relation will grow with time as et/τ~k with
τ~k = 1/=ω(k). Modes with negative imaginary parts will be damped as before and correspond to
short wave-lengths. The most unstable one is the one corresponding to kmax, corresponding to the
wave-length λmax = 2

√
2πξ. At short times, the system is unstable towards the formation of domains

of size governed by ξ (as for the case of conserved order parameter). When domains are formed, they
are locally close to the equilibrium solution so there is little evolution in the bulk of the domain. The
evolution is governed by the motion of the interfaces. In the conserved case, this motion is (slightly)
different from the non-conserved case because the domains have to fulfil the global constraint (fixed
area for black and white domains).
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