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Foreword

These notes are based on a course I gave several times in Orsay, and once in Ritsumeikan University.
As a matter of fact, they rely mostly on two excellent textbooks (in french), that I strongly recommend

to give a look at.
[Bo] Jean-Michel Bony, Cours d’analyse - Théorie des distributions et analyse de Fourier, Editions de
I’Ecole Polytechnique, Palaiseau, Ellipses Diffusion, 2010, ISBN: 2-7302-0775-9.

[Zu] Claude Zuily, Introduction aux distributions et équations aux dérivées partielles, Collection Sci-
ences Sup, Dunod, Paris, 2002, ISBN: 2-10-005735-9.



Introduction

A distribution is a linear form on the space of smooth functions with compact support, satisfying some
continuity property. It is not difficult to write down such a linear form, as for example the mapping

T [ fahplands

where f is a locally integrable function.

As a matter of fact, the form Tf is a distribution for any locally integrable function f, and each concept
in distributions theory extends to distributions the corresponding notion for functions when it exists.
In that sense, distributions are “generalized functions”.

Of course, there is also a lot of distributions that are not of this form, which makes the theory worth-
while!



Chapter 1

Distributions in 1d

This chapter is devoted to basic calculus of distributions. We have chosen to begin with distribution
of one variable to explore the basic ideas of the theory. That way, the reader has not to cope at the
same time with several variables calculus.

1.1 Test functions

We recall here elementary facts about smooth functions of one real variable.

A smooth function on an open interval I C R is a function ¢ : I — C whose derivatives of any
order @', ", ..., p®) __ exist and is continuous on I. A linear combination of smooth functions is a
smooth function, and we denote C°°(I) the vector space of smooth functions.

If o € C°(I), and J is an open subset of I, the function defined on J by = — () is a smooth
function on J, that we denote | . This function is called the restriction of ¢ to .J.

When F' C R is a closed interval, the assertion ¢ € C*°(F') means that there exists an open interval
I C R such that ' C I, and a smooth function ¢ € C*°(J) such that ¢, = ¢

It is true that the product of two smooth functions is smooth, and we have the so-called Leibniz formula
k k )
k 7) (k—j
(@1802)( ) = E ( >90§ )‘Pg .
— \J
7=0
A smooth function ¢ : R — C satisfies the Taylor formula

xm—i—l

- o (k) ! m__(m+1)
o) = Y o0+ o [ = e sayas,

k=0

m)!

that one can prove integrating by parts the last term on the right.

Exercise 1.1.1 Prove Hadamard's lemma: if ¢ € C*>°(R) satisfies ¢(0) = 0, there exists a function
1 € C*°(R) such that ¢(z) = x¢(x) for any = € R.
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1.1.1 Support of a smooth function

If p € C*°(I), and J is an open subset of I, we say that ¢ vanishes on J if it vanishes at any point
of J, or, equivalently, if @y is the null function.

Definition 1.1.2 Let ¢ : I — C a smooth function. The support of ¢ is the complementary
of the union of all the open sets in I where ¢ vanishes. This set is denoted by supp .

Note that the support of a function ¢ is a closed set. It is also the closure of the set of z € I such that
©(x) # 0. The following characterization is often useful:

xo ¢ supp p <= 3V neighborhood of x( such that o), = 0.

Exercise 1.1.3 Show
supp @192 C supp 1 M supp psa.

Are these two sets equal?

Of course, if ¢ € C*°(I) vanishes on an open set J C I, all its derivatives vanishes also on J, and,
therefore, for all integer &,
supp o™ C supp .

Definition 1.1.4 We denote D(I) = C3°([) the vector space of functions which are C*> on
I, and whose support is a compact subset of I.

If V is an open subset of I, one may identify a function ¢ € D(V') with the function ¢ € D(I), where
the function ¢ is defined as

o(x) =p(x)forx eV, @(x)=0forzel\V.

Indeed, ¢ is smooth and with compact support on I for ¢ € D(V). On the other hand, a function
¢ € C5°(R), can be identified with its restriction ¢, € D(I) for any open set I that contains its
support.

Definition 1.1.5 If K C I is a compact subset, we denote Cp°(I) the space of smooth
functions on I with support in K.

Lecture Notes, autumn 2014, Version 2.06 Thierry Ramond



CHAPTER 1. DISTRIBUTIONS IN 1D 10

Exercise 1.1.6 Let f and ¢ be two functions in € L!(R). Show that the convolution f * ¢ of f
and ¢, given by

fro@ = [ 1= ety
is defined almost everywhere, and is an L! function.

Suppose moreover that ¢ € C5°(R), show that f * ¢ is smooth. At last if f is also continuous,
show that

supp f * ¢ C supp f + supp ¢.

Answer: First of all, f * ¢ is an almost everywhere defined and L' function. Indeed, using Fubini’s
theorem for non-negative functions,

/If*so rda:</ (@ — y)p(y) | dydz
< / o(y)( / (@ — y)ldz)dy < [l | fllo: < +oo

Therefore f * ¢ is finite almost everywhere, and belongs to L.

Suppose now that ¢ is smooth with compact support. Changing variable we have

[ /f —y)dy.

Thus f * @ is also smooth thanks to Lebsegue’s theorem, since

- the function = — f(y)e(x — y) is smooth for all y, and
OE(fW)e(x —y) = fF)e® (@ —y),
_ we have the domination
1F )™ (@ = y)| < |£(y)|sup ™) € L.

Eventually suppose that f is continuous. If gé supp f -+ supp @, then for any y € supp f, x — y does
not belong to supp ¢, thus

oz /f —y)dy = 0.
1.1.2 Plateau functions

It is not immediately clear that D([) is not reduced to the null function. One knows for example that
the only compactly supported analytic function on R? is this null function: indeed, such a function is
bounded and analytic, therefore vanishes thanks to Picard’s Theorem. However

Proposition 1.1.7 The set D(I) is not trivial.

Lecture Notes, autumn 2014, Version 2.06 Thierry Ramond
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Proof.— First of all, the function ¢ : R — R given by

eVt ast >0,
SO(t)_{O ast <0,

is smooth on R. Indeed, it is easily seen to be C*° on R*, with (*)(£) = 0 for t < 0. On the other
hand, for ¢ > 0, one can prove by induction that

1
k€N, M () = Pe(J)e !

where P is a polynomial of degree 2k. Therefore, for any k > 1, ¢(¥) (t) > 0ast — 07, so that
©*=1(t) is C* on R. Now let 2y € I, and 7 > 0 such that B(xq,r) = [z — 7,20 + 7] C I. We
denote ¢y, » : I — R the function given by

2 2
Pao,r(@) = @(r" — & — x0[7).
This function is smooth, with supp ¢, » = B(xo, 1), thus @z, » € D(I). O
As a matter of fact, we can even prove the

Proposition 1.1.8 Let / C R an open set, and K a compact subset of I. There exists a
function ¢ € D(I) such that

i) ¥ =1 in a neighborhood of K,

i) ¢ €10,1].

Such a function is called a “plateau function” - from the french word plateau, which means a flat, high
region. The usual english name for such functions is “cut-off” functions.

Proof.— Let o1 € C*°(IR) be the function defined above. We denote by ¢ the function defined by

(@) = ( / 201) " 01 (2)

We also set, for any € > 0,
1 =z

pele) = 29 (2

).

The function . is smooth, and its support is B(O, 5). Moreover

/cpg(m)da: = /go(x)dx =1.

We denote K. = {x € R,d(x, K) < €}, and 1k._ its characteristic function. We set x = 1x_ * ©¢.

We have supp x C K. + B(0,e) C Ko, and, forz € K,

¥(@) = 1x. * () = / 1. (2 — y)pe(y)dy = / 1. (z — e2)p(2)dz = / p(2)dz = 1,

since z — ez € K, for any z € supp p = B(0,1). O

Notice that the support of the function X in the previous proposition can be as close to K as needed.

Lecture Notes, autumn 2014, Version 2.06 Thierry Ramond
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1.1.3 Convergence in D(/)

The natural notion of convergence for continuous functions is that of uniform convergence, since it is
the simplest one for which the limit of a sequence of continuous functions is continuous. For smooth,
compactly supported function, it is clear what the correct notion is:

Definition 1.1.9 Let (y;) be a sequence of functions in D(I), and ¢ € D(I). We say that
(¢4) tends to ¢ in D(I) (or in the D(I)-sense), when

i) There exits a compact K C I such that supp¢; C K for all j, and suppy C K.
i) For all k € N, Hgo§k> — )| o := sup \gog-k) —p®)| =0 as j — +oo.

In that case we may write
=D — lim ;.

j—+o0

Exercise 1.1.10 Let ¢ € D(R), and, for t # 1, denote ¢y € D(R) the function given by

_ glta) — ¢(a)
le) =T

Show that the family () converges in D(R).

1.2 Definitions and examples

1.2.1 Definitions

Definition 1.2.1 Let / C R an open subset, and 7" a complex valued linear form on D(I).
One says that T is a distribution on I when

VK CC I,3C > 0,3m € N,Vp € CR(I), [T(p)| < C > sup|e!].

a<m

We denote D’'(I) the set of distributions on I, and for T € D'(I), ¢ € D(I), we denote
(T, ) :=T(p).

Proposition 1.2.2 A linear form 7" on D(I) is a distribution on I if and only if T'(¢;) — T'(¢)
for any sequence (y;) of functions in D(I) that converges to ¢ in the D(I)-sense.

Lecture Notes, autumn 2014, Version 2.06 Thierry Ramond
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Proof.— Let 7" be a distribution on I, and (¢;) a sequence in D(I) which converges to ¢ in D(I).
There is a compact K C I such that suppp; C K forall j € N, and suppyp C K. There exist
C =Ckg > 0and m = mg € N such that

Ve CR(I), [T(W)| < C Y sup|p].

a<m

In particular, for any j € N,

T(p;) — T(9)| = IT(0; — )| < C Y suplpl® — @],

a<m
Therefore T'(p;) — T'(¢) as j — +00, and we have proved the only if part of the proposition.

Suppose now that for any sequence (i) of functions which converges in D(I), we have T'(p;) —
T'(¢), where ¢ = D — lim ;. Suppose that the linear form 7" is not a distribution, that is

dK C Q,VC > 0,Vm € N,Jp € C¥ () such that |T(¢)| > C Z sup |¢()].

a<m

Then for any j € N, choosing C' = m = j, there is a function ¢; € C3°(2) such that

T(0;)] > 5> suplel®].

a<j
Let ¢; € CR2(I) given by ¢; = ¢;/|T(¢;)|. One has [T'(1)j)| =1, and
D —lim; = 0,

since for all j > «,

1 1
sup [0 < 3 sup [0 < ()] < -
oy J J
This is a contradiction, since one should have T'(;) — 0. O

As a set of continuous linear forms, D’'(I) is of course a vector space on C: if 71,7y € D'(I) and
A1, A9 € C, then A{T1 + AoT5 is the distribution given by

(MT1+ XoTo, ) == M (T1, @) + Mo (T, ).

For T € D'(I), we may also denote T or T* the distribution given by

Then, any distribution 1" can be written T' = T7 + iT5 where T} and T5 are real distributions, that is
such that (T, ) € R for any real-valued function ¢. Indeed, this relation holds with

1 — 1
T1:§(T+T> and TQZ?(T—T).
1
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1.2.2 Regular distributions

If f € L}, (I), the function f is integrable for any p € D(I), and Ty : ¢ — [ fy is a linear form.

loc

Moreover, if K C §2 is a compact subset of I, for any ¢ € C52(I), one has

ITr ()] < [[f 22y sup |l
which shows that Tf is a distribution on I. Distributions of that form are called regular distributions.

As a matter of fact, one can identify L} (I) to a part of D'(I), that is identify f with Ty, since the

loc

map f + Ty is 1 to 1. The proof of this fact is the subject of the

Exercise 1.2.3 Let f and g be two functions in L}, .(I).

i) Let K; = {z € I,d(x,dI) > 1/j,|x| < j}. Show that, for any j € N*, K; C K;.1, and
that I = ;. Kj-

i) For any j € N*, we denote 9; a plateau function above K, and () the family of functions
defined in the proof of Proposition . show that t; f * ¢, tends to 1, f in L1(I).

ii) Show that if Ty = T}, then f = g.

Answer: (i) is obvious.

(i) We prove that if f € L1(I), then f. = f x ¢. € C>°(I) tends to f in L'(I). We have
0) = 1@) < | [ F@eete — v)dy — ()
< I/f(w —ez)p(z)dz — f(z)] < / [f(z —e2) = f(z)]e(z)dz

Then by Fubini-Tonelli,

e = Flls < / ( / (@ — e2) — f(@)|o(2)dz)dx < / o) 17enf — fllirdz,

where 7, f denotes the translation of the function f given by 7, f(x) = f(x — a). The result is then a
direct consequence of the dominated convergence theorem, taking into account the continuity of the
translations in the LP spaces, that is

||7—€zf—f||Lp —0Qase —0.

Indeed we have the domination

I7e=f = fllLre(z) <2 fllLre(2).

(iii) Let f € Lj,.(I). Suppose that (T, o) = [ fe = 0 for any function ¢ € C5°(I). We have

loc

i+ xelw) = / F )5 () xe( — y)dy = 0,

since y — ¥j(y)xe(z — y) belongs to C3°(I). Thus |[1;f||,1 = 0. Since this holds for any j, we
have f = 0in L1(I).
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1.2.3 The Dirac mass

For zg € R, we denote 0, : D(R) — C the linear form given by

dao () = ¢(x0)-
For K C R a compact set, and any function ¢ € C?, one has
102 (0)] < sup |,
so that d, is a distribution on R. It is called the Dirac mass at xg.

That distribution is not a regular one. Indeed, otherwise we would have, for any function ¢ € D(R)
such that xg ¢ supp ¢,

p(x0) =0 = / f(2)p(z)da.

so that f = 0 a.e.. In particular, for a plateau function 1) above K = {xo}, we would have

L= w(ao) = (17.0) = [ F=0.

which is absurd.

1.2.4 Hadamard principal value of 1/17

Let us consider the linear form 7" : C5°(R) — C given by

T(p) = lim /||> Md:v.

e—0t x

This limit exists for any ¢ € C§°(R). Indeed, for such a function, there exists a real number A > 0
such that supp ¢ C [—A, A]. Then, there exists 1) € C>°(R) such that

p(r) = ¢(0) + 2y (x),

and we have

o(x) () ©(0)
dx = —dx = —d dx.
/|:c|>£ z ! /a<|a:|<A T ! /e<x|<A Zz $+/E<x|<A¢(iC) !

Since © — ¢(0)/x is an odd function, the first integral vanishes. Moreover, using for example
Lebesgue’s dominated convergence theorem, we have

A
/ Y(z)dr — / Y(z)dr ase — 07,
e<|z|<A —A

Now we show that the well-defined linear form T is a distribution on R. Let K C R be a compact set,
and A > 0 a real number such that K C [—A, A]. For p € Cla 4 (R), we have seen

1
T(p) = /[A,A} Y(x)dz, with ¥(x) :/0 ' (tx)dt.
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Therefore

T(p)| <24 sup [v(z)] <24 sup |¢/(z)] <24 Y sup eV (z)],
z€[—A,A] z€[~A,A] 0<5<1

and this shows that T satisfies the estimate in Definition [L.2.1]. It is important to notice that the
constant C' in the estimate is here 24, that is indeed depend of the compact K.

This distribution is called (Hadamard'’s) principal value of 1/ac, and we denote it by

vl = lim (P(x>d:n.
V(L)) = 1 /||

x e—0t T

1.3 The order of a distribution

In the three examples above, the number m asked for in the definition does not depend on the compact
K. It is not the case generally, and this fact is useful enough so that it has been decided to give it a
specific name.

1.3.1 Definition, examples

Definition 1.3.1 Let 7' € D'(I). We say that T is of finite order m € N when

VK CC Q,3C > 0,Yp € CE(Q), (T, )| <C D sup|dy.

laf<m

The space of distributions of order m on I is denoted Dzm)(I).

Notice that if a distribution is of order m, it is also of order m' for any '’ > m. We shall say that
T € D'(I) is of exact order m > 1 when T € Dzm)(I) \DEm—l)(I)'

We have seen that if T" is a regular distribution, that is T' = T’ for a function f € L}OC(I), then T' is
of order 0. The Dirac mass 5m0 is not a regular distribution, but is also of order 0. At last, we have
shown that the distribution pv(1) € D'(R) is of order 1.

We ask now the question if pv(i)is of order 0. Suppose that it is. For any A > 0, there would exist
C'4 > 0 such that for any @ € C[’fA Al

(T, )| < Casuplep|.

1

loc function out of 0. By this, we mean that if

Now recall that the distribution pv(%) is given by a L
¢ € C3°(R) satisfies supp ¢ C R*, we have

o) = [ A,

T T
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Therefore, the only possible obstruction to the fact that pv(1/z) is of order 0 would concern functions
that are supported at the origin. Let us choose a sequence (gpn) which supports get closer and closer

to 0. We fix ¢, € C[Ofu} such that ¢, > 0 and

1
1forz € [—,1],
n

on(x) = 1
0 for z ¢ [%,2].

We know that there exists C' = C > 0 such that [(T', ¢,,)| < C'sup ¢, < C. On the other hand, we

have the lower bound ) )
1

(T, on) :/ Wd$2/ —dz > Inn.
1x

1 x
2n

Therefore we should have Inn < C for all n, a contradiction. We have proved that pv(1/z) is a
distribution of exact order 1.

Exercise 1.3.2 Let 7" : Cj°(R) — C be the linear form
T(e) =>_ oY)
Jj=0

Show that T is a distribution, and that 7" is not of finite order.

1.3.2 Non-negative distributions

Definition 1.3.3 We say that 7' € D’(I) is a non-negative distribution when (T, p) € R" for
any function ¢ € C§°(I) with values in R*.

Proposition 1.3.4 If 7' € D'(I) is non-negative, then it is of order 0.

Proof.— Let K C I be a compact set, and x € Ci°([) a plateau function above K. For ¢ € C¥ ()
with real values, one has
Vo eI, —xsup|e| < p(x) < xsupel,
thus
(T, + xsup|pl) = 0 and (T, x sup |¢| — @) = 0.
This gives

(T )] < (T, x) | sup o]

If ¢ € C(I) is complex valued, we write ¢ = @1 + ip2 with ¢1, 2 real-valued, and, with what we
have seen before,

(T, o) = (T, o1 +ipa)| < KT, o1)| + (T, 02)| < Csup 1|+ Csuplpa| < Csuplgl,

and this concludes the proof of the proposition. O

Notice that non-negative distributions are therefore continuous linear forms on CO(I), that is non-
negative Radon measures.
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1.4 Derivatives of distributions

Proposition 1.4.1 Let 7' € D'(I). The linear form on D(I) defined by
= (T, —¢)

is a distribution, that we call the derivative of T, and that we denote by T".

Proof.— Let K C I be a compact set, and C = Cg > 0, m = mg € N the constants given by the
fact that T' € D'(I). For ¢ € C32(I), we have

(T, @) = (T, ¢'| < Cx Y suplT < C Y sup )],

a<m a<m—+1
which shows that 7" is a distribution. O

Notice that if T' € D’'(I) is of order m, then T" is of order m + 1 at most. However, to differentiate a
distribution do not always increase the order, as in the case of regular distribution, for example:

Proposition 1.4.2 If T = Ty with f € C!(I), then T" = T}..

Proof.— For ¢ € C3°(I), integrating by parts we have

(T, 0) = —(T.¢') = — /I f(@)g! (2)dz = /, f(@)¢()ds = (Tpr, ).
O

Since T” is a distribution, it can be derivated. Iterating this idea, one can define the successive
derivatives T®) of T for all k € N. This means that distributions can be deviated to all order, with

the formula
(T®, @) = (~1)"(T, ™).

Example 1.4.3 Let H : R — C denote the Heaviside function, namely H(z) = 1p+(z). The
function H belongs to L} (R), and we can denote T = T} the associated regular distribution.
For ¢ € C3°(R),

—+o00
(T, g) = —(T, ') = — / o (2)dx = (0),
so that TV = §y.

Example 1.4.4 Let f € L] (R) be the function given by f(z) = In(|z]), and T = T} € D'(R)

loc
the associated distribution. We want to compute 7"; it seems reasonable that 7" is related to the

function @ + 1/x, but this one is not in Li (R).

However, let A > 0, and ¢ € C3°([—A, A]). We compute

A 0 A
(T, @) = _/A In|z| ¢ (x)dx = —/ In(—z)¢' (x)dx _/0 In(x)y (z)d.

—A
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One can not integrate by parts (x ~ In(z) is not in C1([0, A])), but it is an easy consequence of
the dominated convergence theorem that

—€ A
(T, @) = — lim / In(—z)¢'(x)dz — lim / In(x)¢ (z)dx

e=0/_4 e—0 /.
Now we integrate by parts, and we get
. oz
(T, ) = — lim [ In(e)(¢(—¢) — @(e)) _/ Qd:p '
e—0 ccla|<A T

Eventually, Hadamard's lemma gives In(¢)(¢(—¢) — () = eln(e)((—¢) + ¥(e)), where ¢ is
the smooth function such that ¢(z) = ¢(0) + xtp(x). Therefore

Tp) = iy | s P2 40 — (upl1/2). )
so that 77 = pv(1/z).

The only functions that have the null function as derivative are constant functions. For distributions in
1d, the same result holds true:

Proposition 1.4.5 If 7' € D'(R) satisfies 7" = 0, then T is a regular distribution associated
with a constant function.

Proof.— We start the proof by a remark that may be useful in other contexts. A function ¢ &€ CSO(R)
is the derivative of a function P € CP(R) if and only if [ ¢ = 0. Indeed, if ¢ = 1)’ for a compactly
supported 1, then f+ x)dr = f+°° (z)dz = 0. Conversely, if [ ¢ = 0, the function ¢ : z
ffoo ( )dt is compactly supported, with support included in that of ¢, and satisfies 1// = .

Now let x € C3°(R) a function such that [ x = 1. For ¢ € C5°(R), we have
P = @1+ 2 with ¢ Zw—(/w)x, and p; = (/w)x,
and (T, ) = (T, 1) + (T, @2). Since [ 1 = 0, there exists 1) € C§°(R) such that 1 = ¢’. Thus

<T,¢>=<T,w'>+(/so)<T,x>=—<T’,w>+(/ (T, ) = c/ (To, ),

where C' = (T, x) is a constant, independant of . O

Note that Proposition says in particular that the derivative of a regular distribution associated to
a constant function is null. Therefore, the above statement is an equivalence.

1.5 Product by a smooth function
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Proposition 1.5.1 Let 7' € D'(I), and f € C*°(I). The linear form

o = (T, fo)

is a distribution, and we denote it fT.

Proof.— Suppose (p;) is a sequence of functions in C3°(I), that converges to 0 in the D([)-sense.
There is a compact K CC I such that supp¢; C K for all j, which implies supp fy; C K for all j.
Moreover, for any o € NU {0},

(fo)@ =3 (‘;) F8) pla—b)

BLa
so that if we denote

M = )
max sup 71

we see that

sup (i) @) < MY (g) wup ]

BLa

Since each of the terms in the sum tends to 0 as j — 400, we have (f©;)(® — 0inD(I). Therefore,
since T'is a distribution, (T, f¢;) — 0. Proposition shows that f7" is a distribution on I. O

Exercise 1.5.2 For f € C*(R"), show fdy = f(0)dp.
Exercise 1.5.3 For f € C*(R") and g € L},.(R"), show fT, = T},.

loc

Exercise 1.5.4 Show that zpv(1/z) = 1.

As for the product of two smooth functions, there is a Leibniz formula for the product of a distribution
by a function. We leave the proof of the following result to the reader.

Proposition 1.5.5 For f € C*°(I), and T' € D'(I), we have

VaeN, (fT)@ =Y (g) 10 a9,

B a

To finish with, we solve a (very simple) differential equation in D'(R).

Proposition 1.5.6 Let I C R be an open interval, and a € C*°(I). The distributions in D’'(I)
that satisfy the differential equation
T +aT =0

are exactly the C! solutions, that is the regular distributions T with f : z Ce=4@) | for some
constant C' € C, where A is primitive of a in I.
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Proof.— Let A be a primitive of a on I. For T' € D'(I), we have, using Leibniz formula,
(eAT) = aeT + AT = eA(T' + aT).

Thus
T'+al =0 <= ('T) =0= AT =To <= T = Tc =Tp,-a.

Exercise 1.5.7 Solve in D'(I) the inhomogeneous equation 77 + T = f, for f € C>=(I).

1.6 Support of a distribution

1.6.1 Smooth partition of unity

Proposition 1.6.1 Let K CC R be a compact set. Suppose that K C U;\Tzl V;, where the Vj's
are open subsets. Then there exist functions x;, 7 = 1,... N, such that

i) xj € C°(V;),

ii) Z;Vﬂ X; = 1 in a neighborhood of K.

Proof.— First of all, there exist compact sets K; C R such that K; C V; and K C U;V:1 K;.
Indeed, for z € K, there exists a j € {1,..., N} and r > 0 such that B(z,2r) C Vj. Denote then
B, = B(z,7), so that B, C V;. We have K C |J, ¢ Bz, thus there exist B;,, ..., B, such that

p
K c | B,
j=1

Then, for j € {1,..., N}, we denote

Aj={te{0,...p}, By, CVj}, Kj= ] BnnK,
LeA;

and the Kj satisfy the required properties.

Now for j € {1,..., N}, we choose a plateau function v; € C5°(V;) above K. In a neighborhood
V of K, we have Z;VZI Y > 1. Then if § € C°(V) is a plateau function above K, and 1)p = 1 — 6,
we have

N
U=>) ¢;#0onR.

J=0

Thus the functions x; = 1/13-/\1/ are C™ and satisfies the two properties of the proposition. O

1.6.2 Definitions
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Definition 1.6.2 Let 7' € D'(I), and V C I an open set. We say that 7" vanishes in V' when

Vo € C5°(R2), suppp CV = (T,p) =0.

Proposition 1.6.3 Let (V;) be a family of open subsets of I, and V' = J; V;. If T € D'(I)
vanishes in each of the Vj's, then T' vanishes in V.

Proof.— Let ¢ € C3°([]) such that K = supp ¢ C V. Since K is compact, one can find j1, j2,. .., JN
such that K C U{Ll Vj.- Then, let (%) be an associated, smooth partition of unity. We have

N
k=1
since supp X C V. O

Definition 1.6.4 The support of a distribution T € D'(I) is the complement of the largest
open set (that is: the union of all the open sets) where T" vanishes. We denote it supp 7.

Notice that supp 7 is closed, and the following characterizations are convenient:

e xo ¢ suppT if and only if there is a neighborhood V' of x( such that (T, ¢) = 0 for any
¢ € (V).

e zo € supp T if and only if for any neighborhood V' of g, one can find ¢ € C3°(V') such that
(T, ) #0.

Example 1.6.5 i) Let "= dp. If V is an open set that does not contain {0}, then (T, ¢) =
©(0) = 0 for any C3°(IR™) such that suppp C V. Thus suppT C {0}. On the other hand,
if v is an open set that contains 0, it contains an open ball of the form B(0,2r). We
can then find a plateau function ¢ over B(0,r) in C§°(V'), and for this function we have
(T, ) = 1(0) = 1. Therefore we have 0 € supp T and finally supp T = {0}.

i) If T = T} for some f € CO(I), with I an open subset of R, we have suppT = supp f.
Indeed, suppose that zp ¢ supp f. There is a neighborhood V' of z( such that fiv =0.
For o € C5°(V'), we have thus (T, ) = 0, so that T vanishes on V', and zq ¢ supp 7.
Reciprocally, if 2o ¢ supp T, there is a neighborhood V' of x such that, for all ¢ € C5°(V),
we have [ fodz = (T, ) = 0. We have seen (in Exercise ) that this implies f =0
in V, thus xg ¢ supp f.
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1.6.3 Some properties

Lemma 1.6.6 Let I C R be an open set, and T' € D'(I).

i) For k € N, supp T®*) suppT'.

if) For f € C>(I), supp fT C supp f NsuppT.

Proof.— Let zg gé suppT. There exists a neighborhood V' of x( such that for all ¢ € CSO(V),
(T, ) = 0. Butif o € C°(V), 1 = ) € C§°(V), thus

Therefore zy ¢ supp T(*) which proves i). Now we prove the second point. If z ¢ supp f Usupp T,
x( either belongs to (supp f)¢ or to (suppT')¢. In the first case, there exists a neighborhood V' of
wo such that f|,, = 0. For p € C§°(V), we have (fT,¢) = (T, fo) = 0, thus =g ¢ supp(fT).
In the latter case, there exists a neighborhood V' of xq such that, for all ¢» € C3°(V), (T,¢) = 0.
For ¢ € C5°(V), f ias a smooth function, which vanishes out of a compact set included in V. Thus
(fT,¢) =T, fe) =0, and zo ¢ supp fT. m

The following result is very useful.

Proposition 1.6.7 Let ¢ € C3°(I) and T' € D'(I). If suppp NsuppT = 0, then (T, ¢) = 0.

Proof.— Let x € supp ¢. We have, by assumption, x §é supp T, thus there is a neighborhood V, of x
on which T" vanishes. From the covering of the compact supp ¢ with the open sets V,,, one can extract
a finite covering

N
supp ¢ C U Vi,
J=1
Now let x1, x2,..., XN be an associated smooth partition of unity. We have
N
(T,0) = (T, x;9) =0,
J=1
sincex; € C5°(Va;)- O

Be careful: one may have ¢ = 0 on suppT and (T, ¢) # 0. For example, this is the case for T = (56
and ¢ € C§°(R) such that p(0) =0, ¢'(0) = 1.

1.6.4 Compactly supported distributions

For I C R an open set, we denote 5’(9) the vector space of distributions on I with compact support.
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Vp € CO(Q), {T,9)| < C ) sup |0y,

|| <m K

Proposition 1.6.8 Any compactly supported distribution has finite order. If T' € E'(I), with
order m, then for any compact neighborhood K of supp 7', there is a constant C' > 0 such that

Proof.— Let K be a compact neighborhood of supp1’, ie. a compact set such that supp7’ C f(, and

X € C§°(K) a plateau function above supp 7.

Since T is a distribution, there exist C' = C(K) > 0, m = m(K) € N such that

Vi € C5°(Q), supptp C K = [(T,¥)| < C Y sup|9®y],

la|<m
and from now on we denote m the smallest integer for which this property holds.

For any function ¢ € C§°(§2), since supp ¢ — x¢ NsuppT = 0, we have

(T, ) = (T, xp) + (T, — xp) = (T, xp)-

Since supp(xy) C K, we have

(T, )| < KT, xe) <C Y sup|0%(xe)-

laf<m

At last, Leibniz’s formula gives that

sup [0%(x)| = sup [0”(xp)| < C' > sup |07y,
K B<a K

which ends the proof of the proposition.

O

Be careful: as it follows from the exercise below, one can not in general replace the compact set K

by supp 7" in the estimate of Proposition [1.6.8.

Exercise 1.6.9 Show that the linear form 7" on C§°(R) given by

n>0
is a distribution. Give its support K, and show that T is of order 1.

Show that there is no constant C' > 0 such that, for any function ¢ € C§°(R), it holds that

(T, o) < Cllgller(x)-

Hint: Test this inequality on suitable plateau functions.

The next result permits us to identify £'(I) with the space of continuous linear forms on C*°(I).
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Proposition 1.6.10 Let 7' € £'(I), and m € N its order. Let x € C5°(I) be a plateau function
above suppT'. We denote T': C*°(2) — C the linear form given by

T(f) = <T7 Xf)

Then

i) T does not depend on the choice of Y.
ii) For ¢ € C°(Q), T(p) = (T, ¢).

i) T is continuous on C*°(€2), in the sense that

3K € Q,3C > 0,Vf € C®(Q),|T(f)| < C ) sup|0°f].

a<m

Last, if L : C*°(€2) — C is a linear form satisfying ii) and iii), then L = T.

Notice that (iii) implies that, if (¢;) € C*°(£2) converges uniformly to ¢ € C°°(2) on every compact
subset of €2, and this is also true for their derivatives at all order, then (T, p;) — (T, ¢).

Proof.— Let X1, X2 be two plateau functions above suppT'. For ¢ € CSO(Q), we have

(T, x1p) — (T, x2p) = (T, (x1 — x2)¥) =0,

since supp(x1 — x2)¢ NsuppT = (). The same way, ¢ € C§°(£2), since supp(1l — x)pNsupp T = 0,

T(p) = (T, xp) = (T, xp) + (T, (1 = x)p) = (T, ).

Thus (i) and (ii) are proved. Now let K bea compact neighborhood of suppI’. Since 1" is a distribution
of order m, there exists C' = C(K') > 0 such that

Vi) € C5°(Q), suppt € K = [(T, )] < C Z sup |09

la|<m
For f € C>°(Q), supp xf C K, and

TN = KTxH <C Y suplo*(xf)| < C" Y suplo”f,

loo|<m |a|<m K

which proves iii).

Eventually, suppose L satisfies ii) and iii). Thanks to iii), if f € C*°(I) satisfies supp f N K =10, we
have L(f) = 0. Thus let x € C§°(I) be a plateau function above K. We have

L(f) = L(xf) + L((1 = x)f) = L(xf) = (T, xf),

using ii). O
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Eventually, we notice that a distribution T" with compact support in 2 C R"” can be extended to a
distribution (with compact support) 7" on R™. For T' € £'(2), it suffices to set, for ¢ € C>°(R"),

<T7 90> - <T> 90\9>'

This remark may be of importance in particular if one wants to convolve or Fourier transform a distri-

bution in £'(2).

1.6.5 Distributions supported at one point only

Let 9 € R. We are interested in distributions 7" € D’'(R) such that suppT C {zo}. Without loss of
generality, we suppose that xg = 0.

We need a technical result, which has an interest on his own.

Proposition 1.6.11 Let T € D'(I) be a distribution of order m, with support in a compact set
K. If ¢ € C*(I) satisfies

VkeNVze K, k<m= o®(z) =0,

then (T, ¢) = 0.

Proof.— We proceed in two steps.

- Let ¢ € C§°(I), and K C I a compact set such that

Va € N, a§m2>(g0(a))| = 0.

K

Forall e > 0, and all @« < m, setting K. = K + B(0,¢), we have

sup ’(p(a)‘ — O(Emfoz+1)_
K.

Indeed, for a given o € N, there exists . € K, such that

sup [p(™)] = |o!¥) ().
K

€

Then one can find 2y € K such that |z. — x2g| < ¢, and Taylor’s formula for @(a) at order m — «
between xg and x. gives

T —x0)?
o (z.) = Z uw(wﬁ)(%)

pima P
_ gg)(m—atl) 1
4 L2 (50) a)! / (1= )" Dt + (1 = t)ao)dt.
TR A

Since xg € K, all the terms in the sum vanish, and, as stated,

(m—a+1)
« 6 m m—o
o ()] < e D] = O(emeth,
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- Now let x € C3°(] — 1,1[) be a plateau function above [—1/2,1/2] and, for any ¢ > 0, set
Xe(r) = x(%). Since supp(1 — xc) NsuppT = (), we have, for any € > 0,

(T, ) = (T’ x=0)-

Since T' is a distribution of order m, and because supp X C [—1, 1] for any € < 1, there exists
C > 0 such that, for any € > 0,

(T x=0)| < C Y sup [(xe)™).

k<m 75¢

Then, using Leinitz formula, we see that there exists a constant M > 0, such that

(T, @) <MD sup |p*)] < Me,

k<m 7&F
thanks to the above estimates. Since this holds for any € > 0, we have (T, ) = 0 as claimed. O

The main result of this section is the

Proposition 1.6.12 Let 7' € D'(I), with T # 0, and z¢g € I. If suppT C {xo}, there exists
N € N and N + 1 complex numbers ag for 0 < k < N such that ay # 0 and

T=Y ai®.

la|<N

Proof.— We write the proof for £y = 0. Such a distribution T" has compact support, thus is of finite
order, and we denote NV its exact order. Let x € C3°(I) be a plateau function above {0}. For

¢ € C3°(I) we have .

p(@) = Y M Ox(@) +r(@),
k<N
where
.’Bk xN+1 1
rle) = (1= x(@) 30 Fre0)+ T [0 0% D ey

k<N
Since the function r vanishes at order N at 0, the previous proposition asserts that

zk

(T ) = > ¢M(ONT, @),

k<N

This is precisely what we have claimed, if we set a;, = (7, ’”k—lfx(x» At last, if ay = 0 then 1" would
be of order < N — 1. O

The coefficients ay, in this decomposition are unique. Indeed

Proposition 1.6.13 Let g € I, and N € N. The distributions (5%))%1\[ are linearly indepen-
dent in D'(I).
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Proof.— Again, we write the proof for g = 0. Suppose that Z akéék) = 0 for some a, € C. Let
k<N
X € C§°(I) a plateau function above {0}, and j € N. We compute

@, a7x) = (~DF[@ )@,

But [(mﬁx)(k)hz:o vanishes if k # j, and amounts to k! otherwise. Thus, for any k < N,

0= (> axdy”,2lx) = (~1)7jla;,
k<N

which shows that all the ay’s are zero. O

1.7 Sequences of distributions

1.7.1 Convergence in D’

Definition 1.7.1 Let (7)) be a sequence of distributions in D’(I). We say that (T}) converges
to T' € D'(I) when, for any function ¢ € C§°(£2), the sequence of complex numbers ((Tj, ¢))
converges to(T’, ).

Example 1.7.2 Let T}, € D'(R) be the distribution associated to the function z +— e**  For
¢ € Cg°(R), and A > 0 a real number such that supp ¢ C [—A, A], we have

A
Ti) = [ pla)ds -0
"y
by Riemann-Lebesgue's Lemma (or more simply, here, integrating by parts). Thus the sequence
(T}) converges to 0 in D'(R).

Example 1.7.3 Let x € C5°(R) such that [ x = 1, and () the sequence of functions defined by

Xe(@) = &7 IX(2):

We also denote (7;) = (T} ) the associated family of distributions. For ¢ € C3°(R), with A > 0
a real number such that supp ¢ C [—A, A], we have

(T, ) = /[ e Xe(2)p(x)dr = /[ e x(y)p(ey)dy.

By the Dominated Convergence Theorem, we see that (T, ¢) — ©(0) as € — 0. Therefore the
sequence (xc) converges to dy in D'(R).
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Exercise 1.7.4 (see also Exercise ) Show that the sequence (
imdy in D'(R) as € — 0. We shall denote

1 1 1 1
= - im0y and —— = vp(—) — imdy.
pr vp(:E)—t—m' 0 an por vp($) 1o

1
) converges to vp(—) F
x x

The operations that we have defined on distributions are continuous with respect to the notion of
convergence. More precisely

Proposition 1.7.5 If (T}) converges to T in D'(I), then

i) Forany k € N, (T](k)) converges to T(*).

i) For any f € C>(I), (fTj) converges to fT.

Proof.— Let ¢ € C{°(I). We have clearly
(0°T5, ) = (—1)/*UT3, %) = (~1)*UT, 0%) = (9°T. ),

and
([T, 0) =Ty, fo) = (T, fo) = (fT, ).
O

Exercise 1.7.6 Show that if (f;) converges to f in C*°(I), then (f;T") converges to fT" in D'(I).

1.7.2 Uniform Boundedness Principle

We state below, without proof, an important theoretical result, which is a “distribution version” of the
well-known Banach-Steinhaus theorem.

Proposition 1.7.7 Let (T}) be a sequence in D'(I), and K CC I a compact subset. [f, for
any function ¢ € C3°(I) with support in K, the sequence ((T}, ¢)) converges, then there exists
C > 0 and m € N, independent of j, such that

Vo € C5°(), suppp C K = [(Tj,9)| <C Y sup|97¢].

laj<m

As a matter of fact, we will only use the following

Corollary 1.7.8 Let (7)) be a sequence of distributions on I. If, for all functions ¢ € C3°(I),
the sequence ((T},¢)) converges in C, then there exists a distribution 7' € D’'(I) such that
(T;) = T in D'(I).
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Proof.— Let T : C3°(§2) — C be the linear form given by
T(p) = lim (T}, ).

j—+oo

We want to show that 1" is a distribution. So take K C I a compact subset. Proposition
ensures that there is a constant C' > 0 and a natural number m such that, for any ¢ € C3°(I) with
supp ¢ C K, we have

(T, )| <C > sup|d™yl.

laj<m

Then we can pass to the limit j — 400, and we get the required estimate. O

1.A Exercises

Exercice 1.A.1 Show that the following expressions, where ¢ € C§°(R), define distributions on
R:

/R o(22)dz, /R S (2)e™ da, /Owcp'(x)cosxd:c, /Ooogpl(x)ln(x)da:.

Are these distributions regular ones? If not, give their order and their support.

L

Exercice 1.A.2 Show that the following linear form is a distribution on R, that we denote Fp(—2
T

_ p(x) ©(0)
¢H€ln8+(/|$|>6 X du =2 e )

Find a link between pv(i) and Fp(%).

, o z" , .
Exercice 1.A.3 For n € N, compute the successive derivatives of —lH(:n) in D'(R), where H is
n

the Heaviside function. For o €]0, 1], compute the derivatives of the distribution associated to
the function = — |z|*H (x).

Exercice 1.A.4 1. Let p € N. Solve in D'(R) the equation 2T = 0.
2. Solve in D'(R) the equations

a) T = 1.

b) 22T = 1.

Exercice 1.A.5 We want to solve in D'(R) the differential equation
(E) 2*T' 4+ T = 0.

1. What are the solutions of (E) in D'(]0, +o0[) ? In D'(R*) ?

2. Show that there is no distribution 7" € D’(RR) such that, for all ¢ € C§°(]0, +00[), we have

+0o0o
T = [ epla)da.
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Hint. Use a sequence of functions () of the form ¢, (x) = ¢(nx), where ¢ is a C* function
with suitably chosen support.

3. What are the restrictions to R* of the solutions of (E) on R?
4. Give all the solutions to (E) with support included in {0}.
5. Find all the solutions of (E) in D'(R).

Exercice 1.A.6 Let (f,), be the sequence of functions defined on R by

oz
1+ na?

Show that (f,,) converges in D'(R) to a distribution. Which one is it?

Exercice 1.A.7 1. Compute the limit in D'(R) of the following sequences of distributions :

. , 1
Ap =n'%"* B, = cos?(nx),Cy, = nsin(nx)H(z), D, = g op, Ep =€ pv—.
n T

2. Show that the sequence (T},) given by T}, = n(d1/, — 6_1/,) converges in D'(R). Compare
the order of the T), the order of the limit of (7},).

Exercice 1.A.8 Show that, for any ¢ € D(R), the limit lim / #(2) dz exists, and defines a
R

e—0+ T — 1€

distribution.

Exercice 1.A.9 Consider the linear form 7" on C§°(R) given by

+00
1 1
T : — —)—p(——))
o ; ) —e=1))
1. Show that T is a distribution, of order 1.
2. Show that 7" is not of order 0.

3. Show that the support of T'is S = {0} U {3}, k € Z*}.

4. Find a sequence (¢;) of functions in C3°(R) such that, as j — +o0,

(»)

= for all p € N*, ©;

- <T’ @j> 7L) 0.

— 0 uniformly on S,

Compare with Definition n

Exercice 1.A.10 For any open interval I of R, we denote P; the linear, differential operator
1
Pr:TecD(I) — 2*T" + 2T + <x2 - 4) TeD).

We also denote P = Pg, and we are looking for distributions T' € D'(R) such that PT = 0.
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1) For T € D'(R), we denote T™* the distribution defined by (7™, p) = (T, ). We shall say
that 7' is real when T' =T,
(a) iF T =Ty with f € L}, (R), what does it mean for f that T is real?
(b) Show (T™)* =T. What is (fT)* for f € C*(R)?

(c) Show that any distribution 7" € D'(R) can be written T' = T} + iT5 where T; and T
are real. Show that T'= 0 if and only if T} =15 = 0.

(d) Explain why it is only necessary to cope with real distributions that satisfy P;/T = 0.

We denote Ker(Pr) the space of real distributions T' € D'(I) such that P;T = 0.

(@)

2) (a) For p,q € N, compute zP4;".
(b) For k € N, compute P(6").
(c) Deduce that there is no non-trivial distribution in Ker(P) with support in {0}.
3) (a) Let I C R be an interval. Show that the solutions in D’(I) of the differential equation

U" 4 U = 0 are exactly the C? solutions. Hint: set V = e®U. What about real
solutions?

(b) For T € D'(]0, +o0[), compute (z'/T')". Deduce Ker(Plg, 1 o).
(c) Give Ker(P_0f)-

4) Let Ty € Ker(Pjg o)) and T- € Ker(F_ )-

(a) Show that the following distribution f belongs to L} (R):

loc

flz)=T4 as x>0 ; f(z)=T- a z<0.

(b) Let then S € D'(R) defined by S = PTy. What can you sy of the support of .S ?

(c) Let x € C3°(R) a plateau function above {0}, with support in [—1,1]. For ¢ > 0, we
set x:(x) = x(x/e). Show that, for any ¢ € C5°(R), and all € > 0, we have

(S, xe) = /R f(@)be(z) de

where 1), is uniformly bounded and supported in [—¢,¢]|. Deduce that (S, x.¢) — 0
as ¢ — 0, then deduce that Ty € Ker(P).

5) (a) Show that Ker(P) is exactly the space of functions f defined at question (4a).

(b) What is the dimension of Ker(P)? The dimension of the subspaces Ker(P) N C°(R)
and Ker(P) N CY(R)?

Exercice 1.A.11 We recall that for a function f of one real variable, and a € R, we denote 7, f
its translation by a defined as

Taf(x) = f(z —a).
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If (T2)nez is a sequence of distributions, one says that the series . T}, converges when the
sequence (Sy), given by Sy = Zg:_N T,, converges. The limit of the sequence (Sy) is then
called the sum of the series > ., T),.

Part A.— Let T € D'(R). We denote 7,T Ithe linear form on C5°(R) given by

Tl (p) = (T, 7—ap)-

1. Show that 7,7 is a distribution. What is 7,7 when T' = T} for some f € L}, (R)?

loc

We shall say that 7' € D'(R) is a-periodic when 7,(T) = T.

2. Show that the series 3, 02, converges in D'(R), and that its sum W is 27-periodic.

3. Let us consider a sequence (¢;,) of complexe numbers such that
(1.A.1) AC >0, peN, |e,| < C(1+ |n|)P.

a) Show that, for ¢ € C§°(R), we have, for n € Z*,

/ei”xgo(x)d:v =0(n 77?2,

b) Deduce that Z cn€™® converges in D’'(R), and show that its sum is a 27-periodic distribution.
nez

Part B.— Recall that if f € C*°(R) is 2m-periodic, then

27
f@) =S e, enlf) == [ flo)e " da,

nez 2m 0
where the ¢, (f) are the Fourier coefficients of f, and where the series converges normally.

1. Let w € C3°(R) a non-trivial, non-negative function. Show that }, _, 7_op-w converges and
define a non-negative smooth function on R.

2. Deduce the existence of a function ¢ € C5°(R) such that
Vo € R, Y Toopeth(z) = Y d(w + 2kw) = 1
keZ keZ
3. Let T be a 2m-periodic distribution. We call Fourier coefficients of T' the numbers

1 A
(1.A.2) en(T) = 2—<T, e "), n €Z,
s
a) Show that the sequence (¢, (7)) satisfies the property ([L.A.1). Therefore, the series Y, _, ¢, (T)e™*
converges in D'(R).
b) For ¢ € C§°(IR), we denote ¢ the smooth, 27-periodic function given by

o(z) = Z Tokrp(x) = Z o(x — 2km).

k€EZ keZ
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Show
(T, o) = (T, pp) =2m Z c—n(T) cn ().

nez
cl Deduce finally that, for any periodic distribution 7' € D'(R), we have, with the ¢, (T') given by
1.A.2

(L.A2),

T= Z cn(T)e™?,
Part C.—
1. Compute the Fourier coefficients of the distribution W = ZnEZ 0omn.-

2. Deduce Poisson’s formula:

1 .
Vo € CPR), Y p@nm)=—Y &(n),
nez neZ
where ¢ is the Fourier transform of :

+oo )
2(6) = / e~ ()

—00
1.B Answers

Answer 1.B.1 1. Let ¢ € Cg°(R), and A > 0 such that suppp C [—A, A]. Since z — p(z?) is
an even function,

VA
T(p) = /R o(a?)dz =2 /0 o (a?)dr.

Then we can make the change of variable ¥ = z? and we obtain

A
T(p) := /0 w(y);@dy-

1

Thus T is the regular distribution associated with the L] . function f : z — TH(JT) It is
x

therefore of order 0 and its support is supp f = R™.

2. Let ¢ € C§°(R), and A > 0 such that supp ¢ C [—A, A]. Integrating by parts, we have

T(p) := /Rgol(x)eﬁdac = /i go’(a:)erdx :M— /i 2x<p(a:)ex2dx.

Therefore T is the regular distribution associated to the smooth function f : z > —2ze%”,

3. Let ¢ € C§°(R). We integrate by parts and we get

T(p):= /07r ¢ (x) cosz dx = [p(z) cos 3:]34—/(: o(z) sinzdr = —<,0(7T)—<,0(0)—|—/07r () sin zdz.

So T = —dp — o + Ty, with f : x + sinz 1 y(z). Thus T is of order O (even if it is not a
regular distribution), and one can easily show that its support is [0, 7].
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4. Let A > 0. For all ¢ € C5°(R) such that supp ¢ C [—A, A], we have

A A
T(¢)] < /0 ¢/(@)| [Inzldz < sup|y| /0 |Inzldz,

so that, for Cy = fOA |Inz|dz,

1
()] < Ca Y suple®)].
k=0

Therefore T is a distribution of order 1. Now we show that 7" is not of order 0 (as we did
for pv1/x), so that, in particular, it can not be a regular distribution. For each n, we choose
on € Cﬁ)o2] such that —1 < ¢, < 0 and

1
—1 for z € [—,1],
Spn(fv) = 1n
f — 2].
0 for = ¢ [Qn’ ]

Suppose that T" is of order 0. Then there would exist C' = Cjg9 > 0 such that [(T',py,)| <
C'sup |¢n| < C. On the other hand, we have, since ¢, and In are of class C! on [1/2n,2],

2 2 1
T, on) = " () Inzdr = — (P"(x)da: > ldaj > Inn.
¥ . Pn Lz

1 1 ZT

2n 2n

Therefore we should have Inn < C for all n, a contradiction.

Concerning the support of T, it is clear that suppT C R*. Moreover if 2o > 0, one can find
0 > 0 such that Jzg — 0,20 + §[C]0,+o0[. Then if ¢ is a plateau function above {z(} in
C§°(Jzo — 0,0 + J[), we can compute (T, ) integrating by parts, and we see that xy € suppT.
Thus ]0, +00[C supp T, and since supp T is closed, we obtain suppT = R™.

Answer 1.B.2 We denote T’ this linear form. Let A be a positive real number. For any ¢ €
CE’_OA Ay We know, by Taylor's formula, that there exists ¢ € C°>°(R) such that

o(x) = ¢(0) + 2¢'(0) + 2*Y(),

p(z) ©(0) ¢'(0)
de = okl ——d dz.
/|f”>€ 2 /A>:v|>s x? x+/14>|z|>z-: x x+/,4>|x>sw(x)) !

The second integral vanishes since we integrate an odd function on a symmetric interval, and we

obtain
/ #lz) dx = ZLP(O) —I—/ Y(z) do
|z|>e A>|z|>e

_ p(z) ¢(0)y
. ( /H T o2 ) = /,m V(@)ds.
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Moreover, since )
vle) = [ (-0 e,
0

we see that
(T, o) < 2Asup|¢"],

so that T is a distribution, of order 2.

Now we compute the derivative of pv(1/xz). For ¢ € C5°(R™) we have, integrating by parts,

vll =— v1 Y = — Iim Mdmz— im )y - @dac.
3 ) = =) == m [ m P

e—0t x =0t x ¢ X
But, using Hadamard's lemma, as ¢ — 0,

= _ 520 o),

g e T Te
so that
V(2 0) = —(Fp(= ), )
p T 7(10 - quQ?SO‘

Notice that this computation gives another proof of the fact that Fp(x%) is a distribution.
Answer 1.B.3

Answer 1.B.4 1. If T € D'(R) satisfies 2T = 0, then suppT C {0}. So either "= 0, or there

exist complex numbers ag, a1, ...,an with ay # 0 such that T' = Z;V:o ajé(j). In the latter case

\(/)ve<hav2 o'T = Zj'vzo a;zP8l) = Zjv:p aj(—1)P (pf!j)!é(j*p), since for p > j, 276\ = 0, and for
- p — ._71

2P§0) = (—1)P P! __56-p),

(p—J)!
Derivatives of Dirac masses at 0 are linearly independent, thus a; = 0 for all j > p. Therefore we

should have
p—1
T = Z aj5(j).
=0

Conversely, the above computation shows that all the distributions of this type are solutions of
the equation.

2. a) Let Ty € D'(R) be a solution. T} is another solution if and only if Ty — T} solves 2T = 0,
i.e. Ty =T + ad for some a € C. On the other hand, Ty = vp(L) is a solution: for ¢ € C*(R),

(T, @) = (T, xp) = lim /> o(z)dr = (1, ¢).

e—0t

Therefore, the set of solutions is S = {vp(1) + ad, a € C}.
b) The same way, we see that solutions can be written Ty 4+ agd + a18’ where Ty is any solution,
and ag, a; € C. Therefore it is sufficient to find T} such that 22Ty = 1. But for ¢ € C3°(R), with

suppp C [—A4, 4],

A
(2R3 ) = (p(1). ()] = (p(p). 2o+ %) = g+ | af(a)de = (L)
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Thus the set of solutions is S = {vp(%)’ + apd + a1d’, ag,a1 € C}. Notice that we have defined
Fp(z2) = —vp(3)"

Answer 1.B.5

Answer 1.B.6 Denote T,, = T%,. Let A > 0. For ¢ € C§°(R) such that suppp C [—A, A], we
have ¢(x) = ¢(0) + 21(z) for some ¢ € CC*(R). Then

A A A 2
nx nx nx
T, = — dx = ¢(0 —d — d
(T ) /_A1+n$2<p(x) v S0()/_1414—71952 x+/_A1+nx2¢(x) v
The first integral vanishes since f, is odd, thus

A ’I’LZL‘2
(To, o) = / (@)

A1+ nx?

But 11‘;’“;12 () — ¥(x) as n — +o0, and |1ii12¢(x)| < |[¢(z)] € LY(R). By Lebesgue's

Dominated Convergence Theorem, we obtain

A
1
Toe) = [ dla)ds = (vl
_A T
Answer 1.B.7 1. Let ¢ € C§°(R), and let A > 0 be such that suppp C [—A, A]. Integrating by
parts we obtain

A . 1 4 ‘ 1
(Any o) = / 1006 o (o) dy = — - / 0 () dr — (A, ).
—_A m J_4 in

Therefore by induction

A
<An7(,0> — (_-1)101/ nlooemxgp(x)dx — O(
—A

m

1
n)
Thus (A, p) — 0 as n — +oo for any ¢ € Ci°(R), and (A4,) — 0 in D'(R).
2. Let ¢ € C§°(R), and let A > 0 be such that supp ¢ C [—A, A]. We have
A A A
1 2
i) = [ ow)costants = [ o)t T g [ L)

4 4 2 .2
as n — +oo thanks to Riemman-Lebesgue’'s Lemma. Thus (B,) — T1 in D'(R).

2
3. Let ¢ € C§°(R), and let A > 0 be such that supp p C [—A, A]. Integrating by parts we get

cos(nx)

A
- (p(:n)]OA - /0 cos(nz)¢’(z)dz = —p(0) + o(1)

A
(Ch, @) —/0 nsin(nz)p(z)de = [n

as n — +oo thanks to Riemman-Lebesgue's Lemma. Thus (C,,) — —dp in D'(R).

4. Let p € C3°(R). We have, as n — 400,

nq p 1
(Dn,o) = > —p(=) = (v)dz,
@ ; (- /0 @
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since (Dy,, ) is the n-th Darboux sum for ¢ on the interval [0, 1]. Thus (Dy) to 1j ] in D'(R).

5. Let ¢ € C§°(R), and let A > 0 be such that suppy C [—A, A]. By Hadamard's lemma, we
know that there exists ¢ € C*°(R) such that ¢(x) = p(0) + z¢)(z). Then

E,,p) = (pv(—),e x)) = lim et —=dx
(Eny ) = (p (x) pz)) = | /<x|<A

e—=0t Je x

nx )
= ¢(0) lim /  dr+ lim / e (x)dx
=0t Jeczl<a T =0 Jec|z|<A

ine A
= (0) Iim/ ¢ dx+/ e (z)da

=0t Jeclzj<a @ —A

The last term of this sum is o(1) as n — 400 by Riemman-Lebesgue’'s lemma. On the other

hand, we have
[ e[ ) e,
<Jz|]<A L Z|<A <|z|]<A x
cos(nx)

. sin
since £ — ————= is an odd function. Now = — (nz)
x x

lim / eimdw = /A sin(nz) dx = /nA sin(y) dy.
€20t Jeclzl<a T —A Zz —nA Y

Summing up, we have obtained

is continuous at 0, so that

+°° sin
() = ip(0) [ W+ 000,
so that (E,,) — imdy in D'(R).
6. Let ¢ € C3°(R). We have, as n — 400,
1y _ _1y
(G = 8ajahsi) = (o) = (1)) = 2l 20 P 220 5000

Thus (81, — 0_1/,) — 26} in D'(R).

Answer 1.B.8 Let ¢ € Ci°(R), and let A > 0 be such that supp ¢ C [—-A, A]. For ¢ > 0 we have

( 1. ,@)Z/A (P(x,) d:L’:/A:E #(2) d:v—H'e/:: () dx,

T —ic _AT— i€ a4 x4 e? 2?2 + &2

and we study each term of the sum separately.

— By Hadamard's lemma, we can write p(x) = ¢(0) + xz1)(z) for some smooth function ). Then

A
/A x2—|—52 %Jr/ x2+s2
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since x — %ﬁg is an odd function. Then it follows easily, for example using the dominated
convergence theorem, that

A z A
dn | o= [ ptoie = o0

— We perform the change of variable z <+ y = z /¢, and we get, as € — 07,

A Ale “+o0
o(x) / ©(ey) / dy
dz = PEY) dy — (0 = 7(0).
5/_,4902—1—52 o _A/ayQ—i—l y = ¢(0) o Y21 mp(0)

Summing up, we have obtained that, as ¢ — 0T,

1
— — pv(=) + imdo.
x —ie x

Answer 1.B.9 1. Let A > 0, and ¢ € C3°(R) with support included in [—A, A]. By Taylor's
formula, we have p(z) = ¢(0) + z¢(x), for 1p € C*°(R) given by

Then, for all N € N,
N N N
1 1 1 1 1
|—=(o(3) — (=) < 2sup [¥| Y —= < 2sup|¢| Y ——-
; vk Tk k 0.1] ; k27 o] ; k32
Passing to the limit N — +o00, we see that the linear form 71" is well defined, and that

+oo 1

1 )
(Tl = (23 157) D_sup el

k=1 =0
so that it is indeed a distribution of order 1.

2. For j € N, we denote ¢; a function in C§°(R), non-negative, such that ¢;(xz) = 1 for
x € [1/4,1] and pj(x) = 0 for x < 1/(j + 1) and for z > 2. All the ¢; are supported in the
compact K = [0,2], and sup|¢;| = 1. If T has order 0, there exists a constantC' = C'x > 0 such
that, for all j € N*, (T, ¢;)| < C. But

J
1
<T7g0j)zz — 400 as j — 400,

S

which is a contradiction. Thus T is of exact order 1.

3. Let k£ € N. For any open set V' which contains the compact {1/k}, there is a plateau
functionyy, € C§°(V') such that supp ¢, C|1/(k—1),1/(k+1)[NV, ¥ (1/k) =1 and 0 < ¢y, < 1.

For this ¢, we have
1
— £0,
- #
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so that 1/k € suppT for all k € N. The same way, we have also 1/k € suppT for all K € —N*,
Sincesupp 7" is closed, we even have S = {0} U {3, k € Z*} C suppT.

Conversely, if zg ¢ S, there is a neighborhood V' of z( that does not intersect with S, and for
any ¢ € C3°(V'), we have (T, ) =0, so that o ¢ supp 7.

4. We consider her again the functions ¢, of question (2), and we set ¢; = j_3/2g0j. We get
T, 9;) —>Z —#0asy—>+oo
j>1

~(p)

and ¢, =0 on S for p > 1, thus the sequence (#4) answers to the question.

We also have sup |¢;| = 1/5%/% — 0 as j — +o0. Therefore, there is no constant C' > 0 and no
natural number k such that, for all j € N,

(T, ol <O sup 6P ().

o<k wEsuppT
This shows that in general, one can't replace sup |[0%p| by sup |0%p| in the definition of a
distribution. reseet
Answer 1.B.10 1. a. For ¢ € C§°(R), ( = [ f(x)p(x)dr = [ f(x)p(z)dz. Thus the

distribution T is real if and only if f is real vaIued

b. For ¢ € C3°(R), we have <(T*)*,gi: (T*,p) et (T*, ) = (T, p) = (T, ¢), so that (T%)* =
T. Also, ((fT)*,) = (fT.9) = (T fo) = (T"*, fo) = (fT*, ), so that (fT)* = fT*.

c. Let Ty = L(T+T*) and let b = o-(T—T*). We have T = Ty +iT», and T} = 3(T*+T) = T3,
Ty = —5(T* = T) = To. Moreover if T = Ty + iT> = 0, with real 71,75, we also have
0=T*=Ty, — il thus T} =15 = 0.

d. Since Pr has real coefficient, we see that (P;T)* = Pr(T*) using question (b). In particular
P;T is real when T is real. Thus T = T + i15 satisfies P;T = 0, or P;T1 + iP;Ts = 0 if and
only if P/Ty = P;T> = 0 (cf. question (c)). Therefore, it suffices to know real solutions to get all
the solutions.

2.a. By Leibniz formula, we obtain 275\?

q=p-
b. For & > 2, we have P((S(()k)) = ((k+1)? - %)5(@ + k(k — 1)5ék_2) and, simply, P(é(()k)) =
((k+1)2 = 15 for k € {0, 1}.

=0 for ¢ < p and 2?8\ = (—1)? L5077 for

(g¢— p)'

c. Suppose that 7' # 0 in Ker(P) is supported in {0}. Then there exists N € N eand ag,...,ay €
R, with ay # 0 such that T = S1 aké(()k). Thus

al 1

0=PT =3 aP(8§") = an((N +1)* - Z)55N> + Ty,

k=0
where Ty_1 is a linear combination of derivatives of order at most N — 1 of dg. This ay = 0,
which is a contradiction. Therefore, the null distribution is the only distribution in Ker(P) with
support in {0}.
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3.a. Let U € D'(I), and V = e®*U. We have U = eV so that U” = —e @V — 2je~ @V’ +
e~ V" Thus U”+U = 0 if and only if V" —2iV’ = 0, thatis V' = C’eQ” for a certain constant
C € C. This last equation can also be written (V — £e%%)" = 0, thus V = £e** + B, and
U = Ae"™ + Be ™™ for some A, B € C. The real solutions are therefore U = acosx + bsinz with
a,beR.

b. Let T € D’'(]0, +oc[). The function z +— /2 is C* on ]0, +-00], so that Leibniz formula gives
1
( 1/2T) 1/2T// —1/2T/ _ Zx—S/QT — $_3/2P]07+00[T _ fL'l/ZT

Therefore T' € Ker(Fo, 1) if and only if («2T)" + (x'/?°T) = 0 and 272 T = ay cosz +
by sinx for two constants a4,by € R. So we have

cosx sinx
Ker(FPlo,+o0]) = {z—ar—= Tz +b—— Tz ,ay,by € R}
c. We proceed the same way with (—z)'/2T. We get
cos & sinx
Ker(P_so0l) = (T a— +b_—,a_,b_ R
(A—c0,01) { \/7 =z }

4. a. The function f belongs to L (R) since |COS$H(ix)| < H(+z) € L},.(R) and
sinx

1
! Iz = iz
Ne=ad Ne=

b. Since Ty 400 = T+ belongs to Ker(FPjg 1o0), Sljo,400] = 0. The same way, S|j_ o = 0,
and supp S C {0}.

(+z)] < H(£2) € Lige(R).

c. We have
(S, x=0) =(PTy, xewp) = (2*(Ty)" + a(Ty)' + (a* ~ i)TfaXs@
(T, (axep)" — (o) + (@ = Prep = [ Fla)ela)da,
with
9el@) = (#Pxe) = (xep) + (2 = e
22, x T, 9 5 1

= T+ S DB+ 200) +x(D (20 ~ (w9) + (22— D).
Since supp x.: C [—¢,€], we clearly have suppt. C [—¢,¢]. But for x € [—¢,¢| the above
expression gives

2 1

(e @)] < X" lloo[[#lloo + [1Xllool13¢ + 22" oo + [IXllocll(@*@)" = (20)" + (2% = T)¢Plloc-

This shows that the functions 1. are bounded on R uniformly with respect to . In particular, the
dominated convergence theorem gives

/f(:c)q/%(x)dx —0as = —0,
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since f(z):(x) — 0 for  # 0, thus a.e..

At last, since supp S C {0}, and ¢ — x-¢ vanishes in a neighborhood of 0, we have (S, x.¢) =
(S,¢), so that 0 = S = PT}.

5. a. Let T € Ker(P). There exist T} € Ker(Po o) and T_ € Ker(P_[) such that
Tlo400] = T+ and T|j_o o = T-. Then, let f be the function we have built in question (4a)
for this Ty and this 7_. We know that supp(T' — T) C {0}, and, thanks to question (4), that
T — Ty € Ker(P). It follows from question (2) that 7" = T.

5. b. Any element T" € Ker(P) can be written

cosx sinx coszx sinx
T:(G+W+b+%)H(IL’)+(G7\/T$+ 7\/—7[[}
Thus dimKer(P) = 4. However this element of Ker(P) is continuous at 0 if and only if ay =

a_ =0, so that Ker(P) N C°(R) has dimension 2. At last T = b+5\i;§ (z) + b_\s/"% (—x) is

differentiable at 0 if and only if b_ = b, = 0, so that Ker(P) N C'(R) only contains the null
function.

VH (—z).

Answer 1.B.11 Part A.— 1. Let A > 0. For any ¢ € C°(R) such that suppy C [—A, A], we
have supp7_,p C [—B, B], taking for example B = A + a. Since T is a distribution, there is
C =Cpg>0and k =kp € N such that

(7T, )| = (T, 7-ap)| < C Y sup|3(T-app)| < C Y sup|die|.

J<k J<k
This shows that the linear form 7,7 is a distribution. Moreover, for f € Ll (R),
(Ty6) = [ Fadela + a)ds = [ mt@iewis

so that 7,7y =T’ ;.

2. Let Sy = Zivsz d27rn. For o € C°(R), there is Ny € N such that supp ¢ C [—27 Ny, 2 No].
For all N > Ny, we thus have

N No
(> o) = Y @(2mn).
n=—N n=—Np

Otherwise stated, the sequence ((Sn,)) is constant starting from Ny, thus converges, which
also proves that the serie " _, d2x, converges in D'(R). For any N large enough we also have

N No
<7—27rI/Va (/7> - <M/7 7_—27r§0> = <SN77_—27r(/7> = Z 90(27((” - 1)) = Z 90(27”7‘) = <W7 90>7
n=—N n=—Np

so that W is 2m-periodic.

3. a) Let ¢ € C§°(R), and A > 0 such that supp ¢ C [—A, A]. Integrating by parts, for n # 0,

. A .
/e_mxcp(az)dx = —/ ——e Y (x)dx

—A —in

A
== (_1)p+2/ (”ll)p_i_QemxSD(p+2)($)dm = O(n7p72).
_a (=
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b) Let ¢ € C§°(R), and A > 0 such that suppp C [—A, A]. For N € N we have

N N
(1+ |n|)P 1
I Z cne o) < Z |Cn||/ mx x)dz| < leo| + Z ot Z n2’

n=—N n=—N —

n#0

so that the serie cheim converges in D'(R). Moreover, using question 1) (7,7 = T, 5), we

ne”Z
get
N N N

7_27r( Z CneiTw) = Z Cn7_27r(em$) = Z Cneinx

Passing to the limit N — +o00, we obtain that the sum is indeed 27-periodic.

Part B.— 1. Let A > 0 such that suppw C [—A, A]. For x € R fixed, w(z + 27n) = 0
for all n §Z [ A= A £=2L]. Thus for z € [-B,B], w(x + 2mn) = 0 for any n € N such that

n ¢ [=4 %] The serie
Z T_9mnw(x)

neL

is thus localy finite, therefore converges (for example uniformly on every compact), and its sum
is C*.

2. We suppose furthermore that w = 1 on [0, 27, so that the function = — 3, T orw(z) is
positive. It follows from the previous questions that the function ¢ : R — R defined by

w(z)

Zw(z + 27rn)'

nez

P(x) =

is C3°(R) and satisfies ), . T_okrt) = 1.

3. a) First of all, we note that supp(e?**1)) C suppw = K for any n. Since T is a distribution,
there exist C' = Ck > 0 and m = mg € N such that, for all n € Z,

el < C Y sup (e W),

j<m
so that |¢,| = O((1 + |n|)™).

b) Since Y o7 T—okrtp = 1 et 7o, T =T for all k, we have

= (T,(> Tomt)@) = > (T, T amitbep)

keZ keZ
= (T, Tamte) = ) (T4 Tomkp) = (T, @)
keZ keZ

c) The function @ is C* and 27-periodic, thus it is equal to the sum of its Fourier serie. Therefore

(T.) = (T, 03) = ) cn(@UT. ™) =21 Y cn(T) ca(§)-

nez neL
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Going back to the definition of the coefficients ¢, (@), we get

2w . 2w ‘
(T, 7/)95> = Z C_n(T) /0 (Z(J})e*mmdx = Z C_n(T) /(; Z QO(% _ 27Tk)€71nzd:1}

nez nez kEZ
= Z c_n(T) /cp(x)e_mxd:c = /(p(m) Z cn(T)e ™ dy = (Z c_n(T)e™ ™ ),
nez nezZ nez

sothat T =3 . cn(T)e™®.

Part C.— 1. Let v be as above. By definition,

1 1

en(W) = 5 (W,e™""9) = — ke%wzﬂk, eTmY) = .

2. It suffices to write, for ¢ € C3°(R),

> (nm) = (W) = (3 ealW)e™ ) = o= 3 / (@) = o= 3 p(n).

ne”z nez nez neZ
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Chapter 2

Several variables calculus

2.1 Partial derivatives of functions

2.1.1 Definitions

Definition 2.1.1 Let € R™ an open set, and f : Q — C a function. The fonction f is
differentiable at z € € if there is a linear form L, : R™ — C such that

f(x+h) = f(z)+ Ly(h) + o(||h])) quand h — 0.

We denote L, = d, f = df (z) the differential of f at x.

For a differentiable function f : 2 — C, we denote 0; f : {2 — C the map defined by

9jf(z) = da f(e)),

where (617 €2, ..., en) is the canonical basis of R™. The function 8jf is called the j-th partial derivative
of f. One can easily see that

f(x+tej) — f(x)
2.1.1 0; f(x) = lim .
( ) ]f( ) t—0 t
Therefore, 0; f(x) is the directional derivative of f at the point z in the direction of the vector e, or
the derivative of the j-th partial map associated to f, that one gets fixing all the coordinates of = but
the j-th one.

There are functions whose partial derivatives all exist, but that are not differentiables. However, the
mean value theorem gives the following



CHAPTER 2. SEVERAL VARIABLES CALCULUS 46

Proposition 2.1.2 A function f : @ — C is differentiable on €2, and the function x +— d, f is
continuous on € if and only if the functions given by (R.1.1)) exist and are continuous on {.

When this proposition applies, one says that f is of C! class on (), or that it belongs to C'(£2). More
generally, for k£ € N, we denote Ck(Q) the set (vector space) of functions f : 2 — C whose partial
derivatives 01 f, Do f, ..., Onf belong to CF~1(Q).

In general, the order in which one computes repeated partial derivatives matters, but this is not the
case for C2 functions:
Proposition 2.1.3 If f € C%(Q), then, for any j,k € {0,...,n},

9 (O.f) = Or(9; f)

In particular for C*° functions, one can compute partial derivatives of f in any order. It is therefore
very convenient to use multiindices.

2.1.2 Multiindices

Let f € C®(Q), and a = (a1, a2, ..., a,) € N a multindex. We denote 0“f the function
o%f =01 05%--- o f.

The number
o] = a1 +az + - + an,

is the order of the partial derivative, and it is called the length of &o. We also denote
al = aqlas! ... ay)!
and, for B € N" such that 3; < o for all j, which we will write 8 < «,
a\ al (a1 (a2 o
()= - () () ()

With these notations, Leibniz’s formula for the derivatives of a product of functions generalize easily
to the case of partial derivatives of functions of many variables. Its proof is exactly the same.

Proposition 2.1.4 Let f and g be two functions in C*°(2), and @ € N” a multiindex. We have

*(fg)= Y <g)aaf 9° 7.

BEN™, B<a
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Proof.— We prove the result by induction over |a|. If o] = 1, 0% = 0; for some j € {1,...,n}, and

0i(fg) = (9;f)g + f(9;9),

which is the above formula. Suppose then that the formula is true for all multiindices of length < m.

Let @ € N” such that || = m + 1. There exists j € {1,...,n} et § € N of length m such that
a=p0+ 1j,
where 1; = (0,...,0,1,0,...,0) with a 1 as j-th coordinate. With these notations

0%(fg) = 871 (f9) = 0°(9;(f9)) = 8°((9;/)g) + 0°(f(9;9))-

Since [ is of length m, the induction assumption gives

0 =3 (Do@n o+ X (7)o oo

<8 v<B

RS
Y<B " <8 v

= Z (*8) otlif aa*(wlj)g + Z (5> dVf O g
<8 " v<B v

We change the multiindex in the first sum: v <= v + 1;, and we get

*(fg)= > (,Y _ﬁ 1j>07f 0" g+ > (f ) f 0" g

1;<v<a v<B
=0"fg+ >, (( _51> + (ﬂ))a'yf@a_79+f8ag
y<<p N T K
+1;
=0"fg+ Y. (5 J)an 9° Vg + £,
1,<9<8
which is the required result. O
We can continue the analogy with the 1 variable case: if t = (:L'l, 9, . .. ,azn) € R™, we denote ¢
the real number
z® = a{taf? .

Then we can show, the same way as for Leibniz’s formula, that for x,y € R"™ and a € N,

(x+y)* = Z (;).mﬁy"_ﬁ.

B<a

With these notations, Taylor’s formula can be written

Proposition 2.1.5 Let f: Q) C R” — C a function of class C"™*!. Let a,b € ), such that the
segment [a, b] is included in Q2. We have

—a)¥ —a) 1
fo)y=> (ba!)ﬁaf(a) +(m+1) > (ba,)/o (1 —t)™%f(a+t(b— a))dt.
loo|<m lo|=m+1
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Proof.— We have already seen that if o : R — C is smooth, we have
L o® Lt m,,(m+1)
(1) =3 O+ 5 | (1= (sa)ds.
— k! !

We shall use this result for the function ¢ : t — f(a + t(b — a)). Notice that

n

P(t) =D (b—a);(0;f)(a+tb—a))
j=1
and more generally that
eP)y= > (b—a)...(b—a); (05 ... 05, )(a+tb—a)).
J1:J25-5Jk=1

This sum only contains terms of the form (b—a)* (0% f)(a+t(b—a)) with v € N™ of length || = k.
Therefor we can write, for some coefficients ¢, € R,

n

S b=a)y e (0= @5 (@t th—a) = 3 calb—a)* (@ f)(a+t(b—a)).

J15325-Jk=1 |lal=k

Denoting = b — a, this equality between two polynomials in x implies that the ¢, are given by

Co = #{(jl,jg, o 7]k> S {1, R ,Tl}k, 1‘?11'32 .. .Q?%" =Tj - x]k}

. k k— o k—a1 — —ap_q _E
“ O\ o9 o - al

Indeed, one has to choose first &y numbers among j1, ... ji that should be 1, then as among the
k — a1 numbers left that should be 2, ...

thus

Since a +t(b —a)|,_, = a, and a +t(b — a)|,_, = b, we obtain the stated formula. O
Exercise 2.1.6 Show that, for k € N and (x1,x2,...,2,) € R", we have
k k! a
(w1 +a+ - +a)f =Y i

laf=k

Corollary 2.1.7 (Hadamard’s formula) Let f € C™"}(R"). If f(0) = 0, there exist n func-
tions g1, g2,..gn of class C"™(R"™) such that

flx) =) wigi(a).
j=1

2.1.3 The Chain rule
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Proposition 2.1.8 Let 2 C R" an open set, and ¢ : Q@ — RP, ¢ = (¢1,92,...,1,), a function
of class C*. Let Q' C R” an open set that contains 1/(Q2), and f : Q' — C a C* function.

Then f o is C* on Q. Moreover
do(f 0 ) = dy(a) f-dath = V(2) - Vf((2)),

or, forany i € {1,...,n},

Oi(f o) () =) 0if (1h(x))dunhs ().

Jj=1

2.2 Stokes formula

Here, we recall, without proof, some notions and results pertaining to the field of elementary differential
geometry. We will provide in Section .4 another presentation of the same material - with slightly less
general assumptions - in the context of distribution theory, with proofs. Of course it will be the occasion
of generalizing our presentation of distributions to the multidimensional case.

2.2.1 Surface measure

Definition 2.2.1 Let F : R" ! — R be a C! function. We denote
S =A{(z1,22,...,2n) €ER", z, = F(x1,22,...,Zn_1}.

We call surface measure on S the measure o € D'(R"™) given by

Ve €CERY), (o) = [ ol PV IVF@)Pde

Example 2.2.2 Let : [0, 1] — R? be a parametrized curve on the plane, with y(t) = (y1(t), 72(t)).
We suppose that v € C!, and that +/(t) # 0 for all t € [0,1]. The length of the curve v is

1
Liy) = /0 I/ (8)]dt.

If f:R? — R is a continuous function,the integral of f along 7 is

1
/f(:”)dz:/o FO)IY @)]ldt.
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Suppose now that ] (t) # 0 for all ¢ € [0, 1], i.e. that the tangent vector to v is never vertical.
Then ~1 is an invertible function, and the curve « is the graph of the function F' : R — R given

by F(z) =20 (91) ! (2):
¥ = {(:El,ZEQ) S RQ, T2 = F(xl)}

By the change of variable z = v;(¢), with a = ~1(0) and b = 7;(1), we get

1 b
[ f@de = [ fon(o) 610 + Gho2a = [ fe F@) T+ Plapde.

One may think that this definition only concerns surfaces in R™ that are the graph of a function.
However a surface is a subset S of R™ given by an equation of the form

G(:L‘la'mZa s 7$n) = 05

where G is a C! function such that VG(z) # 0 for all x € S. The hyperplane tangent to the surface
S at the point € S is then by definition the hyperplane normal to the vector VG(x) and containing
x, that is

1.5 ={z€R", VG(z) - (2 — x) = 0}.

For a point xg € S, there is thus at least one index j such that ajG(xo) = 0, and one can apply the
local inversion theorem: there is a neighborhood U of g and a function F' : R®~! — R such that

(S VﬂS<:>l'j :F(:L'l,...,xj717:l:j+l,...7xn).

Therefore, localy, any surface is a graph, and one can apply the above definition up to a permutation
of the coordinates. Of course, one should then “glue” the results obtained locally, for example using a
suitable partition of unity.

In any case, the definition of the surface measure seems to depend on a choice of a function F' to
describe the surface. As a matter of fact, one can show that this is not the case: any choice would
lead to the same measure.

2.2.2 Stokes Formula

Let us now state the famous Stokes formula. First, we need some vocabulary.

Definition 2.2.3 Let ) C R™ be an open set. We say that € is an open set of class C¥ when
there exists a function p € C¥(R™) such that

D Q={zeR", pz) <0},
i) For all x € 00 = {x € R™, p(x) = 0}, we have Vp(z) # 0.

Then we say that p defines €, and the set 02 is called the boundary of €.
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Of course, for a given regular open set, there are a lot of possible choices for the function p. Here
follows some canonical examples:

Examples 2.2.4 — For the ball of radius R > 0, B(0,R) = {x € R", ||z|| < R}, one can take

p(x) = ||z||* — R2, where ||z| = \/2_j=1%;2 is the euclidian norm. Notice that the choice

x +— ||z|| — R is not allowed, since it is not a smooth function.
— For 2 =]0, 1], we can take p(z) = z(z — 1).

— When Q is a sub-graph, i.e. Q = {z € R", 2z, < F(2')}, one can take p(z) = x,, — F(2/),
which has the same regularity as F.

Definition 2.2.5 Let Q2 be a C! open set, and p € C}(R") a function that defines Q. For
x € 02, the vector
Vp(z)

) = @)

is called the outgoing unitary normal vector to {2 at point z.

This definition would not make sense if v(x) depends on the choice of the function p. We can prove,
and we admit, that it is not the case.

Examples 2.2.6 — For the ball B(0,R), with p(z) = |z||* — R? we get v(z) = %, which
corresponds to what we know from classical geometry: the outgoing unitary normal vector at a
point = of the sphere has the direction of the radius of the sphere corresponding to .

— For Q2 =]0, 1], with p(z) = z(z — 1), we get ¥(0) = —1 and v(1) = 1.

— For a sub-graph, with p(z) = z,, — F(2') we have

v(z) = . <_VF<3;,)>
V1+|[VE@)|? 1

Proposition 2.2.7 (Stokes formula) Let X : R” — R" be a compactly supported vector field.
Let Q C R” be a C! open set, o its surface measure and v the outgoing unitary normal vector
field to Q. If X € C}(9), denoting div X its divergence:

n
divX = Z 6ij,
j=1

we have

/ divX(x)dx = (o,v- X) = X(z) - v(z)do(x).
Q o0N
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Corollary 2.2.8 (Stokes formula (2)) Let  C R™ be a C! open set, ¢ its surface measure
and v the outgoing unitary normal vector field to Q. Let also F' : R® — R" be a C! vector field
on €2, and ¢ € C§°(R™). We have

/Q(p( o) div F(z /w da:+/m o(2)F(3) - v(z)do ().

Proof.— We only have to apply Proposition to the vector field X = ©F, noticing that

n

div(pF) =Y (9;0)F; +¢ Y _0;F; =V F + pdivF.
j=1 j=1

O

Example 2.2.9 Take  =]0, 1[C R. The surface measure on 92 is 0 = dy + 1. For ¢ € C}(R)
and F € C!(R), Stokes Formula (2) is

1 1
/ (@) F'(a)de = — / (@) F(2)dz + (50 + 01, p(x) F(2)(x))
0 0
1
. /0 (@) F(x)de + o(1)F(1) — p(0)F(0).

In the previous example, in dimension 1, we have seen that Stokes formula reduces to the usual
integration by parts formula. This aspect is even better seen in the following case: take ¢ € C(l)(Q)
and f € C*(2). If we set F' : 2 — R” to be the function given by F'(z) = (0,...,0, f(z),0,...,0)
with f(z) at the j-th place, we have div F' = 0; f and

/Q (), f (x)d — / o(z) div F(x / Vo(z) - F(z)ds + /d (@)P(a) - v(a)do(a)
—— [ ose@rs(a)da + /a Qsa(x)f(x)vj(x)do(a:).

From Stokes formula follows the also well-known

Corollary 2.2.10 (Green-Riemann formula) Let @ C R? a C! open set whose boundary 99
is given by the parametrized curve « : [0,1] — R2, with 4/(¢) # 0 for all ¢ € [0,1], which is
positively oriented. For P and Q two C! function on R?, we have

/ (0:Q(z,y) — Oy P(z,y))dzdy = /Pdw + Qdy.
& v

Proof.— First we recall that the RHS of this equation means

/ Pda + Qdy — /0 (P(()Y(E) + Qv(E))a(0)) dt.
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Applying Stokes formula to the vector field X = <_]§2> , we get

// (0.Q(z,y) — Oy P(x,y))dxdy = —/ div Xdx = — X - vdo.
Q Q

o0

v = 0f)

Figure 2.1: A positively oriented boundary in R2

The assumption that -y is positively oriented means that €2 lies at the left of the curve -y, or equivalently
that y(t) goes counterclockwise. Then we only have to remark that v(-y(t))) is the image of the normed
vector 7/(t)/]|7/(t)|| by the rotation of angle —7 /2, that is

SN0
YO = ) (—?A@)) ’

and that do(y(t)) = ||7/(t)]|dt. O

2.3 Distributions on R"

In this section, we review very briefly the definitions for distributions in an open subset {) of R™. As a
matter of fact, almost everything we have seen about distributions in 1d extends without difficulty to
the present multi-dimensional case.

First of all, the support of a smooth function ¢ on € is the closure of the complement of the set of
points where ¢ vanishes. The space CSO(Q) of compactly supported smooth function is not reduced
to the null function, since for example, it contains the functions (see Proposition [L.1.7)

0 for x ¢ B(xo, 1),

= -1

where £y € Q and r > 0 is such that B(zg,r) C . The space C5°(£2) contains also plateau
functions: as a matter of fact, the proof of Proposition holds replacing R by R™. This is also
true for the proof of Proposition [L.6.1]. Thus there exists also smooth partitions of unity associated to
a finite covering of a compact subset K of 2 C R".
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The notion of convergence in C[‘]’O(Q) is the same as in dimension 1, replacing successive derivatives
by partial derivatives at all order:

Definition 2.3.1 A sequence (p;) of C3°(£2) converges to ¢ in C3°(£2) when

i) There exists a compact K C () that contains the support of all the ¢; and the support
of ¢.

i) For any o € N", 0%(; — ¢) converges uniformly to 0 on K.

At last, a distribution on 2 C R"™ is a continuous linear form on C5°(2):

Definition 2.3.2 A distribution on 2 is a linear form on C3°(€2) such that if (¢;) converges to
¢ in C3°(82), then T'(¢;) — T'(p). The vector space of distributions on €2 is denoted D’(£2).

As in dimension 1 this definition is equivalent to the following property.

Proposition 2.3.3 Let 2 C R" be open, and T be a complex valued linear form on C5°(Q2). T
is a distribution if and only if

VK € Q,3C > 0,3k € N,V € CF(Q),|T(p)] < C ) sup|d“yl.
ol <k

The space of distributions on {2 is denoted D’(2). The notion of support and that of the order of a
distribution are exactly the same as in dimension 1.

One can of course multiply a distribution in D’({2) by a smooth function f € C®°(£2), and define partial
derivatives 9*T of a distribution T" by the formulas

(fT,0) = (T, f¢) and (9°T, ) = (-1)I°UT, %), a € N".

2.4 Surface measure: a distribution point of view

When the surface S is not globally a graph, as for example the sphere S~ ! = {z € R", ||z|| = R},
the Definition does not apply directly. Of course we can use a smooth partition of unity to
compute the measure surface on S, but we propose here another way, using distribution theory. To
start with, we notice that
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Proposition 2.4.1 Let {2 be a C! open subset of R", and 1g € L. (R™) be its characteristic
function. Then, for j = 1...n, the support of the distribution 0;1¢ is included in Of).

Proof.— Let g € R™ \ 0Q. There exists § > 0 such that B (20,0) = {z € R", max; |z;| <} C
R™\ 0. For any ¢ € C3°(R™) such that supp ¢ C Bo(20,d), we have

<8]]-Qv > <1Q) 390 /8]90

If 2o ¢ €, then Boo(xp,d) N = (), and this integral vanishes. If xg € 2, then B (x0,0) C € and
we get, by Fubini-Tonelli,

(9710, 0) = — / 9;0(x)dz
Boo(x()v

.’E()J+6
/ / / dx])dx =0.
xojfzs

In both cases, we see that §é suppT. O

Proposition 2.4.2 Let () be a C? open subset of R”, and v its unitary outgoing normal vector.
The surface measure on 0 is the distribution

n
V- V1Q = — Zujajlg.
J=1

Remark 2.4.3 Notice that the function v is not smooth. As a matter of fact, it is not even defined
everywhere on R™ since Vp may vanish. Thus the above definition uses two generalizations of
the product of a distribution by a function:

= First of all, the function f needs only to be defined in a neighborhood of the support
of the distribution. Indeed if x is any plateau function above supp T, then, for any ¢ €
Co°(R™), (x)T, ) = (T, xfe) = (T, fe), and we can consider the left hand side as the
generalization of the product of T' by functions that are only defined, or smooth, near the
support of T

= Second, the function only needs to be C* when the distribution is of order k. We postponed
this slightly technical generalization to an appendix at the end of this chapter.

Proof.— We write the proof in dimension 2 to simplify a bit the notations. The computations in
the general case are exactly the same. Let us consider the surface S in R? given as the graph
w9 = F(x1), where F is a C2 function. We denote () the open subset of z = (11, 22) € R? such that
p(x1,x2) = 29 — F(21) <0, so that S = 0. We have

Vo) = () ana 19 = VI F
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For ¢ € C5°(R?), we compute

2 2
. N e, Py (i ()2 o
= (o iang) = =3 it 1 = 3 [ e

Note that, thanks to the above remark and Proposition R.4.1, we can suppose that ¢ vanishes out of
a small neighborhood of S. For A > 0 such that supp(y) C [~ A4, A]?, we have

Rl / / gy ele)

= ))dad drodr; = 1) + Is.

/ / \VP ﬂf)ll 2t |vp =T p(x))dzadry = I + I
One can compute directly

A A
dap(x1, F(21)) / 1
I :/ X ,f X d,fL‘ — T ,F T d,fL' ]
2= ) a¥otar, Fa PO EEZ [ G pa A T

For the computation of 17, we notice that

F(x1) 31[,(961 m)
o OPLLT2) 1 ) dmy) =
(., oot mie)

Fla1) O1p(x) , O1p(z1, F(x1))
[, e + P gghrt g et Fa),

and thus,

A F(z1) B
Il :/ 31(/ M@(ml,m)dmg)dwl

—A A IVp(x1,22)
31/) f( 1))

The first of these two integrals vanishes since p(A, ) = p(—A4,-) = 0, and we obtain

[ g Ol F(x)) A 1
= /—A PO e, Fa P F e+ /_A [Voter, Fly) Fon Fl@))da

A !
:/ F($1)2+1)Hg0(:1:1,F(x1))dx1 :/ (x1, F ) VF'(x1)? + 1 dxy.

_a IVp(x1, F(71)

This finishes the proof of the proposition. O

Example 2.4.4 Let Q =]0,1[C R, and p:  — x(z —1). Near 90 = {0, 1}, the unitary outgoing

normal vector to Q is
(@) 2z — 1
v(r) = ——
|22 — 1]’

so that v(0) = —1 and v(1) = 1. For ¢ € C°(R), we have

1
(0.6) = —(vdala, p) = /O (v(a)p(x)) dz = v(1)p(1) — p(0)p(0) = (1) + (0).

Therefore, we have o = §p + 07.
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2.4.1 The surface measure on the sphere

As a fundamental example, we compute now the surface measure on the sphere. We recall first what
are called spherical coordinates.

Proposition 2.4.5 Let n > 2, and ¢ :]0, +00[x]0, 7[x - - - x]0, 7[x[0, 27r[— R" the function
given by
7 cos 01
7 sin #1 cos 0

w(rvglu"wen—Qven—l) - :
rsinfy...sinf,_scosb,_1
rsinfy...sin0,_ssinf,_1.

The jacobian J, of ¢ is
Jo(r,01,...,0p—2,0h_1) = |det V| = r”_l(sin 01)"_2(sin 02)”_3 ...sinf,_o,

and ¢ is a C*°-diffeomorphism onto R" \ {x,, = x,—1 = 0}.

Proposition 2.4.6 The surface measure on the sphere Sﬁfl is the distribution given by

27 pm ™
<O’R, g0> = / / L. / QO(R, 91, Ceey Gn_l)R”_l(sin 91)"_2(sin 92)71—3 ...sinf,_9db1...dO,_1.
0 0 0

for ¢ € C5°(R™).

In particular for R = 1, w = o7 frequently denotes the surface measure on Sn—l — S{L_l, so that

onp) = [ (R R o = R o, ().

Proof.— Let ) = B(0, R) and p(z) = |z|*> — R%. We have Vp(z) = 2z, and v(z) = ‘l For
(RS C(‘)’O(R"), that we can suppose to be supported out of a neighborhood of 0, we get

on) = -v-Viag) = [ Zaj«%w(x»dx
/Z8 el d“/zrx\

Now

Z ) _snlel = s/l _no
i 2P ol

Jj=1

and, on the other hand, if we denote = = rw with r €]0, +oo[ and w € S?_l, we notice that

Or(p(rw)) = w - Vo(rw).
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Thus,

(R @) = (n—1) /S . /O " SO(:w)r”_ldrdw + /S | /0 o (o).

At last, integrating by parts, and since ¢ is suppose to vanish near 0, we get

{oR, ) = (n - 1)/5?1 /DR@(:“’)rn—ldrdw

R
+/ ©(Rw)R" Ydw — (n — 1) / ((rw))r" 2drdw,
Syt syt Jo

which is the statement we have announced. O

2.4.2 A proof of Stokes’ formula

We show here how to deduce Stokes formula (Proposition B.2.7) starting from the distributional defi-
nition of the surface measure.

Proposition 2.4.7 Let Q) be a C2 open set in R”, and v be the unit normal vector field outgoing
from Q. If o is the surface measure on 02, then for all j € {1,...,n},

Vo = —8]'19.

Proof.— Let x € C*°(R) suchthat 0 < x <1, x(x) = 1ifz < —1and x(z) = 0 forx > 0. Let also
pE CQ(R") be a defining function for the regular open set 2. For o > 0, we set
Xa(z) = x(ap(z)).

If © ¢ Q, then xo(x) = 0 since p(z) > 0, and if z € 2, then x,(x) = 1 for any large enough
«, since then ozp(x) < —1. Moreover X, < 1, thus, by the dominated convergence theorem, for
© € C3°(R™), we have

[ xala)oteyia = [ plajda.
i.e. the family (x4 ) converges to 1 in D'(R") as o — +00.

Since derivation and multiplication by a function are continuous operations in D’(R”), we also have,
forany j € {1,...,n},

n
2 Z VpOkXa — V0,
k=1
in D'(R™) as @« — +00. But for ¢ € C§°(R™), that we can suppose to be supported near 02, we
have

(=) Y VkOkXar ) = (= > OhXas ViV P)
k=1 k=1

——a [ Xlap) 3" dupla (@ ()p()da,
k=1
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Since Y p_, Okp(z)vi(z) = || Vp(x)||, we get
3 3 1) =~ [ X ap)dipla)e(e)ie = [ 0(xala))pte)dr
k=1

Passing to the limit & — 400, we eventually obtain ;0 = —Gj 1. O

Stokes formula is a very simple corollary of this proposition. Indeed

n n n

(o v-X) = (o X)) =) (vjo, X;) ==Y (910, X;) = (1o, > _ 9, X;).
7j=1

7j=1 7j=1 j=1

2.A Exercises

Exercice 2.A.1 (A proof of Stone-Weierstrass’ theorem) Let ¢ € CJ(R"), such that ¢(0) >
o(x) >0 for all z > 0. For k € N* we set

o) = ([ w(w)kdx)_l o)

1. Show that ¢y is well-defined, and that /@k(:r)dx = 1. Explain why we can suppose ¢(0) =1

without changing the ;. We do so in what follows.

2. Let av > 0. Show that there exists p € N such that A, = ), where

1
Aj={zx eR", |z| > o and p(z) > 1_3}.

One may consider ﬂAj. Deduce that there is a constant C; > 0 such that
J

1
[ @rasaa-
|z|>a
1
3. Show that there is a constant C3 > 0 such that /(p(x)kdx > Co(1 — 2—)’“
p

4. Deduce that for all @ > 0, / or(x)dr — 0 when k — +o00.

lz|>a
5. Show that if f € C(K') where K is a compact subset of R", f ¢ — f uniformly on K. One
may start with the case where f vanishes at the boundary of K.
BT |22 jz?
6. We denote K = B(0,1), and ¢(z) = (1 — T)+ = max(0,1 — T) Show that for

any function f € C*(K), there is a sequence (P) of polynomials such that, for all & € N,
[0%(Px — f)ll oo (i) = 0 as k — +oc.
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Exercice 2.A.2 1. Let f € C§°(R?) such that f(x,0) = £(0,y) = 0 for any (z,y) € R% Show
that there is ¢ € C§°(R?) such that f(z,y) = 2y (z,y).

2. Show that the following expression defines a distribution of D’(R?):

@+~ lim / Pz, y) dxdy.
|zl,ly|>€

e—0t Ty
Hint. Consider the function f: (z,y) — o(z,y) — ¢(z,0) — ©(0,y) — ¢(0,0).

Exercise 2.A.3 1. Forp € C(‘]’O(RQ), we denote (T', p) = /

“+oo
paa)ds e (Thg)= [ plaae
R 0

Show that T and TF € D'(R?). Compute 9,1 + ;T and 9, T" + 0,1 .

2. Let D = {(x,t) € R? | t > |z|}. We denote E the regular distribution associated to 1p, the
characteristic function of D. Compute 8;F — 9, F, then compute 97 F — 02E.

Exercice 2.A.4 1. Let u € C}(R, C) such that u(0) = 0.
u(x) ! b
a) Show that for z # 0, —= :/ o (tz)dt :/ YA (b)) dt.
0

x 0
u(x) /
b) Deduce that HTHLQ(R) S 2HU ||L2(R)'

c) Is the condition u(0) = 0 necessary for the above inequality to hold?

2. Now let n > 3 and € > 0. We set

Qe={z eR", |z| >€}, 00 ={zeR" |z|=¢€}
a) Let u € C}(R",C), and F = (Fy,..., F,) with Fj(z) = %|u(az)|2 Compute div F' and show
x

that, for e small enough,

Ju(z)|?

u(r)|?
(n— 2)/Q | ](x\y d$+2Re/Q ‘;’2 u(z)z - Vu(z)dr = _/89 2] do(x).

b) Then, show that

(n—2) /Q ‘ﬁ(jfdx <9 (/Q 'ﬁg'zdxy/z </Q |Vu(:v)|2dﬂc> Ve /S () 2o

c) Deduce that there is a constant C,, > 0, independent of v and of € such that

/QE ‘ﬁg% < Cn) </Q V() + 2 /S |u(ew)|2dw> .

Hint: use the identity 2ab < %aQ + 202

d) Using Fatou's Lemma, show that there is a constant C/, > 0 such that, for any function
u € C§(R™), we have
2
/ |u|(x’g| dx < C;l/ \Vu(z)|*d.
n T n
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2.B Answers

Solution 2.B.1
Solution 2.B.2
Solution 2.B.3 1. Let A > 0. For p € C[OSAA]Q we have
(T, )] < 24suplg| and |(T*, )| < Asup ],

which shows that 7" and Tt are distributions of order 0 on RZ. Still for p e CFj’A A2y We have

A
(0,T,p) = —(T,0zp) = —/ (0zp)(z / Oz ((x, 2 daH—/ Orp(z, )
~A
+(T,0ip) = =0T, 9).

Thus 9,7 + 0;T = 0. The same way, we have 9,7+ + ;T = §; since
A A A
O ) = (1", 000) = - [ (@) adde =~ [ dulplw o+ [ ool a)do
0 0 0

- 90(07 0) + <T7 at(p> = (p(o') 0) - <8tT7 90>

2. Let A>0and ¢ € Cf’fAyA]g. We have

(O E — 0, E,p) = —(E,01p — Opp) = // Opp(t, ) — Opp(t, z)dtdx
t>|z|

/ / Op(t, z)dt)dx —/ / Oup(t, x)dx)dt
Tz€R |z| t>0
+o00
== [ elatayae— [ ple.t) = et~ = 2T ).
Therefore
(OFE—03E, @) = —((0y—0:)E, (0+0:)p) = —2(T", (0s+02) ) = 2((9+0:)T", ) = (260, ¢),
and 92E — 92 = 25,

Solution 2.B.4
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Chapter 3

The Laplacean

3.1 A Fundamental solution of the Laplacean

The Laplace operator, or Laplacean, is the differential operator A defined on D’(R") by

n
AT = 05T = div(VT).
j=1
This operator appears everywhere in physics, and more generally in the modelisation of a lot of prob-
lems of the real world. It is also a natural object in geometry. Notice that it is sometimes the operator
—A which is called the Laplace operator, since —A is a positive operator: for ¢ € Cg°(R"),

(—Ap, )2 = / |Ve||?dz > 0.

3.1.1 Green’s formula for the Laplacean

Proposition 3.1.1 For u € C3(Q) and ¢ € C3(2), we have

/Q (Au(x)go(x) — u(x)Agp(x))dx = / (@(m)Vu(x) v(x) —u(z)Ve(x) - I/(x))da(x).

o0

Proof.— Since Au = div Vu, Stokes formula (2) gives
/Au(:c)go(x)dm = / () div Vu(x)dx
Q Q
= —/ Vo(z) - Vu(z)dz +/ e(x)Vu(x) - v(z)do(z),
Q o0

and the same way,

/Qu(x)Ago(x)dx:/u(w)divVap(x)da:

Q

= —/ Vo(x) - Vu(x)dz —I—/ u(x)Ve(x) - v(x)do(z).
Q El9)
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The proposition follows subtracting these two equalities. O

3.1.2 The Laplacean of a radial function

Proposition 3.1.2 Let f : R™ \ {0} — C be a radial function, i.e. such that there exits
F :]0, +oo[— C with

f(x) = F(lx]).
If F (thus f) is C2, we have

n—1
- F .
——F(ja])

Af(x) =F"(|lz]) + 2]

Proof.— This is a simple computation: for x # 0,

X

9;f(x) = 0;(F(|z])) = F'(M)j,

" el —3/le

xs x| — a5 /|x

0 f(x) = F"(Ja) 5 + ———5——F'(j2).

|| ]

Therefore
- 2 1 7 n—1
Af(x) =Y F'(Ja))755 + (7 = —5)F (l2]) = F"(2]) + F'(|).
st 2z [ ]
O

3.1.3 Computation of A(W)

1
The function f : R™ — R given by f(z) = T2 isin L1 (R™), thus defines a distribution T = T7.

x

We want to compute AT in D'(R").

Let ¢ € C5°(R™), and R > 0 be such that supp ¢ C B(0, R). First of all, we have

(AT}, p) = (Ty, Ag) = /Q f(2) Ap(x)da

Since the function f is not smooth on €2, one can not use directly Stokes’ formula, but by the dominated
convergence theorem, we have,

/Q f@)Ap(@)de = im [ f@)Ap(x)ds,

+
e—0 Qr.e
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where Qp. = B(0,R) \ B(0,¢). Notice that 9Qp. = St '|JS?~!, where v(z) = z/R for
z € Sy and v(z) = —x /e for x € STL. Thus

f(@)Ap(x)de

QR,S

= Af(@)e()de + / f@)Veo(z) - v(r) — e(@)Vf(z) - v(z)do(z).

QR,E aQR,s
Now in Qg ., we have, writing F(r) = 1/r""2,

V(le"?) = F(a)) & = 2= DT

] |z["

—1
PP = _ ~0.

Af(e) = F(el) + "1

Since moreover @ vanishes on Sﬁ_l, we get

f(@)Ap(x)dx

QR,E

— /nl f(@)Veo(x) - v(z) — o(x)Vf(x) v(z)do(x)

E (n—2)ew

n—1
(= dw.
o (—w)e w

= [ et ot [ plew)

1

Letting € — 0", we obtain

/Q F(@)Ap(@)dz = —(n — 2)0(0)]S7".

We have proved the

Proposition 3.1.3 Let F,, € D'(R") be the distribution associated to the function f € L} (R")

loc
given by
Cn . 1
T) = +—F——>, witheg, = ———-
@)= fop= ST

Then
AE’IL = 507

Anticipating a bit, we introduce right now a very important notion.

Definition 3.1.4 Let P =}, _,, aad” be a differential operator with constant coefficients
on R™. A distribution E € D'(R") is a fundamental solution of P when PE = §.
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Example 3.1.5 We have seen that distribution E,, € D'(R™) defined as

Cn, 1
_on -~ forn>3
@ T T ogsey Y
— 1
En = Py In || for n =2,
m
xH(x) forn =1,

is a fundamental solution of the Laplacean P = A in D'(R").

1 1
Exercise 3.1.6 Show that J;(—) = Jp, i.e. — is a fundamental solution of the operator 0

by Tz
(read "d-bar”) in D'(R?).

B. Malgrange and L. Ehrenpreis have shown independently in 1954/1955, that any (non-trivial) dif-
ferential operator with constant coefficients has a fundamental solution. There even exists different
more or less explicit formulas for theses distributions, that are however very difficult to use. On the
other hand one knows that this is not true for differential operators with non-constant coefficients, yet
relatively simple.

3.2 Harmonic Functions

A function ¢ € Cz(ﬁ) is harmonic in © when Ap(z) = 0 for any = € ). Harmonic functions have
remarkable properties, as for example the so-called mean value formula.

Proposition 3.2.1 Let (2 C R” be an open set, and ¢ € C?(£2) a harmonic function on Q. For
any xg € €2, we have

1 / 1
T0) = ———— 2)dr = ———— x)do(x),
#00) = B0 ) Jpwar P 5 0 R)] Jsn oy P9

where R > 0 is such that B(zg, R) C Q.

Proof.— Let F,, be the fundamental solution of the Laplacean defined above. For any € > 0 less than

R, we denote
QR = B(wo, R) \ B(wo,¢).

We have 9Qp . = SE 1S, where v(z) = 2/Rforxz € S§ !, and v(z) = —a /e forz € SP1,

Since ¢ is harmonic and AE,, = 0 on QR,e, we have

/ (pAE, — E,Ap)dx = 0.
QR,E

Green’s formula gives

/ (¢VE, - v—E,Vy-v)dr=0.
QR .
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Since ¢ is harmonic in €2, we have, by Stokes’ formula
0:/ 1xApdr=— A(l)cpd1:+/ 1><V<p~uda:/ Ve -vdo.
QR,E QR,E aQR,E aQR,E

Since E, is a constant function on 02 ., we get

/ E.Ny-vdo =0,
O0R ¢

and finaly

/ oVE, - -vdo=0.
QR -

1 )_ 1 x
zn=27 1 spt

Moreover

VE, = ch(

thus, for any € > 0 small enough,

1 1 1 1
- ——d o
577 Jage P R ] Jgpes P

do(x).

6n

Last, wheb ¢ — 0T,

1 .
/ o(2) - do(z) = / o(ew)diw — |71 (0),
S;z—l £ SIL—l

and we have proved that

1 1
p0)= L / p(@)do(@) = ——— | p(z)do(z).
|51 1|Rn_1 spt ‘SR 1| spt

To finish the proof, we notice that V(|z|?) = 2z, A(|x|?) = 2n, and thus

_i T ZE2 — X .'L‘Q X
Lo 20 =50 [ @@AG) — Aol
= o [ @) V() v(a) ~ 12 Vp(a) - v(@)]do(a)
n Sg 1
2
= ewde@) - 5 [ Vo) vw)dota) = [ e@)dota).
sy n sy n Jpt
We have in particular
vol(B(O,R)):/ tdr =2 [ do(@) = Eispy,
B(0,R) nJsyt n

so that
1 1

_ p(x)dr = ——
wol(B(0, ) /B<O,R> () = TGnt] Jgn
as stated. O

p(x)do(x),
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Corollary 3.2.2 (The maximum Principle) Let 2 C R" be a connected open set, and ¢ €
C2(Q) a harmonic function on Q. If  has a local maximum in ©, then ¢ is a constant function
on 2.

Proof.— Suppose that there exists xg € 2 and an open set V' C () that contains xg, and such that
vz €V, o(x) < p(zo).

There exists R > 0 such that B(zg, R) C V, and the mean value formula gives

1
plao) = [ (e,
’B(J:Ov R)| B(zo,R)
which we can also write

/ o(z) — p(xo)dz = 0.
B(zo,R)

Since the function () — ¢(x0) is continuous and non-positive on V, we get that p(z) = ¢(x¢) for
all x € B(xo, R).

Thus, the set A = {z € Q, p(x) = p(x0)} is open. It is also closed by definition, and it is not empty
since xg is in A. As () is connected, we obtain that A = (). O

3.A Exercises
Exercise 3.A.1 1. Let f € C}(R"), n > 2, and R > 0. Show that for all k € {1,...,n},

1
/|1"SR O f (z)dw = o (2)do (),

lz|=R
where o is the surface measure on the sphere of radius R.

2. Suppose that f € C3(R™) is harmonic. Why do we have, for any R > 0 and any k € {1,...,n},

1
0O = BT /|ng Onf(2)dz 7

3. Deduce that if, moreover, f is bounded on R", then f is a constant function.

Exercise 3.A.2 For R > 0, op is the surface measure on the sphere Sz C R", and we denote
1

MR = 7UR(SR)UR.

1. Using Stokes formula, compute [ z;dug et [ z;z;dpg.

. (1R — 60).

2. Give the limit as R — 0 of the family of distributions T = o2

Hint. Use Taylor's expansion of ¢ at 0.
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3. Let f € C(R™,R) be a f subharmonic function, that is for all R > 0 and all x € R",
f() < (f x pr)(z) = g f(@ = y)dpr(y).
R

Show that Af is a non-negative distribution.

4. Deduce that if f is continuous and satisfies the mean value property, then f is harmonic.
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Chapter 4

Convolution of distributions

4.1 Differentiation and integration inside the bracket
Proposition 4.1.1 Let 2 C RP be an open set, and T' € D'(2). Let also p € C*(Q2 x R?). If
there exists a compact set K C §2 such that suppp C K x R, then the function
G:yeRY = (T, 0(,y))

is C*°, and, for o € N9,
0°G(y) = (T, 0, »(-,y))

Remark 4.1.2 i) We have written (T, ¢(-,y)) in place of (T',¢,), where ¢, € C5°(R") is the
function given by ¢, (z) = ¢(z,y).

i) The assumption supp ¢ C K x RY means that for any y € RY, the support of ¢, is included
in K. It holds in particular when ¢ € C3°(©2 x RY).

iii) For a regular distribution 7' = T}, with f € L} (Q), we have G(y) = [ f(z)¢(x,y)dy, so

loc

that, under the above assumptions, we get G € C*°(RY) and
0°Gly) = [ F@)5e(w.v)dy.
Proof.— Let yp € R? and x € Q). For h € RY, Taylor’s formula at order 1 gives

q
oz, 90+ h) = @(,50) + Y 0y 0(x, y0)hy + r(, 90, h),
j=1

he 1
with 7(z,yo, h) = 2 Z oz!/o (1 =1)0y ¢(w,yo + th)dt.
oo <2
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Since x — 7(x, Yo, h)) is C* with support in K,

(T, (2,50, h))| < C Y sup |97r(x, yo, h)|
18I<k

for a constant C' > 0 and an integer k € N independent of yo and h. But for |h| < 1,
(a0 h) <2 3 / (1 00005 pla.yo + th)dt < CAP Y swp 19800(x.y)].
jaj<2 @ laj<2 ExB(0,1)

Thus
(T, (x, 90, h))| = O(h]?).

and,

q
Gly+h) = G(y) + D _(T.y,0(x,y0))h; + O(|h[?),
7j=1

which shows that G is differentiable at y - in particular GG is continuous, and that
9;G(y) = (T, 0y, p(z,y)).

Then one can replace ¢ by 8yj<p($, Yy) in the above discussion. We see that for all j, 0;¢ is differen-
tiable, thus in particular continuous. So G is Cl, and the statement of the proposition is true for any
|a] = 1. One can easily get the general case by induction. O

Proposition 4.1.3 Let 2 C RP be an open set,and T' € D'(2). Let also ¢ € C°(©2 x RY).

Then
/ (T, o))y = (T, / o y)dy)
Rae Ra

Proof.— We start with the case ¢ = 1. Let ¢ € C5°(€2 x R). We choose A > 0 and a compact set
K C Q such that suppyp C K x [—A, A]. We denote 9 :  x R — C the function given by

b(z,y) = / _elanr

The function 1) belongs to C*°(€2 x R), and for any y, supp(x +— 1 (z,y)) is included in K. Therefore
the above proposition applies: the function

Gly) = (T, () = (T, / (e, t)dt)

t<y

is smooth, and
Gl(?/) = <T7 8y1/1(957y)> = <T7 (p(l’,y)>

Integrating, we get

(T, /t<y o(z, t)dt) = G(y) = - G'(t)dt = /t<y<T,g0(x,t)>dt.
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This gives the proposition, taking y = A for example.

For ¢ > 1, we proceed by repeated integrations. Let ¢ € C{°(£2 x R?). We can suppose that
suppp C K x [—A, A]9 for a compact subset K C 2, and A > 0. We denote 1), : 2 x R? — C the
function given by

%bq(ffay/,yq) = / QO(ZE,y,,t)dt,

t<yq

where we have denoted y = (', y,) € R~ x R. Using the result in the case ¢ = 1, we get
. [ ooy = [ (T.o(ay )t
R R
Then we denote 1,1 € C*(§2 x R9~1) the function given by (where now 3/ € R972),

oo (4 Ygr) = / ( /R syt 1)t ).

ta<yg—1
We obtain
T/ o) =Gl = [ Gwde= [ 1 [ ey nan)a
to<yg—1 t<yq—1 R
2/ /(T, o(z,y,t,t1))dtdt.
to<yq—1 YR
The proposition then follows by induction. O

4.2 Tensor products

4.2.1 Tensor products of functions

Definition 4.2.1 Let f : R? — C and g : R? — C be two functions. The function f ® g is
defined on RPTY by

f®g(x) = f(x1)g(x2), where x = (z1,22) € RPT? 2y € RP, 25 € RY,

This function is called the tensor product of f and g.

For example, the monomials R"” 5 z — %, a € N", are tensor products: one may write

o o1 Qa9
% =x]tTy?,

for any decomposition x = (z1,22) € RP X R?, p + ¢ = n. As a matter of fact, one can define
inductively the tensor product of many functions, and one easily sees that

=" R ®- - @z,

When a function f of n variables can be written as a tensor product of n functions of a single variable,
one says that f is a function with separate variables.
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Proposition 4.2.2 Let 7 C C5°(RP x RY) be the space of finite linear combinations of tensor
products of functions in C§°(RP) and C§°(R?). For any ¢ € C§°(RP?), one can find a sequence
(¢4) in T such that

21— ¢ in C°(RVT).

Proof.— Let p € C3°(RPT?), and K = K7 x K2 C R? x R? be a compact that contains the support
of ¢. Then, let (x1,x2) € C5°(RP) x C§°(R?) such that x; is a plateau function above K, and set
K = supp x1 ® X2

By Stone’s theorem, we know that there is a sequence P; of polynomials such that, for all o« € N",
0“Pj — 0“p uniformly on K. We set

pj(1,m2) = x1(21)xa(@2) Pi(z1,22) = D ajx1(21)7] xo(w2) 252,

‘B‘Sm]

where m; is the degree of P;. The function ¢, belongs to 7 ,and one can easily see that ¢; — ¢ in
C(C;O(Rerq)_ O

Proposition 4.2.3 Let 2 C R be an open set, and let T' € D'(Q).

0;T =0forall je{l,...,p} <= T = T¢ for some constant C' € C.

Proof.— Let ©1, 3. .., ¢, be functions in C§°(R), and p = 01 ® ... Q. Letalso x1,X2,---,Xn
be functions in C5°(R) such that [ x; = 1 for all j. We have

<T730> :<T7901 @ ... ®90n>

=<T7(s01—(/901)><1)® ®<pn>+<T,(/<p1)xl® c ®op)

But 1 — f g01 X1 belongs to CO ( ) an has a vanishing integral, thus it can be written W for some
Y € C°(R). Thus

(T,(sm—(/sm))a)@ e ) =T ®... @pp)=—(01T, Y ®... ®¢pp) =0,

and

(T, p) = (/901)<T,><1® . ®pn).

By induction, we get

(T, p) = (/‘Pl)(/¢2)---(/90n)<T7X1® e @ Xn) = (/¢)<T,X> = (Tc, @),

where C' = (T, x). O
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4.2.2 Tensor products of distributions

When (f1, f2) € C°(Q1) xC°(22), where Q1 C RP and Q2 C R? are open sets, for ¢ € C5°(Q1 x Q2)
we have,
<Tf1®f2a 90> = <Tf1,x17 <Tf2,x2, 80(3317 x2)>>

In particular if ¢ = 1 ® @2,
<Tf1®f2a 90> = <Tf1 ) ‘101><Tf27 <P2>-

Proposition 4.2.4 Let (71,T%) € D'(Q1) x D'(2).

i) For any ¢ € C3°(Q1 x Q2), the function ¥ : x — (T, ¢(z,y)) belongs to C5°(€2).

i) The linear form T : ¢ € C3°(21 x Q2) — (T1,v) is a distribution in D'(2; x Q). We
denote it T'=T1 ® Tb, and it is called the tensor product of 77 and T5.

Proof.— Let K = K x K be a compact subset of R” x R?. Since 7T} is a distribution, there is a
constant Cy > 0 and an integer k1 > 0 such that for all function ¢ € C}?{Ol,

Ty, ¥) < Cy > sup|9°¢.

|| <k1

The same way, there is a constant Cs > 0 and an integer ko > 0 such that for all function v € CIO(C;,

(T2, )| < Co Z sup [0°9)).

|8 <k2

Then let ¢ € C§°(§21 X €22) be such that supp ¢ C K. The assertion (i) follows easily from Proposition
f.1.1. Furthermore we have supp® C K and 0%y (z) = (Tay, 0Sp(x,y)). Thus

(T, @) = (T, 9)| < Cv Y sup[(Toy, 070z, y))| < C1C Y sup|9y05 (. y)-

laf<k1 o] <k1,|B|<k2

Notice that the constants C5 et k9 do not depend on z, since for all z, supp(y — go(x, y) C Ky. O

Proposition 4.2.5 Let (T1,73) € D'(21) x D'(Q2). The distribution T' = T1 ® T is the only
element in D'(Qy x Q) such that, for all (1, p2) € C§°(21) x C5(Qa),

(T, 1 ® p2) = (T, 1) (T2, p2)-

Proof.— First of all, it is clear that 17 ® T5 has this property:

(T @ Ta, 01 @ pa) = (T, (T, p1(2)p2(y))) = (T2, p2) (T, 1)
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Now let T and 7" be two distributions in D' (1 x §9) satisftying this property. For ¢ € D'(21 X Q2),
there is a sequence (¢;) of functions in 7T such that ¢; — ¢ in D'(2; X Q3). But we obviously have
(I' =T, pj) =0, and therefore

0= lim (I'—=T,¢;) =T —T,¢).

j—+oo

Thus T =T. O

Proposition 4.2.6 For (T1,7%) € D'(Q1) x D'(Q3), it holds that

supp 1} ® To = supp i X supp 5.

Proof.— Let yp ¢ supp7h. There exists a neighborhood V' of yo such that for all ¢p € C3°(V),
(T, 1) = 0. Thus, for ¢ € C§°(RP x V'), we get

(Th @ Ty, ) = (T1, (Tn, ¢)) = (T1,0) = 0,

which shows that supp 1] ® T C RP x supp1y. The same way supp1i ® 15 C supp1i x RY, and
thus
suppT1 ® To C (RP x suppT2) N (supp T1 x R?) = supp T} x supp To.

Conversely, suppose that (g, yo) € supp 11 x suppTs. Let W be a neighborhood of (¢, 3o). There
are neighborhoods U of xg and V of yg such that W D U x V. Since g € supp T} and yg € supp 15,
there us 1 € C3°(U) and @2 € C5°(U) such that

(T1 @ Tz, 01 @ p2) = (T1, 1) (T3, p2) # 0.

Therefore (g, yo) € supp T} ® Ts. O

Proposition 4.2.7 Let (71,T5) € D'(Q1) x D'(2), where 1 C RP, Qs C RY are two open
sets. For j € {1,...,p+ ¢}, we have

(0;T1) ® T pour 1 < j < p,

0, (T ®Ty) = .
T ® (9j—pT2) pour p+1 < j < p+gq.

Proof.— It is sufficient to prove this for test functions ¢ € C3°(£21 X {22) of the form ¢ = @1 ® @a.
But
(0;(Th ®T3), p1 ® 2) = —(T1 ® T, 0j(p1 ® p2)),

and 9 (1 ® pa) = (0jp1) @ @2 for j < p, yet 9j(p1 ® pa) = p1 @ (j—pp2) for j >p+1. O

Proposition 4.2.8 Let (7)) be a sequence of distributions in D’'(€), and (S;) a sequence of
distributions in D’(Qs), where Q1 C RP, Qy C R? are two open sets. If (Tj) — T in D'(Q)
and (S;) — S in D'(Qy), then

E@S}—)T@Sln D,(Ql XQQ).
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Proof.— Let p € C3°(€21 X Q2), and K = K x K3 be a compact set that contains the support of .
Then, let ¢, : © — (S, ¢(x,-)). Thanks to Proposition B.1.1, we know that v, € C°°(€)1), and that

8a¢n(x) = <Sna 8?90(55’ )>

Moreover we see that supp 1, C K for any n.

Since T,, — T in D'(£21), it suffices to show ¥, — 1 = (S, p(x1,.)) in C§°(21). The only remaining
task is thus to prove uniform convergence of 0%, to %) on K.

Let (x,,) be a sequence in K that converges to x € K. We have
O%Pn(xn) = (Sn, 07 0(Tn, ),
and 05 ¢(zp, ) = 0%p(x,-) in C§°(£22). Indeed, supp(y — 05 ¢(xy,y)) C Ko, and
10505 p(wn, y) — 0,05 p(x,y)| < Clan -,
because 8585@0 is C! with compact support. Therefore, as n — +00,
O Yn(xn) — 0%P(x) = (Sn, 05 (20, ) — O (x,-)) =0,
and this finishes the proof of the proposition. O

Exercice 4.2.9 (Distributions that are independant of one or many variables) Let 7' € D'(£2; x
), where Q7 C RP et Q9 C RY are open sets. Show that the following two assertions are
equivalent:

i) ;T =0forall je{p+1,...,p+q}
ii) There exists S € D'(Q) such that T =S ® 1.

Application: Solve in D’(R?) the equation 90T = 0.

4.3 Convolution

For f,g € L*(R™) we have defined f * g € L'(R") b

fgle) = / f(& - y)g(w)dy.

Thus for ¢ € C3°(R™), we have

(Tug, 0) /f*g d:z:—//fx d:cdy—//f o(y + 2)dzdy

= //(f ® 9)(2,9)p(y + 2)dzdy = (Tyeg, ¢),

where > is the function on R” x R™ given by ¢ (z,y) = (x4 y). Therefore, the only reasonable
choice for the definition of the convolution of two distributions 7', S € D'(R") is

(4.3.1) (T*S,p) = (T®S,p™).
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However, we immediately see that it will not be possible to define in general the convolution of two
distributions, since the function cpA has not compact support for a general ¢ € CSO(R”). Nevertheless,
as in the definition of the action of a distribution with compact support on general smooth functions,
we will be able to give a meaning to the R. H. S. of (§.3.1]) under some natural assumption on the
distributions T and S.

4.3.1 The key lemma

Definition 4.3.1 Let 2 € R™ be an open set, and 7' € D'(Q). We denote £(T') = E(supp T)
the set of functions ¢ € C*°(Q2) such that

supp 1’ M supp ¢ is compact.

Of course, it holds that C3°(2) C £(T') for any distribution 7.

Proposition 4.3.2 Let T € D'(Q). There exists a unique linear form T on £(T) satisfying the
two following properties:

i) T extends T if o € C(Q), T(p) = (T, ).

ii) T is continuous on E(T), in the following sense:
if (¢;) is a sequence of £(T) such that supp ; NsuppT is included in a compact set
K C R" independent of j, and if for all @« € N, (0%;) — 0% uniformly on every
compact subset of €2, then T'(¢;) — T'(¢)

Proof.— We first exhibit such a linear form. Let ¢ € £(T"), and x € C5°(€2), a plateau function above
supp ¢ NsuppT’. We set B
T(p) = (T, x¥)-

If x1 and X2 are such plateau functions, we have

supp T' N supp(x1 — X2)¢ C supp T N supp ¢ Nsupp(x1 — x2) = 0,

thus T does not depend on the choice of . In particular f is linear: if (o1 and @2 belongs to E(T),
then

T(p1+ ¢2) = (T, x(p1 + ¥2))
where we can take for x a plateau function above (supp ©1 Usupp gpg) NsuppT'. Thus

T(p1 + ¢2) = (T, xp1) + (T, xp2) = T(01) + T(02)

We also have (T, (1 — x)¢) = 0, so that T satisfies the property (i). Last, for a plateau function
above K ,

T(p;— ) = (T, x(g; —¥)) =0
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since (x(¢; — ¥)) goes to 0 in C5°(£2), and T satisies property (ii).

Concerning uniqueness, suppose T is a linear form on €(T) that satisfies (i) and (ii). Let (KJ) be
an exhaustion sequence of §}, that is K is a compact set, K; C Kj1, and 2 = U;K;. Let also

Xj € CSO(IO(]-H) be a plateau function over K. For ¢ € £(T), we have f(chp) — T(¢) thanks to
(ii). Indeed

e Forall j, we have supp X;j®Msupp T C supp pNsuppT = K, that is a compact set independent
of j.
e There exists jo € N such that K’ C Kj,. Thus, for all j > jo,
I%(xjp) = 0%,

which shows that 0%y — 0% uniformly on every compact subset of 2.

Since f(xjgo) = (T, x¢) thanks to (i), for ¢ € £(T'), we also have

T(p) = lim (T, x;®).

Jj—+o00

Finally, since X is a plateau function over supp ¢ M supp 1’ for any j > jo, we also have

lim (T, x;¢) = (T, xj0) = T(¢),

j—+o0

and thus T'(p) = T(¢). O

In the particular case of a distribution 7" € D’()) with compact support, it is obvious that £(T") =
C>(£2). Thus the previous proposition states that one can extend in a unique way the distribution
T to a continuous linear form on COO(Q), as we already know (at least in dimension 1) from Section

f.e4

4.3.2 Convolvable Pairs

Let us recall thata map s : X — Y is said to be proper when S_l(K) is a compact set in X for any
compactset K C Y.

Definition 4.3.3 Let F' and G be to closed subset of R™. We say that the pair {F,G} is

convolvable when the map
s: FxG — R"

(r,y) = x4y

is proper.

For example, in R the pair {R, R} is not convolvable, but the pair {R™,R*} is. Indeed
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e If s: Rx R — Ris given by s(z,y) = z +y, then s ' ([—a,a]) = {(z,y) E R xR, —a <
x+vy < a} is the set of points in the plane between the linesy = —a —x and y = a — x, which
is not compact.

e Now if s : RT x RT — R is given by s(z,y) = = + y, then s71([—a,a]) = {(z,y) €
Rt xRT, —a<z+y<a}={(z,y9), 0<z, 0<y<a—x} whichisa compact set.

Notice that a pair {F, G} of subsets in R™ is convolvable if and only if, denoting S the map

S: R*xR" — R»
(z,y) = x4y

the set (S),..,) "' (K) is a compact set for any compact K C R". Indeed

(Sipre) "E) =SHK)NF x G=s"(K).

Proposition 4.3.4 If ' or G is a compact set, then the pair {F, G} is convolvable.

Proof.— Suppose that F' is compact. We set s : F' x G — R" the map given by s(x,y) = = + y.
Let K C R" be a compact set, and (z;,y;); a sequence of s~ '(K). The sequence (z;) given by
zj = x; + yj;is a sequence of the compact set K, thus one can find a subsequence (ij)k which is
convergent. Since F'is compact, we can also extract from (i, ) a subsequence (i, ,) which converges.
Then, the sequence y;,, = 2j,, —Z;,,, converges too, and we have found a a subsequence (xjke,ij)g
from (z;,y;); that is convergent. Therefore s™1(K) is a compact set, and {F, G} is convolvable. O

Exercise 4.3.5 Let F' and GG be two closed subset of R"™.

i) Give an example where F' + G is not closed.
i) Show that if F'is compact, '+ G is closed.

iii) Show that if {F, G} is convolvable, then F' + G is closed.

Let us prove (iii), since we will need this property below. Let (zj) be a sequence of F' + (G that
converges to some z in R™. There exists (z;) C F and (y;) C G such that z; = x; + y;. The set
K = {2} U{z;,7 € N} is compact, thus s~!(K) is compact too. Since (z;,y;); C s 1(K), there
exists a subsequence (xj, ,y;, )x that converges to some (z,y) in F' x G. Now z;j, + y;, — 2, SO
that we have z = x + y, i.e. z € F' 4+ (G. Thus the limit of any convergent sequence of elements in
F + G belongs to F' + G, and this proves that F' + G is closed.

4.3.3 Definition of the convolution of distributions

Two distributions 7', S € D'(IR™) are called convolvables when the pair {supp T, supp S} is convolv-
able.
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Proposition 4.3.6 Let 7,5 € D'(R"™) be two convolvable distributions. For any function ¢ €
C§°(R™), the function ¢ belongs to £(T ® S).

Proof.— Let ¢ € C3°(R™). We want to show that A = supp goA NsuppT ® S = supp gpA Nsupp T X
supp S is a compact set. This is the case since s : supp1 X supp S — R", s(x, y) = x+Yyis a proper
map and A = s~ ! (supp ¢). O

Proposition 4.3.7 Let T, S € D'(R™) be two convolvable distributions. The linear form

~——

= (T®S,¢%)

is a distribution on R™. We denote it T * S, and it is called the convolution product of T and

S.

Proof.— Let (;) be a sequence of functions in C3°(R™) which converges to ¢ in C5°(R™). We are
going to show that (T"x S, ¢;) — (T .S, ) using property (ii).

* There is a compact set K C R" that contains the support of ¢ and of all the functions ;. Thus
supp gojA NsuppT ® supp S C s_l(K) = K C R?" which is a compact set independent of 7.

e Forall o € N?7, Bacij converges to (90‘4,0A uniformly on every compact of R?". Indeed we
notice that
0G5 (w,y) = 021952 (p(x +y)) = (92 p)(z + ).
Thus, let C - R?" pe a compact set. We can write C = C; U Cy, where C; = (cn f() and
Cy = (C' N (K)®) are two compact set, and
sup |07} — 0% < sup [0 () — P2+ sup |[0° (i - )3

Then we notice that the second term vanishes (by continuity ¢; and ¢ vanishes at the boundary
of K), so that
A A + A
sup 0% — 0% < sup 0% 72 (e — )7 .
1

Therefore, we only have to prove that 80‘4,0? converges to ao‘cpA converges on any compact
subset C of K. But if (x;,1;) — (z,y) € C1, we have
093 (xj,y5) = (07 °29) (2 +yj) = (072 0)(z +y) = 00 (2, y),

since 91 taz ¢; converges uniformly to 9*11t*2¢ on K.

Thus, we have (T % S, ;) = (7/;@5/5, ;) — (Tfé/S, o)y = (T *S,p). O

This definition of the convolution of distributions extends, as required, the convolution of functions.
Indeed
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Proposition 4.3.8 If T =Ty and S = T, for f,g € L}, (R™), and if the pair {supp f,supp g}
is convolvable, then
Ty + Ty = Tfug,

where f x g is the function in L}, .(R") given by f * g(z) = /f(x —1)g(y)dy.

Proof.— Let ¢ € C3°(R™). We have

—_——

(T+5,0) = (T® 8, 0) = (T® 5, xp>) = / / F(@)9 ()X v)o(@ +y)dedy,

where x € Ci°(R™ x R™) is identically 1 near suppT ® S N supp ©®. It is easily checked that
(z,y) = f(x)g(y)x(x,y)p(x + y) is a function in L'(R™ x R™), and changing variables according

to (z,y) = (2,y) = (z +y,y) gives

(T % 5, ) = / / £z — 9)e)p(2)dzdy = (Tpag, o).

4.3.4 Main properties of the convolution

Proposition 4.3.9 Let 7, S € D'(R™) be two convolvable distributions. Then

TxS=5%T.

Proof.— Let ¢ € C3°(R"), and x € C§°(R™ x R™) be a plateau function over supp1’ X supp S N
supp LpA. We have

(T'* S, 0) = (T @ Sy, x(, )™ (,9))) = (Sy, (Te, x (2, 1) (,9))).

We set x(y,x) = x(z,y), so that the function X € C3°(R™ x R") is a plateau function above
supp S x supp T N supp ™. Since ™ (z,y) = ¢ (y, ), we get, as stated

(T S,0) = (Sy, (T, ¥y, 2)9> (1, 7)) = (S T, ™) = (S =T, 9).

Proposition 4.3.10 For any 7' € D/(R™), T and ¢y are convolvable, and

Txdg=0dxT="T.
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Proof.— The pair {supp T, supp 0y } is always convolvable since supp dgp = {0} is a compact set. For
@ € Cg°(R™), and x € Cg°(R™ x R™) ta plateau function over supp T’ X supp dy N supp @™, we have

(T 80, 0) = (T @ 80, ™) = (T, (Sym0, X(, 1) (x + 9))) = (T, x (2, 0)p(x)) = (T, ).

Proposition 4.3.11 Let 7,S € D'(R"™) be two convolvable distributions. For any j €
{1,...,n}, it holds that
8j(T * S) = (8jT) xS =T % (835)

As an immediate consequence, we get 0%(T *x S) = (0°T) x S = T  (0*S) for any o € N".

Proof.— Let ¢ € C3°(R"), and x € CSO(RQ”) a plateau function above suppT ® S N supp =, We

have
(05(T % 8),0) = —(T * 5,0j0) = —(T @ S, x(9;9)")-
But
059) (2, y) = (95)(x +y) = 0, (p(z + 1)) = Iy (9™ (2, 1),
so that

(05(T % 8),0) = — (T ® S, X0u,; ™)
=—(T® 8,0, (x¢™)) + (T ® S, 0, (x) ™)
:<(8JT) & Sv XSDA> = <6jT * Sv 90>'

We have used the fact that (7' ® S, 0, (x)p™) = 0, since Oz;x = 0 near supp T’ ® S M supp ©®. O

Proposition 4.3.12 Let 7,5 € D'(R"™) be two convolvable distributions. We have

supp(T *.S) C supp T + supp S.

Proof.— We denote again s : supp1’ X supp S — R" the proper map given by s(x,y) = = + y.
Let ¢ suppT + supp S. Since supp T + supp S is closed, there exists § > 0 such that B(z,d) N
(suppT + supp S) = 0. For ¢ € C§°(B(x,0)), we have

supp ™ N (supp T x supp S) = s~ (supp ) C s~ (B(x,0)) = 0.

P

Therefore (T % S, ) = (T ® S, ™) = 0,and = ¢ supp(T * S). O

Proposition 4.3.13 Let (7)) and (5;) be two sequences of distributions, such that 7; — T
and S; — S in D/(R™). If there is a compact set K C R" such that suppT; C K for all j,
then T + S; — T « S to D'(R™).
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Proof.— Let ¢ € C°(R™). We have

where x; € C3°(R™) is any function with value 1 in a neighborhood of supp T}j x supp S; N supp OB,
But
supp T X supp Sj M supp 0™ C K x R" Nsupp o™ C s (supp @)

is a compact set, independent of j, since the map s : K x R™ — R" given by s(z,y) = x +y is
proper.

Therefore one can take x; = Y, where ¥ € C§°(R") is a plateau function above s~!(supp ¢). Then
we get
(Tj  Sj,0) = (Tj @ S, x9™) = (T @ 8,x¢%) = (T % 5,0),

thanks to Proposition §4.2.8. O

4.3.5 Particular cases : £'(R") x C*°(R") and D'(R") x C°(R")

For a function f : R" — C, we denote f the function defined by f(x) = f(—z). Of course f is
smooth when f is smooth, suppf = —supp f, and f = f.

Proposition 4.3.14 Let T € D'(R") and f € C*°(R™) such that T or f is compactly supported.
Then g : z— (T, f(x — -)) is a smooth function on R", and T'x f = g.

Proof.— For any fixed x € R", the set
supp T N supp f(x — ) = supp T N (supp f + ),
is compact, thus g is well defined on R".
Let us prove that g is C* at each point xy € R", using Proposition B.1.1. For z € B(xg,r), we have
supp T Nsupp f(x —-) =suppT N (suppf+ x) CsuppT N (suppf+m) =K,
which is a compact set. Then let x € C3°(R™) be a plateau function above K. We have
g(@) = (T, f(x =) = (Ty, x(v) f(z = ),

and (z,y) — x(y)f(z —y) is a function in C*°(R"™ x R™), whose support is included in R™ X supp x.
Since supp y does not depend on x € B(xq, ), Proposition shows that g is a smooth function
on B(zg, ).

Let then ¢ € C°(R™), and ¢ € C5°(R™ x R™) a plateau function above supp 1 X supp f M supp s
We get

(T f,0) =(T® f,0%) = (T'® f,0b0™)

=Ty, (f(y), ¥(z,9)(x +y))) = (Tx, / fW)(z,y)e(r +y)dy)
=Hb/f@—@w@J—xM@M@,
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after the change of variable y — z = x+y. Furthermore, the function (z, z) — ¥ (x, z—z)p(2) f(z—
x) belongs to CSO(RQ”), and exchanging the integral and the the bracket gives

(T# fop) = / (To, (2 — 2)(, 2 — 2)p(2))dz = / T, (2 — 2))p(2)dz,

since, for each fixed z, ¥ (z, z — x) is equal to 1 in a neighborhood of supp 7" N supp f(z — -). Thus,
as claimed, we get (T * f,©) = (g, p). O

Proposition 4.3.15 Let 7' € D'(R") and f € C*(R"). If T or f is compactly supported, we
have

T = f(0) = (T, f) and Ve € C°(R™), (T * f,0) = (T’ f * ).

Proof.— We know that .S % 1(0) = (S, A(0 — -)) = (S, h). For ¢ € C3°(R"), we thus have

(T fr0) = (T + f) * ¢)(0).

Now we have (T x f) x ¢ = T * (f % ). Indeed, for z € R", (T * f) * ¢ is the convolution of two
smooth functions, one of which has compact support. Thus

(T £)xp@) = [T )= ety = [(Lox(2) o~y 2)el)dy,
where x € C3°(R") is any plateau function above supp T’ N supp f(z — -), a compact set. Since
(v, 2) = x(2)f(z —y — 2)p(y)
is @ smooth and compactly supported function, one can apply Proposition and we get
(T f) * p(x) = (T2, x(2) / fx—y = 2)¢y)dy) = (T2, x(2)(f * ¢)(z — 2)).
Since we can assume that x is a plateau function above

supp T N supp(f * @)(x —-) C suppT N (supp f + supp @ + ),

which contains supp 7' N supp f(z — -) = supp T N (supp f+ x), we get eventually

(T ) * ¢(x) = (T2, f+ @)@ — 2)) = T # (f x @) (x).

Thus
(T fo0) =T+ (fx@)(0) = (T’ f * ),
where we have again used the identity m = f * Q. O

Exercise 4.3.16 Show that (T x f, ) = <f,f’ * ) when T and f are only supposed to be
convolvable.
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For ¢ € C3°(R™), the R.H.S. (T, f ) is well defined. Indeed

suppT' N suppf* @ CsuppT' N suppf + supp ¢,

and
x € supp T,
A(y, z) € supp f X supp ¢ such that x = —y + z,

x €suppT,
Jy € supp f such that z + y € supp ¢.

T € suppTﬁsuppf+supp<p<:>{

< x € Iy (supp T X supp f M supp cpA).

Since 1" and f are convolvable, this last set is compact, so that supp T’ N supp f *  is also compact.

Now let 6 € C3°(R"™) be a plateau function near II; (supp T X supp f M supp ©®). We have

(T, Fop) = (T,0F + 0) = (T, / 0(x)f(z — v)p(y)dy) = (T, / 0(x) f(2) ol + 2)dz),

by a change of variable. Since the function (z,y) — 6(z)f(z)p(z + z) is smooth with compact
support (because the pair {supp f,supp 9} is convolvable), integrating in the bracket we obtain

(T, [ x¢) = /<TI, 0(x)f(2)p(x + 2))dz = /f(Z)<(9T)x7 p( + 2))dz.

Using Proposition we get
ToFx o) = [ FGET + o))z = (0T . ).

Finally, we use Proposition in the case &'(R™) x C>°(R™), and we get

o —

Proposition 4.3.17 Let 2 € R” be an open set, and T' € D’'(Q). There is a sequence (1);) of
functions in C§°(2) such that ¢; — T in D'(£2). Otherwise stated, C3°(£2) is dense in D'(12).

Proof.— We proceed by troncation and regularization. Let (KJ) be an exhaustion sequence for (2,
and for all j, let x; € C3°(£2) be a plateau function over K. Let also p € C;°(R™), with support in
B(0,1) such that [ p =1, and set p;(z) = j"p(jz) so that (p;) is an approximation of the identity.
We notice that (p;) is also an approximation of the identity.

Let T € D'(R™) be the distribution defined by
(Tj,0) = (T, x;¢), »€C5(R).

Since they have compact support, the distributions Tj and p; are convolvable,and TJ * pj has compact
support. Thanks to the previous proposition, ¢; = T * p; belongs to C5°(R™), with support included

Lecture Notes, autumn 2014, Version 2.06 Thierry Ramond



CHAPTER 4. CONVOLUTION OF DISTRIBUTIONS 85

in supp T} +supp p; C K + B(0,1/7) C £ for j large enough. Thus we can consider it as a function
in C°(2) € D'(), and for ¢ € C3°(2) we have,

(Y, 0) = (Tj * pj, ) = (T}, pj * ).

Since T; — T'in D'(§2), and p; * ¢ — ¢ in C3°(£2), we obtain that (¢;, ) — (T, ) and ¢; — T in
D'(Q). O

Proposition 4.3.18 Let 7', S and R be three distributions in D'(R™). If two of them have

compact support, then
(T'«S)*R=Tx(S*R).

Proof.— Suppose for example that T and S have compact support. First, notice that each of the
convolution product in the above formula is well defined. Then, let (pE) be an approximation of the
identity. We set f- = T % p;, g- = S * p. and h = R % p.. We know that f.,g. and h. are
smooth functions, and that, for all 6]07 1], fe has compact support, which is included in K =
suppT + B(0,1). The same way, suppg. C Kg = supp S + B(0,1).

Thanks to Proposition B.3.13, f — T, g- — S and h. — R in D'(R"), since supp p. C B(0,1),
which is a fixed compact set. Then again with Proposition #.3.13, since for example the functions g.
have their support in a fixed compact, we see that

fe*xge —Tx*Sand g.*h. — S*RinD'(R").
Eventually, since the functions f. and (fE * gE) are supported in a fixed compact set, we get
(fs*gs) * he — (T*S) * R and fs*(gs*hs) — T * (S*R) in D/(Rn)'

Therefore, we are left with the proof that, for three smooth functions with two fo them compactly
supported, it holds true that

(fa *ge) * he = feo* (ga * ha)a

but this follows easily from Fubini’s theorem. O

Exercise 4.3.19 Compute (H *¢') x 1 and H x (6’ * 1) dans D’(R) and conclude.

Remark 4.3.20 The notion of convolvable pair can be generalized: one can also talk of a finite
set of convolvable sets. Then, in particular, one can show that the above associativity property
holds as soon as {supp T, supp S, supp R} is convolvable, which of course holds when two of the
supports are compact.

4.4 Application to constant coefficients PDE’s

4.4.1 Notations

Let P € C[xl, - ,:Un] be a polynomial of n variables with complex coefficients,

P(X)= > a.X" XE€eR",

loe|<m
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with a, € C. The integer m € N is the degree of P. We denote P(0) the operator on D’(2) given
by
D(Q) 5T~ POT = > a,0°T € D'(Q).
laj<m

Those operators are called linear partial differential operators with constant coefficients. The equation
P(O)T = F,

where F' € D'() is given, and T' € D'(Q) is the unknown, is called a linear Partial Differential
Equation (PDE) of order m with constant coefficients. When F' # 0, it is said to be inhomogeneous,
or with source term F'.

Remark 4.4.1 For n = 1, the equation P(9)T = F is a linear differential equation of order m
with constant coefficients, that can be explicitely solved. For n > 1, the situation is drastically
different and it may even be very difficult to show existence of solutions. For equations of order
m = 1 however, the so-called "method of characteristics” transforms the study of such a PDE to
that of a system of differential equations, and the theory of PDE’s really starts with equation of
order 2.

Example 4.4.2 Here follows a list of linear PDE’s of order 2 with constant coefficients, together
with their associated polynomial. Each of these equations has specific properties différentes (that
is: the solutions of these quations have different properties).

i) The Laplace (or Poisson) equation: AT = F dans D'(R"), P(X) = Y7, X7.
ii) The wave equation: 93T — AT = F dans D'(R'™"), P(X) = X — > i1 X3,
i) The heat equation: ;T — AT = F dans D'(R'*"), P(X) = Xo — > i1 ij.

iv) The Schrédinger equation: i9;,T — AT = F dans D'(R!™"), P(X) =iX( — > i1 XJZ.

4.4.2 Fundamental solutions

Definition 4.4.3 Let P = P(0) be a linear partial differential operators with constant coeffi-
cients. One says that E € D'() is a fundamental solution of P when PE = §j.

Notice that in physics, fundamental solutions are often called Green functions.

Example 4.4.4 We have seen that the distribution FE,, € D’(R"™) given by

Cn 1 p > 3
_— = —-— or
R e - I
= 1
En — In|z| for n =2,
2m
xH(x) forn =1,

is a fundamentental solution of the Laplacea P = A in D'(R").
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1 1

Example 4.4.5 We also know that J;(—) = dp. Thus — is a fundamentental solution of the
Tz Tz

operator 05 (read "d-bar") in D'(R?).

Proposition 4.4.6 If P has a fundamental solution E € D'(R™), then for all F' € &'(R"™), the
equation PT = F has a solution.

Proof.— Since F' has compact support, E' and F' are convolvable, and
P(ExF)=(PE)xF=6xF =F,

so that 7' = E % F'is a solution. O

B. Malgrange and L. Ehrenpreis have proved, independently in 1954/1955, that any linear partial dif-
ferential operators with constant coefficients has a fundamental solution. As a matter of fact, different
mathematicians have provided more or less explicit expressions for these solutions, but they are not
very easy to use. On the other hand, it has been proved that some linear partial differential operators
with non-constant coefficients, even some simple ones, don’t have a fundamental solution.

We will see in Chapter § below that the Fourier transform is a useful tool for computing fundamental
solutions. But even if we have no explicit formula, any knowledge about a fundamental solution for P
may give valuable informations on the solutions of P11 = I for general L.H.S. F'. Indeed we have

T=6«T=(PE)«xT =FE=x(PT),
for T' € £'(R™), say. In that direction, we have for example the following
Proposition 4.4.7 Let P be a linear partial differential operators with constant coefficients.
Suppose that P has a fundamental solution E whose restriction to R™ \ {0} is a C*> function.

Then, for any open set 2 C R™, and any F' € C*>°(2), the solutions of the equation PT = F
in D'(2) are C* in Q.

Proof.— Let 7' € D'(Q) be such that PT = F, and xy € §2. We want to show that 7" is C° near
xo. Thus let x € C5°(€2) be a plateau function above xo. We have xT' € £'(2), an we can consider
XT as an element of £&'(R™). Thus we have xT' = E x (P(xT)). But since x = 1 near z, Leibniz
formula gives

P(XT) =xP(T) + R=xF + R,

where R € £'(R"™) satisfies 29 ¢ supp R. The fact that R is compactly supported stems form the fact
that R = P(xT') — xP(T") = 0 out of the support of .
Therefore we have

XT =FEx(P(xT))=Ex*(xF)+ Ex*R.

Since E  (xF') € C>(R™) (we have extended xF' to a function in C°(R"™)), we are left with the
proof that F * R is smooth near xg.
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Let § € C°(R™) be a plateau function above 0. Since g9 ¢ supp R, we can choose 6 so that
xo ¢ supp T + supp 0. Moreover

ExR=(0E)* R+ ((1-0)E)* R = (0E) « R+ C®(R"),

since (1 — ) E € C*>(R™) by assumption. Last, if the support of ¢ € Ci°(R™) is close enough to xy,
we have
supp ¢ Nsupp(fE) * R C suppy N (supp® + supp R) = 0,

so that (F) « R = 0 near xo. O
Corollary 4.4.8 Let Q C R", with n > 2. If T' € D'(Q) satisfies AT = 0, then T € C>=(2).

Corollary 4.4.9 Let T be a distribution which is holomorphicin  C R?, i.e. satisfying 9;17 = 0.
Then T is C*°, therefore holomorphic in the usual sense.

4.4.3 Singular support

The following notion is very convenient when one discusses about the regularity of distributions that
are solutions of PDE’s.

Definition 4.4.10 Let 7" € D'(2). We say that = €  is not in the singular support of T,
and we denote = ¢ suppsing(7T’), when there is a neighborhood V' of x such that T'|y is C*°.
Otherwise stated,

suppsing(T') = ({z € Q, T is C* near z})*.

The singular support of a distribution T is a closed set, included in supp T'. Differentiation and product
by a smooth function do not increase the singular support:

suppsing(fT') C suppsing(T’) for f € C*°,
suppsing(9*T") C suppsing(T’) for a € N".

It P is a differential operator with smooth coefficients, we have thus
VT € D'(2), suppsing(PT) C suppsingT.

The converse inclusion is false in general, and the following definition is worthwile.

Definition 4.4.11 A differential operator P is hypoelliptic on €2 when

VT € D'(Q2), suppsingT C suppsing(PT).
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Exercise 4.4.12 Show that 0 is not hypoelliptic on R2. Consider T =1 ® ¢ € D'(R?).

If P is hypoelliptic and E' € D'(R"™) is a fundamental solution of P, then
suppsing E/ C suppsing(PE) = suppsing(dg) = {0},
thus F is C* on R™ \ {0}. Proposition is essentially the converse of this statement:
Proposition 4.4.13 Let P be a constant coefficients linear partial differential operator. If P

has a fundamental solution E whose restriction to R™ \ {0} is C*°, then P is hypoelliptic on
R™.

Proof.— Let T' € D'(R"), and 2 € R" be such that = ¢ suppsing PT. There is a neighborhood 2 of
2 such that the restriction of PT to € is C°°. Proposition then states that 7' € C*°(Q), that is
x ¢ suppsing T'. Therefore suppsing T’ C suppsing(PT). O

Proposition 4.4.14 Let 71,7, € D'(R™) be two convolvable distributions. We have

suppsing(T} * Ty) C suppsing(71) + suppsing(72).

Proof.— We suppose that T} and 15 have compact support. Then, suppsing 17 and suppsing 1, are
also compact, and there are two plateau functions x; = xj,. € C5°(R™) above suppsing T;+B(0,£/2)
such that x ;. = 0 out of suppsing T; + B(0,¢). Then we get

Ty «Ty = [(x1+ (1 —xa)Th] * [(x2 + (1 — x2))T2] = (aTh) * (x2T2) + R,
where R € C*°(R™). Thus

suppsing Ty * Ty = suppsing(x171) * (x27%)
Csupp(x171) * (x2T2) C supp(x1,:11) + (x2,e12).

The result follows letting € — 0. O
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Chapter 5

The Fourier Transform

The Fourier transform of a function f € L*(R") is the function F(f) € L>°(R") given by

F(E) = /wxff(x)d% avec || F(f)llre < |[fllLr-

The important role played by the Fourier transform in PDE’s theory is mainly due to the fact that, when
these objects are well-defined,

F(0;1)(&) = i&F(f)(€)-
Otherwise stated, F transforms the action of a differential operator with constant coefficients to that

of the product by a polynomial. This would be worthless without an inversion formula giving back the
function f in terms of F(f), as

1 iz
oy | R

fz) =

Unfortunately, this formula only makes sense when F(f) € Ll(R”), and this is not the case in general
for f € L'. Thus we shall start below by introducing a large enough class of functions that is stable
by J, and for which the two formula above hold.

5.1 The space S(R")

5.1.1 Definitions and examples

Definition 5.1.1 We denote S(R™) the set of functions ¢ € C*°(R") such that
Y(a, ) € N*,3Ch 5 > 0, sup|z°0°p(z)] < Cpp.

The set S(R™) is a vector space, and it is called the Schwartz space.

Example 5.1.2 i) Ci°(R"™) C S(R").
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i) For z € C such that Rez > 0, the functionp(z) = e~#** belongs to S(R™).
i) If ©1,p2 € S(R™), then 102 € S(R™).
iv) No rational function (even smooth ones) belongs to S(R").
Often, one rephrases the définition of S(R™) saying that a smooth function belongs to S(R™) when

 and all is derivatives are rapidly decreasing. The topology on S(R™) we will work with is that given
by the familly (Np)pEN of semi-norms (that are norms, as a matter of fact) given by

Ny(p)= > suplz®d’p(a)].

lal, 18] <p

It is clear that for ¢ € C*°(R"™), we have the equivalence
v € S(R") <= Vp € N, N,(p) < +00.

Proposition 5.1.3 If » € S(R") then 9°p € S(R") and P(x)¢ € S(R™) for any polynomial
P.

Proof.— This follows immediately from the fact that

(5.1.1) Np(x®Pp) = D supla0 (2”0 p(x))] < Npiqlp)
AL |ul<p

when [al, 8] < g. 0

5.1.2 Convergence in S(R") and density results

Definition 5.1.4 Let (¢;) be a sequence of functions in S(R™). One says that (y;) converges
to ¢ in S(R™) when, for all p € N,

Np(pj — ) = 0 as j — +oo.

Remark 5.1.5 Let a € N". |t follows from () that, if (¢;) converges to ¢ in S(R"),
then (2%p;) converges to 2% and (0%p;) converges to (0%p) in S(R™). Otherwise stated,
multiplication by a polynomial and derivation are continuous operations in S(R").

Proposition 5.1.6 For any ¢ € [1,+o0], S(R™) C LY(R™). More precisely ¢ € S(R"),

12°0%@llrs < CyNy(@)' ™ INp 1 () for |, 18] < p.
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Proof.— When o = 3 = 0, the above inequality gives S C L9, so that we only have to prove it. We
setg(r) = 220 p(x). Then

lz*0% |4 Z/Ig(w)\qdw < Suplg(x)lq_l/lg(ff)!dﬂf

_ ) 1
<suplg()*~" sup(1 + o) la(0)] [ e

SCnNO(g)q_anH (9) = Can(SO)q_leJrnJrl(‘P)-

Notice that since N,(¢) < Npyn+1(g), we obviously have,

(5.1.2) 120 ll20 < CoNpinsa (9.

When g = 1, Proposition et (6.1.72) give the same bound

(5.1.3) HxaaB‘PHLl < ONpint1(p),

but for ¢ = oo, Proposition is sharper than (5.1.2) and gives
(5.1.4) 12°0° o L < CNy(),

which, as a matter of fact, is a direct consequence of the definition of Np.

Since C3°(R™) is dense in the LP(R™) spaces for p € [1,+00[, we get the

Corollary 5.1.7 The set S(R") is dense in all the LP(R™) for p € [1, +o0].

We also have the important

Proposition 5.1.8 The space Cj°(R") is dense in S(R™): for any ¢ € S(R"™), there is a
sequence (p;) of functions in C5°(R™) which converges to ¢ in S(R").

Proof.— Let ¢ € S(R"), and let x € C§°(R™) be a plateau function over B(0,1). We set p;(x) =
@(x)x(x/j). The functions ¢; are smooth with compact support, and equal ¢ in B(0, j). By Leibniz’s
formula, we obtain

00— 0)la) = @)L= X/ + Y o Te@ ().
[v[>1,7<8

Thus, as j — 400,
C _
1290 (9 — 23)(@)lloe < sup [1°0%p ()] + = 3 2207 plloe — 0.

2= <8

Indeed 1 ]
sup [1°0%p(2)| < =5 sup o200 )] < 3 Npialie):
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5.2 The Fourier transform in S(R")

5.2.1 Definition and first properties

For o € S(R™) we have ¢ € L(R"), so that F(¢) is well defined ans belongs to L>°(R™).

Definition 5.2.1 For ¢ € S(R"), we denote ¢, F(yp) or even F,_.¢(¢(x)) the function in
L>°(R™) given by

2(8) = F()(€) = Frse(pp(x)) = / =i o(2) da.

The linear map ¢ — F(y) is called the Fourier transform.

Here follows some of the properties of the Fourier transform on S(R™) that we have asked for in the
introduction.

Proposition 5.2.2 Let p € S(R").

i) The function (i) is C1, and 9;F()(€) = Fumse(—izjo(x)).
i) For all j € {1,...,n}, we have F(8;9)(€) = i&;F(¢)(€).
iii) For a € R", Foye(p(x —a)) = e S F(p)(£).
iv) For a € R", Fy_e(e"Tp(x)) = F(p)(€ — a).

Proof.— i) The function (&) + e~ €p(z) is C! on R, et
106, (e~ S))| = | — ije ()] = [wyp(e)| € LI (RM).
By Lebesgue theorem, we see that F(¢) is C! and
0, F(0)§) = [ ~ije (o) = F-izjpla)).
ii) We write the proof for j = 1. Integrating by parts, we get
/8190@)6_”’56[3:1 =& /go(a:)e_mgdacl

Now we integrate with respect to the variable z’. By Fubini, since ¢, 1 € S(R™) C L'(R"), we
have

/81<p(x)e_iz'5dx = ifl/go(x)e_mfdx.
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To get (iv), we only have to write

Fanelep(a)) = [ e p(o)in = [0 p(a)dn = F(o)(E - o)
Eventually, performing a change of variable, we have
Fanelp(o—a) = [ "6l —apdn = [ ot (w)dn = SR () ),

and this is property (iii). O

Because of the presence of a factor 2 = y/—1 in (i) and (ii), it is convenient to use the notation
1
1
Then, for example, (ii) becomes F(D;p) = &;F(¢), and (i) is DjF (@) = —F(xjp). Summing up,
we have o
{ Djp =¢&;%,

9 = —D;p.
Notice also that, by (i), F(¢) is C* since z%p € S for all & € N™.

5.2.2 Gaussians (1)

Proposition 5.2.3 For z € C with Rez > 0, we have

FaoseleP) = (VT yne-leP/az

z

where /z = e%'”(z), and In z is the principal determination of the logarithm in C\ R™.

Proof.— First of all, we notice that

n
J—_‘x_%(efz\xﬁ) _ /ei(z1£1+x2£2+...+mn§n)ez(a:f+...x%)dx1 . dz, = H / efixjgje—zx?dxj
j=1

Thus it is sufficient to prove the formula for functions of 1 variable. We suppose first that 2 E]O, —i—oo[,
2
and we set @, (z) = e~ **". We have seen that

0c5(6) = [ (i) s

Integrating by parts we get,

0c(6) = - [ o = o [ (i) p(a)dn =~ p(6).

Thus (&) = e=¢°/423(0). But
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which give the result in this case z €]0, +00].

Then, let 2 = {z € C,Rez > 0}. For a fixed { € R™, we denote ¢ : 2 — C the function given by

p(z) = /e—mge—mﬁd%
The function ¢ is holomorphic on €). Indeed
o 21 emiwEem2l2 g holomorphic for all z € R",
e If K C () is compact, there is € > 0 such that Rez > ¢ for all z € K, and
|€7iz-£efz|x\2‘ < 675|:p\2 e Ll(Rn)
But we know that for z €]0, +0o0],

(VT yne-lel/az,

p(z) = -

Since the R.H.S. is also holomorphic in €2, this equality is still true for all z in €2.

O

Exercise 5.2.4 Compute fxﬁg(e*”ﬁ) by calculating / e’z<2dC using the residue theorem.

Im(=¢

5.2.3 The Inversion formula

inverse F~1 is given by
1
(2m)™

Moreover F is bicontinuous on S(R"™), in the following sense : for all p € N, there is C}, >
such that

F o)) =

[ o)t = o Floa).

Np(F(#)), No(FH(9)) < CpNprns1(p)-

Proposition 5.2.5 The Fourier transform is an isomorphism on the vector space S(R"). lts

0

Proof.— a) First of all, we prove that F(S(R")) € S(R"). Letp € N, and |al,|5| < p. For

¢ € S(R™), we have seen that

U F(@)(€) = (=) TVIF, (0@ ().

Then, Leibniz’s formula gives

0*(2Pp) = > CLO" (") e,
<«

so that 9%(2Pp) € S(R") C LY(R™). Thus F(9%(zPp)) € L>®(R"), and F(p) € S(R™).
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Moreover
1€°0F F() (O <[ Fumse (0% (@ p(2))) | 10
<[10% (2" p(2)) | .1
SNt (0°(0)
SNnt14p()
thanks to Proposition 5.1.6. Thus Np(F(¢)) < CNyt14p(p).

b) Now we show that for ¢ € S(R"™), it holds that

_ 1 eiw-{ A
Plo) = e [ e Se(e)de

We start with
/4M¢@mf=/ém%/?4wwwmw%7

but the function g : (y,&) = €€ <p(y) is not in Ll(RZ x RE), since |g9(y,&)| = |¢(y)], and one
can not exchange the order in which we integrate. However, by the Dominated convergence Theorem,

(/am¢@m§=gﬁﬁ/émafw¢@ma
and

/ eiEeelel ( / e Ep(y)dy)dé — / ( / 0 €<IE 46) () dy.

Therefore, thanks to Proposition 5.2.3,

/Gmg@(f)dgzgin&(\/fj)n/e_m_y|2/4€90(y)dy-

We change variable according to u = (z — y)/2+/¢, and we get

/e"”’”{@(f)dé = lim (2\/77)"/6“|2cp(x—2\@u)du.

e—0t

Agin by the Dominated convergence Theorem, we finally obtain

/ei“'%(g)dg = (2vT)"p(z) /e_UIQdU = (2m)"p(x).

c) The remaining part of the proposition follows from the fact that F () = (%)n}"(@). O

5.2.4 Parseval and Plancherel

Proposition 5.2.6 (Parseval’s formula, a.k.a. the “"Lemme des chapeaux”) Let ¢ and i be
two functions in S(R™). Then

0 [ov=[ei
) / o = (2m)7" / o
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Proof.— (i) Using Fubini’s theorem, we have
[s@u@in= [ ([ e rptaeais = [ ([ e r@inewiy = [ .

(i) We apply (i) to ¢ and w = (2#)_”5. We have

5(€) = (2m)" / e (@)dz = F-L(D)(€) = b(x),

[oo=tm [si= [0

In terms of the hermitian scalar product in L?(R™, C), (i) can be written

so that

(27]_‘:)“ (@a QZ))LQ .

(‘707 w)LQ =
In particular, for ¢ = ¢, we obtain the famous Plancherel formula in S(R"):
Corollary 5.2.7 (Plancherel) For any ¢ € S(R"), it holds that

lellze = 2m) ||| .2

—_——

Exercise 5.2.8 Show that F(¢) = F(p).

5.2.5 Convolution and the Fourier transform in S(R")
Proposition 5.2.9 Let ¢ and ¥ be in S(R™). We have

i) px1 € S(R™), and @ = .

i) @ = (270)"P % 1).

Proof.— (i) Note that it may not be true that ¢ and v are convolvable in the sense of distributions.
However, ¢ * 1) is well defined as an element in L' since ,7 € L!. Let p € N, and o, 8 € N" with
lal, | 5] < p. For z € R", we have

0% (¢ % 9)(z) = 220 / (@ — y)(y)dy.
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Since the function y — 84 ¢(z — y)1b(y) is integrable for any x, and dominated by sup |9%¢| [1)(y)]| €

L', we get

220° (p =) (z) = / 20l p(z — y)v(y)dy = /(w —y+y)* ez — y)Y(y)dy

— Z <:> /(:c — y)”yo‘fvafcp(x —y)Y(y)dy

Y<a

— g <;"> / (x —y)"(0°p)(x — y)y* "(y)dy

TS«

-y <“> (0°9) (> ) (x).

Yo i
Thus, by Young'’s inequality,

« _
Ja°0 (o W)= < 3 <~y> 10l (15 1o

V<«

Then Proposition [5.1.6, in particular (5.1.3) and (5.1.4), gives

(5.2.5) Nyp(p * ¥) < CNpiny1(9)Np(¥),

and this shows that ¢ % 1) € S(R"™). Eventually, Fubini’s theorem implies that
Flori)(©) = [ Sprv@in = [e4( [ oo —potay)as

= [ [ e ple - yotda)dy
= [ v ([ e <@y

:/ €Y (y)dy / e p(2)dz = P(E)D(E)-

We pass to the proof of (ii). For ¢,% € S(R") and u = F~(p),v = F~1(¢)), we have
PU(E) =F(@8)(€) = F(Fluxv))(€) = (2m)"TF0(€)
—2n)" [ u(=€ ~notadn = (20" [ a(¢ +nyotnan
)™ [ ple+ mitmdn = xy" [ ole - Wi
—(2m) "% % (E).
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5.3 The space S'(R") of tempered distributions

5.3.1 Definition, examples

Definition 5.3.1 A distribution 7' € D'(R") is said to be (a) tempered (distribution) when
there exists C' > 0 and p € N such that, for all test functiony € C5°(R"),

(T, o) < CNp(p).

Proposition 5.3.2 If 7' is a tempered distribution, then T" extends in a unique way as a linear
form linéaire T"on S(IR™) continuous in the following sense: if p; — ¢ in S(R™), then (T', ;) —
(T, ).

Proof.— Let ¢ € S(R). There is a sequence (¢;) in Cg°(R™) such that ¢; — ¢ in S(R™). The
sequence ((T, ¢;)); is a Cauchy sequence in C since 7' is tempered:

(5.3.6) (T, 05 — @) < CNp(pj — ¢r)-

Its limit does not depend on the choice of the sequence (cpj), since when @, ¢j — @, we have

(T, 05 — )| < CNp(pj — ;) = 0.

Thus we can let T be the linear form on S(R") given by

(T,p) = lim (T, ¢;),

Jj—+oo

where (i) is any sequence in C§°(R™) which converges to . Let us prove now that T is continuous.
For this, we will show that

(5.3.7) (T, )| < CN,().

for any ¢ € S(R™). Indeed let ¢ € S(R™) be any function, and let (¢;) be a sequence of smooth
compactly supported functions that converges to (¢ in S. We have, as in (5.3.6)

(T, 05 — i) < CNp(pj — @)
Letting kK — +00 in both sides, we get
(T, 50 — (T, )| < CNy(j — ),

so that
(T} < KT, @5) — (T, 0)| + (T, ;)] < CNp(ip; — @) + CNy ().
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Let € > 0 be a real number. Since ¢; — ¢ in S(R™), there exists J. € N such that, for j > J,

[Np(pj) — Np(p)| < 20

Thus we have, for any € > 0,

and this proves (5.3.7).

Finally, if T} is another continuous extension of 7" to S(R™), we should have

<T17§0> = <T17<)0 - SDJ> + <T17Q0‘7> —0 -+ <T7 ()0>7
so that T} =T. O

Example 5.3.3 If T € &'(R"), there is C' > 0, m € N, such that for any ¢ € C>°(R"), and in
particular in S(R™),

(T, 0) <C > sup|0“p| < CN,(p).

la<m

Thus &'(R™) C S’(R™), that is compactly supported distributions are tempered.

Example 5.3.4 For p € [1,+00], we have LP(R™) C S'(R™). Indeed, if f € LP(R™) and ¢ €
C§°(R™), and for g € [1,+00] such that 1/p+1/q = 1, we have

Kﬂwﬂﬂ/ﬂﬂwwwéUhﬂwméﬂmmme%

thanks to () Taking into account Corollary , we get in particular that S(R™) C S§'(R").

Example 5.3.5 Let f € L} _(R") be such that |f(z)| < C(1 + |z|)? for some constant C > 0
and a p € N. Then

(Tl <C [ @+ lalPlelds < € [ (4l o) e

gCNpMHl(SD)/ dz < CpNpint1(p)-

1
(14 Jz)m+!

Thus f € S’'(R™). In particular, polynomials define tempered distributions, and we also have
L>*(R™) C S'(R™).

Proposition 5.3.6 If 7' € S'(R"), then z*9°T € S'(R") for all o, 8 € N™.

Proof.— It is sufficient to show that ;7" and 0,7 are tempered distributions when 7T is. Since
o € S(R™), (x;T,p) = (T,z;p) and (0;T, ) = —(T',0;p), the proposition follows directly from
(B.1.1). O

Exercise 5.3.7 Show that the function = — e®e’®" is not bounded by a polynomial, but belongs
to S’(R). Hint: it is the derivative of a tempered distribution.
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The multiplication of a tempered distribution by a smooth function not always yield a tempered distri-
bution. However, it is the case when the function has moderate growth, in the following sense.

Definition 5.3.8 A function f € C*°(R"™) has moderate growth when for any § € N, there
is Cg > 0 and mg € N such that

07 f ()] < Ca(L+ |z)™.

We denote Oy/(R™) the set of such functions.

Proposition 5.3.9 If T' € §'(R"™) and f € Oy (R™), then fT € S'(R™).

Proof.— Let ¢ € S(R"), and a, § € N". Leibniz’s formula gives

20 (fe)l < 3 (5) 220 1107 Tp < Cy Y <§)(1 + Ja)™]0 ).

v<a <«

Then, as in (E.1.1), we obtain
Np(fe) < CNpym (),

where M = max|,|<, M. Thus, for ¢ € C5°(R"), we obtain

(T, )| = KT, fo)| < CNp(f) < C'Npyar (),

and this means that f7 is a tempered distribution. O

Exercise 5.3.10 Show that vp(1/z) € S'(R).

Exercise 5.3.11 Show that for all ¢ € C§°(R"™) and all p € N, there is a constant C' > 0 such
that, for all a € R, Np(7a¢) < C(1+ |a|)P. Then show (z — €”) ¢ S'(R).

5.3.2 Convergence in S’'(R")

Definition 5.3.12 Let (7)) be a sequence of tempered distributions. One says that (7)) tends
to 7' in S’'(R™) when for any function ¢ € S(R"), it holds that (T}, ¢) — (T, ¢).

As it is the case in D’(R”), this notion convergence, a weak one, implies a stronger one. We admit
the following result.
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Proposition 5.3.13 If for any function ¢ € S(R"), the sequence ((T},¢)) converges, then
there exists a distribution 7' € §’(R™) such that T; — T in S'(R™).

Remark 5.3.14 When T; — T'in S’(R), it is true that T; — 7" in D’(RR) since C*°(R") C S(R"™).
The converse is not true in general, as shown by the following example: for any sequence (a;); of
complex numbers, the sequence (a;J;) tends to 0 in D'(R). However it only converges (necessarily
to 0) in S’(R™) if (a;) has moderate growth, i.e. there is C' > 0, p € N such that

laj] < (1+4)".

Remark 5.3.15 If (f;) — f in LP(R"), then (f;) — f in S'(R™). If T; — T in S'(R"), then
fT; — fT in S'(R") for all f € On(R™).

5.4 The Fourier Transform in S’'(R")

5.4.1 Definition

Let T € S'(R™) be a tempered distribution. The linear form on S(R™) given by ¢ — (T, @) is a
tempered distribution since there exist C' > 0 and p € N such that

(T, @) < CNy(¢) < C'Npynp1(e),

thanks to Proposition [5.2.5.

Definition 5.4.1 For T € S'(R"), we denote T' = F(T') the tempered distribution given by

<T7 ()0> = <Ta (/3>7 Y E S(Rn)

Example 5.4.2 i) For f € L', we have by Parseval's lemma (Proposition )

@) = [ f@pe = [ fo)e

i) For ¢ € S(R™), (89, ¢) = [ p(x)dz, thus 5o = 1.

so that T} = Tf-

Proposition 5.4.3 The Fourier Transform  is an isomorphism on &'(R"). lts inverse is F ! =
(2)~™F. Moreover F and F~! are continuous on &'(R"), in the following sense: if T; — T €
S'(R™), then F(T;) — F(T) in S'(R™).
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These results follow immediatlely form the above definition and Proposition 5.2.5. The same way,
transfering to S’(R™) the properties of the Fourier transform on S(IR™), we obtain easily the following
identities in S'(R™):

F(D;T) = ¢&T, F(a;T) = —D;T, et FoF(T)= (2m)" T.

Example 5.4.4 1 = F o F(&y) = (2m)" S = (2m)"™6o.

5.4.2 Gaussians (2)

For z € C* with Rez = 0, the function 2 — ¢ 71" is not in S(R™). However it is bounded, thus
defines an element of S'(R™), and we want to compute its Fourier transform.

Proposition 5.4.5 Let A € R* and T = e~ e ¢ §/(R"). It holds that

T = Foyele Mol = ( VT >nefin7rsign()\)/4€i|§|2/4)\.

VIAI

Proof.— Let (2;) be a sequence of complex numbers in {z € C,Rez > 0} such that z; — i\. For
¢ € S(R™), the dominated convergence theorem gives that, as quand j — +o0,

/ ~5lel, dx_>/ =il (),

[ — [N

Thus, setting T; = e=712 we have T; — T in 8’(R™). By continuity of the Fourier transform, we
also have F(T. ) — F(T'). But we know that (see Proposition (5.2.3)),

ﬁ)"e—m?/%?
VZi

where | /Zj = \/|zj] etara(2)/2 5 | /]A] €7 59"(N/4 | Thus we have, in S'(R"),

F(1) = (

J—"(T]) N ( ﬁ )ne—inﬁsign()\)/4e—i>\\§|2/4)\ — F(T)’

VIAl

as stated. O
5.4.3 Symmetries
We study here how certain symmetries of a tempered distribution T translates to its Fourier transform.

A convenient way to formulate these properties of 1 consists in expressing them it terms of the action
of an invertible matrix A on T'.
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Proposition 5.4.6 Let A € GL,(R) be an non singular matrix, and 7 € D'(R™). The linear
form T o A defined on C*°(R") by

(ToA, )= (T,po A7),

| det A|

is a distribution. Moreover, T'o A € S§’'(R™) whenever T' € S'(R"™).

Proof.— For ¢ € Cj°(R™), and M = (m;;) a matrix with real coefficients, we have

0j(p o M)(x) = Vip(Mz) - 0;(Mz) = Y my, j(Opp o M)(x),
k=1

and, iterating,
n
Oy jorge (o M) (@) = > gy -, Ok s, ks 0) (M ).
ki,...,ks=1
In particular, for any o € N”, there is a constant C' > 0 such that
10° (o M) <C Y supldfyl,
1Bl=le|

and, forall p € N,
Np(p o M) < CNp(p).

Then let T € D'(R™), and K C R™ be a compact set. There exist C' > 0 and k € N such that for all
function ¢ € C§°(R™) with support in K,

(T,p0 AT <C D> sup|d*(po A <C" Y supl0yl,

|| <k || <k

and this shows that 7' o A is a distribution.

Suppose moreover that T € S’(R™). There exist C > 0 and p € N such that, for any function
o € CP(R™),

(To A p) (T, 0 AT < CNy(po A™Y) < C'Ny(v),

| <
| det A|

thus T" o A is a tempered distribution. O

Proposition 5.4.7 For A € GL,(R) and T' € S§’'(R"™), it holds that

1
| det A|

F(ToA)= F(T)otA™L,
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—

Proof.— Let p € S(R™). We have (T o A, ¢) = \de1tA| (T,po A1), But

poa( = [ @ = [ (was
:/e_iyf(p(tAyﬂ det A|dy = | det A| <p/ot\A(§).

Thus

o —

(ToA,p)=(T,po'A) =|det A (T o'A™", ).

Definition 5.4.8 A distribution 7' € D'(R") is even (resp. odd) when T = T (resp. T = —T).

Corollary 5.4.9 Let T € S'(R"™) be a tempered distribution.

i) If T is even (resp. odd), then T is even (resp. odd).

i) If T'is homogeneous of degree p € R, then T is homogeneous of degree —p — n.

Proof.— We apply Proposition with A = Ay = A, A € R*. In that case, we get
(5.4.8) Tody =\ To A,
Since T = T o A_4, we obtain

Teal e P AT oA = +T oA | e= T = 47T,
and this finishes the proof of (i).

On the opter hand, for A > 0, (T'o Ay, @) = A\™"(T, ¢(x/)\)). Thus T' is homogeneous of degree p
if and oly if T'o Ay = AT, Taking(5.4.8) into account, this is equivalent to T'0 A/, = ATPT, that

is T is homogeneous of degree —p — n. O

5.4.4 The Fourier Transform on L' and [

Here we sum up briefly the main properties of the Fourier transform of a tempered distribution given
by an L! or an L? function.

Proposition 5.4.10 If 7' = Ty € L}(R"), then F(T) = T. More precisely

i) F(T) is the continuous function given by F(T)(¢) = [ e @< f(x)dx, and F(T)(§) — 0
when [[£]] = +o0.

ii) 1f moreover F(T') belongs to L'(R™), then F~Y(F(T)) = T almost everywhere.
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Proof.— The fact that f is a continuous function follows easily from Lebesgue theorem of continuity
for integral with parameters,and the fact that f goes to 0 at infinity is called the Riemann-Lebesgue
lemma. For ¢ € S(R™) we have

(T, ¢) = (T, ¢) = / F(6)p(E)de = / 16X / ¢~ E o)) .

Since the function (x, &) — f(€)e™™<p(x) belongs to L' (R? x RE), we have

(T, g) = / () ( / e Ef()de)dz = (f ),

and this ends the proof of (i). We also know that fﬁl(Tf) =Ty in S'(R"). If f € LY(R™), we thus
have T,y = Ty in D'(R™), and this implies that F~1(f) = f almost everywhere. O

Exercise 5.4.11 Let 7' € D'(R"). Show that if f € LY(R™) is such that, for any ¢ € C5°(R™),
(T, ) = (f,¢), then T = f.

Proposition 5.4.12 The map T € S'(R") — (2r) ™2 F(T) € S'(R") induces an isometry on
L3(R™).

Proof.— Let f € L?(R™). There is a sequence (ip;); of function in S(R™) that converges to f in
L?(R™). Plancherel equality (Corollary 5.2.7) gives

5 5 2
[6p — Pqllrz = (27T)n/ llep — gl L2-
Thus (;) is a Cauchy sequence of L?(R™), that converges to a certain function g € L*(R™). But
(¢;) converges to f in S'(R™), so that (; converges to f in S'(R™). Thus f = g, and f € L*(R").
Therefore one can pass to the limit in Plancherel’s equality , and we get
5 2
15112 = (2m)™ 2|5 -
This finishes the proof of the proposition. O

Remark 5.4.13 There are functions f in L?(R™) such that z +— e < f(2) is not integrable
whatever the value of ¢ is (for example, for n = 1, f(z) = (1 + |z|)~3/%). Nevertheless, for
R > 0, the function gp given by

w& = [
|z|<R
tends to f in L2(R™) thanks to the Proposition , since fliy<g — f in L*(R™). Thus, for

f e LR"),
F(€) = lim —iag .
fe) = /lKRe f(x)da

R—+o00
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5.5 The Fourier Transform of compactly supported distributions
The Fourier transform exchanges the speed of decay at infinity of a function with the regularity of its
image, as shown by example by the following inequality

[D*@llzee = [IF(z%p) e < [l2%¢ll11, ¢ € S(R™).

The best speed of decay at infinity for a function is achieved for compactly supported ones, and one
should not be surprised a lot by the results of this section.

5.5.1 Smoothness

Proposition 5.5.1 If 7' € £'(R"), its Fourier transform F(T') is the smooth function on R"
given by ‘
F(T)(€) = (Tp,e™™%).

Moreover, there is an integer m € N such that, for all « € N", there is a C, > 0 satisfying

[0 F(T) ()] < Ca(1 + €)™

Proof.— Differantiating under the bracket, we see that the function v(§) given by
v(§) = (T, e ")

is a C> function (as a matter of fact, one should write v(&) = (T}, x(2)e~¢), for some plateau
function x € C5°(R™) above the support of 7', and then apply the theorem). We also have

O (€) = (Tyy, (—iz)Ye %),
where, for some constant C' > 0, an integer m € N and a compact set K that depend only on T,

() <C Y sup 102 ((—iz)*e™™)| < CalL +[l€[)™

18|<m *

Last, we have T = v. Indeed, for ¢ € C§°(R™), thanks to the result about integrating under the
bracket,

(T 0) = (o X(2) / e (€)dE) = / (T, x()e ) p(€) e,

where T'(&) = (T, x(z)e ™), O

As an example, we compute now the Fourier transform of the surface measure o of the sphere 8]2%
with radius R in R3. This is an important result, that we shall use in the study of the wave equation.

Proposition 5.5.2 For R > 0, it holds that

sin(R|¢]1)
€]l

FR(E) = 4nR
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Proof.— First of all, we notice that o is rotation-invariant: if A € GLn(R) is an orthogonal matrix,
then

(0hoAp) = (or, oAl = / (A 2)dog(2).

But
/OR /ylzrso(y)dar(y)dr = /IMRw(y)dy = /x|<R p(A™ 2)dr = /OR /x:rgo(A_la:)dUT(m)dr,

so that, derivating with respect to R,

/ o) dor(y) = / (A 2)dog (),
ly|=R

lz|=R

andopo A = op.
—_—

Therefore, we also have 6 = oo A = ﬁ&l\gotfl_l = opoA, and o, is also rotation-invariant.

Now for & € R3\ {0}, there is a rotation which sends & on (||€]|,0,0), and
7i(€) =o(€].0.0) = [ e ldorn(c)
2T pm
:/ / el eos 0 R2 6in 9 dfdp
o Jo
:27rR2/ e~ gl eos 0 gin gag.
0

We get the result setting ¢ = cos 6. O

5.5.2 Analyticity (1): Paley-Wiener’'s theorem

Wa have proved that the Fourier transform of a compactly supported distribution is a function in C*°.
As a matter of fact, it is even an analytic function in C”, in the following sense.

Definition 5.5.3 Let F': 2 C C"™ — C be a function defined on the open set 2 of C". We
suppose that F'is a C! function of the 2n real variables (Re z1,Im z1, . ..,Re z,,Im 2,,). Then
F is said to be holomorphic in C™ when

VzeQVje{l,...,n}, 05F(z) =0,

where 0=F = 1(0,, +i0,,)F.

Holomorphic functions of several variables are a vast subject of study by themselves. As a first step,
one should notice that they are simply holomorphic functions of each of their variables, the other ones
being fixed.

We start by the study of the Fourier transform of distribution given by compactly supported smooth
functions.
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Proposition 5.5.4 (Paley-Wiener’s theorem) i) Let ¢ € C§°(R™) be such that suppy C
B(0,r). Then ¢ extends as a holomorphic function F' on C", which satisfies

(5.5.9) VN € N,3Cy > 0,Vz € C*, |F(2)| < Cn(1+ ||2]|) Nerlim=l

i) Conversely, if F': C™ — C is an holomorphic function which satisfies property ()
then there is a function ¢ € C§°(R"™) such that supp C B(0,7) and ¢(§) = F(§) for all

£ e R™
Remark 5.5.5 i) If ¢ € C§°(R™) is not the null function, its Fourier transform is not compactly
supported. Indeed, the only holomorphic function in C™ with compact support is the null
function.

i) For z=¢ e R, () gives

YN €N, ¢(&) = O((1+lg)~™).
Proof.— Let ¢ € C°(R"). It is easily seen that

F(z) = 3(2) = / e (2 di

is holomorphic on C™ thanks to Lebesgue theorem of derivation under the integral sign. For o € N7,
we also get

2%F(z) = /zaem'zgo(a;)dac = /(—Dm)a(ei‘r'z)go(ac)da: = /em'ZDo‘cp(x)dx.
Thus we see that, for all N € N, there exists a constant C'y > 0 such that
(1+ DN F(2)] < Cyerlim=l,

Notice that here, we have use the following notations for z = (zl, - ,ZN) e CN:

N

> Izl and [ Imz|| =

Jj=1

> (1mz)?

Jj=1

1]l =

Now we prove (ii). Suppose that F' is holomorphic on C" and satisfies (5.5.9). Then F|g» € L', and
the function

1 ‘
= LR (€)d
o) = e [ e EF (@
belongs to C™. Since p(&) = F(§), it suffices to prove that supp ¢ C B(0,r).

We admit for a while that, for all n € R", it holds that

(5.5.10) o(z) = (27r)” /e“'@””)F(&%—in)d{-
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Imé&;

i1

TR Re 61
-R R

Figure 5.1: The change of contour

We set 7 = )\ﬁ, A>0,sothatz - (§+in) =z -&+iMz|, ] = A, and for N = n+ 1, (B.5.9)
gives , '
| EHM B¢+ in)| < Ce™ (1 [2) "™

Thus, for all A > 0,
[p(@)] < Cue I [ (14 fal) e,
and, passing to the limit A — +00, we get that p(x) = 0 when |z| > 7.

Finally, we go back to (5.5.10). The function g : 21 + €®*F(z1, ') is holomorphic in C, so that by
Cauchy formula, for any R > 0 we have

/ e (2,2 )dz = 0,
R

where 7 is the boundary of the rectangle drawn in Figure B.1. Using (E6.5.9), we easily see that the
integrals on the left side and on the right side of the rectangle goes to 0 as R — +00. Thus, for any
N1 € R, we have

p(x) = n/em'(5+i(’71’0"“’0))F(§+i(m,(),...,O))d&.

We can repeat this argument for the function ¢ (x) given as the R.H.S. of this equality, and this
finishes the proof. O

5.5.3 Analyticity (2): Paley-Wiener-Schwartz’'s theorem

The pressing result says that the Fourier transform of a compactly supported smooth function with
support included in B(0, ) increases “a little slower” than erllimzll a5 » gets away from the real axis.
In the case of general compactly supported distributions with support included in B(O,r), we show
now that they increase just "a little faster” than erllimazll,

Proposition 5.5.6 (Paley-Wiener-Schwartz’s theorem) i) Let T € &E'(R™), be a com-
pactly supported distribution, and let m € N be is order. Let also » > 0 be such
that supp T C B(0,7). Then & — T(€) is a smooth function on R™ that extends has a
holomorphic function F' on C", which satisfies

(5.5.11) 3C > 0,Vz € C, |F(2)] < C(1+ ||z])™erIm=]
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ii) Conversely, if F': C" — C is a holomorphic function satisfying () then ther exists
T € &'(R™) such that suppT C B(0,r) and T'(§) = F(&) for all £ € R™.

Proof.— For z € C, we set F((z) = (T,,,e %), where z - & = > _j—1%j7;. Thanks to the theorem of
differentiation under the bracket, we see easily that %F(z) = ( for all 7. On the other hand, since

T € &'(R™), thereisa C' > 0 and a m € N such that, for any compact K C R" with suppT C K,

[F(2)| <C ) supldg (™).

|| <m
For all € > 0, we can choose K = W, and we get
|F(2)] < CQA+ ||z])meBreltm=Il

that is (B.5.11)).

Conversely, suppose that F' is holomorphic on C™ and satisfies (5.5.11]). For z = £ € R", we get
(P& < O+ €)™,

so that F|gn € S'(R™). Then we set T = F }(F|gn) € S’(R"), and we only have to show that
suppT C B(0,r).

Let (p:) be an approximation of the identity. Since supp p. C B(0,¢), it follows from the point (i)
in Paley-Wiener’s theorem that ﬁ; extends as a holomorphic function on C™ such that, forall N € N,
there is C'y > 0 with

15=(2)] < Cn(1+ |z[) Vel iml,

We set F.(z) = F(z)p-(z). By the previous inequality and (5.5.11)), we know that for all N € N,
there exists C'y > 0 such that

F(2)] < O(1 + |2]) " Nelr+olmz]

The point (ii) in Paley-Wiener’s theorem says that there is a function ¢, € CSO(R”) such that supp . C
B(0,r +¢), and . = F.

Now let ¢ € C§°(R™) be such that suppt) N B(0,7) = (). There is an 9 > 0 such that supp ) C
B(0, R + £¢)°. Thus we have

(T =(F@), 7 w) = [ FOF W)
— im / FL(6)F " ()(€)de = tim / FOF ()€ de

e—0t e—0t

—— / o) (2)dz = 0,

e—0t

and this shows that suppT" C B(0, 7). O
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5.6 Convolution and the Fourier transform in S'(R")

Another important feature of the Fourier transform is that it behaves nicely with respect to the con-
volution of distributions. Of course, we have first to examine whether this convolution is a tempered
distribution. This happens in different circumstances that we explore along this section. In particular,
we shall define the convolution of a tempered distribution with a function in S(R™) as an element of
S'(R™), and show that the Fourier transform of this convolution is the product of the Fourier transform
of each term.

56.1 ¢&'(R")*S(R")

Proposition 5.6.1 Let 7' € £'(R").

i) If o € S(R™), then ¢ * T € S(R™). Moreover there exists m € N such that

¥p € N,3C, > 0,Yf € S(R™), Ny(¢+T) < CyNysm()

i) For ¢ € S(R™) and € € R", ¢ # 5(€) = ¢(6)5(€).

Proof.— Since ¢ belongs to C*°, we know that 71" *  is a smooth fonction, and that
207 (T * p)(x) = (T, 20 p(a — y)).-

On the other hand, since 1" is compactly supported, T has finite order m, and there is a constant
C' > 0 such that, if suppT C B(0, R),

2209 x @)(2)| < C ) sup [0f (@0 p(x —y))|

for |al, |5| < p. The last inequality follows from the binomial formula. This proves (i). For (i), we use
the theorem of integration under the bracket:

Top(©) = [ ST pto — )i

:(Ty,/e_i‘”'fgp(:v —y)dz) = <Ty,/e_i(y+z)'£g0(z)dz>

=(Tyy, e ) p(€) = T(€)$;(£).
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The only point here is to justify the second equality, though (x,y) — @(z — y) is not supposed to be
compactly supported. Let then (¢;)ne a sequence of functions in C3°(R™) that tends to ¢ in S(R™).
From the previous computation it follows that

T ;(€) = T(€)@5(6).

But from (i), we know that 7" % ¢; — T * ¢ in S(R™). Since the Fourier transform is continuous on
S(R™) (cf. Proposition £.2.5), we thus have T * ; — T % ¢. Last, we see easily that 7'(£)@; () —
T(€)p(&) in S(R™). O

5.6.2 &'(R")*xS'(R")

Proposition 5.6.2 Let 7' € §'(R"), and S € £'(R™). Then TS € S'(R™) and T+S= S(ET.

Proof.— Let p € C3°(R™). There is a sequence (1);) of functions in C§°(R™) such that 1); — S in
D'(R™). Proposition then gives (T x ;, ) = (T,¢; * ). But T xp; — T * S in D'(R™)
thanks to Proposition B.3.13, and v * ¢ — S * ¢ dans C°(R™). Thus

(T*S,0) = lim (T, %) = lim (T ;) = (T, S % ©).

Jj—+oo Jj—+oo
But since T' € S’(R"), there are C,C’ > 0 and p, m € N such that
(T, S * )] < CNp(S * @) < C'Npim (),

where the last inequality follows from Proposition 5.6.1. This show that 7' * S € S'(R"™).

Last, for ¢ € C3°(R™), we have

Thus T * S = ST as stated. O

5.6.3 S(R")xS'(R™)
For T € &'(R™) and ¢ € C*°(R"), we have seen that T" x  is the smooth function given by

Tx p(x) = (T, p(x = y))-

When T' € S'(R™), the R.H.S. of this equality still has a meaning as soon as ¢ € S(R™). More
precisely
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Proposition 5.6.3 Let 7' € S'(R") and ¢ € S(R™). The function z — (T}, p(x — y)) is well
defined and belongs to C*°(R").

Proof.— First we prove that for ¢ € S(R"), the function ¥ : y — @(z — y) belongs to S(R™). Let
a, f € N™ be such that |a|, |3| < p. We have

V() = ()P (y — o+ 2) (@) (@ — y) = 'mij() (v — )" 0)(x — )
Thus
(5.6.12) N0 < 3 (2)N(e) < O+ e (e

V<«

and g : z — (T, p(z — y)) is well defined.

Now we want to show that g € C*°(R™). Once more it is a matter of differentiating under the bracket,
but (z,y) — @(x —y) is not compactly supported with respect to y - even if we suppose that z stays
in a compact set, which we can do since we want to prove some regularity property for g.

Thus, let K C R? be a compact set, and (¢;) a sequence of functions in C5°(R™) which converges
to ¢ in S(R™). From the theorem of differentiation under the bracket, it follows that the function
gj(z) = (T, pj(x —y)) is C> on K and that, for all v € N",

9%gj(x) = (Ty, (0%p;)(z — y))

By (E.6.12), it follows that the function y — (0%p;)(z — y) tends to y — (0%¢)(x — y) in S(R™)
uniformly with respect to x € K. Therefore

9%gj = (Ty, (0%¢)(x — y))

uniformly on K, and g is smooth on K. Moreover

9%g(x) = (Ty, (0%¢)(x = y)).

Definition 5.6.4 For T' € S'(R™) and ¢ € S(R™), the convolution product of 7" and ¢ is the
smooth function given by T * ¢(z) = (Ty, ¢(z — y)).

Exercise 5.6.5 Show that if 7' € S'(R"), ¢ € S(R™) and ¢ € C§°(R"™), then

(Tx ) = (T, ¢ * 1)

Notice that, since T'x ¢ € C(R"), we have T'x ¢ € D'(R") and the R.H.S. (T, ¢ * ) does have
a meaning. Then it suffices to write

(T %, ) =((Ty, o(x — ), Y(x)) = (W(z) @ Ty, p(xz — y))
(T, (), ol — ) w/ﬁ dz) = (T, § + ).
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Proposition 5.6.6 For 7' € S'(R") and ¢ € S(R™), we have T x ¢ € S'(R™). Moreover
Txp=@)T.

Proof.— Let ¢y € C°(R™). Since T' € S'(R"), there are C' > 0 and p € N such that

(T o, )| KT, @ * )| < CNp(p*¥) < CNpyni1 (@) Np(¥),
where the last inequality is (5.2.5). Thus T x ¢ € S'(R").

Eventually, using (ii) in Proposition 5.2.9, we get for ¢ € C°(R"),

(Txp,00) = (T 5 0,) = (T, ¢ ) = (2m) (T, &+ ) = (T, ¢v) = (pT", ).
O

Exercise 5.6.7 Let T' € S'(R"). Show that if ¢; — ¢ in S(R™), then T'x p; — T x ¢ in S(R™).
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Chapter 6

The wave equation

On s’intéresse ici a I’équation des ondes Ou = 0 dans RM™ = R, x R”, ol le D’Alembertien [J est
I'opérateur différentiel

Ou(t, z) = d3ult, ) Z = Q2u(t, ) — Ault, ).

Les physiciens considérent que les solutions de cette équation décrivent correctement les ondes qui
se déplacent a vitesse 1 au cours du temps t dans I'espace R™. On va voir que le matériel développé
dans les paragraphes précédents permet d’établir des propriétés particulierement importantes (des
solutions) de I’équation des ondes.

Cette équation fait partie de la famille des équations d’évolution: la variable ¢ joue un role particulier.
On commence par introduire une transformation de Fourier adaptée a ce genre d’équations.

6.1 The partial Fourier transform

Definition 6.1.1 Soit ¢ € S(RP x RY). La transformée de Fourier partielle (par rapport aux
q dernieres variables) de ¢ est la fonction ¢(t,§) = Fr—e(p(t, z)) définie sur RP x RY par

B(t.€) = / T (1 1)

En raisonnant a t € RY fixé, la Proposition donne immédiatement la

Proposition 6.1.2 La transformation de Fourier partielle F,_.¢ est un isomorphisme de I'espace
vectoriel S(RP x RY), d'inverse ]-'g_lm donné par

Fbot9) = g [ €Sl o)
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De plus la transformation de Fourier partielle est continue, dans le sens ou, pour tout k € N, il
existe C > 0 telle que

Vi € S(R? x RY), Ny(3) < CNis ().

On définit la transformation de Fourier partielle des distributions tempérées par dualité:

Definition 6.1.3 Soit 7' € S'(R” x RY). La transformée de Fourier partielle de 7" est la forme
linéaire T' = F¢_,5(T) sur S(RP x R?) définie par

Proposition 6.1.4 La transformation de Fourier partielle F¢_,, est un isomorphisme de I'espace

vectoriel S'(RP x RY), d'inverse

1 —
-1
Feor = gmya e

De plus si T} — T dans S'(RP x RY), alors Z/N’] — T dans S'(RP x RY).

On a enfin les propriétés

DAT — €0F, 2T = (—De)°F, et DIT = DIT

Exercice 6.1.5 F¢_,;(0;—0¢=0) = 0t=0 ® 1. En effet, pour p € S(RP x R?),

(Feosa(61=0£=0), ) = (1=0£=0, Frose(p)) = <5t:0,§:0,/e_mfsf?(t,ﬂf)d@ = /@(0, z)dz.

6.2 A fundamental solution of the wave equation

On cherche FE € S’(RH") telle que JE = §. Pour des raisons qui vont apparaitre dans la discussion,
on cherche E' a support dans le futur, c’est-a-dire telle que

(6.2.1) supp E C RT x R™.

Supposons que F satisfait ces conditions. On doit avoir ﬁE‘ = d4—o ® 1, ou encore

(6.2.2) OZE — |¢12E = 6120 © 1¢.

Sur {(t,&) € RY™ ¢ £ 0}, on doit donc avoir

O2E — |¢PE = 0.
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Pour chaque £ fixé, les solutions réelles de cette équation sont les fonctions
t — ag cos(t[€]) + be sin(t[€]),

ol ag, bg € R. Compte tenu de la condition (6.2.1]), on cherche donc E sous la forme

E = (a(&) cos(t€]) + b(&) sin(t[¢]) H (2).

Pour une telle distribution E, on calcule facilement

OE =(a(€) cos(t|€]) + b(€) sin(t|€]))di—o + (—a(&)[€] sin(t|€]) + b(&)[€| cos(tl€])) H ()
=0i=0 ® a(§) + (—a(§)[¢] sin(t|¢]) + b(£)[&] cos(tlE]) H (1),

et
O = 81— ® a(€) + 60 @ b(E)|&] — |€[*(a(€) cos(t[E]) + b(&) sin(tE])) H (1).

Donc, & condition que les calculs précédents aient un sens, E vérifie (B.2.1) et (6.2.9) pour a = 0 et
b(&) = 1/|¢|, c'est-a-dire quand
~ sint
€]
sin t[¢|

La fonction (t,f) — H est C*°, donc les calculs qui précédent sont valides pour ce choix de F.
Elle est aussi bornée, donc I'expression ci-dessus définit bien une distribution tempérée. On a donc
prouvé une bonne partie de la

H(t).

Proposition 6.2.1 L’'équation des ondes admet une unique solution élémentaire dans S’'(R'*")
supportée dans le futur. Il s'agit de la distribution

sint|¢]

E(t,z)=F! ( €

r—E

H(t)).

Preuve.— Il reste a montrer l'unicité. Supposons que F et FEs soient deux telles distributions, et
posons G = FE; — Fy. Ona G =0 etsuppG C RT x R™. Or

OG = 0 <= 902G — [€]*G = 0 <= (8, — i[¢]) (9, + i|£)G = 0 <= 8, (2™l g,(e7ENG) = 0.

On a donc emlﬁ\at( _”M'G) = (Cste = 0 compte tenu de la condition sur le support de GG, puis
e~ lElG = C'ste = 0 encore une fois parce que supp G C {t > 0}. Donc G = 0,etG =0. O

Exercice 6.2.2 Reprendre ce qui précéde pour

i) I'équation de la chaleur d;u — Au = 0. On trouve

B(t,2) = me—lwlg/u.

i) 1'équation de Schrédinger i0,u — Au = 0. On trouve

H(t)  jzp2ja
E(t,lﬁ):WG‘ I*/ .

On notera que dans ces deux cas on a une expression explicite grace au résultat sur la transformée
de Fourier des gaussiennes.
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6.3 The support of the fundamental solution

Pour n = 3, la Proposition donne

sin(t|¢])

&l
ol o désigne la mesure de surface sur la sphére S? C R3 de rayon t. On en déduit une expression
plus simple de la solution élémentaire E. Pour ¢ = ¢ € S(R!3), on a en effet

(&) = Amt

(B, o(.€)) ~{Ba w(t.6)) = [ sin £l

ri+s €]

+o0
- [ e

+o00
[ e

too 1
(6.3.3) :/0 m<0t790(t7 ) dt.

H{(t)y(t, §)dtds

Sur cette expression, on voit en particulier qu’en dimension 3 d’espace
supp E®)(t,2) = {(t,2), |x| = t}.

Exercice 6.3.1 Pour n = 2, montrer que

1 1
E®(t,z) = 27 /12 — 22 — 2
0 sinon.

pour 2 + y2 <t2,

On notera qu'en dimension 2 d’espace,

supp A (t,2) = {(t,z), || < t}.
De maniére générale, on ne peut donc pas faire mieux que la

N

Proposition 6.3.2 Soit £(™) la solution élémentaire de I'équation des ondes dans S’'(R'*™) a
support dans le futur. Pour tout n > 1, on a

supp E™ c {(t,z), |z| < t}.

Preuve.— C’est une conséquence du théoréme de Paley-Wiener-Schwartz! On sait en effet que £ =
fjm(%) Soit alors ' : C™ — C la fonction définie par

F(z) = sin‘(i\‘z|)_
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On remarque que

B h(z)kt2k+1
F(z) = g(_l)k(%—i—l)!’

. 2 = 2
ol z — h(z) = |z|* = 3 1< <, 2] est holomorphe sur C". Donc F' est holomorphe sur C". De plus
un calcul simple montre qu'il existe C = C; > 0 tel que

[F(2)] < (1+0())eTme.

Le point (ii) de la proposition donne donc supp E,, C {(t,x), |z| < t}. O

6.4 The Cauchy problem

On s’intéresse enfin aux solutions éventuelles du probléme de Cauchy pour I’équation des ondes. En
raison encore une fois du role particulier que joue la variable ¢, on est conduit a la

Definition 6.4.1 Soit (7})icr une famille de distributions tempérées sur R™. On dit que
(Ty) € C*(R,S'(R™)) lorsque pour toute fonction ¢ € S(R™), la fonction

t— <Tt7 90>

est C* sur R. On note alors (7}) et (7}) les familles de distributions tempérées sur R™ définies
par
(Ty, o) = 0Ty, ), (Thop) = 0Ty, ), .. ¢ € S(R™).

). puisque By = F1(22EL [ (4)), E, appartiennent & S'(R™) pour tout

§

Soit B = fgﬁx(SiE"f‘H(t)) la solution fondamentale de I'équation des ondes dans R'*". E définit
clairement une famille (E.
") on

t € R. Pour p € S(R

sint[¢|
€l

donc t — (B}, @) est C* sur [0, +oo] (et aussi bien sdr sur | — 0o, 0], mais pas sur R). Autrement
dit E € C*([0, +oo[, S'(R™)), et

Ey = F, (cos(tE)), Er = F,, (€] sin(tl]).

FHp)()de,

(B = B F o) = HO) [

En particulier Ey = 0, Eg = d,—0, et Ey = 0. Notons enfin que pour © € S(R'*™),

(E.0) = (0" 5 = [ [ o™ S i = [ (Bnott, e

De maniére générale, on a la
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Proposition 6.4.2 Soit (7;) une famille de distributions dans C*°(1,S’(R™)), ou I est un in-
tervalle de R. La forme linéaire T" sur Cg°(I x R™) définie par

(6.4.4) (T, ) = /I<Tt,sa(t, ))dt

est une distribution de D'(I x R™).

On revient a I'équation des ondes. Puisqu’elle est invariante par renversement du temps, on peut
se concentrer sur la résolution du probléme de Cauchy pour les temps ¢ > 0. On cherche donc les
distributions T" associées & des familles (7;) € C°(R*,S'(R™)) telles que, pour F,G € S'(R")
données,

OT = 0 dans D'(R4 x R™),
(6.4.5) T, = F,
T, = G.

Proposition 6.4.3 Le probléme () admet une unique solution T dans C*®°(R*,S'(R™)).
Elle est donnée par () avec
(6.4.6) T,=E,«G+ FE, x F,

ou E = (E,) est la solution élémentaire du D'Alembertien définie dans la Proposition .

Preuve.— Compte tenu de I'exemple ci-dessus, on a bien Ty = Ey * G + EO x* ' = F. De plus
To=FEyxG+ Ey*F =G. Onaaussi, pourt >0, T, = E; + G+ E; * F. Donc

~

Ty = —[¢]sin(tl€])G — |€]? cos(t|)) F = —|¢*T,,

d'ou Ty = AT}. On veut montrer pour toute @(t, ) € C3°(R'*"), on a (T, ¢) = 0. Or

“+oo

(OT, ¢) =(T, Og) = /0 0 Ot )t = | okt - /0 i ap(t, )t

0

oo oo
- / (T, 2ol )t — / (T olt, ) dt.
0 0

Pour conclure, on utilise le résultat suivant

Lemme 6.4.4 Soit (73) € C™®(R,S'(R")), et ¢(t,x) € C(R¥™™). La fonction t —
(T, 9(t,-)) est C* sur R, et

O (Ty, ¥(t, ) = (Th, ¥(t, ) + (Th, O (¢, ).
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On a donc

+o00 +o0 +o0 +oo
2 . — . — . . — . .
/0 (T, 02p(t, )t / DT, Drp(t, )t / (T, 0ot ) dt / (T, Duplt, ),

puisque @ est a support compact. En répétant le méme argument on trouve

+o00 +oo |
| okt nde= [ ity
0 0

d’ou OJT = 0.

Il reste & démontrer I'unicité. Supposons donc que U = (U;) et V' = (V}) soient deux solutions du
probléme (6.4.5), et posons Gy = H (t)(U;—V;). OnaOG = 0, et supp G C {t > 0}. En particulier,
compte tenu de ce que l'on sait du support de E/, E' et G sont convolables comme distributions de
D’(R1+n), et

0=FE«x0G=0FE*G)=(0OF)«G=0§*G =G,

Donc U = V. O

Proposition 6.4.5 Soit 7' € C*°(R,S’(R"™)) la solution du probléme de Cauchy () avec
F,G € C°(R™). Alors Ty € Cg°(R™) pour tout t > 0, et la quantité

E(t) = |0/T332 gy + VT2 oy

ne dépend pas de t.

Preuve.— Le fait que 73 € CS°(R™) se lit directement sur (B.4.6). On note u = (13) € C°(RY*"),
et on calcule

OE(t) =0y(Opu, Opu)r2 + 0y Y _(Oju, 0ju) 2 = 2Re(Dfu, Oyu) 2 + 2Re > (D,dju, ju) 12
7=1 7=1
—=2Re(04u, Oyu) 2 — 2Re Z(atafju, Opu)r2 = 2Re(Du(t, x), Qru(t, =) p2@ny = 0.
j=1

O

Pour conclure, on énonce quelques propriétés de la solution du probléme de Cauchy pour I'équation des
ondes. Tout d’abord les ondes se propagent a vitesse finie, et vérifient le célébre Principe de Huygens
(fort) en dimension 3 d’espace. Précisément

Proposition 6.4.6 Si F, G sont des fonctions C* a support dans B(0, R), alors, pour t > 0,

i) suppT; C B(0, R+ [t]).

ii) De plus, en dimension 3, T} est nulle dans {(¢,z) € R'*3 |t| > R, || <t — R}.
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Preuve.—(i) se lit sur la formule (6.4.6), compte tenu de la Proposition 6.3.2. On a par exemple

supp B x G C supp Fy + supp G C B(0, R) + B(0,|t|) € B(0, R+ |t|)

(i) En dimension 3 d’espace, on sait que supp E; = {|z| = t}. Supposons t > R, et |z| < t — R.
Pour w € S?, on a
|r — tw| >t — |z| > R,

donc G(z — tw) = 0. De ce fait [, G(z — tw)dw = 0 et

By Gx) = (B, Gla — ) = ﬁ@, Gz — ) =0,

on a aussi Fy * F(z) = (Ey, F(x — -)) = 0y(Ey, F(z — -)) = 0 par le méme raisonnement. O

Finalement, on énonce une conséquence de la propagation a vitesse finie:

Proposition 6.4.7 Soit F, G des fonctions C5°, et u € C>°(R!™™) la solution du probléme de
Cauchy correspondant. La valeur de u en (tg,z9) € RT x R™ ne dépend que des valeurs
de F' et G dans {t = 0} N C(to, zo), ou C(tg, zo) est le "cdne rétrograde” défini par

C(t0,$g) = {(t,I), t < to, ‘I‘ — IU| <ty — t}.

Preuve.— I| s'agit de montrer que si F' = G = 0 dans C(tg, zp) N {t = 0}, alors u(tg, xg) = 0. Or
dans ce cas, supp G C {|z — zo| > to}, donc

supp B % G C {|z| <t} + {|x — zo| > to} C {|z — 0| > to — t}.

On a la méme inclusion pour supp Et * I', donc u est nulle dans C(to, xo). Par continuité, on a donc
bien u(to, ) = 0. O
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(to, o)

C(to, o)

t=0
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Chapter 7

Sobolev spaces

We would like to be able to distinguish amongst (tempered) distributions, for example solutions of a
PDE, those that are regular - for example given by CF functions. The idea here is to take advantage of
the following fact: the regularity of a distribution is encoded in the behavior of its Fourier transform at
high frequencies. In a more mathematical way, one would say that the more f is regular, the faster
f decreases at infinity, as indicated for example by the equality

162 fll 2 = 1D f | 2.

We may also have written ||€%f|| L < || D®f||11, but we will use in an essential manner the Hilbert
space structure of LZ(R”). The reader may give a look at Appendix B for essential facts on Hilbert
space theory.

7.1 Sobolev spaces on R"

7.1.1 Definitions

For £ € R™, we denote (£) = /1 + [[£]|2. The function £ — () is smooth on R", and there is a
constant C' > 0 such that, for ||| > 1,

Zlell < (&) < Clel.

Thus, (£) is a regularized version of ||£]|, in the sense that it has the same behavior at infinity.

Definition 7.1.1 Let s € R. A tempered distribution u € S'(R") belongs to H*(R™) when @
is a function in L} (R™), and (¢)%a € L*(R™).

loc

Remark 7.1.2 Notice that the condition on @ to be in L}OC(R”) is necessary to give a meaning
to the second one: it means that 4 is a regular distribution T}, for some g € Llloc, and the second
one then says that (¢)%g € L?. In many textbooks, this is simply stated as "(¢)%0 € L?(R"™)”,
with a silent identification of the distribution @ to a function.
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Example 7.1.3 i) & € H*(R")if and only if s < Z2. Indeed §y = 1, so that (£)*dy € L*(R")
if and only if 2s > —n.

ii) Constant functions do not belong to H*(R"), since C'= Cd is not in L.
Exercise 7.1.4 Let o € R be given, and u, be the function on R given by

Ug(z) = |z|%e 1.

For what values of s € R do we have u, € H*(R)? u, € CO(R)? u, € CH(R)?

Proposition 7.1.5 The bilinear form (-, ), defined on H*(R™) x H*(R™) by

(u0)e = (©)°0, (€0)12 = [ (OFE e
is an hermitian scalar product, which makes H*(R"™) a Hilbert space. We denote

[ulls = v/ (u,u)s = [[(€) | L2

the associated norm.

Proof.— Let (u;) be a Cauchy sequence in H*(R"). The sequence ((£)%@) is Cauchy in L?, thus
converges to some v € L2, Then let u be the tempered distribution given by u = F~1((£)75%). We
have @ = (£)~*v where v € L?, so that u € H*(R") and

[uj —ulls = 1[{€)*@4; — vll2 = 0 quand j — +o0.

Thus (u;) converges in H*(R™). O

It is worthwhile to notice that H°(R") = L?(R"), where the equality holds between Hilbert spaces.

We also have
51 < 53 = H**(R") — H*(R")

since (£)° < (£)%2. Here, the symbol < denotes a continuous injection. To sum up, we can say that
the Sobolev spaces H*(R"™) form a continuous, decreasing family of Hilbert spaces. In particular, for
5 >0, we have H*(R") C L%(R"). We even have the

Proposition 7.1.6 (Interpolation) Let so < s < s1 be real numbers. If u € H%(R™)NH*(R"),
then w € H*(R"™) and

s < lall G~ ull?,

where 6 € [0, 1] is given by s = (1 — 0)so + 0s1.

Proof.— It suffices to write

Jull? = [ (&> 1afPdg = [ (2400 [aP=) (16 al") .
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and to apply Hélder’s inequality forp = 1/(1 — ) and ¢ = 1/6. O

The following statement is the first step towards the regularity analysis that we are looking for. The
more we differentiate a distribution, the more we go down in the scale of Sobolev spaces.

Proposition 7.1.7 If u € H*(R"™), then 9%u € H*~|*I(R").

Proof.— Let u € H*(R™). We have @ = {1, thus @ is a function in L},.. Moreover
1€)* ™ djull e = IK€)* &yt 2 < CINE)*all 2,
and this shows that d;u € H* *(R"). The general case is obtained by induction on |c|. O

Here follows another illustration of the fact that H* contains elements that are more and more singular
as s decreases.

Proposition 7.1.8 Let 7' € £'(R™) be a compactly supported distribution, with order m > 0.

Then T' € H*(R"™)for any s < —m — §-

Proof.— For T € £'(R"), we know that T' € C*° C L/ . Moreover

loc*
(€ T(E)] = [{€)* (Toy e ™) S CE)° D sup |05 (e < C(&)*+™
la|<m
Thus T' € H*(R™) when 2(s +m) > —n, as stated. O

7.1.2 Density of smooth functions

Proposition 7.1.9 For any s € R, S(R") is dense in H*(R").

Proof.— First of all, it is important to notice that the map As : S(R") 3 u — (£)*t € S(R") is a
bijection for all s € R.

The fact that A, maps S(R") to itself implies that if u € S(R"), (¢)*u € S(R™) C L?(R"™), so that
S(R™) c H*(R™).

Then suppose that u € H*(R") is such that u € S(R™)L. For all function ¢ € S(R™), we have
0= (u,p)s = ({§)"a (§)

K
Thus, since A; is surjective, for all ¢ € S(R™), we have (({)°u,v)r2 = 0. By density of S(R") in
L?(R™) (cf. Corollary B.1.7), this implies u = 0. Therefore

SR™) = (S(R")1)* = {0} = H*(R").

)L2.
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Remark 7.1.10 We have thus S(R") C NserH*(R™), but there is no equality. For example, in
dimension 1, for u(z) = H% we have @(¢) = e lél, so that u € H*(R) for all s € R though
u ¢ S(R™).

Proposition 7.1.11 For all s € R, C°(R") is dense in H*(R"™).

Proof.— Since S(R") is dense in H*(R"), it suffices to show that C°(R") is dense in S(R") for the
H?(R™) norm. We proceed by troncation: let x € C3°(R™) be a plateau function over B(0,1). For
k € N, we set xi(x) = x(x/k), or = Xrp, and we have

ok — el <( / ()2 150(6) — 3(6)[2de) V2
< sup ((€)FD/2)5 () — 3(6)))( / (&) (D gg) /2

—_—
k—

< CNp(pr — @) < CNpinti1(or — @),

where p € N is such that p > s+ (n + 1)/2. Then, as in the proof of Proposition 5.1.8, we can see
that for all ¢, Ny(pr — ¢) — 0 as k — 400, and this finishes the proof. O

7.1.3 Multipliers of H°(R")

We know that if ¢ € S(R™) and S € C'S’(R"), then ¢S is a tempered distribution. We show now
that Sobolev spaces are stable under the multiplication by ¢ &€ S(R”). More precisely

Proposition 7.1.12 Let ¢ € S(R™). The multiplication by ¢ is a continuous operation on
H*(R™).

Proof.— For ¢ € S(R™) and u € H*(R"), we have pu € S'(R™) and, using Proposition [5.6.6,
o= pi = (2m)*"pu.
Thus, applying F~1 = (277)_";" and multiplying by (£)®, we get
(€ pu = (2m) 7" () ¢ * a.
Therefore, for all ) € C3°(R™) we have
(€)@, v) = (2m) P+ 4, (&) ") = (2m)7"(@, &+ ({&)*¥))-
But (1)@ belongs to L2(R™) and (1) ~5( * ((€)*1) is a function in S(R™), so that
o (@ Fm ) =0 [@eam( [ B - e ved) i
Bow we want to exchange the integrals with respect to £ and 7. We have to show that the function

g1 (&m) = (m)*aln)(n)~*3(& —n)(€)*P(E)

belongs to L' (R?"). We need the following
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Lemma 7.1.13 (Peetre’s Inequality) Pour (§,7) € R?", et pour tout s € R, on a

(€)° <2826 — )l (m)°.

Proof.— (of Peetre’s Inequality) We can exchange the variables £ and 7, so that it suffices to prove
the inequality for s > 0. In that case

(€)° = (L+1EP)? = L+ 1€ —n+nl)? < (L+ 206 =l +2n*)*? < 2°72(¢ —n)*(n)*,

where the last inequality can be obtained expanding the R.H. S. O

We go back to the proof of the proposition. With Peetre’s inequality, we get

lg(&.m)| < 252 () la(m)|(€ = m)*|a(& = n)l [4()]-

Thus
(7.1.2) / / g€, m)|dedy < 25V / (&) ()18l = ()31 (€)de.

Since (n)®|@| € L? and (n)*!|3| € L', Young’s inequality says that their convolution product belongs
to L2. Since 1) € L? we do have that g € L1 (R?").

By Fubini, (7.1.1)) thus gives

(&0 =20 [w©( [ *atmie) m o - ndn)de,
and
(€)°Fu(e) = / (=) (€)° (m) @& — m)dn,

which we have shown to be a L? function. Thus pu € H*(R™), and one can easily get from (7.1.2)
that

lpulls < 251721 n) 1@ L1 ulls.

7.1.4 Some Sobolev Embedings

The results of this Section can be seen as a (partial) answer to the question “what is not in H*(R")”,
or as a step forward in the description of the regularity of tempered distributions.

We denote CF,,(R™) the space of C* functions on R™ that tends to 0 at infinity, as well as all their
derivatives of order < k.

Proposition 7.1.14 If s > 2 + k, then H*(R") < C*  (R™).
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Proof.— Let u € H*(R"). For a € N" such that |a| < k, we have %4 € L. Indeed,

€]
(e

and (€)k=% € L?(R") since —2(k — s) > n. By Cauchy-Schwartz inequality, we thus get

a8 < (€)*a(e)l < () €)*lae)l,

(7.1.3) 1€%0] 1 < Conllulls.

Therefore D%u = F~1(£%a) € CY,, by Proposition B.4.10, and the fact that the identity from H*(R™)
to CiO(R”) is continuous is just a way to read the inequalities

Vla| <k, [[D%l| g < [|€%]| L1 < Cspllulls.

O

5, since they are

H*(R™) is a normed algebra (even a Banach

Of course, the product of two distributions in H*(R") is well defined when s >
continuous functions. But there is more: for s > %,
algebra):

Proposition 7.1.15 Let s > 5. If u,v € H*(R"), then uv € H*(R") and there is a constant
Cs > 0, such that, for all u,v € H*(R"),

[uvlls < Csllulls[lv]ls-

Proof.— First of all u,v € L*n L®°, since s > 0, and u and v are continuous functions that goes to
0 at infinity. Therefore f = uv belongs to L' N L, and we have f = (2m) ™4 * 0. Thus

.14 R =0 [@lax o < o [ ([l mllowmn)

But since s > 0, it holds that (a + b)* < 2%(a® + b%) for any (a,b) € R™. Then, writing the triangular
inequality, we easily obtain

() <2°(E—m* + ().
Then (7.1.4) gives

|m§s@ﬂ*%%/(/@—m%@—nmwn+wg ()" ldn) " de
< my 2t [ [t ptate = nllotdn) -+ ( [ 1t~ n)lin)*lo(mldn) de
< (2m) 7222 () [al = [0]]172 + (1] + (n)°[0]]I72)
Now Young’s inequality state that, for example for the first term,

I{m)®la] = [6]]172 < [m)°lalll7=l8]l17: < CsllullZllv]I3,
using also (7.1.3). The second term can be handled the exact same way, and we obtain

112 < CllulZllvllz,
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as stated. O

The following result give some insight on the nature of the element of H*(R™) when s is non-negative,
but not larger than n /2 as in Proposition [7.1.15. Its proof is a bit long and tedious, and we omit it
here.

Proposition 7.1.16 Let p € N and s € R be such that

2n
n — 2s

0<s<g,2<p<

Then H*(R™) < LP(R™). More precisely, there exists a constant Cy, 5, > 0 such that

Vu € H*(R"), [Jullr < Cnsp

Julls-

Remark 7.1.17 In many senses, this theorem is the best possible one. In particular it does not
cover the case p = +o0, but it is not true that H™/?(R") is included in L>(R™).

7.1.5 The H*(R™)/H*(R") duality

We consider now Sobolev spaces of negative order. A convenient way to handle elements in H ~*(R")
for s > 0, consists in considering them as continuous linear forms on H*(R™). We have indeed the
following

Proposition 7.1.18 Let s € R, and u € H*(R"™). The linear form L,, given on S(R") by

Lu(p) = (u, ),

can be extended in a unique way to a continuous linear form on H*(R"™). Moreover, the map
L :uw L, is a bicontinuous isomorphism from H~*(R"™) to (H*(R"™))".

Proof.— First of all, for ¢ € S(R™), it holds that

(7.1.5) | Lu(@)| = [(u, 0)| < (2m) 7" [Jull—s[l#lls-
This proves the first point, since S(R™) is dense in H*(R™).

Now let us show that L is a bijection. Itis 1 to 1, since, using the bijectivity of the map A; : S — S,
Vi € SR, Lu(p) =0 =% € SR, [(©)*a(e)(€)°3(e)d¢ =0
v e SEY), [ (O aOu(E)d =0
—u = 0.

Now we prove that L is onto. Let £ € (H*(R™))’. We look for u € H*(R"™) such that L, = {. Let
us denote VU the linear form on L?(R™) given by

U(f)=F (&)
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For any f € L?(R"), we have

()] < CIFE T Hlls < Cllfllze,

so that W is continuous on L?(R™). By Riesz’s theorem, there is a function g € L?(R") such that, for
all f € L>(R"), U(f) = (g, f) 2, and we set u = F((£)%g). Then

(€) 7" a = (2m)™(€)7*(€)°g € L*(R™),
so that w € H*(R™). Moreover, for ¢ € S(R"),
Lule) = (0:9) = (F ', o) = [(©°€)0()dE = 1((€)°9) = £(¢).

Eventually, the continuity of L : u — L,, can be read on (7.1.5):

[Lull = sup  [Lu(p)] < (2m) " [Jull-s,
wEHS [|]ls=1
and that of L™ is automatic since we are working in Banach spaces. O

7.1.6 Trace of an element in H°(R"), s > 1/2

We have now in mind the notion of a Cauchy problem for a PDE, where the unknown is supposed to
satisfy the PDE and is prescribed on some initial hypersurface. When one look to smooth solutions,
there is no difficulty to define their restriction to an hypersurface, for example using a parametrization:
the restriction of a smooth function f to the hypersurface x,, = 0 in R™ is simply the function y(f) :
R™~ 1 — C given by

(7.1.6) Y (1, xn—1) = f(z1,. .., Tn—1,0).

There is a priori nothing like this for a function in LP say, since they are defined only almost everywhere
and a hypersurface has measure 0. However, when wu is in a Sobolev space of sufficiently large order,
even without being continuous, we can give a meaning to such a restriction.

Proposition 7.1.19 For any s > 1, the map 7 : S(R") — S(R"~1) given by () extends in
a unique way to a continuous linear operator from H*(R™) onto H*~'/2(R"1).

Proof.— We want to show that there is a constant C' > 0 such that, for all ¢ € S(R"),

(7.1.7) V(O grs-1/2@n-1y < Cllelms @n)-

Indeed, the existence of a unique continuous extension of y will then follow from the density of S(R"™)
in H*(R™).

For ¢ € S(R™), we can write

) = 0 0) =Fighe (€ 60)) = Cm) 7 [ [ € (e g )ag'a,

) e 5’( / A€, fn>dsn> dg'.
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Thus, in S(R™ 1),

In particular

FAENR < s [ (1€ 60Ot < o [ (1006 6P x [ 6 ds.

(4m)

But setting &, = (1 + |£'|?)Y/%t, we get

—2s _ 1
/ (&) dén ‘/ @+ €]+ e pr

1 ,
:/ ey epy TR

N —2s dt I\—2s
(7.1.8) :<§> 2ot (1 _|_t2)s = Cs<€> st

Therefore
[l mee e < o [@eer:

and this is (Z.1.7).
To prove that this operator is onto, we will show that v has a right inverse R. Forv € HS_I/Q(R”_I),

we set < />2N
§ .

) = Ro(w) = 7, (K 1))
where N € N and K > 0 will be fixed later on.

We have

N4AN
Jul = [ (€% <g4>N+2 o(€)Pde < K2 [(€) V(@R ( [ 2ag)ae
<K,C / (&) o(€)Pde" < KnClloll e sjon1):

where we have used (7.1.§), choosing N > 3/2 — 1/4 so that the integral converges. Thus R sends
Hs=Y2(R"1) into H*(R™).

Finally we compute

WY 1 Do (¢! _KN <‘£I>2NA /
TR = [ Bete' e = 525 [ simrite)as,
_A/ﬁ/2N —(2N+1) _CKNA/_A/
=o(€) G €2 [ (7, = o) = ¢,
and we choose K = 2m/C\y, with Cy given in (7.1.8).Thus v o R = Id. 0
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7.2 Sobolev spaces on ()

7.2.1 Sobolev spaces of integer order on R"

Let us start by some simple remarks. For k € N the elements of Hk(R”) can be characterized by
u € H¥(R™) <= Va € N, |a| < k,0% € L*(R").

Indeed, we have by the multinomial formula (see Exercise P.1.6)),

1) a(€)IIZe = / (1+ g ae)Pds = > Z—', / SEUIIRLS

o<k

-3 5 [eag@ia

<k

k! Pa 12 k! a, |2

(7.2.9) =D SlIDuli. = > lIDul
|| <k || <k

Thus (€)*a € L2(R™) if and only if || D%ul| ;2 < 400 for all |a| < k.

The equality (7.2.9) says more:

Proposition 7.2.1 For k € N, the Hilbert space (H*(R"™), (,-)s) is equal to the space
{u € S'(R"), Yo € N", 0% € L*R"}
endowed with the scalar product

((u,0)) = Z (0%u, 0%v) 2.

lal<k

We denote ||ul| ;= v/ ((u, u))x the associated norm, which is thus equivalent to the norm || - || .

For negative integers, using Proposition and the density of C5°(R") in H*(R™), we obtain the
following characterization:

Proposition 7.2.2 Let k € N. The space H*(R") is the space of linear forms u on H*(R")
such that there is a constant C' > 0 for which

Vip € Cg°(R"), [(u, ©)| < Ol g

7.2.2 Sobolev spaces of positive integer order on )

Thanks to these remarks, which give a description of Sobolev spaces without using the Fourier trans-
form, we can define a scale of Hilbert spaces of distributions on an open set ) C R"™.
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Definition 7.2.3 Let Q C R" be an open set, and k € N. The distribution u € D'(£2) belongs
to H*(Q) when for all |a| < k, it holds that 0%u € L?(£2). We denote (-, ) the bilinear form
defined on H*(Q) x H*(Q) by

(w,0)r = Y (0%u,0%0) .

lof <k

Proposition 7.2.4 The bilinear form (-,-); is a hermitian scalar product, which makes H*(2)
a Hilbert space.

Proof.— Let (u;) be a Cauchy sequence in H¥(Q). For all |a| < k, the sequence (9%u;) is Cauchy
in L2, thus converges to a v, € L. In particular, u; — vg in D'(Q), so that 9%u; — 0%y = v, €
L2(2), and (u;) — vo in H¥(Q) O

When  # R", the space of test functions C5°() is not dense in H¥(£2). We are thus lead to the
following natural

Definition 7.2.5 The Hilbert space HY(f2) is the closure of C5°(92) in H*(9).

It is worthwhile to give a look at a simple case, where () is a open interval in R. Then, we have a
rather explicit description of H'(I) and H}(I).

Proposition 7.2.6 Let I =] — a,a[C R. If f € H(I), then f is a continuous function on
[—a,a]. The set H}(I) is the subset of f'sin H!(I) such that f(—a) = f(a) = 0.

Proof.— For f € H'(I), we have f' € L*(I) C L*(I). Thus the function g : I — C given by
gla)= [ [f(t)dt

is continuous. Morever ¢ — f' = 0 so that ¢ — f is a constant function. Since g can be extended as
a continuous function on [—a, al, f too.

The function x — |f(x)| is continuous on [—a, a], therefore it has a minimum at a point b € [—a, al.

Since
a

200 = [ "1 F) Pt < IR

—a —a
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we have v/2a|f(b)| < ||f||12. At last, since
f@) = £0)+ [ fo

1
U@Négzﬂﬂur+%5WWméCWﬂmk

we get

In particular, the linear form 4, is continuous on H(I) for any = € [—a, a).

Now we have seen that the linear forms d., are continuous on H'(I), and vanishes on C§°(I). Thus
if f € HY(I), we have f(—a) = f(a) = 0. Conversely, let f € H!(I) such that f(a) = f(—a) = 0.
Let also g be the function which is equal to f on [—a,a] and is 0 everywhere else on R. We have
g = f'l]—a,a], sothat ¢ € L*(R), and g € H'(R). For A < 1, the sequence g) = g(x/\) tends
to f in H*(I) when A — 1, and the support if g, is contained in [—a),a)] C I. If (x.) is a standard
mollifier, gx * X belongs to C§°(I) for any € > 0 small enough, and converges to gy in H!(R). Thus
gr € HY(I) and f € H(I). O

The orthogonal F of H{(I) in H(I) is the subspace of functions u such that
(7.2.10) —u"+u=0

in what is usually called the weak sense. Indeed, when f is continuous, a classical solution of this
equation is a function u € C?(I) such that for all z € I, —u”(z) + u(x) = f(z). Obviously, when
f € L2 is not continuous, this can not hold for any u € CQ(I). We are thus lead to change to another
notion of solution.

Definition 7.2.7 A function u € C*(I) is a (classical) weak solution of () when

(7.2.11) We%ﬂ%ﬁwu mm+/( cm—/f

Notice that this integral formulation can be obtained for C? functions by multiplying the differential
equation in (7.2.10) by go(:p) and integrating by parts: a classical solution is of course a weak solution.
As a matter of fact, since C5°(I) is dense in C}(I), we may, and we will, replace C§ by CS° in the
definition of weak solutions. We can further extend the notion of weak solution to H! functions. Indeed
if u belongs to H'(I), there exists v € L*(I) such that, for all ¢ € C3°([),

/ (@) (z)dz = — / o(2) () da.

1 1

The function v is often called the weak derivative of u, and we have written it ©’ as a distribution.
Therefore, for u € H'(I) we can read (7.2.11) as

V@ECSO(I),/IU() ()dm+/ (x) dac—/f
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and we say that u is an H'!-weak solution.

Going back to F' = (HZ (1)), the function u in H'(I) belongs to F if and only if for all ¢ € H§(I),
therefore, by density, if and only if for all ¢ € C5°(I),

0= (u,@) = /ucpd:v+/u'gp’d:n,
I I

so that u is a H'(I)-weak solution of (7.2.10).

7.2.3 Sobolev spaces of negative integer order on ()

Now we turn to Sobolev spaces with negative integer order on §2. In view of Section [7.1.5, the following
definition should not be too surprising.

Definition 7.2.8 Let k € N. The space H *((2) is the space of linear forms u on HE (1)
such that there is a constant C > 0 for which

Yip € C5° (), [(u, )| < Cllell -

The smallest possible C'in the above inequality is denoted ||u/||g—&.

Example 7.2.9 If f € L*(Q), we have 9, f € H1(). Indeed, for ¢ € C5°(Q2), we have

(051, )| = (£, 050)] </|f! |0jpldz < (| fll 2|l 11

Notice also that [|0; f| -1 < ||f]|zz-

As a matter of fact, it is not very difficult to prove the following structure result about H‘k(Q)

Proposition 7.2.10 Let k¥ € N. A distribution u € D’(Q) belongs to H~*(Q) if and only if
there are functions f, € L?(f)) such that

U= Z 0% fa.

|la|<k

7.2.4 Poincaré’s Inequality

Proposition 7.2.11 (Poincaré’s inequality) Let {2 C R™ an open subset, bounded in one di-
rection. There exists a constant C' > 0 such that

Yu € H&(Q),/ lu|?dx < C/ \Vu|?dz.
Q Q
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Proof.— The assumption means that there is an R > 0 such that, for example 2 C {|z,| < R}. For
@ € C3° (), we get

(! ) = / 1y (00wl ).
Using Cauchy-Schwartz inequality we then have,

R
o(a2n)? < 2R / 10uplal Ot

We integrate this inequality on {2, and we get
R R
/ lo(a!, z,)|?dx < QR/ / / |Onp(2’, t)|?dtda,da’
Q ~-RJR"-1J-R

< 4R2/6n<p(a:)]2dm 5432/\w(x)|2dx.

The results in HJ () follows by density. O

Remark 7.2.12 Poincaré's inequality is not true for constant u's. Notice that these functions do
not belong to HJ () for © bounded (at least in one direction).

Corollary 7.2.13 If  C R" is bounded, the quantity
lull = (] 1Vulaa)!

is a norm on H}(2), equivalent to the H' norm.

7.3 The Dirichlet Problem

Finally, we study the general Dirichlet problem in R™, n > 2. Let ) be an open, regular bounded
subset of R™. Let also (ai;(x))i<i j<n a family of functions in L>°(€2,C). We suppose that there
exists a constant ¢ > 0 such that

— 1
¥z € Q,V¢ € C", el <Re(D ) aij(2)6iE5) < —[E[°
/[:Mj
Then we denote A, the differential operator defined, for ¢ € C*°({2), by
n
Aalp) = Y Oilai;(2)05%)
ij=1
Notice that when A = Id, A, is nothing else than the usual Laplacian.

The Dirichlet problem on € can be stated as follows: for f € L%(Q), find u € L?(f2) such that

—Agu = f,
=0.

U yg
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The case of the equation —A,u + Vu = f for a non-negative, bounded potential V' can be handled
the same way, but we choose V' = 0 for the sake of clarity.

We shall prove the

Proposition 7.3.1 Let ) C R"™ be a bounded open subset. For any f € L%(), the equation
—Aqu = f has a unique weak solution in H}(€2).

In order to do so, we will use a general result in Hilbert space theory

Proposition 7.3.2 (Lax-Milgram) Let / be a Hilbert space on C, and a(z,y) a sesquilinear
form on H. We assume that

i) The sesquilinear form a is continuous , i.e. there exists M > 0 such that |a(z,y)| <
M ||x|| ||ly|| for all z,y € H.

ii) The sesquilinear form a is coercive , i.e. there exists ¢ > 0 such that |a(z,z)| > c||z||?
for all x € H.

Then, for any continuous linear form ¢ on 7, there exists a unique y € H such that
Ve e H, U(z) = a(z,y).

Moreover ||y|| < [|4]|/c.

Proof.— For any y € H, the linear form = — a(x,y) is continuous. Thanks to Riesz theorem, there
exists a unique A(y) € H such that

Ve e H, a(z,y) = (z, A(y)).
The map A : y — A(y) is linear, since, for all x € H,
(x, Alanyr + aoya) = az, cayr + aay) = ara(z, y1) + aza(z, y2) = (€, 1 A(y1) + a2A(y2))-
The map A is also continuous since we have (A(y), A(y)) = a(A(y),y) < M| A(y)||||lyll, so that
A < Mlyl|.

Now let ¢ be a continuous linear form on H. There exists 2 € H such that
Ve e H, l(x) = (x,2).

Therefore we are left with the equation A(y) = z for a given z € H, and we are going to show that it
has a unique solution, namely that A is a bijection on H.

Since a is coercive, one has

cllyll® < laly, v)| < [y, Aw)| < AW lyll,
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so that
(7.3.12) AW = ellyll,
and Ais 1 to 1.

Moreover Ran A is a closed subspace of . Indeed if (v;) € Ran A converges to v in H, setting

vj = Auj, we obtain thanks to (7.3.12),
cllup — ugll < [lvp — vgll-
So (u]) is a Cauchy sequence, and converges to some u« € H. Since A is continuous, one has

= i = lim A(uj) = A( i i)=A
V=l =l Als) = AG i) = Au,

and v € Ran A.

Eventually if 2 € (Ran A)*, we have 0 = [(A(x),z)| > c|z|]?, so that (Ran A)* = {0}, and
Ran A = Ran A = ((Ran A)1)+ = H. O

Armed with this result, we can easily solve the Dirichlet problem. Indeed, in the weak sense in H&(Q),
the equation —A,u = f means that

Vo € C5°(92), Z/Qaij(x)@u(x)ajcp(x)dx = /Qfgoda:.
1]
Let us denote a(v, u) the sesquilinear form on H}(Q2) x HZ () given by

a(v,u) = Z/Qaij(x)aiv(a:)ﬁju(x)da:,

and ¢ the linear form on H{} () given by £(v) = [ fvdz. The above equation can be written
Vi € G5 (), alp,u) = £(e),

and we want to prove that it has a unique solution © € ”Hé(Q) Thanks to Lax-Milgram’s theorem, we
only need to prove that a is continuous and coercive.

The continuity comes from the boundedness of the functions a;;, and Cauchy-Schwarz inequality

la(v, u)| < Z/ﬂ jaij(@)] |0(2)||0jul@)lde < C Y |10l 2110501l 2 < Clloll g [[ull -
i.j

i,J
Concerning the coercivity, we have, first for u € C§°(£2), then by density for u € H} (),
la(u,uw)| > |Rea(u,u)| = Re/ Zam&-u@ dx > c/ Z |0;ul*d.
Q\ i Q7

It remains to prove that

IVullz: = /QZ |0jul*de > [[ull3,
j

which is a consequence of the Poincaré inequality.
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7.4 An introduction to the finite elements method

In the previous section, we have seen that Lax-Milgram’s theorem permits us to obtain, under suitable
assumptions, existence and uniqueness for the solution to the partial differential equation —Aj,u +
Vu = f. As a matter of fact, Lax-Milgram theorem can also be used to obtain approximations of the
solution for this equation.

In order to introduce the main ideas, we only consider the 1d case, and the Dirichlet problem for the
equation
—u" + V(x)u = f(z).

on a bounded interval [ = [0, 1] C R. The main idea consists in applying Lax-Milgram’s theorem on a
finite dimensional subspace G of H}(]0, 1[), and construct the corresponding solution. Of course one
can expects that the quality of this approximate solution should improve as the dimension of G grows.

We want to find an accurate approximation of the solution v € 7—[6(]0, 1]) of the problem
(7.4.13) Vu € Hy(10,1]), alu,v) = £(v),
where the sesquilinear form
1
(7.4.14) a(u,v) = /0 u'v" + Vuvdx
is continuous:
(7.4.15) la(u,v)| < M||u|| ||v]]
and coercive :
(7.4.16) cllull* < la(u, w),

on H}(]0,1]) x HZ(]0,1]).

Let n € N, and denote 29 = 0,21 = 1/n,...,z,—1 = (n — 1)/n,z, = 1 the regular subdivision of
[0, 1] with step 1/n. We define n + 1 functions in C%([0, 1]), piecewise linear, by
90(0) =1, go(x) =0forx > 1/n,

y gl
gl(o) 0’ gl(l/n) = ]-a gl('x) =0 forx > 2/”7

gj(z) =0for z < (j —1)/n, gj(j/n) =1, gj(x) =0forz > (j+1)/n, j=2,...,n—1

gn(m) =0for z < (n—1)/n, g,(1) = 1.

It is easy to see that the finite elements g; are linearly independent. Thus they form a basis of the
space (7, that they generate, which is the space of continuous functions on [O, 1] that are linear on
each interval of the form [j/n,(j +1)/n], 7 =0...n.

The functions in G, belong to H!(I). Indeed they are in L?(I) since they are continuous, and they
are differentiable on |0, 1] but perhaps on the set {j/n, j = 1,...,n — 1}, which is of measure 0.
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o I
0.8
0.6
0.4

0.2

Figure 7.1: Some finite elements g; for n = 20

Moreover their derivative is piecewise constant, therefore belongs to L2(]O, 1[). Using the character-
ization of H(]0, 1[) in Proposition 7.2.6, we see that the space G, generated by the finite elements
g1,92 -+, 9gn—1 is included in H&(]O, 1[). In particular, the sesquilinear form a is still continuous and
coercive on Gg X G?L. Therefore, the problem of finding v such that

1
(7.4.17) Vu € GV, a(u,v) —/ fudx
0

has one and only one solution v, in G?L. What makes this discussion non-void is twofold. First, v, is
a good approximation of the solution to the original problem.

Proposition 7.4.1 (Céa’s Lemma) Let v be the solution of () in Hi(]0.1]), and vy, the
solution of () in GO. With the constants M > 0 and ¢ > 0 given in () and ()
we have

M
[o=vall < — inf [lo—yl.
C yeGY

Proof.— For any z € G%, we have
a(z,v —vy) = a(z,v) —a(z,v,) = (z) —£(2) = 0.
Thus for any y € Gg,
Mo —yll v = vall 2 la(v = y,0 = va)| 2 la(v =y +y = vn, v = va)| = cl|v = valf?,
which proves the lemma. O

This lemma states that, up to the loss M/c > 1, v, is the best approximation of u in GQL. As a matter
of fact since the R.H.S. is not known in general, this result does not seem to give any interesting
information. But the idea is, that we may have some a priori estimate on ||[v — ypl|| for some well
chosen 3o € G2. A good choice is the function 7 defined by yo(xj) = v(x;): using this function we
can obtain by elementary computations the

Lecture Notes, autumn 2014, Version 2.06 Thierry Ramond



CHAPTER 7. SOBOLEV SPACES 143

Proposition 7.4.2 Let f € L?(I), and v the unique solution in H} of the problem ()
i'll.l

Let also v, € GY the solution of the problem ( ). Then ||[v— vl g = O(%) as n — +oo0.

n

Second, it is fairly easy to compute v,, (at least with a computer)! Since G% is spanned by the
(9;)j=1...n—1, it is clear that the problem (Z.4.17) is equivalent to that of finding v € GY) such that

Vied{l,...,n—1}, a(gj,v):/lfgjdx

Now since v,, belongs to G?L, we can write

n—1
Up = ngka
k=1
so that
nfli
a(gj,’l)n) = /Uka(gjvgk)’
k=1

Therefore, to compute the coordinates (vy) of v, we only have to solve the (n — 1) x (n — 1) linear
system

AX = B, with A = (a(gj,gx))jk, and B = (/ fgidx);.
I

Notice that, since supp g; M supp g = () when ]j - k:] > 1, the matrix A is sparse, and in particular
tridiagonal.

We have inserted below a small chunk of code in Python that solves the the 1d, second order equation
—u” + V(z)u = f(x) with Dirichlet boundary conditions on [0, 1] using the finite elements method.

0.040
0.035
0.030
0.025
0.020
0.015
0.010

0.005

0.000

0.0

Figure 7.2: Exact and approximate solutions for —u” + u = z% on [0,1] with Dirichlet boundary
conditions, using P1 finite elements.
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3*

# We solve the equation —u’’+Vu=f on [0,1]

# with Dirichlet boundary conditions u(0)=u(1)=0
# using P1 finite elements

# T. Ramond, 2014/06/15

s

i

from pylab import *

import numpy as np

from scipy.integrate import quad
from scipy import linalg as la

1

# Finite elements on [0,1]. Only those that are 0 at 0 and 1.
# numbered from 0 to numpoints—2.

def fe(j, x):
#print "j= ', j, ', x="', x
N=float (numpoints)

if (x<j/N):
z=0
if ((x>=j/N) and (x<=(j+1)/N)):
z = X*N-j
if ((x>(j+1)/N) and (x<=(j+2)/N)):
z =2+j—x*N
if (x>(j+2)/N):
z=0
return z

def dfe(j,x):
N=float (numpoints)

if (x<j/N):
z=0

if ((x>=j/N) and (x<=(j+1)/N)):
z=N

if ((x>(j+1)/N) and (x<=(j+2)/N)):
z =N

if (x>(j+2)/N):
z=0

return z

4

#

# The coefficients of the equation

def f(x):
return x**2

def V(x):
return 1

4

#

# Some true solutions

# for V(x)=1, f(x)=x**2
def truesolutionl(x):
e=np.exp(1)
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a=(2/e—3)/(e—1/e)
b=—2-a
return a*np.exp(x)+(b/np.exp(x)) + x**2+2

# for V(x)=0, f(x)=x**2
def truesolutionO(x):

return x*(1—x**3)/12

#

#

# Figure

figure(figsize=(10,6), dpi=80)

#axis

ax = gca()

ax.spines[ ‘right "].set_color('none”)
ax.spines[ ‘top '].set_color('none”)
ax.xaxis.set_ticks_position( "bottom ")
ax.spines[ ‘bottom "].set_position(( ‘data’,0))
ax.yaxis.set_ticks_position('left ")
ax.spines[ 'left "].set_position(( 'data’,0))
xlim(—.1, 1.1)

#uncomment each line below to draw the finite elements

# Create a new subplot from a grid of 1x2
# subplot(1,2,1)

#plot (X, [fe(0,x) for x in X])

#plot (X, [fe(1,x) for x in X])

#plot (X, [fe(2,x) for x in X])

#plot (X, [dfe(2,x) for x in X])

#plot (X, [fe(6,x) for x in X])

#plot (X, [fe(numpoints—1,x) for x in X])
#plot (X, [fe(numpoints,x) for x in X])

#numpoints=11
#X=linspace (0,1,(numpoints—1)*10)

#for k in range(numpoints—1):
# plot (X, [fe(k,x) for x in X])

#subplot(1,2,2)

4

#

# Solution

# We try different numbers of finite elements.
# For numpoints>16 there seem to be numerical instabilities (?)

for numpoints in range(6,20,5):

# the matrix A

A=np.zeros ((numpoints—1,numpoints—1))
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def integrand(x,*args):

return dfe(args[0],x)*dfe(args[1],x)+V(x)*fe(args[0],x)*fe(args[1],x)

for i in range(numpoints—1):
for j in range(numpoints—1):

Ali,j],errA = quad(integrand,0,1, args=(i,j),limit=100)

# the right—hand side B
B=np.zeros(numpoints—1)
def secondmembre(x,i):

return fe(i,x)*f(x)
for j in range(numpoints—1):

B[j],errB = quad(secondmembre,0,1,args=j)
# Compute the coordinates of the approximate solution
# in the finite elements basis
u=la.solve(A,B)
# Build the appsolution
# appsolution(x) = sum u_j*fe_j(x)
def appsolution(x):

s=0

for j in range(numpoints—1):

s=s+ul[j]*fe(j,x)

return s
# Plot the approximate solution
X = np.linspace(0, 1, numpoints, endpoint=True)
appsolutiongraph=[appsolution(x) for x in X]
plot (X, appsolutiongraph)

4%

# For comparison: plot the true solution if it is known
# comment lines below if not

Y=linspace(0,1,400)
truesolutiongraph=[truesolution1(x) for x in Y]
plot (Y, truesolutiongraph)

4

savefig(”“finite_elements_1d.png”,dpi=80)
show ()

4
#

#
#
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Appendix A

Lebesgue Integration

A.1 Axioms

There exists a mapping from & = {f : R"™ — [0, +00]} to [0, +00], that we denote

fs [ 1= [ f@s

which satisfies the following properties:

i) For fge€and \,u eRY, [Nf+ug=X[f+u/fg
i) If f <gthen [ f< [g.

iii) For any A = [[’_[aj,b;] C R", if we denote 14 the characteristic function of A, given
byla(z) =0ifz ¢ Aand 14(x) =1, we have

n
/1A(x)da: =[] - )
j=1
iv) (Monotone convergence, or Beppo-Levi's lemma) If (fj) is an increasing sequence of functions

in £, then
lim f; = lim i
/jﬁ+oo / J'HJrOO/fJ

Definition A.1.1 Let A be a (measurable...) subset of R™. We denote p(A), and we call
measure of A, the non-negative number

1(A) = /1A :/1A(ac)d:c: /1Adu.

One says that the set A is negligeable when p(A4) = 0.
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Une propriété P(z) portant sur les = € R™ est dite vraie presque partout (p.p.) lorsque I'ensemble A
des x ou elle est fausse est de mesure nulle.

Exemple A.1.2 Soit f € £. On a |'équivalence

/f=0<:>f=0p.p.
Supposons d’abord que f =0 p.p.. Soit
A={z eR", f(x)# 0}.
On sait que [14(z)dz = pu(A) =0. Or
flx) < lim jla(z),

j—to0

puisque les deux membres sont nuls quand = ¢ A, et que pour z € A, il existe j € N tel que
f(x) < j. D'apres la propriété de Beppo-Lévi, et en utilisant la linéarité de I'intégrale,

[@de= [ m jta@ds = wm i [ 1460 =0

Réciproquement, si [ f = 0, puisque

La(z) < lim_jf(x),

j—+o0

le méme argument donne p(A) = [14 = 0.

Pour les suites de fonctions positives qui ne sont pas monotones, on a la trés utile

Proposition A.1.3 (Lemme de Fatou) Soit (f;); une suite de fonctions de £. On a toujours
liminf dr < liminf (x)dx
[ mint g@)do < vt [ £(a)

Preuve.— Soit g; = infj<}, fi. La suite (g;) est une suite croissante d’éléments de £, et par définition

liminf lim
j—+oo f] j—+oo 93

La propriété de Beppo-Lévi donne donc

lim inf dr = lim ¢; = lim ;= |lim inf
/J—>+oo 5(@) /j—>+oog] j—>+oo/g] j—>+00/3<k i
Or pour tout k > j, on a
i L <
/]ng Jr < /fk,

/lnf Ik < 'nf/fk

/Ilmlnffj( Ydx < I|m|nf/f

Jj—+oo Jj—+oo

donc

Finalement on a bien
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A.2 The dominated convergence theorem

Definition A.2.1 On dit qu’une fonction f : R" — C est sommable lorsque

171 <+

On note L'(R™) I'espace des classes d'équivalences de fonctions sommables pour la relation
d’'équivalence
f~g=f=gpp

Proposition A.2.2 (Théoréeme de Convergence Dominée) Soit (f;) une suite de fonctions de
R™ dans C telles que

i) fj(x) — f(x) pour presque tout z,

ii) il existe ¢ : R™ — R™, sommable, telle que Vj € N, |f;(z)| < () pour presque tout z,

Alors / |fj — fldz — 0 quand j — +o0.

Preuve.— On se rameéne d'abord au cas ol fj(x) — f(x) pour tout = et ot | f;(z)| < g(z
x, de sorte que I'on pourra utiliser la propriété de Beppo-Levi. Soit A; = {x € R", |f;(x)
L'ensemble A; est de mesure nulle, donc A = | J; A; aussi. Soitaussi B = {z € R", f;(z) #

) pour tout
| >

g(x)}-
f(x)}.

B est de mesure nulle, et N = AU B aussi. Soit alors f; et f les fonctions définies par f;(z) = f;(z)

etf( ) = f(x) pour z ¢ N, etfj( ) = f( ) =0 pour z € N. Onablensurfj( ) — f( ) pour
tout z € R”, et | fj(x)| < ¢(z) pour tout j et tout = € R™. De plus

[15,@) = r@ds = [ 15) - Fa)de

donc il suffit de montrer que / fi(x) — f(x)|dz — 0.
Soit g;(z) = |fj(z) — f(z)|, et hj(z) = sup gx (). La suite (h;) est décroissante, et puisque
<k
0 < gj(@) < |f;(@)] +1f(x)] < 20(2),

les fonctions 2¢ — h]- forment une suite croissante de fonctions positives. La propriété de Beppo-Levi
entraine donc

2/¢(I)dg; — lim /hj(:c)dx = lim /(2g0(x) — hj(z))dz

J—+o00 J—+o00

:/ im (2¢(x) — hy(2))da :2/go(a:)da:,

J—+o00
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ce qui montre que / |fj(x) — f(x)|dx — 0. O

Proposition A.2.3 La quantité ||f||;1 = / |f| est une norme sur L'(R™) qui en fait un espace

de Banach. De plus si la suite (f;) — f dans L'(R™), on peut en extraire une sous-suite (fj,)
qui converge vers f presque partout.

Preuve.— Le fait qu'il s'agit d'une norme est trés facile. On se contente de montrer que celle-ci fait
de I'espace vectoriel Ll(R") un espace complet, et pour cela que toute série absolument convergente
est convergente. Soit donc ) fj une série normalement convergente dans Ll(R”). On considére

la fonction g de £ définie par g(x) = Z |fj(x)]. La fonction g est sommable puisque, gréce &
Jj=0
Beppo-Lévi,

k k
[ ot | o Sl = m 3 [ 15@lds =315l < +x.

>0

En particulier 'ensemble A = {x € R", g(z) = 400} est de mesure nulle. Soit alors (.Sp) la suite
des sommes partielles de la série ) | f;.

i) Pour tout p, on a
1Sp(x)| < g(x)
ii) Pour tout x gﬁ A, donc presque partout, on a

P2
|Sp, (z) — Sp, ()] < Z |fj(x)| — 0 quand p2 > p1 — +o0.
J=p1+1

La suite (S,(x)) est donc une suite de Cauchy, et converge vers un certain S(z).

On peut donc appliquer le Théoréme de Convergence Dominée (TCD):

Jim [ 18,(a) = S(a)lds =0,
c'est-a-dire

|Sp(x) — S(x)||gr — 0 quand p — +oo.
Soit enfin (f;) une suite de fonctions qui converge vers f dans L' (R™). 1l existe une sous-suite ( f;, )

telle que
Vk €N, |Ifj, = fllp <27F

On peut écrire
k—1

fj;C = fjo + Z(flerl - sz)v
(=0
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o0
et I'on sait que la série Z || fjs+1 — fj, |l L1 converge, puisque
£=0
1 fjesr = Filloe < Mfjewr = Flls + 1= Fiellpr < 27D 4270 <271,
+oo
Puisque L! est complet, la série Z(fjﬁl — fj,) converge, ce qui montre que la suite ( f}, ) converge.
=0

O

A.3 Functions given by integrals with parameters

Proposition A.3.1 Soit f : 2 X R™ — C une fonction, ol 2 est un ouvert d'un espace métrique
(X,d). Si

i) VA e, x— f(A\ x) est sommable sur A C R",
i) Yx € A, X+ f(\,x) est continue,
iii) il existe une fonction g sommable a valeurs positives, telle que

Ve e AVA e Q, |f(\ )] < g(x),

alors la fonction F': A\ — / f(A,x)dx est continue sur €.
A

Preuve.— Soit A9 € 2, et ()\;) une suite de € qui tend vers )\ dans (X,d). On pose f; : =
f(Aj,x), et on applique le TCD a la suite (f;). O

On notera que les hypothéses de cette proposition peuvent n’étre satisfaites que sur A \ N, ol N est
un ensemble de mesure nulle, sans que la conclusion ne soit modifée.

Proposition A.3.2 Soit f : I x R™ — C une fonction, ot I C R est un intervalle ouvert. Si

i) Vt € I, x — f(t,x) est sommable sur A C R",
i) Vo € A, t— f(t,z) est C}(I),
iii) il existe une fonction g sommable a valeurs positives, telle que

Ve € A, |0 f(t,z)| < g(x),

alors la fonction F : t — / f(t,z)dx est C* sur I, et
A

F’(t):/Aatf(t,a:)da:.
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Preuve.— On montre d’abord que F’ est dérivable en chaque ¢ € I en considérant le taux d’accroissement

) = F(t+h})L—F(t) :/Af(wh,x}i—f(t,x)dm

Les hypothéses donnent

ft+h,x)— f(t,x)
h

e Pourtout x € A, — 0¢f(t,x) quand h — 0,

f(t+h,a:)—f(t,$)‘ < sup |Ouf(t+ sh,x)| < g(x),

e Pourtout x € Aeth €]0,1], | p
s€[0,1]

et I'on conclut & I'aide du TCD. La continuité de F’ découle directement de la proposition précédente.
O

Definition A.3.3 Soit f : R?> — C une fonction, et Q C R? un ouvert. On dit que f est
holomorphe sur €2 lorsque 0f (z,y) = 0, ou O (lire "d-barre") est |'opérateur différentiel défini
par

0 (2,4) = 3 (00 (e,) + 0, (2 ).

Proposition A.3.4 Soit f : 2 x R™ — C une fonction, ou 2 C R2 est un intervalle ouvert. Si

i) Vz €, x— f(z,x) est sommable sur A C R",
i) Ve € R", z+ f(z,x) est holomorphe sur ,

iii) Pour tout compact K C (), il existe une fonction gx sommable a valeurs positives, telle
que
Vze K, Vo e A, |f(z2)] < gk (x),

alors la fonction F': z — / f(z,z)dx est holomorphe sur €2, et
A

F’(z):/Aazf(z,x)dx.

Exercice A.3.5 Soit ¢ € C°([0,1],R), et f :[0,1] x [0,1] — R définie par

[ ¢(z) pourx <t,
flt.z) = { 0 pour x > t.

On note F(t) = [ f(t,x)dx. On a F'(t) = ¢(t), mais /Btf(t,:c)d:p = 0. Pourquoi ne peut-on
pas appliquer la Proposition ?
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A.4 Fubini-Tonelli

Proposition A.4.1 Soit f : R? x R? — R.
i) Si f €& on al'égalité, dans [0, +oc],

(z)dx = /RP ( o f(:z:l,xg)dxg)dxl = /Rq ( f(:cl,xg)dxl)dxg.

Rp+a RP

i) Si f € L*(RP+9), les trois termes ci-dessus sont finis et sont égaux.

A titre d'application immédiate, on définit le produit de convolution de deux fonctions:

Lemme A.4.2 Soient f et g deux fonctions de L'(R™). La fonction y — f(y)g(z — y) est
sommable pour presque tout x, et la fonction f *x g : R” — C définie par

fglx) = / f@)alz - v)dy,

appartient 3 L'(R"). Enfin
1 * gl < [ fllzr lgllzr

Preuve.— A |'aide de la proposition précédente, on peut écrire

J1rsg@dz < [ ([ 15l ~ v)ldy)do
< [15@I( [ lote = plde)dy < 171z Il

On en déduit que f * g est sommable, donc finie presque partout, ce qui montre aussi que y +—
f(y)g(z — y) est sommable pour presque tout . O

Exercice A.4.3 Montrer de la méme maniére que f*g est bien définie comme fonction de L"(R"™)
lorsque f € LP(R™), g € LY(R™) avec 1/p+1/q = 1+ 1/r, et que I'on a alors I'inégalité de
Young:

1 gller < [[fllze llgllze-

On ne traite que le cas ou p = 1, et donc = ¢. On évalue

[15g@rds = [ ([ 150 lote - play) dz.

mais la puissance g nous empéche d’utiliser Fubini-Tonelli comme dans le cas p = ¢ = 1. On remarque
alors que

/!f(y)! l9(z —y)|dy = / FWIMT (1f @)Y |g(z — y)|)dy
< / F@)ldy) " x ( / P (g — y)[7dy) Ve,
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par Hélder, ot 1/q + 1/¢' = 1. Ainsi

[t iate-ianrae < [ (o)™ ([1swmeo g i)
<1 [[ 15l ot = iray a.

Pour conclure, on utilise Fubini-Tonelli comme prévu:

1f % gl < IF1%7 / £ ()] ( / lg(z — y)|%dz)dy < |17 g% < 1F1%0g]1 %0
A.5 Change of variable

Proposition A.5.1 Soient ©; et Q5 deux ouverts de R”, et ¢ : ; — Qs un C'-difféomorphisme.
On note J, : Q; — RT le jacobien de ¢, c'est-a-dire la fonction définie par J,(z) =
| det(VJ,(2))|.

i) Pour f: Q9 — [0,400], on a

fly)dy = flp(x))Jp(x)d.
Qo Q

i) Soit f : Q9 — C. La fonction f est sommable sur €5 si et seulement si la fonction

z = f(p(x))Js(x) est sommable sur ;. Dans ce cas, les deux termes de I'égalité
ci-dessus sont finis et sont égaux.
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Appendix B

Hilbert spaces

B.1 Scalar Products

Let H be a vector space on C.

Definition B.1.1 A linear form [resp. anti-linear form | £ on H is a mapping ¢ : H — C such
that

Va,y € H,¥Y\ € C, l(x +15y) = £(z) + £(y), and £(\x) = M(x) [resp. £(\z) = M(z)].

Definition B.1.2 A sesquilinear form on H is a mapping s : H x H — C such that for all
y € H, x — s(x,y) is linear and x — s(y, z) is anti-linear. If moreover s(x,y) = s(y, ), the
sesquilinear form s is said to be Hermitian .

Notice that when the sesquilinear form s is Hermitian, 3(3:, w) € R for any x € H. Using the following
identity, we can easily see that it is a necessary and sufficient condition:

Proposition B.1.3 (Polarization identity) Let s be a Hermitian sesquilinear form on 4. For
all (z,y) € H x H,

ds(z,y) = sz +y,x +y) — s(z —y,z —y) +is(z + iy, x + iy) — is(z — iy, z — iy).

Notice in particular that a Hermitian sesquilinear form is completely determined by its values on the
diagonal of H X H.



APPENDIX B. HILBERT SPACES 156

Remark B.1.4 For a real symmetric bilinear form b, the polarization identity reads

4b(z,y) = bz +y, v +y) = b(z —y, 2 — y).

Definition B.1.5 A (Hermitian) scalar product is a Hermitian sesquilinear form s such that
s(z,z) >0 for all x € H, and s(z,z) =0« = =0.

Proposition B.1.6 When s is a Hermitian scalar product, the Cauchy-Schwarz inequality holds:

Yo,y € H, |s(z,y)| < Vs, 2)V/s(y,y),

as well as the triangular (or Minkowski's) inequality:

Vr,y € H, \/s(:c—i—y,x—}—y) < \/S(a:,:v)—i—\/s(y,y).

Proof.— Let x,y € H. Denote f the argument of the complex number s(x,y), so that |s(x,y)| =
e ®s(x,y). For any A € R, we have

s(x + Xey, x4+ Aey) > 0.
Therefore, for any A € R,
0 < s(z,z) + s(x, Xe"y) + s(Aey, ) + s(Aey, Xeiy)
< s(x, x) + 2ARe(e sz, y)) + N2s(y, )
< s(z,2) + 2A|s(z, )| + Ns(y, y).
Since this 2nd order polynomial has constant sign, its discriminant is negative, that is
|s(z,y)[* = s(z,2) s(y,y) <0,
which is the Cauchy-Schwarz inequality.
Minkowski’s inequality is then a simple consequence of the Cauchy-Schwarz inequality
s(x+y,x+y) =s(r,x)+ 2Res(x,y) + s(y,y)
< s(w, x) +2[Res(z,y)| + s(y, y)
< s(z,2) +2v/s(z,2)v/s(y,y) + s(y,y)
< (V's(z,2) + sy, y)”.

A

In particular the map || - || :  — /s(x, z) is a norm on H, and for all z,y € H, we have

sz, y) < [l Iyl

Thus the scalar product is a continuous map from H x H to C for the topology defined by its associated
norm.

Lecture Notes, autumn 2014, Version 2.06 Thierry Ramond



APPENDIX B. HILBERT SPACES 157

Definition B.1.7 A Hilbert space is a pair (#, (-, -)) where H is a vector space on C, and (-, -)
is a Hermitian scalar product on #, such that H is complete for the associated norm || - ||.

Example B.1.8 — The space C", equipped with the scalar product

n
(,y) = Z ;Y
J=1

is a Hilbert space.

— The space £%(C) of sequences () such that ) |z, |* < 400, equipped with the scalar product
((zn), (yn)) = X_,, Tn¥n is a Hilbert space.

— The space L?(2) of square integrable functions on the open set 2 C R", equipped with the
scalar product

(. g)e = / f(@)g(@)de,

is a Hilbert space. This is one of the main achievement of Lebesgue's integration theory.

Exercise B.1.9 Prove that ¢?(C) is a Hilbert space: Let (z") be a Cauchy sequence in ¢2(C).
Denote 2" = (27')ien.

1. Show that the sequence (z7')ncn is a Cauchy sequence of C. Denote z; its limit.

2. Show that the sequence = = (x;) belongs to £2(C), and that (z™) converges to x.

B.2 Orthogonality

Definition B.2.1 Let (7, (-,-)) be a Hilbert space, and A a subset of . The orthogonal
complement to A is the set A+ given by

At ={zeH, Vaec A, (x,a)=0}

In the case where A = {z}, At is the set of vectors that are orthogonal to .

Proposition B.2.2 For any subset A of H, A is a closed subspace of H. Moreover A+ = (A)*+.

Proof.— For each a € A, the set {a}* is closed, since the map = + (x, a) is continuous. Thus A~ is
the intersection of a family of closed set, therefore a closed set. Now 0 € AJ-, and if r1, 29 € AJ-, we
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have (\121 + Aoxo,a) = A {z1,a) + Aa(z2,a) = 0 for any a € A, so that A+ is indeed a subspace
of H.

Since A C A, we have (A)t C Al. On the other hand let b € AL. For a € A, there exists a
sequence (ay,) of vectors in A such that (a,) — a. Now

(a,b) = lim (an,b) =0,

n—-+o0o

sothat b € (A)L. O

Lemma B.2.3 (Pythagore’s theorem) Let {z1,z2,...,z,} be a family of pairwise orthogonal
vectors. Then
21 + 22 + -+ @l? = [l ]? + [Jz2l® + - + |zl

Proof.— Indeed

n n

n n n
oy 4+ 2o+ 4@l = O, > we) =YD () = > [l
1 7j=1

j=1 k= j=1 k=1

Lemma B.2.4 (Parallelogram’s law) Let x; and x5 be two vectors of the Hilbert space H.
Then
2)|x1|? + 2)|w2l® = [l + w2|® + |21 — 22

Tl — T2
T2

z1

Figure B.1: Parallelogram’s law

The proof of this lemma is straightforward, but it is interesting to notice that the parallelogram identity
holds if and only if the norm || - || comes from a scalar product, that is the map

1 ) . ) .
(w1, 22) Z(Hxl +a9||? = |Joy — @o|® + |2y + dxo||* — iz — iza?)

is a scalar product whose associated norm is || - ||.

Exercise B.2.5 Prove it.
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Proposition B.2.6 (Orthogonal Projection) Let 7 be a Hilbert space, and F’ a closed subspace
of H. For any = in H, there exists a unique vector Ilz in F' such that

VieF, |v—1I|| <z — f[.

This element Ilx is called the orthogonal projection of x onto F', and it is characterized by the
property
Iz € Fand Vf € F, (x —Ilx, f) = 0.

Moreover the map II : z + Ilz is linear, 112 = II, and ||TIz|| < ||z||.

Notice that the proposition states in particular that Il is the only element of F' such that z — Ilx
belongs to F+.

Proof.— - First of all we suppose only that F' is a convex, closed subset of H. Let x € H be fixed,
and denote d = infycp || — f]| the distance between x and F.

If f1 and f, are two vectors in F', then, since F'is convex, (f1 + f2)/2 also belongs to F'. Therefore
Il(f1 + f2)/2|| > d. On the other hand the parallelogram law says that

(fi+f2) 2 (fi—f2)2 1 2 2
Bl BBl - e 4 i),
so that 1
o< VP Ly ) - a2,

|

Now for n € N, we define )
Fo={feF, - fI><d+-}.

The sets F;, are closed, and non-empty by the definition of d, and they form a decreasing sequence
of sets. Moreover, if f1, fo belong to F},, then

e < L a4y - ) - a2 < L

Thus the diameter of the Fj, tends to 0, and their intersection, which is the set of points in F' at
distance d of x contains at most one point.

At last, for all n € N we pick x,, € F},. Forall p < ¢ in N, we have F, C F), therefore
|zp — 4]l < —,

which proves that (:cn) is a Cauchy sequence, therefore converges to some Iz € F', such that
|z — Ilz|| = d.

Concerning the characterization of Iz, we notice that for all ¢ € [0,1] and all f € F, we have
(1 —t)Ilz + tf € F by the convexity assumption on F'. Thus

Mz — ) < [[((1 = )z +tf) — z[* < | (M2 — @) + ¢(f — x))|*.
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Thus, forall f € F and all t € [0, 1],
0 < t?||f — Iz||? + 2tRe(Ilz — z, f — IIx).
Dividing by t and choosing ¢ = 0 gives
Re(z — Iz, f —Ilz) < 0.
Reciprocally if Re(x — y, f —y) < Oforall f € F, then, forall f € F'
lz = fI? = llz —y +y = fII = ll= — y]?,
so that y = Ilx.

- Now we make the assumption that F' is a closed vector space. Since a vector space is convex, the
previous proof holds. Moreover, in the last part, we have now

0 < |t)||f — Hz||* + 2Re#(Ilx — x, f — lx).

for all ¢ € C since the line {(1 — ¢)IIz + tf, t € C} belongs to F. Therefore, in that case, Ilz is
characterized by the property (noticing that f — Ilx describe F' as f describes F),

VfeF, (x—1lx, f) = 0.
The linearity of the map II then follows: for x1,x2 € H and A1, Ao € C we have, forall f € F,
)\1<.CL‘1 — Iz, f> =0 and /\2<.CL’2 — Iz, f> =0

so that, for all f € F,
(Mz1 + Aoz — (MIIzy + Aollzg), f) =0,

and II(A\1x1 + Aozo) = A1llzg + Aollzs.

Since Iz = x when & € F, it is clear that II? = II, therefore we are left with the proof that
|IILz|| < ||x||. But this is obvious since for all f € F, and in particular for f = 0, we have, by
Pythagore’s theorem

lz = £II* = [l = Tz ||* + [Tz — £
and thus ||z — f|| > |[TIz — f]|. O

Corollary B.2.7 If I is a closed subspace of H, then

FoFH=%H.

Proof.— For x € H, we can write x = Iz + (I — II)x = @1 + 2. Sincex; € Fand 2o = 2z — 1z is
orthogonal to F', we have H = F' + FL, and it remains to show that the sum is direct. If 0 = x1 + 2
with 1 € F' and 29 € FJ-, then Pythagore’s theorem give

0 = [|lz]f* + flz2]1%,

so that 1 = x5 = 0. O
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Corollary B.2.8 A subspace F' of # is dense in # if and only if F* = {0}. Moreover
(FHt = F.

Proof.— Since F is a closed subspace of H, we have
H=F@(F)t=F¢Ft,
and the first statement follows.

It is clear that F/ C (F'4)*. Since (F1)* is a closed set, this implies that F' C (F-)*. On the other
hand, let 2 € (F+)*, and denote Ilz its projection onto F. We have

|z —Tz|* = (z — Hz,z — z) = (z — Iz, z) — (v — [z, Hz) = 0.

Indeed, (z — Iz, Ilz) = 0 since Iz € F,and (x — Iz, z) = 0 since x — Iz € (F)* = F*. Thus
=1z e F. O

B.3 Riesz’'s theorem

A linear form £ : H — C is continuous if there exists C' > 0 such that
Ve € H, |[l(x)] < C|z].
Proposition B.3.1 (Riesz’s representation Theorem) Let ¢ be a continuous linear form on H.
There exists a unique y = y(¢) € H such that
Ve e H, U(z) = (z,y).

Moreover

o= sup Ky,

rer a0 ]

Proof.— The uniqueness part of the statement is easy, and we concentrate on the existence part. We
denote Ker¢ = {x € H, {(x) = 0} the kernel of £. Since { is continuous, it is a closed subspace of H,
and we denote by II the orthogonal projection onto Ker £. If £ = 0, we can take y(¢) = 0. Otherwise,
there exists z € H such that £(z) # 0, which means that w = z — Iz # 0. Therefore we can set

y=yl) = ﬁg@w

Notice in particular that £(y) = ||y||>. As a matter of fact, y spans (Ker£)*. Indeed if z € (Ker )™,
we have
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o(z) {(z)

therefore  — —— 1 € Ker£ N (Ker£)* = {0}, so that & = ——~y.

£(y) (y)
Thus, again since H = Ker /@ (Ker£)*, any = € H can be written

x = Iz + Ay,
for some A € C. Then ¢(x) = M(y) and

Mlyl? = ().
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