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Dislocations in wave trains
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When an ultrasonic pulse, containing, say, ten quasi-sinusoidal oscillations, is reflected in air 
from a rough suiface, it is observed experimentally that the scattered wave train contains 
dislocations, which are closely analogous to those found in imperfect crystals. We show 
theoretically that such dislocations are to be expected whenever limited trains of waves, 
ultimately derived from the same oscillator, travel in different directions and interfere -  for 
example in a scattering problem. Dispersion is not involved. Equations are given showing the 
detailed structure of edge, screw and mixed edge-screw dislocations, and also of parallel sets 
of such dislocations. Edge dislocations can glide relative to the wave train at any velocity; 
they can also climb, and screw dislocations can glide. Wavefront dislocations may be curved, 
and they may intersect; they may collide and rebound; they may annihilate each other or be 
created as loops or pairs. With dislocations in wave trains, unlike crystal dislocations, there 
is no breakdown of linearity near the centre. Mathematically they are lines along which the 
phase is indeterminate; this implies that the wave amplitude is zero.

1. O b s e r v a t i o n  o e  d i s l o c a t i o n s

In this paper we introduce a new concept into wave theory: using elementary argu­
ments, we show that wavefronts-that is, surfaces of constant phase-can contain 
dislocation lines, closely analogous to those found in crystals. The work originated 
in attempts to understand radio echoes from the bottom of the Antarctic ice sheet; 
the spatial fine structure, or ‘fading pattern’, of the echo may be used for precise 
determination of position (Nye, Kyte & Threlfall 1972; Walford 1972; Nye, Berry 
& Walford 1972). A laboratory analogue experiment was carried out, using ultra­
sound instead of radio waves. The relatively low frequency of ultrasound enabled 
the detailed phase structure of the echo to be studied, and wavefront dislocations 
were observed. We suspect that dislocations may often have been observed in phase 
sensitive experiments without their significance! being appreciated (see, for example, 
figure 5 of a paper by Findlay (1951) showing dislocations in a radio wave field 
reflected from the ionosphere, and the remarks in §8 of the present paper about 
amphidromic points). It is possible that dislocations may find application in remote 
sensing as ‘ markers ’ in a wave field, because they are definite features recognizable 
even in the presence of noise. In this paper, however, our purpose is simply to 
demonstrate that wavefront dislocations exist, to deduce their detailed structure 
and to examine some of their properties.

We begin by describing the original observation. Ultrasonic pulses from a small 
source were incident, in air, on a rough surface, and the scattered pulses were 
received by a small moveable microphone and displayed on an oscilloscope. Each 
pulse from the source consisted of about 10 sinusoidal waves (frequency 100 kHz)
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within a smoothly varying (approximately Ganssian) envelope (figure la). The 
echo from the rough surface was of longer duration (figure 15), consisting of 50 or 
more approximately sinusoidal waves of fluctuating amplitude. By moving the 
microphone along a line it was possible to find points in space where the envelope 
of the echo had zero strength for some particular time delay. Figure 2 c shows a
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Figure 1. (a) Quasi-monochromatic pulse from a source. 
(6) The echo from a rough surface.
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F igure 2. An edge dislocation -  symmetrical 
positions of a receiver: (a) x = — 2y#*/fc, 
T  ss 27zja) = period.

T t

case. Signal versus time t for four different 
(6) a = - / 3*/k, (c) x = 2f t /h .
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symmetrical example of the time variation of the signal at such a point; the broken 
line is the envelope. By moving the microphone first to one side (figures and
then the other (figure 2 c?) one could follow the crests A and C continuously through 
the transition and see that a new crest B was created between them. Figures 3 a, b, c, d 
show an antisymmetrical example of the same thing; again a new crest B appears 
between crests A and C. In general, the phase of the carrier wave relative to the 
envelope is such that one observes an unsymmetrical curve which is a linear com­
bination of the symmetrical and antisymmetrical cases.

Figure 3. As figure 2 — antisymmetrical case. Figures 2 and 3 are calculated by taking the real 
and imaginary parts respectively of equation (13).

A possible spatial variation at a given time of the echo corresponding to figures 2 a 
to d is shown in figure 4. As later examples will show, the wavefront dislocation may 
move backwards, forwards or sideways independently of the motion of the wave- 
fronts; but for simplicity in this introductory section we consider the case in which 
the dislocation travels with the wavefronts, in a direction normal to their mean
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plane. As the pattern of crests sweeps upwards a receiver at P notes the passage of 
crests A and C, and as the receiver is moved continuously to R a new crest B is found 
to appear as the receiver passes point Q. The spatial pattern has a crest wavefront
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Figure 4. Spatial pattern of wave-crests at a fixed time. Th 
edge dislocation at N.

shall deal with this presently.) In three dimensions the wavefront 
shall call this linear structure an edge dislocation by analogy witl 
tions found in crystals (Read 1953; Nabarro 1967). In practice, si]
falls to zero at N, the details of the transition may be submerged in the noise, but, 
by following a ‘Burgers circuit’ such as JKLM which is everywhere in places of 
strong signal and counting the number of wavefronts crossed, one can be quite sure 
that a dislocation has been enclosed. The analogy with crystal dislocations goes 
further: we shall see that it is possible to have both screw and mixed edge-screw 
dislocations, that wavefront dislocations are capable of movement by glide and 
climb, that they can intersect, that they can collide and rebound, or annihilate each 
other or be created as loops or pairs.

In general, pulses rather than monochromatic waves are essential for dislocations. 
In a monochromatic wave the time variation at a point must be strictly sinusoidal. 
This is clearly impossible at Q in figure 4, for the passage of N past Q is a unique 
event. At the same time there must be some periodicity if we are to identify a dis­
location. Thus the dislocations are structures that disappear at both the mono­
chromatic and the white noise limit; they need both the localization property of 
a pulse and the oscillation property of a continuous wave. Dispersion is not involved.

However, in certain degenerate cases dislocations can be produced by continuous 
waves. One is the non-localized interference fringe FF shown in figure 5, as produced, 
for example, by a Young’s two-slit experiment. Monochromatic waves are moving 
upwards and their amplitude is zero on FF; there is a phase change of n across FF. 
This could be described as a row of edge dislocations of alternating sign or as a single
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infinitely extended dislocation. Because all the crests behave identically the time 
variation at any point is still strictly sinusoidal. Other degenerate cases are the 
stationary pure screw dislocations and the localized interference fringe which 
we shall describe later.

F

F
Figure 5. A non-localized interference fringe FF. The waves travel upwards.

We have introduced wavefront dislocations as structures observed when a pulse 
is diffracted from a rough surface and we shall deal more fully with this method of 
producing them in a separate paper. Here we show that they are a general feature 
to be expected whenever there is interference between pulses derived from a common 
oscillator; diffraction by a rough surface is but one way of making them.

2 . T h e  f u n d a m e n t a l  m a t h e m a t i c a l  p r o p e r t y  o f

A DISLOCATION

What distinguishes a dislocation from other features of a wave field? To answer 
this, we must first define precisely the amplitude and phase of a wave. Let there be 
an oscillator with fixed angular frequency o). After an arbitrary phase change the 
signal from it is amplitude-modulated and made to drive a source of scalar waves, 
the wave amplitude being proportional to the driving signal. We call such a source 
quasi-monochromatic. At the same time the original signal from the oscillator is 
changed in phase and amplitude-modulated in other fixed ways and made to drive 
other sources in a similar fashion. All the wave trains so produced travel together in 
an undispersive medium and their combined effect is observed at a certain point P. 
If the original oscillation is proportional to cos ( — (ot) we denote the resulting signal 
at P by r/rc(t). The phase of the original carrier wave is now changed by §7t, while 
everything else is kept fixed. Thus, let the original oscillation now be proportional 
to sin ( — o)t),while the envelopes representing the various amplitude modulations
and all the phase changes are held fixed, and denote the resulting signal at P by 
We can say that, if the original oscillation were proportional to e~i,ot, the signal at P 
would be the complex wave function

i]r[t) = r/rc(t) + h/rs(t) p(t) e1̂ ', say, ( 1 )
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(X being real and p being real and positive) on the understanding that either the real 
or the imaginary parts represent the physical quantities. Then

It is natural to define p(t) and y(£) as the amplitude and phase of the wave; they are 
both time-varying quantities deducible from the observed functions and frs(t). 
It is important to notice that p(t), for example, is not strictly deducible by observing, 
say, ijrc(t) alone; it is essential to change the phase of the carrier wave to obtain 
complete information about the amplitude and phase. With this definition p(t) is 
the envelope of the observed oscillation as the phase of the original oscillation is 
varied. This is the strict meaning of the broken line in figures 2 and 3.

We now examine the behaviour of p(t) and y(£) in the neighbourhood of a dis­
location. The argument applies to any dislocation, moving in any way; in particular 
it applies to figure 4, which represents a pure edge dislocation moving with the wave. 
The changing complex wave function at a fixed position P in space can be repre­
sented by a moving point on an Argand diagram whose axes are i}rc and Because 
of the quasi-monochromaticity of the source, we expect the point to encircle the 
origin quasi-periodically, the average time for a circuit being Figure 6 a shows 
(schematically) the single loop traversed by the point on the Argand diagram 
between two successive crests A and C of the component \Jrc; this corresponds to the 
signal sketched in figure 2 a. At an observation position R, which lies on the other 
side of the path of dislocation, an extra crest B has appeared between A and C, so 
that (figure 6 d) two loops now lie between A and C on the Argand diagram, corre­
sponding to the signal of figure 2 d.(If time is plotted perpendicular to the diagrams 
of figure 6 the changing wavefunction at a fixed point in space is represented by a 
helix with varying cross-section and pitch. Viewed in this way the crests A and C 
remain identifiable, as distinct turns of the helix, throughout the transition.)

As the observation position moves from P to R, the curve representing ijf (t) must 
change continuously between that of figure 6 a and that of figure 6 d, which has 
different topology. This can only happen if, for some intermediate observation 
position Q,- the curve passes through the origin, where c and i/rs, and hence the 
amplitude p, are zero. One possible form for the curve at Q is shown in figure 6 c, 
while the curve for a position between P and Q is shown in figure 6 b. We note, in 
passing, that in the configurations (not drawn) intermediate between figures 6 b and 
c the phase x would be retrograde for part of the curve. It is easily verified that the 
behaviour of r/rc(t)for the four curves in figure 6 reproduces the symmetrical signal 
versus time curves of figure 2, while the behaviour of reproduces the anti- 
symmetrical curves of figure 3.

Precisely where the dislocation lies is a matter of definition, and we choose the 
position where the amplitude p vanishes. This is the most fundamental definition 
from a theoretical point of view (see §6); it is preferable to choosing the cusp in 
figure 6 b where a new loop is just about to appear; if we choose the position where

and

p \t)  = frlit) + frl{t) > 0),
tany(J) =  fr

(2)

(3)
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the pair of new zeros first appears, we should have a dislocation whose position 
depends on which ‘projection ’ of the complex wave function represents the physical 
signal (that is, on the phase of the carrier wave). Since p is zero at a dislocation, it 
follows from the properties of polar coordinates in the Argand diagram that the 
phase x is indeterminate. However, it is possible to have zeros of with indeter­
minate x, that do not represent dislocations-the curve in the Argand diagram may

Figure 6. Curve in Argand diagram representing the complex wave function as a function 
of time for four positions near a dislocation, (c) is the configuration at a point through 
which the dislocation passes.

move up to the origin, and then move away again, without having swept through it; 
an example is equation (13) of §4 with (k z-  replaced by (kz-o jtf. The essential 
property of a dislocation is that x changes by a multiple of 2tc on a closed circuit 
around it. Thus, although the condition p = 0 is a useful indication of where to look 
for a dislocation, it is necessary to check that the structure located in this way does 
indeed have the topology that characterizes a dislocation. We shall examine this 
topology in a little more detail in §6.

The dislocations in a given wave field are situated at positions where ^ c(i) =  0 
and i/rB (t) =  0. At a given instant t these two equations define surfaces in three-
dimensional physical space, which intersect in a family of lines (except in some 
degenerate cases). As time proceeds, the surfaces move and hence the lines-the  
dislocations — also move. As they move the dislocation lines sweep out surfaces in 
space. Thus a receiver that displays the signal at a function of time need only explore 
a line in order to find a dislocation, which will be at the point where the line intersects 
the surface (with Dr M. E. R. Walford we have mapped some of these surfaces for 
the special case of the ultrasonic wave field described in §1).

3. T he or et ica l  c on str uct ion  of d i s l o c a t i o n s :
QUALITATIVE TREATMENT

We now describe a simple way of constructing dislocations theoretically. Consider 
identical pulses of scalar waves emitted simultaneously from two point sources 

and S2, and let the signal be observed at a point P. Figure 7 a shows one of the 
pulses, as observed at P, a monochromatic wave modulated in amplitude by an 
envelope, and the convention in figure 7 b will be used to denote the pulse envelope
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and the positions of the crests and troughs within it. We use the words crests and 
troughs rather loosely here, and our argument is only qualitative; a strict treatment 
will follow later. The signal observed at P will depend on the path difference 
SjP — S2P. In figure 7 c the position of P is such that the path difference is two wave­
lengths, and so the carrier waves reinforce one another to give the resultant shown
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(e)
Figure 7. The construction of edge dislocations by the interference of pulses. Signal versus 

time, (a) the pulse form; (6) schematic representation of pulse: • ,  crests, 0» troughs; 
(c) path difference is two wavelengths; (d) path difference is 2J wavelengths, giving 
destructive interference at time t ; (e) path difference is three wavelengths, and a new 
crest B has appeared.

on the right (we ignore the fact that the two pulses will be of slightly different 
strengths). In figure 7 dP has moved so that the path difference is 2 |  wavelengths. 
There is destructive interference, but it is only complete at one time t0. In figure 7 e 
the path difference is three wavelengths and the carrier waves reinforce again. 
There are six crests in figure 7 c, a new one is on the point of appearing in figure 7 d, 
and there are seven in figure 7 e. Clearly, when the path difference is zero there will 
be four crests, and when the path difference is large there will be two separate pulses 
with eight crests in all; crests appear as the path difference increases. Each time one 
appears there is a dislocation. The essential point is that, when the path difference is 
such that the carrier waves interfere destructively, the interference will only be 
complete at one time, namely the time when the two envelopes intersect; at this 
time the amplitude p of the combined wave is zero. This principle still holds when 
the two pulses are of unequal strength and duration, except that then the envelopes 
may intersect, for a given path difference, at more than one time. The spatial pattern 
of crests at fixed time shown in figure 4 corresponds with figure 7.

To proceed analytically we retain only those features of the theoretical model just
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described which are essential for the production of an edge dislocation. The sources 
are placed at infinity so that there are now two pulses of plane waves crossing at 
a small angle, and instead of an approximately Gaussian envelope we choose a linear 
variation of amplitude through the pulse, one pulse rising as the other falls. This 
amounts to approximating the envelopes near the intersection point W in figure 7 d 
by their tangents. In this way we may calculate in detail the structure in time and 
space near a dislocation, but the results will not have significance outside the range 
where the envelopes may be approximated by their tangents.

Figure 8. The spatial pattern of crests from two wave-trains A and B travelling at an angle 
to one another. A predominates in the lower half-space and B predominates in the upper 
half-space, (a) symmetrical case; (6) alternating case.

The general nature of the result to be expected is seen in figure 8 , which shows 
the spatial pattern of wave crests at fixed time. The wave train A that travels 
upwards and to the right has an amplitude that rises towards the rear of the train; 
the wave train B that travels upwards and to the left has an amplitude that rises 
towards the front of the train. The amplitudes are arranged to be equal on so 
that in the upper half-space train B predominates and in the lower half-space 
A predominates. Thus, as we move along Ox, new wave crests appear in pairs. In
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crystal dislocation language O# is a tilt boundary. Note that figure 8 a has been 
drawn so that the origin, where the two waves have equal amplitude, is a zero 
(approximately midway between a crest and a trough) for both waves; this is the 
same relationship as in figure 7 d. Figure 8 6, on the other hand, shows the pattern of 
crests that results if the phases are arranged so that at the origin, where the waves 
have equal amplitude, a crest of B falls on a trough of A. Edge dislocations of 
alternate character appear along Oz. Figures 8 a and merely show which of the 
two wave trains is dominant at any point; the true pattern of resultant wave crests 
will be similar but with local readjustments. The exact analysis which follows 
essentially calculates these local readjustments.
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4 . E x a c t  a n a l y s i s  y o b  e d g e  d i s l o c a t i o n s  

We shall consider complex wave functions \Jr satisfying the scalar wave equation

= (4)
the wave velocity c being constant.

Let the wave trains A and B, as in figures 8 a and 6, be the following solutions of (4):

\JrA = a0{l -  M ki x + K z ~exP +  -  -  |7t)] |  ^
and =  a0{l +/?e( -  K x +  h z ~ «<*)} exP P( -  kix + h z ~ <*>t + r)], J

with (ojk — c, ki =  &sina, = cos (6)

where a0 and /?e are constants, (o is the fixed angular frequency at the original 
oscillator, k is the wave number corresponding to <t>, and a is the angle between the 
wave normals and the 2-axis. Put

£ — k-̂ x, £ — (ot. (7)

The resultant complex disturbance xjr is given by

& =  ^ a +  ̂ b =  Pelx- 

p elx =  2a0{( 1 -  /?e sin £ + i/?e £ cos £} e^
That is 

Hence
p2 =  4a§{( 1 — /?e £)2 sin2 £ +  (/?e £)2cos2 £},

( 8)

(9)

( 10)

and X -  +  (11)

the ambiguity of an odd multiple of 7r in the value of arctan being resolved by making 
sure that the sine of the angle has the same sign as /?e £ cos £,. If the integer n is chosen 
so that x is between — n and 7t, x becomes what we shall call the reduced phase 
otherwise n is zero and y is a continuous, but multivalued, function. It is sufficient 
for our purpose to keep j3e small and restrict attention to a limited region of (£, £) 
space around the origin, so that the envelope expressions in (5) do not go negative.
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It is easily seen from (9) or (10) that the dislocations, which occur where is zero, 

lie along the lines parallel to the y-axis defined by £ =  0, = rrnz, where m is any
integer or zero, and that they alternate in character. Figures 9 a and show lines of 
constant reduced phase y0 and constant amplitude p at time = 0 for tana = 0.1 
and/?e = 0.1. If one traverses a closed circuit anticlockwise, y increases by 2tu for 
every dislocation enclosed. The lines of constant y0 may be read in different ways 
depending on the phase of the carrier wave relative to the pulse envelope in the

Figure 9. (a ) A row of edge dislocations (tilt boundary) formed by the interference of two 
pulses of plane waves, each modulated linearly, tan a = 0.1 and /?e = 0-1. The scales are 
arranged so that the pattern is a true-to-scale map in the ( ,  z) plane at = 0. Lines of 
constant reduced phase y0 are shown; the dislocations are singularities of y0. Any 
arbitrary value of y0 may be chosen to represent crests. The whole pattern moves 
upwards with velocity c sec a, unchanged in form. (6) As (a) but showing contours of wave 
amplitude p. The numbers on the curves are values of p/2a0. The dislocations are at 
places where p = 0.

original oscillation. For example, if the original oscillation is cos ( — ot), the resultant 
is p(x, y, z, t)cosy (a, y, z, t) and the full lines where y0 =  0 are to be read as crests; this
corresponds to figure 8 a; at even values of ma new crest appears, while at odd values 
a crest splits into two. If, on the other hand, the original oscillation is sin (— cot) the 
crests are the lines where y0 = |rc. It can be seen that these run into the dislocations 
alternately from above and below, corresponding to figure 8 b. Alternatively, the 
lines of y0 =  0 may be read as troughs and y0 = as crests, and so on. Crests and 
troughs defined in this way are of course not necessarily exactly maxima and minima 
of the disturbance, but they are usually very close to them.

The disturbance described by (9) is not quite periodic in £, because both the
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constituent wave trains grow stronger towards the left. The time dependence of the 
disturbance is contained entirely in £, and thus the whole pattern simply sweeps 
upwards parallel to 0 z with velocity o)/k3 =  cseca. Thus the wavefronts move 
upwards at a speed greater than c, carrying the dislocations with them.

The fact that the dislocations are equally spaced is of course simply a consequence 
of using plane wave trains, and at the same time the details of the wave pattern far 
from the origin are not of primary interest because they depend on the unrealistic 
and artificial assumption of a linear envelope. We are really interested in the struc­
ture of a single dislocation. In order to study this structure undistorted by inter­
action with neighbouring dislocations in the row we use a limiting process in which 
the angle 2a between the two primary wave trains is decreased to zero, thus moving 
the dislocations apart. First define new constants A 0 and/?*:

A 0 =  2a0sina and /?*= /?ecot a. (12)

Then write equation (9) in terms of A 0, /?*, a, x and and let a->0, keeping 
A0, /?* and k fixed. In the limit

so that 

and

ijs = A 0{kx+ij3*(kz — ojt)}expi(kz — o)t),

p2 = A ^ ^ x * + fie*2(kz — o)t)2} (p ^ OU
fi*(kz — (ot)

X = arctan- kx + kz — (ot +

(13)

(14)

These equations describe a single edge dislocation parallel to O passing through 
O at t — 0, and moving parallel to 0 z at a speed o)/k = c. Figure 10 shows p and 
reduced phase Xo at t — 0. The meaning of the parameter /?* (which determines the 
x scale) may be seen by noting that before the limiting process the change in ampli­
tude of one of the primary wave trains over one period was 27r/?ea0 = Thus
ft* can be regarded as a measure of the non-monochromaticity of the pulse, or of 
the bandwidth. In the monochromatic limit, /?* — 0, the dislocation becomes 
infinitely extended along 0 z and the phase map turns into figure 5. The larger /?* 
the more compact is the dislocation in the z direction (in crystal dislocation language 
/?* is an inverse measure of the width of the dislocation; it determines the core 
structure). When /?* = 1 the p contours for = 0 are circles and the inverse tangent 
in (14) is simply the polar coordinate angle 6 measured from the aj-axis. Thus, near 
the origin x —

At time t =  0, or with respect to coordinates carried along with the wave, we have, 
for/?* =  l,

grady = grad d + knz,
= nelr + knjS, (15)

where ne and nz are unit vectors. Thus: if x is' regarded as a potential, we find that 
the field grad x is the sum of a uniform field along the z axis and a vortex (we were 
led to this interpretation by a suggestion of Professor F . C. Frank, F.R.S.). Since the 
uniform field is the undistorted wave, the disturbance produced by the dislocation
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is the vortex. In this sense the dislocation may be pictured as a vortex that is carried 
along with the wave, rather as a vortex in a river is carried along by the main flow. 
When ft* + 1 the general result is the same but the vortex is distorted. There is 
a stagnation point to the left of the origin where the backward grad #  due to the 
vortex just cancels the grad# due to the forward flow. It is readily found that this 
occurs at

* =  -A f/* - (16)

This is the point S in figures 10 and 11, where two contours of #0 =  u cross at right 
angles; it is a saddle-point for #. Figure 11 shows the trajectories of grad# at =  0 
when P* = 1. Their equation is

(kx)2 + (hz)2 =  Q0 exp { -2 ( 1 +  lex)},

------in

------ h

Figure 10. A single edge dislocation at the origin showing the lines of reduced phase Xo at 
t =  0. Any arbitrary value of Xo may be chosen to represent crests. The figure is a true- 
to-scale map when /?* = 1. pis proportional to the radial distance from the origin; the 
circle shows the contour for p — . S is the stagnation point.
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where the constant Q0 labels the different curves. We have tried without success to 
find a physical interpretation of this vortex motion (for example, as momentum or 
energy flux) valid for all types of nondispersive wave; in quantum mechanics 
p2 grad x  would represent a local expectation value of momentum.
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Figure 11. The same edge dislocation as in figure 10, but on a larger scale and showing the 
trajectories of grad xat t = 0 for /?* = 1. The numbers on the curves are the values of Q0. 
Curves of constant reduced phase Xo are also Shown.

The details in figures 2 a to dmay now be described more precisely. The figures 
show the disturbance at z — 0 corresponding to the real part fa(t) of i/r(t) for four 
values of x. For x < — 2/3*\k the curve is concave upwards at the centre-point 0, 
but for — 2/3* \Tc < x <0 (figure 2 b) it is convex upwards and flanked by two minima 
(the downward curvature of the envelope outweighing the upward curvature of 
the cosine). Two new zeros appear precisely at the centre of the dislocation (figure 
2 c), but they are preceded by the appearance of the new maximum slightly below
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the zero level. In the antisymmetrical structure of figure 3, which corresponds to the 
imaginary part i]r6(t) of i]r{t)y the two new zeros appear at —fi*jk. As discussed 
in § 2, the unique property of the dislocation line = 0, £ =  0 is that the disturbance 
is zero for all values of the phase of the carrier wave relative to the pulse envelope, or, 
in other words, for all linear combinations of the real and imaginary parts of the 
complex disturbance xjr.

5. S c r e w  a n d  m i x e d  e d g e -s c r e w  d i s l o c a t i o n s

So far we have modulated the two primary wave trains linearly in their directions 
of propagation. If we try to modulate a train of plane waves parallel to the wave- 
fronts the modulation will normally spread out by diffraction, but it may be verified 
that if the modulation is merely linear with position the wave propagates without 
change. Thus, for example, the wave

i/r = (a + bx) exp [i — at)], (17)

where a and b are constants, satisfies the wave equation (4) (cf. equation (13)).

Figure 12. Interference between two monochromatic plane waves A and B making an angle 
with one another and modulated linearly in opposite directions along O the direction 
that is common to both wavefronts. O ypoints into the page. The result is a set of parallel 
screw dislocations (------- -—) parallel to Oz and lying in a plane parallel to the page.

Accordingly, let the two primary waves A and B be now modulated linearly along 
0  y, the direction common to both wavefronts, so that as one rises the other falls, 
and let there be no modulation along their propagation directions so that the waves 
are monochromatic. The general effect is seen in figure 12. If the amplitudes are the 
same in the plane y  = 0, one wave, B say, will dominate above the plane of the 
diagram while A will dominate below. The resultant is a set of screw dislocations in 
the plane y = 0, all parallel to 0  zand equally spaced along 0#. It can be seen from 
figure 12 that they are right-handed. In crystallographic terms this is a twist 
boundary.

12 Vol. 336 A.
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For mixed screw-edge dislocations we simply add modulation along the propa­
gation directions. The analysis for screw, edge and mixed screw-edge dislocations is 
conveniently done all together. Let the two primary waves now be

if'A .-ao{l~M lci x +lc3z - 0)t)+fi8k1y}ex$[i(Jc1x+Jczz —G)t-%n)], I 

ijrB =  a0{i+/Se( - k lx + kzz-(t)t)-/33ky}ex^[i(-k l x + kzz-(t)t+l-K)]J

where /?s is a constant. Writing kxy  =  y, we find that the resultant disturbance 
f  =  ^A +  ̂ B i8

rjr =  2a0{( 1 — /?e£) sin £ +  i(fie£—fis7})cos £} exp (i£) =  exp (i^). (19)

Hence p2 =  4 a § { (l-^ £ )2sin2£ + (y#e£ - /? s # c o s 2£} (p > 0), (20)

and +  (21)
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where the conventions about the tc are the same as before.
As always, the dislocations lie along the lines where i/rc =  ijra 

have the equations
£ =  TO7C, |

= 0,J
or, at t = 0,

f i* z - /3ay = 0

0; from (19), they 

(22 a) 

(22 b)

(ignoring the solution /?e£ =  1 as being outside the field of interest). Define constants 
/? and 8 so that

/?s =  A s in  tf.J '
8 is then the inclination of the dislocation lines to O 8 = 0  corresponds to /?s =  0 
and pure edge dislocations. 8 = \ tzcorresponds to /?* =  /?e =  0 and pure screw 
dislocations.

Proceeding to the limit a-> 0 as before, we find

so that

and

fjr =  AQ\kx+ i{/?* (kz — o)t) — s ky}] exp [i — o)t)],

p2 =  Al[kzx2+{/8*(kz-(ot) - /? s (p > 0),'

X =  a r c t a n —- — + kz — o)t+2niz.

(24)

(25)

This describes a single mixed dislocation lying in the yz plane at an angle 8 to O 
passing through O at t =  0 and moving parallel to O at velocity c. To obtain a pure 
screw dislocation put /?* =  0. Then

X =  — arctan + k z—o)t+ (26)x

If one encircles the 2-axis at constant z and fixed t, x  changes by 2iz for each



revolution. If/?8 = 1 the surfaces of constant phase at given time are helicoids and we 
obtain the simple helicoidal wave

fr = A 0kr exp [i ( —(ot — 0)], (27)

where r, <j>, z are cylindrical polar coordinates. /?* = 0 represents the monochromatic 
limit; the screw dislocation is one of the special cases where a dislocation can exist 
in a pure monochromatic wave.
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Figure 13. Axes for a mixed edge-screw dislocation. OP is the dislocation line;
Ox points out of the plane of the paper.

For the mixed dislocation take a new axis O in the yz plane and perpendicular 
to the line of the dislocation (figure 13); thus

z' — zcos 8 —sin 8. (28)

Then equations (25) become, at t = 0,

p2 =  0), (29 a)
X = arctan (fiz'/x) r. (29 6)

This may be pictured as a vortex circulating about the dislocation line in a uniform 
flow parallel to O z.If  the inclination 8 (which determines the edge-screw character) 
isjvaried while /? is held fixed, equation (29 a) shows that the dislocation always has 
the same field of p when it is viewed in its own coordinate system. is a measure of 
the nonmonochromaticity of the pulses, by extension of the argument already given 
for a pure edge dislocation; fi is also an inverse measure of how far the dislocation 
spreads out in the yz plane perpendicular to its length.

Now that we have derived equations (13) and (24) for isolated dislocations, by 
mixing two plane wave trains and using a limiting process, we can be wise after the 
event and see that these equations (but not those for rows of dislocations) could 
have been guessed a priori, by using the principle that a single plane wave train can 
be amplitude modulated linearly in any direction in its wavefront and the fact that 
this still holds if the coefficients are complex. From this point onwards, our method 
of constructing dislocations will be more direct. We shall simply present complex 
wave functions xjr which satisfy the wave equation (4) and shall then interpret them 
as representing various kinds of dislocations, p and x> as always, are the amplitude 
and phase of \]r.

1 2 -2
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One way of realizing such dislocations physically would be to place on the plane 
z =  Zq,where z0 is large and negative, that distribution of sources which will produce 
the correct boundary condition rjr =  \]r{x, y, z0, t). In each case it will be found that 
the required sources are quasi-monochromatic in the sense defined in §2, being 
derived by (complex) amplitude modulation from the primary oscillation e-iwt.

Equation (27) is the simplest example from a class of helicoidal waves describing 
multiple pure screw dislocations, of ‘strength’ s; a more general expression which 
can easily be shown to satisfy the wave equation (4) is

xjr = (Ar8 +  [B/r8]) exp [i —o)t± (30)

where A and B  are constants and sis a positive integer; the choice of sign in the 
exponent determines the ‘handedness’ of the dislocation. The solutions associated 
with the coefficient B are singular at the origin. Equation (30) is still not the most 
general expression for an isolated screw dislocation; for example, the wave reflected 
from a surface consisting of one turn of a helicoid near 0, whose pitch is s half­
wavelengths, has the asymptotic form

ijr-----A exp \i( — (ot s^)], (31)
r—>oo 3—>oo

which is simpler than (30), but it can be shown that the core structure (r small) is 
very complicated.

Thus multiple screw dislocations exist. What about multiple edge and mixed 
dislocations ? We conjecture that these cannot exist, although we are unable to give 
a general proof. The pattern of figure 8a is suggestive on this point. It shows ‘extra 
half-planes’ coming together in pairs as they would at edge dislocations of double 
strength. But when the local readjustments have taken place (figure 9a) each 
double dislocation has split into a pair of single-strength dislocations with phase- 
structures differing by iz. A further argument is that the slightest perturbation 
splits a double pure screw dislocation into two single-strength mixed dislocations. 
To show this, we proceed by analogy with equation (24), which gives a mixed dis­
location as the sum of a pure single-strength screw and a linearly modulated plane 
wave; thus we consider the wave

%[r — A0{r2 e-21̂  + i/?e* (kz — o)t)} exp \i(kz — &>£)]. (32)

The dislocations are the lines where and are simultaneously zero, that is where

cos 2^ =  0, |
sin 20 = /?*£ ,/

£ now denoting Jcz — (ot. These describe two parabolas lying in orthogonal vertical 
planes, namely

£ =  0  =  i* . -  !*>1 ,34)
=  i * . /

The dislocations are of single strength, and change their character with £, being pure
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screw when |£| =  oo and pure edge when £ =  0. In the limit when /?* =  0 the para­
bolas degenerate into the original double pure screw along the 2-axis, and in the 
limit |/?e* | = oo they degenerate into two single-strength edge dislocations inter­
secting orthogonally in the plane £ =  0.

As well as suggesting that multiple dislocations do not exist unless they are pure 
screw, the wave (32) introduces two new properties of dislocation lines: they may be 
curved, and two edges may intersect. A simple model showing the intersection of a 
screw and an edge is

= A q{1cx + ifiy{kz -  cot)} exp [i -  &>£)], (35)

corresponding to dislocations where

a; =  0 and i/£ =  0, (36)

that is, to a screw along O zintersecting an edge parallel to O
All the patterns of straight, curved, edge, screw and mixed dislocations discussed 

so far have arisen from waves which contain 2 and t only in the combination £; that 
is, they are of the form

rjr — \Jr(x, y ,£). (37)

It would be possible to generate a great variety of dislocation patterns, using the 
fact, derivable from (4), that waves of this type satisfy the two-dimensional Laplace 
equation

d2i/r d2rj
dx2 dy2 ^ (38)

However, all such dislocations would be rigidly attached to the wavefronts, and in 
order to investigate the ways in which dislocations can move relative to the wave- 
fronts, and to one another, it is necessary to widen the class of waves considered, to 
include solutions where z and t do not appear solely in the combination £. Some waves 
of this type will be examined in § 7. In order to describe the motion of the resulting 
dislocations we first introduce some concepts from crystal dislocation theory.

6 . B u r g e e s  c i r c u i t , g l i d e  a n d  c l i m b

The theorem, well-known for crystal dislocations, that the Burgers vector is 
conserved along the length of a single dislocation applies equally well for dislocations 
in wave trains. A closed circuit (e.g. JKLM in figure 4) is traversed at fixed time in 
the dislocated wave and the value of

(A/27t)|d^f =  NX,say, (39)

where A is the wavelength 2-rc/k, is the analogue of the Burgers vector. N  is neces­
sarily an integer or zero and equals the total strength of the dislocation lines 
encircled (with due regard to their signs). I f  the shape and position of the circuit is 
altered the value of the integral remains the same provided the circuit continues to



encircle the same dislocation lines. In crystal dislocation language the Burgers 
vector of each dislocation is An, where nis a unit vector along the wave normal in 
an undislocated reference wave. The difference is that in the wave, as distinct from 
the crystal, components of the Burgers vector parallel to the reference wavefront 
are of no significance. Only the magnitude and sense of the Burgers vector is 
significant and these are given by NX (positive or negative).

The Burgers circuit just described was traversed at fixed time. I f we now allow the 
circuit to travel with the wave it follows by continuity that the Burgers vector for 
the circuit remains the same provided it is not crossed by a dislocation line; the 
magnitude of the Burgers vector for the moving circuit remains equal to the total 
strength of the dislocation lines encircled multiplied by the wavelength.

Wave trains, unlike crystals, are oscillatory in time as well as space, and therefore
one may consider a more general kind of ‘Burgers circuit’ where the line element
can be wholly or partly time-like as well as space-like. If the wave disturbance is
now thought of as varying in the four dimensions ( , y, the line integral of y
round any closed circuit drawn in this space must necessarily be a multiple of ;
thus f .

j>dy =  2W7r, (40)

where N  is an integer or zero. If the circuit lies in a plane for which t =  constant, we 
have (39); on the other hand, the method of observing a dislocation described in § 1 
and the argument about the Argand diagram in §2 can be regarded as employing 
a circuit in the (x, t) plane. By shrinking the circuit around a dislocation continuously 
to zero one can see from (40) that x  must be singular on the dislocation itself-and  
it then follows from the properties of the Argand diagram, together with the physical 
requirements that the wave function must be continuous and single-valued, that 
P must be zero. Thus, by defining a dislocation by means of a Burgers circuit one is 
led automatically to the conclusion that the precise location of the line is the place 
where p =  0 (rather than, for example, various other alternative possibilities that 
might be suggested by figure 6).

With crystal dislocations a Burgers circuit always has to be chosen so as to avoid 
passing through ‘bad crystal’ where the lattice is so badly distorted that the 
crystallographic directions cannot be unambiguously identified (Frank 1951). It is 
interesting to notice that this particular complication does not appear with wave 
dislocations; x  can be well defined everywhere (provided the waves are ultimately 
derived from a source with a carrier frequency (0) and a dislocation has no disordered 
core. There is no breakdown of linearity in the wave equation near the singularities. 
Thus, however close together the dislocations may be, they do not lose their 
identities; they are always recognizable as singularities of x  where p is zero. With 
crystals, on the other hand, the dislocation concept itself has to be abandoned when 
the dislocations are very close together. Of course, in practice it may be impossible 
to resolve individual wave dislocations when they are very close together because 
of the presence of noise, but that is another matter.

A dislocation may move either by glide, defined as motion in the plane containing
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the Burgers vector and the direction of the dislocation line (the glide plane), by climb, 
defined as motion perpendicular to this plane, or by a combination of glide and 
climb. Thus a pure edge dislocation, which is normal to its Burgers vector, glides by 
moving perpendicular to the wavefronts (more strictly, perpendicular to the 
reference wavefronts), and climbs by moving parallel to the wavefronts. For a pure 
screw dislocation, which is parallel to its Burgers vector, all vertical planes are glide 
planes, and climb has no meaning.

7. M o t i o n , b i r t h , a n n i h i l a t i o n  a n d  c o l l i s i o n  o f  
DISLOCATIONS

First we consider edge dislocations parallel to the y-axis. As we have already seen, 
to obtain moving dislocations, it is necessary that z and t should not appear only in 
the combination £. The simplest monochromatic wave of this new type involves z 
linearly, and can be seen by inspection of the wave equation to be

\Jrx= (k2x2 +  i kz)exp [i — wf)]. (41)

The inevitable appearance of quadratic modulation in x means that moving 
dislocations obtained using will occur in pairs.

To obtain glide, we add to a multiple of the wave function (13) describing 
a single edge dislocation; this gives

xlr =  {Alex +  k2x2 +  i B(kz — <ot) +  i exp [i (kz — <yi)]. (42)

The dislocation lines satisfy

or

A kx+k2x= 0,1 
B(kz — (ot) + kz =  0, J

x =  0

z =

There are thus two dislocations, which glide parallel to Oz, and have velocity vg 
given by

B
v' "  5 + 7  c’ (43)

while the undistorted wavefronts move with velocity c. Thus in a frame of reference 
moving with the dislocations the lines of constant x  sweep through in sequence, 
backwards or forwards; glide is equivalent to a steady change of phase of the 
dislocation.

vg can have all values, positive or negative, according to the value of B. For 
~  1 < B < 0 , vgis negative: the dislocations move backwards. As 1, the dis­
locations become infinitely spread out in the z direction and ->oo, rather as the 
point of coincidence of a vernier can be made to travel very fast even though the
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scales themselves are only moving slowly. If  |£ |-*oo , vg-+c and the disturbance 
consists of two non-gliding edge dislocations. Finally, if is zero, vg is zero; this is 
the monochromatic limit, and the two dislocations are stationary features of the 
wave, in fact two localized interference fringes. From this point of view our moving 
dislocations may be regarded as moving interference fringes.

It is also possible to obtain the ‘glide’ wave function (42) by a limiting process 
analogous to that used in § 4 to obtain the single edge dislocation: two primary plane 
wave trains, linearly modulated in their directions of propagation, are also linearly 
modulated parallel to their wavefronts and perpendicular to their common direction.

By replacing the linear factor (kz- (ot) in (42) by a quadratic factor, which corre­
sponds to taking two interfering wave trains whose pulse envelope is not linear but 
quadratic, pairs of edge dislocations can be made to annihilate by glide, or to appear 
spontaneously. The wave function is

ijr — {Alex +  k2x2 +  i  B(Jcz— +  exp [i — <uf)], (44) 

whose dislocations lie at
x =  0 or —A/lc, 1

<45)

If  -B > 0 there are two pairs of approaching dislocations of opposite sign which glide 
together at t =  ( 4 Bo))~  ̂and mutually annihilate, while if < 0 the pairs of dis­
locations suddenly appear at t =  -  (4|B|<y)-1 and then glide apart.

To obtain climb of edge dislocations we simply set 0 in (42), and replace 
B by B — iC; thus the resulting dislocations satisfy

o Gz Bet
X = M ’ z = b T v  <46>

There are two dislocations of opposite sign: both have the same z value which need 
not change with speed c, so that the dislocations can glide. In addition they may 
separate or approach one another, that is, they may climb. If C/(B + 1) > 0, the 
two dislocations are born at t =  0 and separate by climb, initially with infinite 
speed; this would manifest itself as the sudden tearing of a wavefront (when 
B + t  > 0) or as the appearance of an expanding strip of wavefront (when 
•S + 1 < 0)- (When a pulse is reflected from a scattering object the waves that have 
travelled the shortest path, and therefore arrive first, are usually travelling in the 
direction of the average reflected wave, whereas later arrivals tend to be oblique. 
It may be shown that this results on the average in the disappearance of wavefronts. 
Therefore, in this situation, we expect the appearance of a new piece of wavefront 
to be a comparatively rare event.) I f Cj(B +1) < 0, the two dislocations climb 
towards each other and annihilate at t =  0; this would manifest itself as the sudden 
disappearance of a strip of wavefront (when +1 < 0), or, rarely, as the spontaneous 
healing of a tear (when B +  1 > 0). In both cases the surface swept out by the moving
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dislocations is a parabolic cylinder whose axis is parallel to 0  These solutions may 
also be obtained by adding a third wave train, travelling along to the two con­
sidered previously (§4 and figure 8), and taking the limit a->0.

To obtain a circular climbing edge dislocation loop (climbing prismatic dislocation) 
it is only necessary to notice that if x2 is replaced by in (41), where r is the radial
coordinate of cylindrical coordinates, will satisfy the wave equation. Thus the 
wave

rjr — {\k2r2+ i kz +  i(B — i(7) (Jcz — ojt)} exp [i — ojt)] (47)

describes a circular edge dislocation loop sweeping out a paraboloid of revolution 
whose axis lies along Oz. I f  CJ(B -f-1) > 0 the loop is born at 0 (appearing as the 
sudden puncture of a wavefront, or, rarely, as the birth of an expanding circular 
island of wavefront), while if Gj(B +1) < 0 the loop vanishes at 0 (disappearance 
of an island of wavefront, or, rarely, the spontaneous healing of a puncture). The 
solution (47) may also be obtained by a limiting process involving the interference of 
a plane wave with a toroidal wave (for example, from an a.rmnlar source).

It is possible for edge dislocations to collide and rebound without annihilation. To 
construct this situation we require a slightly more complicated wave than (41), 
namely

^2 =  (JP#3 + ik2xz) exp [i <y$)]. (4g\

Combining ijr2 with a plane wave with linear pulse envelope, we obtain

\Jr =  {§ P P  + B(kz — cot) + i exp [i — ojt)], (49)

which has two edge dislocations of opposite sign, parallel to 0  satisfying

xz — 0,)
\&x2+B(kz ~ut) =  0.J (50)

The dislocation for which x =  0 moves along Oz with speed c (i.e. it neither climbs 
nor glides), while the dislocation for which 2 =  0 moves along Ox with a speed which 
varies, becoming infinite at x =  0 (that is, it climbs along Ox while gliding backwards 
at speed c). At time t = 0 the two dislocations collide. Afterwards one moves off 
along Ox and the other along O2. If we identify the dislocations by their signs it may 
be shown that each has been deflected through a right angle.

Finally we consider the motion of pure screw dislocations. In their simplest form, 
given by equation (27), these are monochromatic, and it is clear that the addition 
of another monochromatic wave such as (equation 41) cannot produce motion. 
But there is a complementary’ solution to where t appears linearly instead of 2;
it is easily verified that this solution is

\Jrz =  (cot — i k2x2)exp [i — <wf)]. (51) 

Adding xjrz to a real multiple of the ‘screw’ wave function (27), we obtain 

^  = {o)t — i k2x2 +  Ak(x — iy)} exp [i(&2 — &>£)],
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which has a single dislocation, satisfying

x =  — wt/A
y = — kx̂j( 5 3 )

Since it is parallel to Oz this is a screw dislocation; it glides along a parabola in the 
xy plane. Replacing A by LB, we find that the resulting wave has two screw disloca­
tions of opposite sign, satisfying

x  = 0, x — BlkA 
y = -ct/B . j  (54)

These glide parallel to the y-axis while maintaining a constant separation. For 
annihilation and creation of screw dislocations we replace A in (52) by A +LB, 
obtaining the dislocation line equations

ct+A x —kxz+xB
y = — b ~ --------2 — • <55>

These describe two screw dislocations moving along a parabola in the xy plane; they 
are created and glide apart if AB > 0, and they glide together and annihilate if 
AB < 0.

8 . C o n c l u d i n g  r e m a r k s

We have shown that wavefront dislocation lines, along which the amplitude is 
zero, are perfectly analogous to crystal dislocations so far as their kinematic 
properties are concerned. On the other hand, there is nothing analogous to the 
forces between crystal dislocations or to their line tensions. We may also note that, 
while their topology is virtually identical, the superposition properties of the two 
sorts of dislocations are different. Crystal dislocations are lines where, mathe­
matically, the stress and strain become infinite; so when two elastic strain-fields, 
both containing dislocations, are added together, the dislocations remain in place. 
In wave trains, on the other hand, p  =  0 on the dislocations, and so when two dis­
located wave fields are added each one tends to destroy the dislocations of the other, 
although new dislocations may be created elsewhere by interference. (If the second 
field is added gradually, the original dislocations move continuously, but they may 
be annihilated and new ones may be created.) Another difference is that, in crystals, 
climb tends to be a slow process compared with glide because it requires diffusion of 
lattice vacancies, whereas with wavefront dislocations there is no corresponding 
restriction on the speed of climb .

It is interesting to compare wavefront dislocations with caustic surfaces and 
focal lines. These are envelopes of the rays of geometrical optics, that is, loci of points 
where the density of rays is infinite. At caustics and foci the wave amplitude is 
generally large, becoming infinite in the limit when the wavelength becomes 
vanishingly small (in comparison with the radii of curvature of rays and the
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dimensions of (Mi-acting objects). Thus, when geometrical optics is a valid approxi­
mation, caustics and foci are the dominant features in the wave field. However, in 
this limit dislocations are unobservable, because they can only be unambiguously 
identified by measuring the phase change around a Burgers circuit, and phase is 
a quantity which varies infinitely fast when the wavelength is zero. In long waves, 
on the other hand, dislocations are readily observable, but caustics and foci lose their 
prominence because the amplitude is no longer especially large. Thus dislocations 
are entities complementary, in a certain sense, to foci and caustics.

For simplicity, and also to emphasize that dispersion is not necessary for the 
production of dislocations, we have restricted ourselves to the scalar wave equa­
tion (4). But dispersive wave trains can also contain dislocations; in particular, the 
time-dependent Schrodinger equation of quantum mechanics may be analysed by 
the methods of this paper, leading to the conclusion that matter waves contain 
a tangled * cobweb ’ of dislocation lines on which the electron density is zero. These 
cobwebs are not superposable, even though the wave equation is linear.

Wavefront dislocations can also exist in two dimensions (for example in water 
waves), and take the form of points instead of lines. Only edge dislocation points 
may occur. Examples of the monochromatic case, where the dislocation points are 
localized interference fringes (see the paragraph following equation (43)) occur in 
a paper by Braunbek & Laukien (1952): their figure 2 shows the lines of constant 
phase for the field of a plane wave diffracted by a half-plane; several dislocation 
points may be seen. Other examples of this special case are the ‘ amphidromic 
points’ for tides (Whewell 1833; Defant 1961) around which the lines of constant 
phase travel like the spokes of a wheel (the phase structure is identical with that 
very near the origins of figures 10 and 11). There are two amphidromic points in the 
North Sea.

It is clear that the use of other combinations of allowed modulation and the addi­
tion of further wave trains will produce more complex arrangements of dislocations 
moving in more complex ways/Moreover, the waves carrying the dislocations need 
not be plane. Reflexion of a pulse from a rough surface is one way of producing a 
large number of interacting pulses and may therefore be expected to result in a com­
plex field of dislocations. Scattering of a pulse from any spatial array of scattering 
centres will produce a similar effect. These are subjects for further study, and some 
progress has been made on them. In this paper we have simply shown that dis­
locations exist and have tried to explore some of their elementary properties.
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