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A novel theory for the origin of the westward drift
of the Earth’s magnetic field is proposed, based
upon the propagation of hydrodynamic Rossby waves
in the liquid outer core. These waves have the
obscure property that their crests always progress
eastwards—but, for a certain subset, energy can
nevertheless be transmitted westwards. In fact, this
subset corresponds to sheet-like flow structures,
extended in both the axial and radial directions, which
are likely to be preferentially excited by convective
upwellings in the Earth’s rapidly rotating outer
core. To enable their analysis, the quasi-geostrophic
(QG) approximation is employed, which assumes
horizontal motions to be independent of distance
along the rotation axis, yet accounts for variations in
the container height (i.e. the slope of the core–mantle
boundary). By projecting the momentum equation
onto flows of a QG form, a general equation governing
their evolution is derived, which is then adapted
for the treatment of two initial value problems—
in both Cartesian and spherical geometries—which
demonstrate the preference for westward energy
propagation by the waves in question. The merits of
this mechanism as an explanation for westward drift
are discussed.

1. Introduction
Since its discovery over three centuries ago by Halley [1],
the westward drift of the Earth’s magnetic field has
remained an intriguing problem in geophysics. Why
should it be that many features of the observable
geomagnetic field have systematically tracked west
throughout 400 years of measurements? The first detailed
analysis of this phenomenon was performed by Bullard
et al. [2], to be followed by many others [3] seeking
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to elucidate its behaviour through interrogation of both historical data and recent satellite
measurements.

The allure of westward drift can perhaps be put down to its ubiquity. Regardless of whether
one looks at maps of declination at the Earth’s surface or radial field at the core–mantle
boundary, westward drift arises as a robust feature of geomagnetic secular variation. The
apparent indifference to both spatial scale [4] and epoch [5] suggests that the westward drift is an
artefact of fundamental core dynamics, and therefore its explanation may open a window onto
the Earth’s deep interior.

While the westward drift spans many temporal and spatial scales, it also appears to
be geographically localized, with secular variation being limited to low-latitude (equatorial)
regions [5–7], and dominated by the motion of intense flux spots with a tendency to pair north
and south of the Equator [8]. For unknown reasons, the Pacific hemisphere appears to have
been relatively quiet in the modern era [9], with a weaker field magnitude and lack of any
convincing secular variation patterns. The dominant contribution to westward drift—centred
over the Equator in the Atlantic hemisphere—was found by Finlay & Jackson [5] to be at a
rate of 0.27◦ yr−1, or 17 km yr−1 at the core–mantle boundary. It is worth noting, however, that
these observations face an unfortunate constraint; owing to the interference of crustal magnetism,
their resolution is limited to spherical harmonic degrees below 13—meaning there is a dearth
of information at all but the largest scales of magnetic field [10]. This is a cause for concern,
especially since spectra of the observable secular variation show its power increasing with
harmonic degree [4], suggesting its origin is to be found at the invisible small scales. Therefore,
theoretical models of the small-scale dynamics may prove useful tools for explaining the
westward drift.

The liquid outer core, approximately occupying the spherical shell 1231–3485 km from the
Earth’s centre, is the cradle of our planet’s magnetic field. Its periphery—the core–mantle
boundary—may be considered an impermeable, electrically insulating solid on the time scales
of interest. Its internal boundary with the solid, conducting inner core will be neglected in
this study, as it is thought the geodynamo operates chiefly outside of the tangent cylinder (an
imaginary surface aligned with the rotation axis and circumscribing the inner core). The molten
iron which makes up the outer core has a kinematic viscosity which is probably not dissimilar to
that of water [11], and therefore may be taken as inviscid over the large length scales considered.
The force balance is instead thought to be dominated by the effect of the rapid background
rotation of the Earth at an angular velocity Ω of approximately 2π radians per day. It is well
known that rapidly rotating fluids have a tendency to evolve in a manner which is effectively
two dimensional, being independent of distance along the rotation axis [12,13], and therefore
simplified models which presuppose this disposition are often employed in their study.

Motion in the outer core is thought to be stirred by vigorous convection, with thermally
or compositionally buoyant material pushing radially outwards from the hot inner core. The
convection is strongly forced, meaning the distribution of density anomaly within the core is
likely to be chaotic and span a vast range of scales. This raises questions for both the geodynamo
as a whole and the westward drift; how does the organized dipolar field structure emerge from
this stochastic forcing, and how can it also produce the systematic drift observed at large scales?

At present, there exist two main schools of thought on the answer to this final question.
Arguably the most popular model, due to Pais & Jault [14], invokes a large-scale eccentric
gyre—or westward-directed jet—which advects the mean magnetic field. An alternative
hypothesis [15–18] rests upon certain magnetohydrodynamic modes with an invariably westward
phase velocity. Without remark upon the merits of either of the above models, a third possibility
is here put forward, underpinned by the hydrodynamic Rossby waves produced when a rapidly
rotating fluid is forced to deviate from two-dimensionality by the presence of the container walls
(in this case, the core–mantle boundary). We introduce the quasi-geostrophic (QG) theory of these
waves in §2, deriving their governing equation for a general container geometry, and dispersive
properties in a canonical example. The waves are linked to westward drift in §3, supported by
a simplistic initial value problem. A similar problem is approached in §4, only in a spherical
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geometry much more reminiscent of the Earth. The discussion of §5 appraises the value of Rossby
waves as a possible source of the observed westward drift.

2. Theory of quasi-geostrophic Rossby waves
Consider the Earth’s outer core to be an inviscid, incompressible fluid in a state of rapid bulk
rotation at an angular velocity Ω = Ωez, where ez is the unit vector in the axial direction of either
a Cartesian (x, y, z) or cylindrical polar (s, φ, z) co-ordinate system. In either case, a subscript
⊥ denotes the component of a vector perpendicular to ez. In a reference frame rotating at Ω ,
the Eulerian fluid velocity is u(x, t). The core–mantle boundary is represented by symmetric,
impermeable surfaces at z = ±h(x⊥); for a spherical geometry of unit radius, one would have
h =

√
1 − s2.

(a) Kinematics and the quasi-geostrophic approximation
In a bid to simplify the analysis, the so-called QG approximation [19–21] is made. This is in
deference to the fact that the rapid background rotation forces the fluid to seek steady states
which are independent of the axial co-ordinate z (geostrophic). The presence of the boundaries at
±h introduces small departures from geostrophy which cause these states to evolve on a time scale
much longer than the rotation period; such motions might be called QG, though the definition of
the phrase is somewhat imprecise. Here, the term QG is used in a strict sense: as a label for the
assumption that the velocity components perpendicular to the rotation axis (u⊥) are independent
of the axial co-ordinate, an approach which has seen much success in modelling of outer core
convection [22–24]. This is despite the fact that the assumption is only strictly valid when the
boundary slope is small, a condition clearly violated in the equatorial regions of the Earth’s
spherical core [21,25]. Moreover, the approximation remains reasonable even in the presence of a
background magnetic field [26].

The velocity field u in this formulation is subject to three kinematic conditions:

(i) incompressibility, ∇ · u = 0;
(ii) non-penetration at the upper and lower boundaries, (∇h ∓ ez) · u|±h = 0;

(iii) the QG approximation, u⊥ = u⊥(x⊥, t).

It can be shown that a representation of the form

u = ∇χ × ∇
( z

h

)
(2.1)

fulfils these requirements, with the streamfunction χ (x⊥, t) neatly encapsulating the evolution
of the vector field u(x, t) through a scalar function of just two spatial co-ordinates. Note that this
form is a generalization of that introduced by Schaeffer & Cardin [20], which itself improves upon
the classical perturbation expansion approach (as discussed in [23]). Restricting solutions to the
form (2.1) offers a drastic simplification of the analysis, while providing a useful tool with which
to probe the physics of axially elongated structures in the core of the Earth.

(b) Dynamics and governing equation
A governing equation for the streamfunction χ in this QG approach is now derived. In a reference
frame rotating at the bulk angular velocity Ω , conservation of momentum for an inviscid,
incompressible fluid may be written

∂u
∂t

+ u · ∇u + 2Ω × u = −∇Π (2.2)

for some modified pressure Π . In the limit of small Rossby number (U � ΩL for some
characteristic velocity U and length scale L), the second term (advection) may be neglected in
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Figure 1. Schematic of the control volume considered when deriving the governing equation for a QG flow. (Online version in
colour.)

comparison with the third (Coriolis). The curl of (2.2) then yields the equation

∂ω

∂t
= 2Ω · ∇u, (2.3)

for the evolution of the vorticity ω = ∇ × u. Evidently, steady solutions must be independent of
distance along the rotation axis (i.e. geostrophic)—this is the Taylor–Proudman theorem [12,13].
However, in order to satisfy non-penetration at z = ±h, QG solutions must possess a weak
z-dependence, and therefore can exhibit unsteadiness. To derive an equation for the evolution
of a QG flow, one could simply substitute the representation (2.1) into the axial component of the
vorticity equation (2.3), a procedure commonly employed in the literature (e.g. [21,22]). However,
as pointed out in Labbé et al. [27], a more efficacious approach is to instead project the momentum
equation (2.2) onto flows of the QG form (2.1), thereby obtaining a reduced model which better
approximates the dynamics. This has been verified analytically in a full sphere by Maffei et al. [25],
who found remarkably good agreement with the fully three-dimensional solutions of Zhang
et al. [28].

We therefore proceed by following the derivation of Labbé et al. [27], generalizing their results
in a sphere to a more arbitrary geometry. Consider a control volume V of fluid of constant
horizontal cross section A, bounded at the top and bottom by the caps z = ±h(x⊥). The boundaries
of V and A are denoted ∂V and ∂A, respectively (figure 1). After excluding advection, the
momentum equation (2.2) is projected onto a QG trial function u′ = ∇χ ′ × ∇(z/h), which by
construction satisfies χ ′|∂A = 0, then integrated over V :

˚
V

u′ · u̇ dV + 2Ω

˚
V

u′ · (ez × u) dV = −
˚

V
u′ · ∇Π dV, (2.4)

with a dot over a quantity denoting a time derivative. Using the divergence theorem, the right-
hand side is equal to ˚

V
Π∇ · u′ dV −

‹
∂V

Πu′ · dS = 0, (2.5)

as the choice of χ ′ guarantees streamlines of u′ cannot pass through ∂V . The contribution from
the Coriolis term simplifies to

2Ω

˚
V

u′ · (ez × u) dV = 2Ω

˚
V

(
ez × ∇χ

h2

)
· ∇χ ′ dV. (2.6)
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The integration from z = −h to z = h can be completed, thereby projecting the equations onto the
horizontal plane A:

2Ω

˚
V

u′ · (ez × u) dV = 4Ω

¨
A

(
ez × ∇χ

h

)
· ∇χ ′ dA (2.7)

= 4Ω

˛
∂A

χ ′
(

ez × ∇χ

h

)
· n ds − 4Ω

¨
A

χ ′∇ ·
(

ez × ∇χ

h

)
dA (2.8)

= 4Ω ·
¨

A
χ ′
(

∇ 1
h

× ∇χ

)
dA. (2.9)

This requires use of the two-dimensional version of the divergence theorem,
¨

A
∇ · v dA =

˛
∂A

v · n ds (2.10)

(where n is the in-plane unit outward normal to ∂A), then the fact that χ ′|∂A = 0. A very similar
procedure may be applied to the inertial term,

˚
V

u′ · u̇ dV =
˚

V

(∇χ̇

h2 + z2∇ 1
h

×
(

∇χ̇ × ∇ 1
h

))
· ∇χ ′ dV (2.11)

= 2
¨

A

(
∇χ̇

h
+ h3

3
∇ 1

h
×
(

∇χ̇ × ∇ 1
h

))
· ∇χ ′ dA (2.12)

= −2
¨

A
χ ′∇ ·

(∇χ̇ + (1/3)∇h × (∇χ̇ × ∇h)
h

)
dA, (2.13)

so equation (2.4) can be rewritten
¨

A
χ ′
[
∇ ·

(∇χ̇ + (1/3)∇h × (∇χ̇ × ∇h)
h

)
+ 2Ω ·

(
∇χ × ∇ 1

h

)]
dA = 0. (2.14)

As this must be satisfied for all possible choices of the trial function χ ′, the streamfunction χ must
obey the governing equation

∇ ·
(∇χ̇ + (1/3)∇h × (∇χ̇ × ∇h)

h

)
+ 2Ω ·

(
∇χ × ∇ 1

h

)
= 0. (2.15)

Note that the second term inside the divergence is the sole difference between this equation and
the axial vorticity formulation (i.e. plugging (2.1) into the z-component of (2.3)); for moderate
values of ∇h, however, this difference becomes significant.

(c) Quasi-geostrophic Rossby waves
The governing equation (2.15) can support oscillatory solutions known as QG Rossby waves, in
analogy to their atmospheric counterparts [15,29], discussed in detail by Vallis [30], for example.
The theory of QG Rossby waves in the Earth’s interior mirrors this classical analysis—to extract
their archetypal form, select Cartesian co-ordinates (x, y, z) and a linear height profile h(y) = H +
h′y for positive constants H and h′, the domain height and slope, respectively. This aims to capture
the slope of the core–mantle boundary at zero order, with the x-axis oriented east and the y-axis
radially inwards. Furthermore, the slope is for the moment assumed small (in comparison with
the aspect ratio of the QG structures), so (2.15) may be written in the linearized form

∂

∂t
∇2χ ≈ 2Ωh′

H
∂χ

∂x
. (2.16)

Note that an equivalent equation could also stem from the axial vorticity formulation, or indeed
a perturbation expansion approach [31]. Seek travelling wave solutions of the form χ (x, y, t) ∝
exp{i(k⊥ · x⊥ − � (k⊥)t)} with frequency � and wavevector k⊥ = [kx, ky, 0]T = k⊥[cos α, sin α, 0]T,
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Figure 2. Velocity diagram for QG Rossby waves when h= H + h′y for small h′. Phase velocity cp is related to group velocity
cg for a given choice of k⊥. The rotation axis is out of the page, and the labelled directions orient the figure within the Earth’s
outer core. (Online version in colour.)

where α is the angle between the wavevector and the x-axis and k⊥ = |k⊥|. This yields the
dispersion relationship for QG Rossby waves

� = 2Ωh′

Hk⊥
cos α. (2.17)

Writing ek⊥ for the unit vector in the direction of k⊥ and eα for the unit vector in the direction of
increasing α (figure 2), the phase velocity corresponding to (2.17) can be expressed as

cp = �

k⊥
ek⊥ = 2Ωh′

Hk2
⊥

cos α ek⊥ . (2.18)

Note that the component of phase velocity in the x-direction is always positive, meaning wave
crests invariably progress eastwards. However, the same is not true for the wave energy, which
instead propagates at the group velocity, given by the gradient in k⊥-space of the frequency,

cg = ∂�

∂k⊥
ek⊥ + 1

k⊥
∂�

∂α
eα = −2Ωh′

Hk2
⊥

(cos α ek⊥ + sin α eα). (2.19)

The relationship between the phase and group velocities is best understood diagrammatically;
figure 2 is a velocity diagram relating the two, similar to the plots of Duba & McKenzie [32]. The
magnitude of cg is independent of α, so on the velocity diagram the vector cg is the diameter
of a circle of radius Ωh′/Hk2

⊥. Furthermore, (cp + cg) · cp = 0, so cp is a chord of the same circle
terminating at the base of cg. As cp is always in the positive x-direction, the circle must lie to the
right of the origin as shown.

Using figure 2, it is possible to probe the effect of varying the wavevector orientation α for a
given k⊥ (i.e. a specified horizontal length scale). Consider only positive frequencies (−π/2 < α ≤
π/2), for which figure 2 makes sense. The phase velocity vector cp is constrained to move along
the dashed circle, whereas the group velocity vector cg starts where cp finishes and is necessarily
a diameter of the same circle. Although the phase velocity always has a positive x-component, the
group velocity shows no such preference. In fact, the x-component of cg is negative (westward)
for |α| < π/4 and positive (eastward) for |α| > π/4. When α = 0, cp and cg are exactly opposite,
so an observer following a wave group moving westward would see wave crests heading in the
opposite direction at twice the speed of the group. When α = π/2 the group velocity remains finite
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(and due east) despite the fact the waves have no phase velocity. Waves with α = π/4 propagate
directly outwards and waves with α = −π/4 inwards.

The dependence of wave velocity on k⊥ is comparatively trivial; waves with longer
wavelengths (smaller k⊥) travel faster. As |cg| ∼ k−2

⊥ , the waves are highly dispersive.

3. Quasi-geostrophic Rossby waves and the westward drift
A possible explanation for the westward drift of the Earth’s magnetic field at the core–mantle
boundary based upon this classical theory of hydrodynamic QG Rossby waves is now offered.
Suppose, not unreasonably, that the fluid outer core is stirred by gravitating buoyant anomalies,
which constitute localized disturbances to the system in the form of convective upwellings or
plumes. Consider one such disturbance introduced at a location outside of the tangent cylinder
(i.e. not directly north or south of the solid inner core). The disturbance will in general be three
dimensional, but the velocity field it instigates will rapidly become elongated along the rotation
axis through the action of inertial waves [33], and therefore QG after a short transient period.
It is thus useful to consider a thought experiment posed as an initial value problem in which a
localized QG velocity field is specified as an initial condition, and the flow allowed to evolve as an
assemblage of QG Rossby waves, operating on a time scale much longer than the rotation period.

A generic initial condition will excite a broad spectrum of waves—that is to say, many different
choices of wavevector k⊥—which will all spread from the source according to their individual
dispersive properties. A disturbance of characteristic size 
 will have a spectrum peaked
around a wavevector magnitude k⊥ of order 
−1, but will in general excite wavevectors of all
possible orientations α. Therefore, consider the dependence of the group velocity on wavevector
orientation by referring back to figure 2. For wavevectors with α ≈ ±π/2, corresponding to
structures elongated in the east–west direction, the group velocity is east; for wavevectors with
α ≈ 0, i.e. structures elongated in the radial direction, the group velocity is west. QG Rossby
waves, therefore, disperse in a manner which segregates different spatial structures from an
arbitrary initial disturbance, with east–west extended features heading east and radially-extended
features west.

However, it is unreasonable to assume that the excitation of these waves in the core of the
Earth is arbitrary. For motions continually stirred by vigorous convection, one might expect the
proliferation of sinuous radial plumes, emanating from the inner core and being much longer
than they are wide. Such structures commonly arise in numerical and experimental studies of
core dynamics (e.g. [34,35]). Owing to the constraint imposed by the rapid background rotation,
such plumes would also be elongated in the axial direction, forming a series of radial sheets
which are likely to be well represented by the QG approximation [36]. In the context of our
thought experiment, a radial sheet (extended in the y-direction) will possess much more energy
in wavevectors pointing east–west (α ≈ 0) than radially (α ≈ ±π/2). When the solution to such
an initial value problem is evolved, the abundance of wavevectors with α ≈ 0 will dominate the
picture. As the group velocity for these solutions is in the negative x-direction, a radially-extended
disturbance will preferentially transmit energy to the west, making this class of QG Rossby waves
an intriguing candidate for the mechanism underlying westward drift.

(a) Demonstration through a model problem
To support the arguments made so far, consider a simplistic model problem which demonstrates
the ability of QG Rossby waves to segregate different spatial structures. The canonical
equation (2.16) is solved in a domain which is infinite in x and y, starting from some
initial condition χ (x⊥, t = 0) = χinit(x⊥), by taking a two-dimensional spatial Fourier transform.
Emphasis is placed upon the significance of the choice of initial condition, which is constrained
to be of the form

χinit = exp

{
−1

2

(
x2


2
x

+ y2


2
y

)}
. (3.1)

 on May 16, 2018http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


8

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20180119

...................................................

15

10

5

0

–5

y

–10

–15
–10 0

x
10 –10 0

x
10 –10 0

x
10

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

�x/�y = 0.25 �x/�y = 1 �x/�y = 4(a) (b) (c)

Figure 3. Solutions to the canonical QG Rossby wave equation (2.16) for a simple initial value problem starting from (3.1). The
height of the container is h= H + h′y. Contours of streamfunctionχ are plotted at 2Ωh′t/H = 15 for three different choices
of aspect ratio, and black contours are at quartiles of the initial condition. Lengths are in units of

√
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y . (Online version in

colour.)

As contours of χ are equivalent to streamlines in the equatorial plane, this corresponds to a
columnar vortex of extent 
x in the x-direction and 
y in the y-direction. Using

√

x
y as the unit of

length, the solution to the initial value problem may be written as the two-dimensional dispersion
integral

χ (x⊥, t) = 2
π

ˆ π/2

0

ˆ ∞

0
k⊥ exp

{
−1

2
k2
⊥(
2

x cos2 α + 
2
y sin2 α)

}

× cos
([

k⊥x − 2Ωh′t
Hk⊥

]
cos α

)
cos(k⊥y sin α) dk⊥ dα, (3.2)

wherein k⊥ and α have the same interpretations as in the dispersion relation (2.17). This
expression is evaluated numerically for three different choices of the initial condition’s aspect
ratio 
x/
y (figure 3). Figure 3b shows the case of an axisymmetric initial condition, which excites
waves of all orientations α equally and therefore shows no preferential direction for energy
transport, although the partition of different spatial structures is visible. Figure 3a shows the case
of a radially-extended initial condition, four times longer in the direction of the slope than it is
wide; the bias towards westward-propagating waves is self-evident. For completeness, figure 3c
features an initial condition which is elongated in the east–west direction, which exhibits a strong
preference for eastward propagation. It is worth remarking that the aspect ratio need not be
extreme for this effect to be apparent; it is very clear-cut here even for a moderate value of 4 : 1.

4. A model problem: westward-propagating waves in a sphere
It has been established so far that, in the case of a gentle slope, the linearized equation (2.16)
supports wave motions which partition different spatial structures—crucially, with flows
elongated in the direction of the slope going west. However, it is not obvious that the same will
necessarily hold true for a more complicated geometry with an appreciable slope, such as that
presented by the core–mantle boundary. Therefore, consider an initial value problem similar to
that of the previous section, but in an enclosed spherical geometry reminiscent of the Earth’s core.
A full sphere—deficient of the solid inner core—is used in order to simplify the analysis. First,
mode shapes and frequencies are derived in this geometry, following Maffei et al. [25], before the
calculated modes are used to solve an illustrative initial value problem.

Despite the spherical geometry, cylindrical polar coordinates (s, φ, z)—with s being the radial
location, φ the azimuthal angle and z the distance along the rotation axis—are adopted in order to
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usefully apply the QG approximation. Taking lengths in units of outer core radii, the governing
equation is then (2.15) with the axisymmetric height profile h(s) =

√
1 − s2,

[
∂

∂s

(
s
h

∂

∂s

)
+ 1

hs

(
1 + s2

3h2

)
∂2

∂φ2

]
∂χ

∂t
− 2Ωs

h3
∂χ

∂φ
= 0. (4.1)

First, note that any solution satisfying ∂χ/∂t = ∂χ/∂φ = 0 will be a particular integral of this
equation. This corresponds to the steady, strictly geostrophic motion of coaxial cylinders (u =
uφ(s)eφ); hence, the axisymmetric component of any initial condition will not evolve, and one
need only solve (4.1) for the non-axisymmetric portion of the flow. This can be done by seeking
normal mode solutions of the form

χ (s, φ, t) = R{χ̄(s) exp(i[mφ − � t])}, (4.2)

for some azimuthal wavenumber m and modal frequency � , with R{·} denoting the real part of a
quantity. This turns (4.1) into an ordinary differential equation for the radial mode shape,

d
ds

(
s
h

dχ̄

ds

)
+
[

2Ωms
�h3 − m2

hs

(
1 + s2

3h2

)]
χ̄ = 0, (4.3)

which must be solved subject to boundary conditions at the origin (s = 0) and the equatorial
boundary (s = 1). Regularity at the origin requires χ̄ ∼ sm as s → 0, whereas non-penetration at
the outer boundary requires

us|s=1 = lim
s→1

(
1
hs

∂χ

∂φ

)
= 0. (4.4)

As χ is a streamfunction, its constant value at the outer boundary can be chosen, so is set at
zero; more specifically, we must have χ̄(s → 1) ∼ h3 in order for us = (1/hs)(∂χ/∂φ) to be zero and
uφ = −(1/h)(∂φ/∂s) to be finite at the outer boundary. The solution to the eigenvalue problem
posed by (4.3) and these boundary conditions is given in Maffei et al. [25]; the mode shapes are of
the form

χ̄m
n (s) = smh3P(3/2,m)

n−1 (2s2 − 1), (4.5)

and the corresponding frequencies are

�m
n = m

n(2n + 2m + 1) + m/2 + m2/6
. (4.6)

Here, n ≥ 1 is the radial mode number, equal to the number of turning points of χ̄m
n within the

domain. The mode shapes are expressed in terms of Jacobi polynomials P(α,β)
ν (x) [37]. Note that,

for all m ≥ 1, the frequency �m
n is positive, meaning all modes revolve in a prograde (eastward)

sense; this is analogous to the observation that the phase velocity in the Cartesian problem (2.18)
is always in the positive x-direction. Just as in that problem, this does not preclude the possibility
that the energy from a localized disturbance can nevertheless propagate west, as demonstrated
below.

The general solution to (4.1) (setting aside the axisymmetric particular integral for a moment)
can be written as an infinite sum of the above modes,

χ (s, φ, t) = R

{ ∞∑
m=1

∞∑
n=1

Cm
n χ̄m

n (s) ei(mφ−� m
n t)

}
(4.7)

for some complex coefficients Cm
n to be determined by the initial condition χinit(s, φ). In fact, it can

be seen from the self-adjoint equation (4.3) that the radial mode shapes (4.5) are orthogonal with
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respect to the function s/h3, i.e.
ˆ 1

0

s
h3 χ̄m

n (s)χ̄m
n′ (s) ds = 0 for n �= n′, (4.8)

which enables the derivation of an expression for each modal coefficient as an integral over the
equatorial plane,

Cm
n =
´ 1

0 (s/h3)χ̄m
n (s)
¸

χinit(s, φ) e−imφ dφ ds

π
´ 1

0 (s/h3)[χ̄m
n (s)]2 ds

. (4.9)

All that remains is the axisymmetric portion of the flow, given simply by

χax(s) = 1
2π

˛
χinit(s, φ) dφ. (4.10)

This analysis allows the solution of an illustrative initial value problem, similar to that of §3,
by using (4.9) to express the initial condition as a linear sum of modes and solving for the
streamfunction at a later time by evaluating the sums in (4.7) truncated at finite m and n.

(a) Choice of initial condition
If the simple Cartesian cartoon discussed in §3 is to be believed, the choice of initial condition,
and therefore distribution of energy in k⊥-space (or, equivalently, between modes), will have a
profound effect on the direction of net energy propagation. In fact, those modes for which the
frequency �m

n in (4.6) is a decreasing function of m will be associated with westward propagation
of energy; in the Cartesian case, cg,x is negative for ∂�/∂kx < 0, and analogously retrograde group
velocity is seen in the sphere for ∂�m

n /∂m < 0, i.e.

m >
√

6n(1 + 2n). (4.11)

For a westward drift to be observed in this model problem, the harmonic content of the
initial condition must be biased towards modes which satisfy this inequality. For definiteness,
discussion is restricted to the form of initial condition

χinit(s, φ) = h3s exp

{
−1

2

(
(s − s0)2


2
s

+ s2
0φ

2


2
φ

)}
. (4.12)

This is essentially a columnar Gaussian vortex, as for the model problem of §3, with the pre-
multiplying factor h3s ensuring the boundary conditions are satisfied from the outset. It is broadly
unimportant exactly what form the initial condition takes, however— it is the general distribution
of energy between modes which will dictate the solution’s character.

There are three controlling lengths in the initial condition (4.12); the radial and azimuthal
extents of the vortex 
s and 
φ , and the radial location of the vortex centre s0. In search of a
westward bias to energy propagation, the parameters 
s = 0.1, 
φ = 0.01 and s0 = 0.7 are selected,
giving a slender radially-extended structure near the middle of the outer core region 0.35 < s < 1
(though there is no inner core boundary in this calculation). The solution is expressed as a finite
sum of modes (i.e. a truncated version of (4.7)) by evaluating the integrals (4.9) for the coefficients
Cm

n numerically. Owing to the narrowness of the initial condition, more modes of high azimuthal
wavenumber are required; the ranges m ≤ 200 and n ≤ 50 are used.

(b) Westward bias to energy propagation in a sphere
Figure 4 shows the solution to the initial value problem evaluated at Ωt = 2 × 104 (t = 8.7 yr).
Streamlines in the equatorial plane are produced by plotting contours of χ , with the black
contours corresponding to the initial value (4.12). Although this solution is many times more
complicated than the Cartesian problem of figure 3, there remains a striking preference for wave
propagation to the west of the initial disturbance. This is despite the fact that each individual
eigenmode has an eastward phase velocity; it is the superposition of modes which creates the
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Figure 4. Contours ofχ (i.e. streamlines in the equatorial plane, viewed from the north) atΩ t = 2 × 104 for an initial value
problem starting from a radially-extended vortex (4.12) with 
s = 0.1, 
φ = 0.01 and s0 = 0.7. Solid black contours are at
quartiles of the initial condition, and the dashed black line shows the would-be location of the solid inner core. (Online version
in colour.)

visible westward bias. Wave motion appears to be confined to a circular band near the initial
radial location s0, with little activity very close to the outer boundary or near the rotation axis.
The dashed line is at s = 0.35, where the inner core would be if it were included in the model;
thankfully, the vast majority of activity occurs outside of this region.

The preference for westward propagation may be understood in exactly the same way as the
Cartesian problem of §3, but with the small slope assumption now relaxed. The majority of the
energy from the radially-extended initial condition is contained in modes with large azimuthal
wavenumbers, which conspire to produce a westward group velocity despite individually having
eastward phase velocities. To demonstrate that the former prevails, consider the distribution of
energy in the sphere as a function of longitude and time. Namely, the meridionally averaged
specific kinetic energy,〈

1
2

u2
〉

(φ, t) =
ˆ 1

0

(ˆ h

−h

1
2

u2 dz

)
s ds =

ˆ 1

0

s
h

[
(∇χ )2 + 1

3
(∇χ × ∇h)2

]
ds, (4.13)

is evaluated as a function of φ at a few choice times (figure 5). The energy, initially localized
around φ = 0, is almost all at negative φ when Ωt = 2 × 103, and is still sharply peaked as
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1
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Figure 5. Specific kinetic energy, averaged over meridional slices, as a function of longitude φ for the initial condition and
two later timesΩ t = 2 × 103 andΩ t = 2 × 104. Plots are normalized to have the same maxima, though in actuality they
contain equal areas. (Online version in colour.)

the waves have had little time to disperse. Come Ωt = 2 × 104, which corresponds to figure 4,
the energy is much more dispersed but retains its westward bias; of course, reflections and
circumnavigations mean a little energy does end up to the east of the initial disturbance.

5. Discussion
The model problems above successfully demonstrate the possibility for westward transport of
energy by hydrodynamic QG Rossby waves, but are intended as a proof-of-concept rather than
an accurate representation of core dynamics. Clearly, the flow in the Earth’s outer core is not
the solution to an initial value problem, but rather the result of continual convective stirring; the
interplay between buoyancy and velocity fields will introduce complexity beyond the scope of
this study [24]. However, the present theory demonstrates that westward propagation requires
only the prevalence of radial plumes, which are likely to be robustly generated by the buoyant
upwellings associated with strongly forced convection.

Indeed, discussions of vigorously forced convection are intrinsically linked to the relevant
smallest length scale in the core of the Earth, which is itself pertinent to dynamo action [38].
The thickness of the radial plumes will have a strong bearing on the propagation speed of
their associated wave packets, as the magnitude of the group velocity (2.19) is proportional to
the square of the wavelength, meaning narrower structures propagate much slower. The most
strongly forced simulations to date (e.g. [34]) show structures more slender than those considered
in the model problem of figure 4, and it is not unreasonable to suspect that the true length scale is
even smaller. In fact, it is possible to infer this length scale under the assumption that QG Rossby
waves are responsible for the westward drift. From the expression for group velocity (2.19), the
speed of a wavepacket at a certain cylindrical radius s is given by

|cg| ≈ 2Ω

hk2
⊥

∣∣∣∣dh
ds

∣∣∣∣= 2Ωs
(hk⊥)2 . (5.1)

For an azimuthally propagating wavepacket, the angular velocity about the rotation axis is |cg|/s;
equating this to the observed drift rate of the magnetic field D gives an expression for the
dominant wavelength of the packet,

λ ≈ 2πh

√
D

2Ω
. (5.2)
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Using a drift rate of 0.27◦ per year [5] and a radial location of the wavepacket s ∼ 2000 km gives
the estimate λ ∼ 18 km, a conceivable value for the prevalent scales in the Earth’s core, but one
which should be treated with caution. Firstly, it is within touching distance of the Rhines length√Uh/Ω (approx. 6 km for U ∼ 1 mm s−1), at which the advection term in (2.2) becomes significant
and mean flows may arise. Secondly, the aspect ratios of such structures would be improbably
large for their coherence to be maintained over secular time scales. It seems more reasonable that
in truth λ is greater, with additional factors—interactions with the buoyancy and magnetic fields,
large values of boundary slope or departures from quasi-geostrophy—acting to slow the wave
groups down. Unfortunately, the machinery required to investigate these nonlinear phenomena
lies beyond our present scope.

Nevertheless, it seems remiss that so far no consideration has been given to the magnetic field,
despite the fact that the observed westward drift of its large-scale features is the motivation for
this study. It is therefore necessary to ask what could link hydrodynamic QG Rossby waves
to the apparent motion of the spherical radial magnetic field Br at the core–mantle boundary.
Since the drift is observed to be mainly in the equatorial regions [8], motion of the cylindrical
radial field Bs, which will be approximately equal to Br at low latitudes, is discussed instead.
To a first approximation, magnetic field lines may be thought of as material curves, pinned
into the fluid at all points [29,39], so there are essentially two ways of modifying the radial
magnetic field: advection and stretching of an existing Bs by a mean flow, or rotation of the
other components (Bφ , Bz) by transverse gradients in radial velocity (∂φus, ∂zus respectively); both
mechanisms are discussed in the context of westward drift by Finlay [40] and Aubert et al. [41].
Westward-propagating QG Rossby waves, which necessarily consist of radially-extended sheet-
like structures, have small azimuthal velocities so are unlikely to advect Bs strongly enough to
account for the westward drift. The radial velocity is much greater, but has small derivatives in
s and z so stretching of an existing Bs or shearing of Bz are both unlikely mechanisms. The best
candidate for generation of Bs is therefore shearing of Bφ by azimuthal gradients in us, which
are large for the slender radial jets. Furthermore, the azimuthal magnetic field is likely to be
relatively strong within the core [42], and largest at mid- to low latitudes—which could explain
the equatorial bias to the observed drift, since a low-latitude Bφ swept out by a QG radial jet
would produce a radial field anomaly at the core–mantle boundary in the vicinity of the Equator.

At first glance, this argument appears to suffer from the deficiency that the manipulation of
Bs occurs on the small scale of the wavelength λ, whereas the observed drift occurs in magnetic
field features hundreds of kilometres across. However, the observations themselves are hampered
by a lack of spatial resolution, so small-scale features simply are not visible, even though they
may in fact contain a significant portion of the energy [4]. The observations instead feature large,
westward-moving patches [8] which one might compare to wave groups, with the small-scale
details (wave crests and troughs) within each patch unavailable. It is therefore to be expected
that, if the present theory were to explain the observations, large magnetic field features would
appear to be advected at the group (rather than phase) velocity of QG Rossby wave packets.

The feedback of the magnetic field on the dynamics through the action of the Lorentz force
has been ignored in this study. Indeed, for highly simplified field configurations it has been
shown that its inclusion introduces additional oscillations known as slow magnetic Rossby waves
which themselves have been suggested as a possible source of magnetic field drift since their
phase velocity is always westward [15–18]. However, these slow solutions coexist with others
known as fast magnetic Rossby waves, which are little more than a weakly modified version of the
hydrodynamic solutions discussed at length above. The perturbation to the magnetic field does
not strongly influence the dynamics of these waves, and so they remain an equally viable source
of westward drift, with the magnetic field approximating a passive tracer at leading order.

Moreover, the fact that the dynamics of QG Rossby waves are independent of the magnetic
field configuration and magnitude is a strength of the present theory. Slow magnetic Rossby
modes have to date only been demonstrated for simple choices of background field [21,27],
and it is therefore unclear whether such solutions are meaningful in a geophysical context.
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Conversely, the fast (i.e. hydrodynamic) solutions are likely to persist regardless of the magnetic
field structure, meaning they are an almost unavoidable feature of QG flows in the Earth’s outer
core. This robustness tallies with the observation of westward drift as a systematic component of
the geomagnetic secular variation, and the fact that the waves operate on a scale much smaller
than the observed field features may explain the broad scale-independence of the observed drift
rate. These advantages, along with those discussed above, lend credibility to the theory presented
here—that hydrodynamic QG Rossby waves with radially-extended structures may underpin the
westward drift present in geomagnetic secular variation records.
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