
453 

Lead Article 

Acta Cryst. (1991). A47, 453-469 

Crystallography and Structural Phase Transitions, an Introduction* 

BY EKHARD K. H. SALJE 

Department of  Earth Sciences and Interdisciplinary Research, Centre for Superconductivity, 
University of Cambridge, Downing Street, Cambridge CB2 3 EQ, England 

(Received 29 October 1990; accepted 9 May 1991) 

Abstract 

Structural phase transit ions which involve the gener- 
ation of  lattice strain (i.e. in ferroelastic and co-elastic 
crystals) are reviewed. L a n d a u - G i n z b u r g  theory is 
found to lead to an appropr ia te  description of  order 
parameters  fol lowing the theoretical predict ions over 
large temperature  intervals. A quan tum extension 
of  L a n d a u - G i n z b u r g  theory is presented which 
describes the saturation of  order parameters  at low 
temperatures.  Coupl ing  between different order par- 
ameters is relevant if  more than one phase transit ion 
(or lattice instabili ty) occurs in a crystal. Finally,  the 
importance of microstructures and kinetic processes 
for the structural behaviour  of  crystals is pointed out. 

1. Introduction 

Crystal structures change as a function of  tem- 
perature, pressure, chemical  replacement  and other 
the rmodynamic  parameters.  These changes can be 
straightforward to unders tand,  as may be illustrated 
for s imple structures such as NaCI where interatomic 
distances and thermal  ell ipsoids increase with 
increasing temperature until  the thermal  energy 
suffices to produce defects and,  ult imately,  leads to 
melting. This ' s tandard '  behaviour  is in contrast with 
the evolution of crystal structures which contain 
inherent  degrees of f reedom which are activated when 
the external condit ions of  the crystal are changed.  
One of the simplest  examples  is the perovskite struc- 
ture and its derivatives. At sufficiently low tem- 
peratures, these structures tend to have low symmetry 
with substantial  distortions and tilts of  the octahedral  
complexes,  cation positions shifted away from the 
centres of  the coordinat ion polyhedra  and so forth 
(Fig. 1). The increase of  temperature  changes these 
distortions until some of  them disappear .  Further 
heating does not then lead to a reappearance of  these 
part icular  distortions - once they are annihi la ted  they 
may only reappear  if  the crystal is recooled to its 
former conditions.  It is convenient  then to dist inguish 
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between the distorted crystal structure and the undis- 
torted crystal structure as two phases.  The transi t ion 
between them, as generated by temperature,  pressure 
or any other t he rmodynamic  variable,  is called a 
structural phase transition. 

The investigation of such structural phase transi- 
tions in their  various g u i s e s - i n c l u d i n g  cation or 
molecular  ordering, various types of distortions, poly- 
typism to name but a f e w - m a y  have remained  of  
l imited interest to a small  group of crystal lographers 
were it not for two surprising effects. Firstly, it was 
found that all phase transit ions observed in crystals 
follow a s imilar  pattern once they are described in 
the appropria te  physical  parameters.  This discovery 
led to the definit ion of the 'order parameter '  as the 
al l - important  physical  quant i ty  describing the phase 
transition. We shall see below how this quanti ty  can 
be defined. 

Secondly,  inspect ion of  the macroscopic  physical  
behaviour  of  crystals showed that effects such as 
extreme softness, mechanica l  switching of domains ,  
large dielectric constants,  ferroelectricity and many 
other effects of great value for the appl icat ion of 
crystals as device materials  are closely related to 

\ 

Fig. 1. Crystal structure of NH4IO3 at room temperature. The 
typical distortions of a perovskite structure are well developed 
here: the octahedra are tilted, the central octahedral cation and 
the NH4 group are oft centre and the oxygen coordination around 
iodine is distorted (data after Bismayer et ai., 1979; Salje, 1989). 
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structural phase transitions and, indeed, in most cases 
they are a direct consequence of such phase transi- 
tions. 

The fascination with these two aspects of phase 
transitions, namely the generality of the transition 
behaviour and the extreme physical properties which 
accompany the transition, has attracted many able 
physicists and crystallographers over the last decades. 
They created a mature and widely extended research 
subject which the author will not be able to review 
in any detail (e.g. see Bruce & Cowley, 1981; Salje, 
1990a). He rather enjoys a frankly partisan view and 
will concentrate on particular recent developments 
both on the experimental and the somewhat theoreti- 
cal side. References are given so that the reader can 
enhance and complete the picture. 

2. The order parameter 

Let the phase transition occur between two structures 
with different space groups. In order to obtain the 
closest possible connection between the two phases 
we shall also require that all symmetry elements of 
the low-symmetry phase are already present in the 
high-symmetry form, i.e. the space group of the low- 
symmetry form is a subgroup of the high-symmetry 
space group. In order to understand the transition 
process the primary task is to identify the process of 
symmetry breaking. This can happen in various ways. 
Imagine a mirror plane in the yz plane as the critical 
symmetry element and the symmetry-related posi- 
tions xyz and £yz. The symmetry breaking can now 
be due to a shift of both positions parallel to the x 
axis by 8x. The new coordinates are x + 8x, y, z and 
£ + 8x, y, z so that the mirror plane is destroyed. One 
would generally call such a transition mechanism 
'displacive' although a strict definition of a displacive 
transition in such simple geometrical terms is, in fact, 
only useful if the translational symmetry is unaffected 
by the phase transition (which is rarely the case). A 
more appropriate definition of the term displacive 
will be discussed later. 

Another mechanism by which the mirror symmetry 
can be broken is by different occupancies of the two 
positions, e.g. by ordering of cations such as Al and 
Si in aluminium silicates. This transition would be of 
the 'order /disorder '  type although it is clear that 
lattice relaxations due to the ordering process will 
inevitably lead to additional 'displacive' deforma- 
tions. If the two positions are occupied by molecules 
which change their mutual orientation during the 
phase transition, the transition is normally called 
'molecular order/disorder '  type. Again, the lattice 
relaxations are normally rather large due to strong 
rotation-translation coupling (Dove, 1990; Lynden- 
Bell, Ferrario, McDonald & Salje, 1989). Influences 
from the partial or total localization of electronic 
wavefunctions leads to Anderson or Mott transitions 

and their periodic coupling with the lattice distortion 
destroys the translational symmetry and leads to 
Peierls transitions. Symmetry reduction due to spin 
degrees of freedom are relevant in ferro- and antifer- 
romagnetic transitions. Many other types of transi- 
tions exist including mixtures between the above- 
mentioned main types. 

Although there are many different ways in which 
a symmetry is broken, the common feature is always 
that a new variable exists which quantifies how far 
the system deviates from the high-symmetry form and 
in which direction (e.g. 'right' and 'left' must be 
identical in the vertical mirror plane but not when 
the mirror plane is destroyed). We can now fall back 
on the general principles of thermodynamics and 
define a quantity which specifies the thermodynamic 
state of the low-symmetry phase as the order param- 
eter Q. The reduction of a crystallographic problem 
to thermodynamics has the great advantage that gen- 
eral solutions can be worked out which are indepen- 
dent of the individual crystal structure and therefore 
universal. Once these solutions are understood they 
can be reapplied to the problem in hand and help to 
identify the transition mechanism. Roughly speaking, 
the order parameter can be envisaged as follows: let 
po(r) be the density function of the high-symmetry 
form and p(r)  that for the low-symmetry form at the 
most extreme degree of deviation from the high- 
symmetry form (e.g. at absolute zero temperature in 
most cases). The phase transition is then described 
by the difference between the two density functions 
called Ap(r, T, P, N , . . .  ), for all intermediate ther- 
modynamic conditions. The basic assumption for cur- 
rent theories of phase transitions is that this density 
function can be split into two factors 

, ~ p ( r ,  r ,  . . . ) =  Q (  r ,  . . . ) A p ( r )  

where Ap(r) is the difference between p(r)  and the 
extrapolated value of po(r) for the same thermody- 
namic conditions under which p(r)  is measured (e.g. 
at 0 K) and Q is the order parameter. We have now 
separated the thermodynamic amplitude function Q, 
which is independent of all the crystallographic 
properties and totally universal, and the crystallo- 
graphic features, which are summarized in Ap(r). 
This approach predicts that the structural deforma- 
tion pattern, including changes of atomic positions, 
occupancies, spin orientations etc., once adopted dur- 
ing a phase transition, does not subsequently change. 
The only quantity which changes is the amplitude of 
this pattern, i.e. the order parameter. The essentials 
of the phase transitions are, thus, described by the 
order parameter Q. We shall see later how this concept 
has sometimes to be modified by the consideration 
of various interacting order parameters; the general 
concept remains valid even in those cases, however. 

The correlation between the changes in the crystal 
structure due to a phase transition and the order 
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parameter leads to stringent symmetry constraints 
which allow us to work out which structural param- 
eter can be affected and how. The order parameter 
breaks a particular symmetry which exists in the high- 
symmetry form but which does not exist in the low- 
symmetry form. This defines the transformation 
behaviour of the order parameter, given by the active 
representation of the high-symmetry space group. As 
the density function has the same transformation 
properties as the order parameter, we can also work 
out which structural changes are compatible with the 
symmetry of the order parameter. Only these struc- 
tural changes are expected to occur during the struc- 
tural phase transition. Structural analysis work allows 
us then to verify whether or not the order parameter 
has been chosen correctly and, vice versa, group 
theory predicts which coordinates, occupancies etc. 
are involved in the transition mechanism. The latter 
step can be of great help when the actual crystal 
structure of the low-symmetry phase is being solved. 
The relevant symmetry concepts have been worked 
out in great detail; they are one of the main working 
tools in the field of structural phase transitions (e.g. 
Toledano & Toledano 1980, 1982; Stokes & Hatch, 
1988; Hatch, Artman & Boerio-Goates, 1990; Salje, 
1990a). 

We now return to the thermodynamic argument 
which says that by breaking the symmetry the order 
parameter Q is created as a new thermodynamic 
variable. This variable is necessary to specify the 
thermodynamic state completely. Under certain ther- 
modynamic conditions, the low-symmetry phase will 
be more stable than the high-symmetry phase. The 
difference of the Gibbs energy which stabilizes the 
low-symmetry phase is called the excess Gibbs free 
energy G, which now depends on the thermodynamic 
parameters temperature T, pressure P, chemical com- 
position N etc. and the order parameter Q: 

G = G ( T ,  P, N , . . . ,  Q). 

We can obtain the Gibbs energy G(T, P, N , . . .  ) that 
we observe under equilibrium conditions by using the 
minimum principle: 

d G / d Q = O .  

There is always one trivial solution to the problem 
which is 

G ( T , P , N , . . . ) = O  

for one phase. This phase is taken for convenience 
as the high-symmetry phase and all quantities are 
measured with respect to this phase as excess 
quantities. We shall now derive some simple 
expressions for the excess Gibbs energy in the low- 
symmetry phase. 

3. A simple structural model and its mean-field 
approximation 

Let us consider the lattice instability along a specific 
direction in the reciprocal lattice. All lattice planes 
perpendicular to this direction are projected on this 
one-dimensional subspace, each plane marking a 
point in a chain. Each point is then characterized by 
an effective local potential and collective interactions 
between the points. The points are numbered ! and 
the total potential can be written in terms of the local 
normal coordinates Q; and conjugate momenta P~. 
The equivalent Hamiltonian is 

n = ~ [ ( l / 2 M ) P ~ + ! A / t 0 2 ~ 2 1  4 2 . . . . .  o , e l + a u Q ; + . . .  ] 
I 

I 
- ~ E v , , Q , Q ,  . 

I~1 '  

Here, M is the effective mass, -O0 is the local frequency 
for small oscillations in the absense of interactions, 
u gives the strength of the anharmonicity (which is 
restricted to fourth order in this case) and v,, are 
interaction constants. 

The type of transition is now determined by the 
wavevector q0 at which the Fourier transform of the 
interaction assumes its maximum value. The mean- 
field approximation of this Hamiltonian has been 
discussed in detail by Salje, Wruck & Thomas (1991) 
and the author will follow their arguments closely. 
The temperature dependence of the order parameter 
results from the dissipation-fluctuation theorem 
which links the variance of the order parameter 0 . -  
( (QI-(Q;))  2) with the excitation frequency D via 

0. = ( h / 2 M D )  coth ( h D / 2 k a T )  

leading to the expectation values 

(P~) = (MI2) 20. 

(Q~) = Q2 + 0.  

(Q~) = Q4 + 6Q20. + 30.2. 

The Gibbs free energy becomes 

= _ l M.Q~o- G N{½(Mg2 2 v+3u0 . )Q2+~uO4+~ 

+3u0 .2 -~hD coth ( h D / 2 k a T )  

+ knT  In [2 sinh (hD/2kaT)]}.  

Minimizing with respect to Q and D yields the mean- 
field equations: 

( M D ~ -  v + 3u0. + uQ2)Q = O. 

MD2 = MDo2+3u(0.+ Q2). 

The variance at the critical point is found by letting 
Q go to zero: 

0.,. = ( v - M122)/3u 

and for the order parameter in the low-symmetry 
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phase one obtains 

Q2 = 3(o-c- tr). 

The self-consistency condition for tr is 

tr = o¥ ( ~qOo/ O ) coth ( ~qD / OoX ) 

a = =  a2[l + A ( 3 -  2or/ere)] 

where the normalized temperature x has been intro- 
duced as 

x = k a T / M F l 2 o c .  

The dimensionless parameter 

a = v / M n ~ - I  

is proportional to the distance from the displacive 
limit with v = Mg2o z and 

71 = h/2Mg2oo'~ 

is a measure of the quantum influence at low tem- 
peratures. The quantum-mechanical fluctuation 
enhancements have an important influence on the 
system because the zero-point fluctuations with vari- 
ance O's reduce the order parameter Q~ at zero tem- 
perature, as compared to its classical value Qo (= 30-2) 
by 

2 2 O J Q o  = 1 - o s / o ~ .  

The value of ors is determined by the solution of the 
equation 

(O's/O's)[1 + A(3-- 2its/cry)] ' /2= 7? 

which follows from the self-consistency equation in 
the limit T = OK. Simultaneously, the quantum fluctu- 
ations reduce Tc by 

L n l ( l + a )  '/~ 
T~c l a s s  - arctanh [77/(1 + A)1 /2 ]  " 

So far the phase transition has been assumed to be 
second order and higher-order anharmonicities of Q~ 
were ignored. Salje, Wruck & Thomas (1991) have 
shown that similar arguments hold in the displacive 
limit for a Hamiltonian including a sixth-order term. 
If the sixth-order term is present but the fourth-order 
term vanishes, one finds a classical tricritical phase 
transition. 

The temperature dependence of the order param- 
eter obtained by numerical solutions for tr(T) is 
displayed in Fig. 2 for systems close to the displacive 
limit (A ,t 1) and in Fig. 3 for A =0.2. Comparison 
with experimental data in Fig. 4 shows quantitative 
agreement for values of A ,~ 1. In Fig. 5, the experi- 
mentally determined temperature dependencies of 
the structural order parameters in LaAIO3, 
C a o . 9 8 N a o . o 2 A l i . 9 8 S i 2 . o 2 0  8 and Pb3(PO4)2 are shown 
with the theoretical curve for A ,t 1. The square of 
the order parameter is plotted in the case of a second- 

order phase transition, whereas the fourth power is 
shown for the latter two compounds which are under 
(nearly) tricritical phase transitions. The agreement 
between the observations and the mean-field solutions 
is very good. 

The classical Landau potentials follow now as the 
high-temperature approximations of the Gibbs free 
energies developed so far. Salje, Wruck & Thomas 
(1991) have shown that in the displacive limit (for 
which Landau theory is applicable) the Gibbs free 
energy becomes 

G (  T, Q) = Go(T)  + 3[ o ( T )  - o'c]uQ = + ¼uQ 4 + ~cQ 6 

where the mean-square fluctuations are given by 

or(T) = ( k . e , /  Mgt~) coth ( e , / T )  

in terms of the characteristic temperature Os = 2T~ 
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Fig. 2. (a) Calculated temperature dependence of the order param- 
eter close to the displacive limit, A ~ 1, for various values of the 
saturation parameter ,/= 3 h/(2MDoQ2). (b) Same curves as in 
(a) but the temperatures are normalized with respect to the 
transition temperature T c (from Salje et al., 1991). 
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Fig. 3. Temperature evolution of  the order parameter for A = 0-2. Same saturation parameters as in Fig. 2 (from Salje et ai., 1991). 
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Fig. 4. Comparison of  experimental data (circles) and theoretical predictions (lines) for the temperature dependence of  the order 
parameter close to the displacive limit, A ,~ 1, for four representative cases: 
n = 2 for second-order transitions: (a) LaAIO3: O~ = 194-1 K, Os/T,. = 0.2345; (b) Cao.98Nao.o2All.98Si:.o2Os: 61~ = 264.8 K, 61J T,. = 
0.4869; n = 4 for tricritical phase transitions: (c) NaNO3: O~ = 232.9 K, 6)J T,. = 0-4131; (d) Pb3(PO4)z: O~ = 292-3 K, Os/T,. = 0-6393, 
the parameters O, and 19J T,. were determined by least-squares refinement (from Salje et al., 1991). 
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defined by 

kaOs = ½bOo 

With the parameters A = 3 u k s / m O  2, B = u and the 
critical temperature Tc defined by 

19~ coth (6}~/T~) = ' 2 2 ~MOoQo/ks 

the Landau potential becomes in its general form 

G(Q, T)=Go(T)+ lAOs[coth (Os/T) 

- c o t h  (Off T~)]Q 2 + I B Q 4 - P  . . . .  

In the high-temperature approximation (T~-  Ts) this 
equation yields 

G(T, Q)= t.(T, Q)= ½A(T- Tc)Q 2 +¼BQ 4 +~cQ 6 

Symmetry constraints are irrelevant in the model pre- 
sented here. More complex Landau potentials appear 
in the case of multidimensional order parameters 
discussed in detail by Toledano & Toledano (1980, 
1982), Stokes & Hatch (1988), Salje (1990a), 
Ishibashi, Hara & Sawada (1988) and many other 
authors; however, the underlying physical picture 
remains the same. 
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Fig. 5. Temperature evolution of  structural order parameters Q to 
the power of  n for some (nearly) second-order and tricritical 
phase transitions. The temperature is normalized with respect 
to T,, and the order parameter with respect to the extrapo- 
lated value at zero temperature, Qc- n = 2 for second-order tran- 
sitions: full circles: LaAIO3 (To =800 K); open circles: 
Nao.69Ko.31AISi308 (T  c =416 K); circles with horizontal bar: 
NaAISi30 s (Tc=1251K) ;  stars: SiO2 ( T c = 8 4 7 K ) ;  open 
squares: As205 ( T c = 5 7 8 K ) ;  full squares: Pb3(AsO4) 2 (Tc= 
560K);  open triangles: P b 3 ( P O 4 )  2 ( T c = 4 5 5  K ) ;  n = 4  for tri- 
critical phase transitions: full triangles: CaCo3 (To = 1250 K) 
[12]; dots with vertical bar: CaAI2Si208 (To = 513 K) [13]. 

4. On the role of lattice parameters- the 
spontaneous strain 

One of the most common features of many structural 
phase transitions is that the lattice parameters of a 
crystal change as a non-linear function of tem- 
perature, pressure or chemical composition. The 
dominant physical parameter which is needed to 
quantify such changes is the spontaneous strain which 
will now be introduced and, indeed, much of what 
can be concluded from precise measurements of the 
lattice parameters sometimes suffices to determine 
the order-parameter behaviour without the need for 
further structural information. 

The spontaneous strain is the amount of strain 
which relates the low-symmetry form to the high- 
symmetry structure. Before the strain parameters are 
formally defined, we consider an instructive example, 
namely the ferroelastic phase transition on arsenic 
pentoxide. A crystal of As205 has tetragonal sym- 
metry at high temperatures (Salje, Bismayer & Jansen, 
1987; Redfern & Salje 1988; Bismayer, Salje, Jansen 
& Dreher, 1986). This symmetry is reduced to ortho- 
rhombic in a ferroelastic phase with a characteristic 
change of lattice parameters from a = b at T >  Tc to 
b > a at T < To. The c lattice parameter is not directly 
involved in the transition mechanism (i.e. a shear 
motion occurs in the ab plane) and no equivalent 
variation of the c lattice parameter is observed. In 
order to evaluate the spontaneous strain, we have to 
extrapolate the lattice parameters of the high- 
symmetry phase into the temperature regime of the 
low-symmetry phase. This extrapolation represents 
that part of the thermal expansion which is not related 
to the structural phase transition and therefore does 
not contribute to the excess spontaneous strain. The 
numerical values of the spontaneous strain are now 
defined by the strain tensor which relates the low- 
symmetry unit cell to the high-symmetry unit cell 
when extrapolated to the same temperature. 

In the case of arsenic pentoxide, the only non-zero 
components of the strain tensor are el~= -e22 which 
describe the expansion of the a axis and the 
equivalent contraction of the b axis. Note that, since 
these two effects compensate for each other, the 
volume of the unit cell does not change (in linear 
approximation).  The numerical values of e~l and e22 
are given by 

e l l  = -e22 = ( borthorhombic -- btetragonal)/btetragonal, 

where the tetragonal lattice parameter is always the 
extrapolated value at the temperature at which the 
orthorhombic lattice parameter is measured, see Fig. 
6(a). The resulting temperature evolution of the spon- 
taneous strain is plotted in Fig. 6(b). It clearly shows 
the transition temperature as the point at which the 
spontaneous strain disappears with the crystal being 
paraelastic at higher temperatures and ferroelastic at 
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lower temperatures. By constructing the spontaneous 
strain we have reduced the total thermal expansion 
of the crystal to that part which is a true excess 
quantity (that is, it depends on the structural phase 
transition). The non-relevant background thermal 
expansion has been absorbed in the baseline in 
Fig. 6(b). 

There are essentially three different ways in which 
the baseline can be derived from experimental 
observations. 
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Fig. 6. (a) Temperature evolution of the lattice parameters in 
As2Os. The crystal has tetragonal symmetry at T > T~. with a = b. 
At T <  T,. the symmetry reduces to orthorhombic b > a. The 
identical lattice parameters a and b in the high-symmetry phase 
can be extrapolated into the temperature interval of the low- 
symmetry phase (dotted line). The spontaneous strain is then 
related to the ditierence between the true lattice parameters 
(dotted line) which would have been obtained if the phase 
transition had not taken place. (b) Temperature dependence of 
the spontaneous strain as derived from the lattice parameters 
shown in Fig. 3(a). The line corresponds to the predicted 
behaviour of a second-order phase transition using Landau 
theory. 

1. The lattice parameters are measured over a large 
temperature interval in the high-symmetry phase to 
warrant reliable extrapolation into the stability range 
of the low-symmetry phase. 

2. The thermal expansion of the high-symmetry 
phase is ignored and the values of the lattice param- 
eters closest to the transition point are used as tem- 
perature-independent reference values for all tem- 
peratures (i.e. the dotted reference line in Fig. 6(a) 
would be horizontal). This approximation might lead 
to systematic errors in the determination of the tem- 
perature evolution of the spontaneous strain, in par- 
ticular if the numerical values of the spontaneous 
strain are small. A typical example which has largely 
been discussed in the literature is the l l - P 1  phase 
transition in anorthite where the non-critical thermal 
expansion of the high-temperature phase is compar- 
able in magnitude to the spontaneous strain arising 
from the phase transition (Redfern, Graeme-Barber 
& Salje, 1988). In most ferroelastic and co-elastic 
minerals with large spontaneous strains (say a few 
%), the systematic errors introduced by this procedure 
may be acceptable (Salje, 1990a). 

3. The extrapolated lattice parameters of the high- 
symmetry phase in the phase field of the low- 
symmetry phase are constructed using some structural 
model. The most common one is to define an 'average' 
structure (Wadhawan, 1982). This structure is charac- 
terized by the arithmetic means of all possible strain 
tensors (i.e. for all domain orientations) in the low- 
symmetry phase. In arsenic pentoxide, for example, 
the two possible strain tensors are 

e i k ( S 1 ) = ~  en0 

and 

1e22 0 
e e,0 

These two tensors represent two structural states in 
which the a and b axes are interchanged. The average 
structure is defined by the mean value 

eik(av.) = , + en) ~ ( e ,  . 

0 

The non-zero components of the latter tensor can 
now be expressed in lattice parameters, namely 

½(e,, + e22) ---- ½[ (a -- ao)/ao + ( b - bo)/bo] 

and with ao = bo in the tetragonal phase the condition 
that these tensor components vanish in the average 
structure (i.e. the hypothetical tetragonal structure at 
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low temperatures) becomes 

ao=½(a+b). 

Comparison with the experimental data in Figs. 6(a) 
and (b) shows that this approximation is indeed very 
good. The second advantage of this approximation 
is that similar relationships can easily be worked out 
for all experimental situations without any informa- 
tion about the lattice parameters of the high-symmetry 
phase at all. 

The method has, on the other hand, a massive 
drawback. It is based on the assumption that the 
structural phase transition preserves the volume of 
the high-symmetry phase and that no other strain 
variations occur which are not fully described by the 
ferroelastic strain tensor (Aizu, 1970). This assump- 
tion is clearly wrong for most co-elastic materials 
where volume changes are often encountered (Salje, 
1990a). More serious is the observation that some- 
times even crystal structures which could reasonably 
be expected to be pure ferroelastics, such as leucite 
(Palmer, Salje & Schmahl, 1989; Boysen 1990), do 
indeed show strong volume anomalies. The construc- 
tion of the spontaneous strain of leucite using the 
method of the average structure leads to a systematic 
error of almost 50% of the total spontaneous strain. 
These examples may illustrate that neither of these 
two approximations can be relied on without further 
detailed studies of the lattice parameters and, if poss- 
ible, the thermal expansion of the crystallographic 
unit cell in the high-symmetry phase. 

The spontaneous strain is a second-rank tensor, 
and the magnitudes of its components are hence not 
uniquely definable because they depend on the setting 
of the two crystallographic unit cells. For any given 
setting, however, the tensor components can be deter- 
mined directly from the measured lattice parameters. 
In the following equations the lattice parameters of 
the low-symmetry phase are a, b, c, a,/3, 3' and those 
of the extrapolated high-symmetry phase are ao, bo, 
Co, ao, /30, 3'0. The most general formulation for a 
triclinic system can be put into the form 

e~l = a sin 3'/ao sin 3'o- 1 

e22 = b~ bo-  1 

c sin a sin/3* 
e33 = 

Co sin ao sin/3* 

1 l" c cos or 
e23 = 2 [ Co sin ao sin/3* 

cos/3* {a cos 3' 

sin/3* sin Yo \ ao 

(  cosoo )] 
bo sin ao sin/3* 

- 1  

b COSbo Y0) 

1 (  a si___n_n y cos/3* csin a__ co___ss/3" ~ 

el3=2kaosinyosinf l0* co sin ao sin floo*] 

,(ocos,  coS, o ) 
e~2 = ~ ao sm yo bosin 

where the b axis has a common direction in both 
phases and the z direction in the Cartesian system of 
the strain tensor is parallel to e* in the crystal (Redfern 
& Salje, 1987). Asterisks indicate values of the 
reciprocal-lattice parameters a*, b*, c*, o~*, /3*, y* 
following the usual convention (see e.g. International 
Tables for X-ray Crystallography, 1969). Simplified 
expressions for higher-symmetry phases are listed by. 
Salje (1990a) and can easily be used for the analysis 
of specific crystal systems. 

For the definition of Aizu strains and the somewhat 
problematic use of the average structure as a reference 
state in the low-symmetry phase see Aizu (1970) and 
Wadhawan (1982). 

Finally, it is convenient for a comparison of the 
degree of lattice distortion, described by the spon- 
taneous strain in different systems, to define a scalar 
spontaneous strain e s p o n t a n e o u  s .  T h e  most common 
definition in the physical and crystallographic 
literature seems to be 

espont . . . . . .  = e~ = (~ e~) u2 

where el is the ith component of the spontaneous 
strain in the Voigt notation (although this definition 
is only a convenience to convert strain into a scalar 
quantity and is fairly arbitrary). Aizu (1970) used the 
tensor notation leading to the non-equivalent 
definition 

eAizu : ei2k . 

5. How the spontaneous strain and other structural 
parameters reflect the order parameter 

The order parameter has been introduced as a purely 
thermodynamic quantity which describes the phase 
transition. The spontaneous strain and other crys- 
tallographic quantities such as occupancies, posi- 
tional changes etc. reflect the order parameter and we 
must now ask how far the correlation between the 
thermodynamic and the structural parameters can be 
quantified. As an example, one finds that in some 
crystals the order parameter and the spontaneous 
strain are simply proportional to each other. In most 
crystals this is not the case, however, and one must 
explore the possible correlations rather carefully. 
The general scope of this treatment is the coupling 
theory (e.g. Salje & Devarajan 1986; Achiam & lmry, 
1975; Gufan & Larin, 1980; Imry, 1975; Oleksy & 
Prysztawa, 1983). It is based on the assumption that 
the crystal is in thermodynamic equilibrium with a 
surrounding heat bath and that its structural state is 
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dictated by the condition that no structural variables 
can be changed without loss of energy. Here we shall 
also assume for the sake of simplicity that the crystal 
is homogeneous so that all fluctuation processes can 
be ignored (Salje, 1990a). 

Here, the Gibbs free energy of a crystal with inter- 
acting Q and the spontaneous strain as one of the 
characteristic structural parameters can be formu- 
lated in three parts: 

1. the thermodynamic energy directly related to 
the order parameter. In most structural phase transi- 
tions at high temperatures this part of the Gibbs free 
energy can be approximated by a Landau potential 
of the order parameter Q which we call L(Q); 

2. the elastic energy from the relaxation of the unit 
cell which is described by the spontaneous strain and 
the elastic constants of the paraelastic phase (i.e. the 
'bare" elastic constants), ½ ~ Cikeie k where Cik are elas- 
tic constants, and, 

3. the interaction energy between the order param- 
eter Q and the spontaneous strain. 

The Gibbs free energy can then be written as 

G(Q,  e )=  L ( Q ) +  ~ Y. C, ke, ek + E ~, . . . .  e'['Q". 
ik ran  

The last term represents the coupling energy in order 
n for the order parameter and in order m for the 
spontaneous strain (n, m > 0) (~', .... are coupling con- 
stants between order parameters Q" and strain ele- 
ments). Just as for the order parameter Q and the 
spo'ntaneous strain e~, the coupling terms are subject 
to the constraints of symmetry and cannot be intro- 
duced arbitrarily. As a general rule, it holds that any 
combination of Q and e has to fulfil the same criteria 
to be a symmetry-allowed part of the Gibbs free 
energy as the higher-order polynomial terms in a 
Landau potential. If, for example, the symmetries of 
Q and e are identical, we find that all combinations 
Q"e'p with n + m =p  are allowed if QP is part of the 
Landau potential (this means in the language of group 
theory that Q and e; transform according to the same 
irreducible representation). 

Another general rule follows if e, is a pure volume 
strain (i.e. it transforms as the identity representa- 
tion). In this case we find that all coupling terms 
n = 1, m > 1 are symmetry allowed, where Qra is part 
of the Landau potential. 

The simplest case is the so-called bilinear coupling 
term Qe,. Ifbilinear coupling is allowed by symmetry, 
it follows automatically that all higher-order coup- 
lings are also symmetry allowed. It was found by 
Devarajan & Salje (1984) that these higher-order 
terms may contribute significantly to the strain energy 
in sulfates and it is likely that similar effects occur in 
other framework structures so that higher-order coup- 
ling should not be automatically ignored even if 
bilinear coupling is compatible with symmetry (see 
also Hatch et al., 1990). 

No bilinear coupling can occur if the symmetry 
properties (i.e. the irreducible representations) of Q 
and e; are different. The term which is always allowed 
by symmetry is Q2e~. This coupling term is called 
biquadratic. Further common coupling energies 
which have been observed in feldspars and iang- 
beinites contain linear-quadratic, Q2e,, and linear- 
cubic, Q3e~, t e r m s .  There is as yet little experimental 
evidence that any coupling of orders higher than 
rn + n > 4 provides a significant energy contribution 
and we restrict ourselves here to the discussion of the 
dominant bilinear and linear-quadratic coupling. The 
treatment of other coupling mechanisms is similar 
although analytically more strenuous [see Devarajan 
& Salje (1984) for a discussion of biquadratic coup- 
ling]. As an example, for higher-order strain coupling 
we refer to Rocquet & Couzi (1985) who discuss the 
case of NasAI3FI4. 

The correlation between the spontaneous strain and 
the order parameter for various orders leads not only 
to the possibility of following the temperature evol- 
ution of the order parameter via the measurements 
of lattice parameters but also correlates the deriva- 
tives of the Gibbs free energy with respect to the order 
parameter (i.e. the order-parameter susceptibility) 
with the equivalent derivative with respect to the 
strain. The latter quantity is equivalent to the elastic 
constants of the crystal which can be written as 

a2G ( 02G ~- '  O2G 

C* = C,k -- E Oe, OQ------~ \oQ-,,, o Q , /  oek oQ,, 

where ei are the strain components and Q, are the 
components of the order parameter. Cik is the bare 
elastic constant which would occur if there were no 
phase transition. The consequences of this correlation 
for the elastic behaviour of the crystal was discussed 
in detail by Salje (1990a, and references cited therein). 
It is clear without further detailed analysis of this 
equation that any singularity of the susceptibility of 
the order parameter automatically leads to a softening 
of the elastic constants- a feature well documented 
in many experimental studies (review: Luti & 
Rehwald, 1981). 

6. Coupling between different structural instabilities 

It is an empirical observation that phase transitions 
in minerals and other materials of some complexity 
are often driven simultaneously by more than one 
physical mechanism. Typical examples are: the cation 
ordering of A! and Si in feldspars together with the 
atomic displacements involving the tilt of lattice com- 
plexes. Similarly, displacements interact with the 
molecular disorder in calcite, NaNO3 (Dove, 1990; 
Schmahl & Salje, 1989; Harris, Salje & Grittier, 1990), 
and many other competitive interactions between 
different physical mechanisms leading to different 
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phase transitions have been reported [e.g. Flocken, 
Guenther, Hardy & Boyer (1985) on the competition 
between ferroelectricity and ferroelasticity; Toledano 
(1979) and Yoshihara, Yoshizawa, Yasuda & 
Fujimura (1985) on similar coupling in benzil]. If a 
crystal structure has sufficient complexity it will 
accommodate several of these structural instabilities 
with the outcome that the actual crystal structure is 
determined by a combination of all these transition 
mechanisms. The interaction between the ordering 
schemes often leads to seemingly complicated defor- 
mation patterns of crystal structures which do not 
appear to follow the theoretical predictions. The 
resulting crystal structures and their evolution with 
temperature, pressure etc. can, however, be greatly 
elucidated if we apply the same formal thermody- 
namic description to the structural properties as in 
the case of a phase transition with only one order 
parameter. In fact, each physical mechanism leading 
to a real or hypothetical phase transition has to be 
associated with a separate order parameter and the 
Gibbs free energy of the system must contain terms 
involving not only the individual order parameters 
but also terms to account for the effects of interac- 
tions, or coupling, between them. 

As a knowledge of the effects of coupling between 
various order parameters with different physical 
meaning is essential for the understanding of complex 
materials, this point will be illustrated with the 
example of Na feldspar (Salje, 1985; Salje, Kus- 
cholke, Wruck & Kroll, 1985) before we proceed with 
the formal description. The ferroelastic phase transi- 
tion in Na feldspar, NaAISi3Os, is illustrated in Fig. 
7. At high temperatures ( T >  1251 K), albite is mono- 
clinic with space group (?2/m. On cooling, the sym- 
metry is reduced to triclinic (C1) by two interacting 
processes involving a displacive lattice distortion and 
the ordering of A1 and Si atoms between the tetrahe- 
dral sites of the feldspar framework structure. The 
relevant order parameter of the AI, Si ordering is 
called Qod. The displacive transition involves the 
rotation of the larger lattice complexes formed by a 
network of tetrahedra, the so-called crankshafts (Fig. 
7). The parameter which describes this lattice distor- 
tion is called Q. Both transitions would result in the 
same symmetry change but the critical temperature 
of the displacive phase transition is 1251 K, in con- 
trast to the lower transition temperature of the A1, Si 
ordering transition at ca 983 K. Each of these transi- 
tion processes could occur independently if the other 
transition did not occur. If, for example, the dis- 
placive transition failed to occur, the A1, Si ordering 
transition would still take place. As the displacive 
transition in Na feldspar does occur, however, and 
reduces the symmetry to C1 there is no further possi- 
bility for the A1, Si ordering to create an additional 
phase transition and the role of the A1, Si ordering 
is now limited to modifications of the displacive 

transition mechanism. These modifications are, 
nevertheless, essential and it is impossible to under- 
stand the physical behaviour of Na feldspar if either 
of these two transition mechanisms is ignored. Other 
examples for ferroelectric/ferroelastic coupling can 
be found in the excellent paper by Suzuki & Ishibashi 
(1987) and references given there. 

6.1. Coupling between two order parameters and the 
order-parameter vector space 

Let us first consider the simplest case of two inter- 
acting one-dimensional order parameters, both of 
which follow a simple Landau behaviour (extensions 
of the model can be treated in essentially the same 
way and do not contribute much to our understand- 
ing). In the case of Landau potentials with no odd- 
order terms we may write 

G = / a  1QI 2-4 -1 4 1 6 1 2 ablQl +~,clQ~ + ~a2Q2 + ~b2Q4 + '~,c2 Q6 

+A,QIQ2+A2Q~Q~. 

Just as for order-parameter-strain coupling, the coup- 
ling terms are subject to the constraints of symmetry 
and cannot be introduced arbitrarily. Linear terms 
are excluded as they are excluded in the bare Landau 
potential and bilinear coupling is symmetry allowed 
if the transformation behaviour of Q1Q2 is the same 
as Q~ or Q~, i.e. the product representation contains 

Fig. 7. Crystal structures of Na feldspar in the monoclinic phase 
(top) and the triclinic phase (bottom). During the phase transi- 
tion, the mirror plane in the monoclinic structure is destroyed. 
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the identity representation if developed into irreduc- 
ible representations. Even without going into the 
details of the group theoretical treatment, we can see 
immediately that bilinear coupling is compatible with 
symmetry if the symmetry properties of QI and Q2 
are identical. In this case, all combinations Q2, Q~ 
and QI Q2 have exactly the same symmetry constraints 
and they are all terms of the Landau potential. The 
behaviour of Na feldspar is a typical example for 
such a bilinear coupling. As the two order parameters 
Q and Qod have the same symmetry behaviour and 
would individually lead to the same change of space 
group during the phase transition, the term QQod 
must also be a part of the Landau potential describing 
formally the coupling between Q and Qoo. 

The second very common coupling scheme is rep- 
resented by the biquadratic coupling 2 2 Q I Q2. As both 
Q~ and Q2 are, by definition, part of the Landau 
potential, we find that their product will also be 
symmetry allowed. This leads to the important con- 
clusion that biquadratic coupling always exists if a 
crystal structure relates to more than one order par- 
ameter. Uncoupled phase transitions are thus un- 
physical and may only appear in some approximation 
if the coupling energy is sufficiently small. The 
empirical evidence is, however, that coupling energies 
are normally not small at all in ferroelastic and co- 
elastic crystals and that biquadratic coupling is a very 
common feature. 

The remaining coupling energy of some importance 
is the linear-quadratic coupling in the form Q,Q~ 
which has to be invariant with respect to the active 
representation of the phase transition. The condition 
that a crystal is in thermodynamic equilibrium now 
requires that equilibrium is reached with respect to 
both order parameters. The Gibbs energy is thus an 
energy surface spanning a two-dimensional vector 
space with the basis vectors Q~ and Q2. The equili- 
brium point under given thermodynamic circum- 
stances (e.g. at a given temperature) is a total 
minimum of the Gibbs energy in this order-parameter 
vector space: 

OG/OQ, =0, OG/OQ2=O. 

This treatment can obviously be expanded to order- 
parameter vector spaces with more than two interact- 
ing order parameters. Such situations are very com- 
mon in nature (e.g. the above-mentioned case of Na 
feldspar) but no systematic exploration for higher 
dimensions than two have yet been undertaken. 

We will now discuss the general topologies of the 
order-parameter vector spaces for the two most com- 
mon coupling schemes, namely bilinear and 
biquadratic coupling. An equilibrium structural state 
which occurs under well defined temperature and 
pressure conditions represents one point in the order- 
parameter vector space as defined by the equilibrium 
condition. If the external conditions (e.g. T and P) 

are changed, we expect a different structural state to 
be more stable, which may or may not be related to 
the previous state in a continuous manner. Discon- 
tinuities can occur, however, only at points of first- 
order phase transitions but never inside the stability 
field of any phase or during a continuous phase 
transition. A further condition for bilinear coupling 
is that no single order parameter can disappear 
without the simultaneous disappearance of the 
second-order parameter. The only possible topology 
of the equilibrium line in the order-parameter vector 
space for bilinear coupling connects the origin (QI = 
Q2 = 0, i.e. the high-symmetry phase) with the solution 
at absolute zero temperature which can be normalized 
to Q1 = Q~ = 1. The experimental equilibrium line for 
Na feldspar is shown in Fig. 8 (Salje, Kuscholke, 
Wruck & Kroll, 1985). 

Gufan & Larin (1980) were the first to point out 
that the intuitive assumption that similarly simple 
topologies also apply for higher-order coupling is 
wrong. Salje & Devarajan (1986) derived the seven 
possible topologies for biquadratic coupling which 
are displayed in Fig. 9. The three following con- 
clusions can be drawn from visual inspection of these 
diagrams. 

1. The stability range of the different phases may 
be changed and a succession of phase transitions may 
occur in place of a single phase transition. Such phase 
transitions occur each time the equilibrium line 
reaches the axes of the diagrams in Fig. 9. Cascades 
of phase transitions may occur if more order param- 
eters couple. In particular, re-entrant phase transi- 
tions, where the same phase appears as a high- and 
low-temperature form with an intermediate phase 
with different symmetry, may result from biquadratic 
coupling. 

2. The order of a phase transition is influenced by 
the coupling. As in the case of the order parameter-  
strain coupling, we find that a continuous phase 
transition can become discontinuous and vice versa 
due to the coupling energy. 

3. The temperature evolution of the order param- 
eter(s) near the transition point can be completely 
different from the expected simple Landau behaviour 
of one single order parameter. This does not, in gen- 
eral, indicate that the Landau approach is wrong but 
simply means that the interaction between order par- 
ameters has not been appreciated. 

6.2. Coupling via common strain components, a poss- 
ible coupling mechanism 

The physical origin of order-parameter coupling 
can vary depending on the structural properties of 
the material under investigation. As long as we are 
interested in the thermodynamic description of the 
material, the different coupling mechanisms do not 
really matter because they will all be adequately 
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described by the Landau potential. The details of the 
phase-transition process are still universally related 
to the order parameters and the structural behaviour 
depends directly upon them. On the other hand, if 
we try to attach physical meaning to the various 
parameters in the Landau potential itself, we can gain 
confidence in the reliability of the coupling energies 
as determined indirectly from a thermodynamic treat- 
ment. It is, for example, normally expected that coup- 
ling energies describing the interaction between a 
spin-related order parameter and an order parameter 

correlated with a structural distortion will be small 
because we know that spin-phonon interactions con- 
tain relatively small amounts of energy (compared 
with phonon-phonon interactions). Cation ordering, 
on the other hand, will presumably couple strongly 
with lattice distortions, in particular if the cations 
involved have different sizes. 

One specific coupling mechanism which appears 
to be a common feature is based on the elastic interac- 
tions between the two order parameters. Following 
the treatment of the order-parameter-strain coupling, 
each order parameter will create a spontaneous strain 
es. Let us now assume that the spontaneous strain 
created by either of the two order parameters has at 

I least one common component e. We find that the 
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Fig. 8. (a) Temperature dependence of the 'displacive' order par- 
ameter Q and the Al, Si order parameter Qod in thermodynamic 
equilibrium. (b) The same data as in (a) represented in the 
order-parameter vector space. The high-symmetry phase is rep- 
resented by the origin and the most distorted structural state by 
the point Q = Qod = 1 (from Salje et al., 1985). 
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Fig. 9. Characteristic topologies of the order-parameter vector 
space for biquadratic coupling. The high-symmetry phase is the 
origin of all diagrams. Re-entrance phase transitions occur for 
2-4-6 potentials (the numbers indicate the exponentials in the 
Landau potential). 
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Gibbs free energy 

G(Q, Q2, e) l 2 , Q~ , , ~aiQl+abl : + ~ , c , Q ~ +  I 

I +ab2Q  + ' t, c2O6+diQle  

+ d2Q2e+ e,Q~e + e2Q~e +fe 2 

implicitly contains the coupling between the two 
order parameters. This coupling becomes obvious if 
we apply the condition that the crystal is free of strain: 

OG/Oe = 0 

and find for e, = e2 = 0 

e = - (  1 /2f ) (d ,  Ol + d202). 

The Gibbs free energy is then 

G = ~ ( a l - d l / 2 f ) Q , + ~ b l Q ~ + ~ c , Q  2 
+ l ( a  2 2 2 1  - + ab2 d2/2f)Q2 O~ _~1¢jC2026 

- ( d l d 2 / 2 f ) O ,  Q2. 

This Landau potential is now identical with the 
original Gibbs free energy where the coupling terms 
are directly related to the elastic constants and to the 
magnitude of the spontaneous strain for the bilinear 
case and via 

e = - (  1/2f)(EIQ~ + E2Q~) 

for the biquadratic coupling. 
The correlation between the spontaneous strain, 

the elastic constants and the effective coupling con- 
stants shows clearly that a soft material with a large 
spontaneous strain will always be characterized by a 
strong coupling between the two order parameters, 
whereas a hard material with a small lattice distortion 
due to the phase transition is less susceptible to this 
coupling mechanism. As the elastic constants and the 
relevant strain components are normally known from 
experimental observations, it is always possible to 
estimate the coupling strength. The analytical sol- 
utions for bilinear and biquadratic coupling are given 
by Salje & Devarajan (1986) and examples are 
described by Salje (1990a). 

7. M i e r o s t r u e t u r e s  or 'we need a m e s o s e o p i e  
crys ta l lography '  

Crystal structures which are the result of structural 
phase transitions have so far been considered as 
homogeneous. A similar assumption (but using com- 
plex order parameters) also underlies the treatment 
of incommensurate and, more generally, modulated 
structures although the detailed treatment can be 
more involved than in the case of structures with well 
defined and relatively small translational period- 
icities. Other structures cannot easily be treated in 
the same way as homogeneous or quasi-homogeneous 
crystals. Such cases include nanocrystals and relaxor 
materials (Cross, 1987; Darlington, 1990; Salje & 

Bismayer, 1989), polaronic materials (Iguchi, 1991; 
Salje, 1990b; Mutt, 1990) and all those crystals which 
underwent a ferroelastic or co-elastic phase transition 
under the formation of dense twin structures (Salje, 
1990a). The largest group of such non-homogeneous 
structures are those which are created by kinetic pro- 
cesses, e.g. by rapid quench of the high-symmetry 
phase, which always leads to the formation of micro- 
structures on a length scale which is larger than the 
interatomic distances but smaller than the macro- 
scopic dimensions of the crystal. This mesoscopic 
length scale is often of the order of 100 ,~ and well 
within the realm of transmission electron microscopy. 
Classical crystallographic methods of X-ray and 
neutron diffraction, on the other hand, are not easily 
employed on this length scale and it appears that 
much of what can be predicted theoretically has, in 
fact, rt6t yet been manifested on a firm experimental 
basis. Some of the important points are the bending 
of lattice planes in the vicinity of twin boundaries, 
the fine structure of tweed microstructures and the 
transport of solitonic and solitary excitations. Some 
recent progress in this field of 'mesoscopic' crystal- 
lography has been reviewed by Salje (1990a). In this 
paper the structural phase transition in the high- 
temperature superconductor YBa2Cu3OT_~ is con- 
sidered as an example of a crystal in which the 
microstructural features on a length scale large com- 
pared with the interatomic distances are relevant for 
the understanding of the phase transition. 

The routine synthesis of the superconducting phase 
of Y B a 2 C u 3 0 7  is by supercooling an oxygen-deficient 
phase ( 3 = 0 . 1 )  leading to a tetragonal phase 
(P4 /mmm) .  This precursor material is then annealed 
in oxygen and cooled through a phase transition 
to the orthorhombic phase (Pmmm). Twinning in 
{110} occurs as a consequence of the ferroelastic 
phase transition with a spontaneous strain e =  
2 ( a -  b)/ (a  + b), with reported domain sizes ranging 
from 10 -1° to 10 -a M (Fig. 10). An understanding of 
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Fig. 10. Spontaneous strain and mean twin spacing in the high- 
temperature superconductor YBa2Cu307 :Co. The phase transi- 
tion is obtained by chemical replacement of Cu by Co. 
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the effect of the twin microstructure is important for 
the superconducting performance because the twin 
walls can act as pinning centres (Chaudhari,  1987) 
and are sometimes considered as weak links which 
may act as Josephson junctions (Deutscher & Miiller 
1987). 

In Fig. 11 the average structure of the precursor 
material is shown (Schmahl, Salje & Liang 1988). The 
phase transition is driven mainly by the ordering of 
the oxygen vacancies in the O(1) sites while the 0(2)  
sites remain partly occupied in both the orthorhombic 
and tetragonal phases (Schmahl et al., 1988; 
Jorgensen et al., 1987). Besides the ordering process 
of the vacancies we find that the thermodynamic order 
parameter of the structural phase transition must also 
be correlated with the spontaneous strain and the 
dominant relaxations of the atomic positions. The 
atomic shifts due to the phase transition are 

(1) the Ba positions moving towards the 'soft' 
Cu(1)-O layer as the oxygen content increases; and 

(2) the Cu(1)-O(2) distances increase when more 
Cu(1)-O(2) bonds are formed. Simultaneously, 

(3) the Cu(2)-O(2) distances decrease and 
(4) Cu(2) moves out of the 0(3)  square towards 

0(2);  
(5) the Cu(1)-Cu(2)  distances bridged by 0(2)  

decrease and 
(6) the non-bridged Cu(2)-Cu(2)  contact along 

the c axis increases. 
The total deformation pattern is shown in Fig. 12 

(after Schmahl et al., 1988). 
The atomic movements, the ordering pattern of 

oxygen and the spontaneous strain follow the 
transformation pattern of the B,~ irreducible rep- 

o(~) 

t Qo, , t 

I 

f 

Fig. 12. Deformation pattern of the tetragonal-orthorhombic 
phase transition in YBa~CusOT_ ~. Open ellipsoids represent the 
positions in the low-symmetry phase, the full ellipsoids those in 
the high-symmetry phase. The straight arrows indicate the direc- 
tions of the atomic displacements, the curved arrows symbolize 
the oxygen transport. 

resentation. In the tradition of the Landau theory of 
structural phase transitions the elastic energy is 
usually singled out as part of the excess Gibbs free 
energy. This is justified because of the long-range 
character of the spontaneous strain which leads to a 
mean-field behaviour of the transition mechanism 
even when the local displacements and occupancies 
might suggest an iso-spin behaviour (Marais, Heine 
& Salje 1991). A further important variable in 
YBazCu307_~ is the amount of dopants, such as Co, 
Fe or Zn. The total Gibbs free energy related to the 
phase transition was approximated by Schmahl et al. 
(1988) as 

G(r/, Q, e ) =  G o + ~ k t ~ T [ ( 1 - r l ) I n  ( 1 - r / )  

+(1 + 'q)  In (1 +'q)] 

+ ~ ( 1 -  rt2)kBT,7(1 + IJ, e le+ I~oQ+.  . . ) 

+ ~a( T -  To)Q2 + ¼bQ4 + ~cQ6 + . . .  

+ AQe + f e Z . . .  

"~ E grl(~7Tl) 2 -~- ~ g o ( ~ T Q )  2 + ~ g e ( V e )  z 

+ ~, g,,e(rIVe) + Y, g , o ( r l V Q )  

+ Y g e o ( e V O )  + Y~ g e e ( O r e ) +  . . . .  

The minimum of this energy expression determines 
the structural state at any temperature, chemical com- 
position and amount of doping. 

So far the structural phase transition has been 
treated as an equilibrium phenomenon. The question 
arises, however, as to whether the crystal as observed 
in the actual experiment represents a thermodynamic 
equilibrium state (Salje, 1989). The answer depends 
to a large extent on structural properties (and their 
related energies) which extend over a mesoscopic 
scale rather than being measured on an atomistic 
level. A well known example of a simple nonequili- 
brium feature is twin structures (Fig. 13). In a 
hypothetical crystal with harmonic interactions 
between the atoms (e.g. a ball-and-spring model of 
an NaCI structure), a low-symmetry phase can be 
thought of as a pure shear of the high-symmetry form. 
Twin walls will form which contain no excess Gibbs 
free energy provided the compatibility relationship 
between each pair of adjacent domains is met (Salje, 
1990a; Sapriel, 1975; Marais et al., 1991; Barsch & 
Krumhansl,  1988). In the real crystal, this approxima- 
tion is inappropriate because local displacements, 
ordering etc. create structural strain fields in and close 
to the wall. The fine structure of the wall changes due 
to these local relaxations from bicrystals to kink 
solitary excitations (Fig. 14). As a consequence of 
these excitations one observes typical geometrical 
configurations which allow a description of micro- 
structures in crystallographic terms. Typical examples 
are the following. In the case of parallel walls, 
effective wall-wall interactions lead to periodic wall 
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Fig. 11. Average structure of tetragonal YBa2Cu306.45. Note the larger probability ellipsoids of the O-atom positions in the soft Cu(1) 
layer at the top and at the bottom of the structure. 
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Fig. 16. Map of the strain distribution obtained by computer simulation. The colour scale is adjusted to the local orthorhombic lattice 
distortion. Red and green correspond to the two possible orientations of the orthorhombic unit cell. Yellow denotes the undistorted 
tetragonal unit cells. Maps (a), (b), (c) and (d) have been obtained under fast cooling to 0-67x, 0-83×, 0.86x and 0.93x To. Maps 
(e), ( f ) ,  (g) and (h) correspond to slow heating at 1.1x, 1-16×, 1.37x and 1.59× Tc where Tc is the transition temperature. 
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patterns in a similar way as periodic patterns with 
large repetition units are found in polytypic materials 
(Cheng, Heine & Jones, 1990; Winkler, Dove, Salje, 
Leslie & Palosz, 1991). Intersecting walls lead to 
positive energy singularities at the junctions which 
are strong enough to bend the lattice plane around 
the intersections (Salje, Kuscholke & Wruck, 1985). 
Other geometrical wall patterns related to transforma- 
tion twinning are described in detail by Salje (1990a) 
and the references given there. 

So far we have seen that twin walls represent non- 
equilibrium features because the untwinned crystal 
(without boundary constraints) has a lower Gibbs 

Fig. 13. Transmission electron mlcrographs of Co-doped 
YBa2Cu307 with the incident beam along [001]. Length of scale 
bar" 0-1 ixm, compositions from (a) to (h): 0-0, 0.01, 0-02, 0-025, 
0.028, 0.03, 0.04 and 0.07 Co for Cu. 

free energy than the twinned crystal. The associated 
structural distortions are relatively small when related 
to the bulk of the material. Much larger excess Gibbs 
free energies related to such mesoscopic structures 
are encountered if the crystal has created the micro- 
structure via a kinetic process. In experimental terms, 
this might occur when a crystal is quenched or shock 
heated so that the order parameter is no longer in 
thermodynamic equilibrium. The subsequent struc- 
tural relaxation will then lead to variations of the 
order parameter which can no longer be described as 
a small perturbation from an equilibrium situation. 
The time evolution in the case of smooth energy 
surfaces can be approximated by (Salje, 1988; 
Dattagupta,  Heine, Marais & Salje, 1991) 

aQ(x)_ "y(a 2) [1 sc2~ sinh (~:V)] OG 
Ot 2knT ~2 £V oQ(x) 

where 7 is the Onsager coefficient, a is a characteristic 
length related to the structural dimensions, G is the 
excess Gibbs energy which is reduced during the 
kinetic process, ~c is the characteristic length scale 
which determines whether the order parameter is 
conserved (~ = ~c) or non-conserved (~% = 0). This rate 
law can be directly derived as a mean-field approxi- 
mation from a combined Glauber-Kawasaki  master 
equation. Let us now consider the influence of fluctu- 
ations which change the microstructure of the crystal. 
The simplest case is ~c = 0 (i.e. a non-conserved order 
parameter) and a parabolic Gibbs free energy 
d G / d Q  = X -1Q. The noise is represented by the distri- 
bution function P(X-') so that the mean order param- 
eter, averaged over the volume, becomes 

( Q ) =  L ( P ) =  i P(x) exp(-xt ldx.  
0 

This rate law is significantly different from a simple 
exponential decay which would occur if the crystal 

s l l l i n  I l I 

I I I 

Fig. 14. Bicrystal configuration for a twin wall (left) and kink 
soliton solution in an elastic continuum (W indicates the 
solitonic wall thickness). 
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were free of noise. As a consequence of the distribu- 
tion in Q the crystal must become spatially 
inhomogeneous. This inhomogeneity is often related 
to strain effects which develop on a length scale of 
some 100 ~.  Salje & Wruck (1988) have undertaken 
model calculations in which they found wide distribu- 
tions of the order parameter even when the initial 
starting material and the final annealing product were 
perfect single crystals, experimental evidence for the 
predicted kinetic tweed structure was found by 
Wruck, Salje & Graeme-Barber (1991). It was also 
predicted that, in the case of a white-noise spectrum, 
the crystals develop glass-like states for intermediate 
kinetic structures. These microstructures disappear 
with increasing annealing time when the crystal 
approaches thermodynamic equilibrium. 

Similar progress has been made for the calculation 
of microstructures using simple models describing 
interatomic forces (Parlinski, 1988). As an example, 
let us consider a layer structure such as YBa~Cu307 
(Salje & Parlinski, 1991). The various forces are depic- 
ted as springs in Fig. 15. The phase transition is driven 
by the occupancy of oxygen at positions z~ and z2 
(black circles). This occupancy is modelled using a 
local potential with two minima, one minimum 
represents the occupied state, the other minimum 
represents the empty state. The total Hamiltonian is 
then of the same type as discussed in § 2 of this paper: 

1 2 I 1 H ~ u , , , + ~ E u ~ + ~  ~ A(R. , .~ , -ao  az,) ~ 
m t n , n  

9- Z B(  g m . m ' -  a -,,/'-J)2 
( n , n , n )  

+ Z Joz,z~ + Z ( Ez~ + Gz 4) 
tt t 

where v,,, and vt are the velocities of atoms (Cu and 
0) ,  R,.,,., is the distance between Cu atoms m and 
m ~, ao is the high-temperature lattice constant and zi 
represents the state of the oxygen position. The 
summation runs over all Cu atoms (n), nearest neigh- 
bours (n, n), next-nearest neighbours (n, n, n), oxy- 

\ " ' , , j~  ' ~#6" \ ', . . . .  ~ 7 \ 

,> ~-"'~. ,~'-z. ? "'~" z .""~' ? 
~ .. ... ~.~ . \ ..-. .~ 

, "',~,f-;~-B '~:/ \ %-~. ~.!/ \ 

J/ A \ / ~).-~/ \ ,-'" \,:, 

Fig. 15. Two-dimensional model used in the molecular dynamics 
simulations. 

gen atoms (1) and their nearest neighbours (l, l). The 
model was calculated using molecular dynamics tech- 
niques on 99 × 99 unit cells with the kinetic energy of 
the system taken as a measure of the temperature. 
Microstructures occur as a result of rapid changes of 
temperatures. In Fig. 16 the results of such 'quench 
experiments' are shown. The colours represent the 
local strain fields with red and green as the positive 
and negative spontaneous strain. The yellow areas 
are the undistorted parts of the crystal structure. In 
Figs. 16(e)-(h), the crystal is in the high-symmetry 
phase although locally distorted regions still exist for 
temperatures well above the transition point. Maps 
(a) - (d)  of Fig. 16 have been obtained under fast 
cooling. The cooling rate was sufficiently fast to allow 
many domains to grow simultaneously. At tem- 
peratures just below T,, (Fig. 16d) the domain walls 
are very rough and mobile since the energy of the 
lattice strain is small. There are two preferred orienta- 
tions for the walls which are parallel to the (1, 1) 
planes. This equivalence of two orientations leads to 
the tweed pattern in Fig. 16(c). Each junction between 
two walls is a high-energy point and subsequent cool- 
ing eradicates the junctions (Figs. 16a, b). The 
domain walls are now rather narrow although some 
roughness persists. 

The experimental observation of these kinetic 
microstructures (Wruck et al., 1991) together with 
their theoretical prediction (Salje, 1988) may now 
lead us to the development of improved experimental 
facilities for their characterization. Standard struc- 
tural analytical methods mainly solve the average 
structure which contains little information about the 
correlations within the fluctuations. So far the most 
reliable analysis relies on a combination of trans- 
mission electron microscopy and spectroscopic 
methods [NMR, EXAFS, XANES, optical hard mode 
spectroscopy, HMRS (hard mode Raman spectros- 
copy) and HMIS (hard mode infrared spectroscopy) 
as some of the most successful techniques]. What is 
needed now is a further development of X-ray and 
neutron scattering techniques as already successfully 
applied to the analysis of incommensurate structures 
and quasicrystals (e.g. Blinc & Levanyuk, 1986). This 
would lead us to a much improved geometrical 
characterization of fluctuation pattern and related 
microstructures a n d -  ultimately- to a crystallogra- 
phy of the mesoscopic length scale. 
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Abstract 

R e c e n t l y  t h e  a p p l i c a t i o n  o f  t h e  m a x i m u m - e n t r o p y  

m e t h o d  to  d i r e c t  m e t h o d s  h a s  b e e n  i n i t i a t e d  fo r  
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a priori u n i f o r m l y  a n d  i n d e p e n d e n t l y  d i s t r i b u t e d  
a t o m s ,  i n t r o d u c i n g  n o n - u n i f o r m i t y  in d i r e c t  s p a c e  by  
p u t t i n g  c o n s t r a i n t s  o n  t h e  e x p e c t e d  v a l u e s  o f  t h e  
d i s t r i b u t i o n  [ B r i c o g n e  (1984) .  A c t a  Cryst. A 4 0 ,  4 1 0 -  
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