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Dissipative Optical Flow in a Nonlinear Fabry-Pérot Cavity
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We describe a classical nonlinear optical system that displays superfluidity and its breakdown. The
system consists of a self-defocusing refractive medium inside a Fabry-Pérot cavity with a cylindrical
obstacle. We have numerically solved for the transmitted beam when an incident plane wave strikes the
cavity at an oblique angle. The presence of the incident beam pins the steady-state phase of the output,
preventing the formation of vortices or time-dependent flow. When the incident beam is switched off, a
transient wake of moving optical vortices is produced. This is analogous to the breakdown of superfluidity
above a critical velocity.
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The nonlinear high-finesse Fabry-Pérot cavity (NLFP)
displays a wealth of interesting dynamics [1], such as pat-
tern formation [2], symmetry breaking [3], and bifurca-
tions to chaos [4]. This is despite the apparent simplicity
of the equation of motion for the transmitted field C [5],
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2
� � ≠2�≠x2 1 ≠2�≠y2, D is a cavity detuning, G

is proportional to the mirror transmittance, and V �x, y� is
an obstacle potential to be described below.

Afficionados of Bose-Einstein condensates (BEC) can
hardly help but notice the similarity between this equa-
tion and the Gross-Pitaevskii equation for the order pa-
rameter of a superfluid far below the critical temperature.
Apart from the last two terms, and the restriction in optics
to two dimensions, the equations are identical. The term
iGCi is a coherent source while the term 2iGC is a linear
loss. These terms resemble models of pumping and output
coupling of an atom laser. Several recent experiments on
trapped atomic BECs have demonstrated their superfluid
behavior [6] and dissipation above a critical flow velocity
[7]. This has renewed interest in the theory of superfluid-
ity, since accurate solutions of the Gross-Pitaevskii equa-
tion can be carried out, starting from the s-wave scattering
length and maximum atomic density [8,9]. Because of the
similarity of Eq. (1) to the Gross-Pitaevskii equation, it is
natural to consider how superfluidity might manifest itself
in the NLFP. Finding an optical analog of a superfluid may
add to the understanding of BEC, since the parameters in
an optical experiment can easily be varied to study dif-
ferent regimes. We emphasize that we consider nonlinear
optics at the purely classical level, which is similar to the
Gross-Pitaevskii treatment of BEC. Thermal or quantum
aspects of superfluidity in BEC may be expected to differ
from an optical system.

Hydrodynamic analogies in optics have been made for
lasers with many transverse modes [10]. An example more
relevant to superfluids is the diffraction around a wire in a
0031-9007�01�86(3)�416(4)$15.00
Kerr nonlinear medium [11]. In that case, a beam travel-
ing at a slight angle to the wire in a nonlinear medium can
produce stationary optical vortices, since the time t in the
above equation is replaced by the longitudinal coordinate
z (and G � 0). However, this does not lead to dynamics of
the light or actual dissipation (forces on the wire). In this
Letter we propose an optical experiment where the vortex
motion occurs in real time and therefore leads to a dy-
namical transition between stationary and dissipative flow.
Thus, a drag force can be exerted on an obstacle, indicating
the breakdown of superfluidity of light. This is a nonlinear-
optical analog of dragging a laser beam through a BEC [7].

We consider a high-finesse Fabry-Pérot cavity (Fig. 1)
consisting of two parallel plane mirrors of transmittance
T separated by a distance L. The z axis is taken normal
to the mirrors; we refer to the transverse coordinates by
x� � �x, y�. A linearly polarized plane wave of frequency
v is incident at an oblique angle u on the left mirror;
we write its field as Ei�x, t� � Re�ci�x�, t�ei�kzz2vt��,

FIG. 1. Proposed experimental configuration for observing dis-
sipative optical flow. A cylindrical obstacle (shaded) with a
known index of refraction is placed between parallel mirrors of
the Fabry-Pérot cavity. The remaining space between the mir-
rors is filled with an atomic vapor. Light detuned close to atomic
and cavity resonances impinges at an angle u on the left mirror,
and is observed after transmission through the right mirror.
© 2001 The American Physical Society
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where ci is the slowly varying envelope field and kz �
v

c cosu. Similarly, for the intracavity light, we write
Ec�x, t� � Re�cc�x�, t� sinn0kzz e2ivt� (where n0 is the
linear part of the refractive index inside the cavity) and,
for the transmitted light that is to be observed, Et�x, t� �
Re�c�x�, t�ei�kzz2vt��. At normal incidence, exact reso-
nance (on the longitudinal mode m) occurs at the frequency
vc � pmc��n0L� and we allow a cavity detuning D̃ �
v 2 vc. The transverse component kx � �v�c� sinu

of the wave vector is included in the slowly varying field.
In the cavity between the mirrors is placed a cylindrical
obstacle of radius R with index of refraction:

nl�x�� � n0 1 dn�x�� �

Ω
n0 1 nm if jx�j # R ,
n0 otherwise.

(2)

The entire cavity has an optical Kerr effect described
by [12]

nnl�x, t� � n2jc�x, t�j2. (3)

We consider only the self-defocusing case �n2 , 0� here.
(This corresponds to repulsive elastic collisions between
atoms in a BEC.) One way to achieve a large negative n2
is to fill the cavity with an atomic vapor, and tune the light
just below an atomic transition [13].

We make the following assumptions: all fields are parax-
ial along the z axis, and their spectra lie close to a single
longitudinal mode of the cavity. The field inside the cav-
ity has the profile sinn0kz regardless of transverse shape
(mean-field approximation). The nonlinear response needs
to be fast compared with the round-trip time of the cavity,
i.e., we can adiabatically eliminate the atomic degrees of
freedom. Under these assumptions, we obtain [5,14]
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The intracavity field is just 1�
p

T times the transmitted
field. By choosing an incident electric field magnitude
jE j, the transverse width scale is the vortex core size
a � c�v�2T��3n0jn2jE

2��1�2 (the analog of the “healing
length” of BEC) and the time scale t � �n0�c�2va2 is the
time it takes a beam of size a to diffract in the absence of
nonlinearity. Thus we make the physical scaling

x � ax̃, t � t t̃, c � EC, ci � ECi , (5)

and setting D � D̃t, G � cTt�n0L�, and V �x�� �
2vtdn�x���n0 results in the scaled equation (1). This
equation is the starting point for the analysis and simula-
tions of the dynamics of the NLFP. The term proportional
to G is due to the incident field driving the cavity and
the transmitted field leaking out at the ring-down rate.
We note that we could just as well consider the obstacle
to move in a normally incident beam, by changing to
coordinates moving with a velocity proportional to the
transverse wave vector.

The transverse momentum of the field is [15]

J� �
i
2

Z
�C=�C� 2 C�=�C� dx dy , (6)

and it follows from Eq. (1) that for time-independent fields
the momentum is constant. Therefore, a force is exerted
on the obstacle only in the case of a time-varying field.
Although this force is probably too difficult to measure ex-
perimentally, one can infer it from the transverse dynamics
of the transmitted field.

We show below that the transition to dissipative flow
occurs by shedding optical vortices. A vortex is character-
ized by a zero in intensity and a 2p phase slip around a
curve enclosing the zero.

We solve Eq. (1) numerically by a modification of the
split-step method for inhomogeneous equations. We as-
sume periodic boundary conditions at the edge of the spa-
tial grid in x and y; when the region of interest is small
compared with the total grid these have no effect.

To illustrate the transition between superfluid and dis-
sipative flow, we applied a uniform oblique incident field
constant for a time to that switched on and off smoothly
in a time tr :
Ci�x�, t� �

8>><
>>:

Ae2ikxx sin2 pt
2tr

for 0 , t , tr ,
Ae2ikxx for tr , t , to ,
Ae2ikxx cos2 p�t2to�

2tr
for to , t , to 1 tr ,

0 otherwise.

(7)
The numerical solution is shown in Figs. 2–4. The cho-
sen parameters were G � 0.05, D � 0.5, V �jx�j , R� �
50, R � 5 [units a], A � 10.05, kx � 20.7 [units a21],
to � 200, and tr � 10. (The value A � 10.05 results,
in the absence of the obstacle, in a steady-state output
jCj � 1. Also note that V . 0 corresponds to a defo-
cusing obstacle.)

Initially the transmitted field goes through an under-
damped transient (Fig. 2, t , �100). Waves (in intensity
and phase) radiate from the front of the obstacle; when
they are of large magnitude they produce vortex pairs
but these undergo pair annihilation quickly as the waves
propagate.

After the oscillations have been damped, the field
approaches a steady state �100 � ,t , 200�, flowing
around the obstacle with little change in local phase from
the kxx background (Fig. 3). The intensity is nearly
constant, except near the obstacle boundary. We term this
“phase-pinned” superfluid flow because the transmitted
phase is simply related to the incident field. No force
417
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FIG. 2. Numerical solution of transmitted field vs time at the
point �210, 25� behind the obstacle. Dash-dotted curve, left
scale 310: incident pulse magnitude. Solid curve, left scale:
transmitted magnitude. Dashed curve, right scale: transmitted
phase.

can be exerted on the obstacle, because of the time
independence of the steady state.

Finally, when the incident field is switched off at t �
200, vortex pairs are emitted from the back of the ob-
stacle (Fig. 4). The dynamics in this stage resembles that
produced by dragging an obstacle through a condensate at
greater than the critical velocity [8]. The vortex cross sec-
tions are about 1 in the scaled units. The first pair appears
at t � 213.5 and the second pair at t � 223.5. They are
carried away from the obstacle along with the transverse
flow of the field. More vortex pairs are emitted later, but
by then the intensity is very small �jCj � 0.1� and the dy-
namics is approaching a linear, geometrical optics regime.
We can compare the dynamics after the end of the pulse
with the field leaking from a NLFP with V �x, y� � 0. If
the transmitted field at t0 is jC0jei�f01kxx� and there is no
light incident, without the obstacle one would have

jC�x�, t�j � jC0je
2G�t2to�, (8)
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The deviation in Fig. 2 from these simple curves is due
mainly to the vortices flowing past the observation point.

The main practical limits on an experiment are that the
vortex core and the oblique incidence angle must not be too
small, for a given wavelength. As an example, we consider
a 1-cm-long cavity with T � 0.001 filled with atomic 87Rb
vapor, detuned close to the D2 transition. In this case k �
8.0554 3 104 cm21, and a typical value of the nonlinear
index change inside the cavity is 2.5 3 1027 [13]. For
these values, the core size is a � 0.025 cm and the angle
418
FIG. 3. Transmitted field before the end of incident pulse �t �
200�. Scaled parameters are G � 0.05, D � 0.5, V0 � 50, R �
5, A � 10.05, kx � 20.7, to � 200, tr � 10. (a) Magnitude;
lighter regions correspond to higher intensity. (b) Direction of
transverse gradient of phase.

u corresponding to kx � 0.7 is 3.4 3 1024 rad. The time
scale t � 1.7 ns and the scaled G � 0.05. Observation at
a given instant of the intensity and phase (by interference
with a reference beam) should be possible by imaging
the output mirror face. The time dependence of the light
after a single pulse may be difficult to follow on this time
scale, but by repeated experiments a complete picture of
the dynamics may be built up.

We have proposed a nonlinear optical experiment which
would demonstrate superfluid and dissipative flow of light.
Our numerical solution shows that although initially pin-
ning of the transmitted field to the incident field occurs,
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FIG. 4. Transmitted field after end of incident pulse �t � 221�.
Parameters are the same as in Fig. 3. (a) Magnitude. (b) Direc-
tion of transverse gradient of phase. Optical vortices are evident
as dark spots with rotational flow, centered near �210, 63.5�.

there is a transition to vortex shedding and drag on an ob-
stacle after the incident beam is switched off.

We have stressed the importance of actual time dynam-
ics in the NLFP (as opposed to z dependence in a traveling
wave) in producing dissipation. This is even more essential
at the quantum level, which for this system has only been
studied in the two limits of large and small photon number.
A quantum theory of superfluidity based on many interact-
ing photons in the self-defocusing cavity was outlined in
[16]. At the quantum level, this optical system may allow
observation of quantum phase transitions predicted for the
weakly interacting Bose gas as its orbital angular momen-
tum is increased [17].
When an object is moved rapidly enough through a
BEC, heating of the condensate is observed [7]. This
corresponds to large beam angles in our nonlinear optical
analog, where a turbulent or incoherent transmitted beam
might result. Thus we may study the coherence of the light
as a function of incident angle. Finally, to make an analogy
with a two-dimensional system at finite temperature, one
could already introduce incoherent light at the input mirror
of the NLFP.
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