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What is this course about 7

Wave propagation in a weakly disordered medium.
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x | Electronic waves
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* Optical waves — ERIC AKKERMANS
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e Systems 7 weakly disordered metals

e low dimension : wire, networks of wires,...
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e Quantities 7 Transport properties :  (G), (6G?), ..
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Outline :

1/ Introduction
* Length scales & basic phenomena

* Linear response & perturbation theory

2/ Perturbation theory for transport
* Classical transport & current conservation
* Weak localization

* Simple examples : plane, wire, ring,...

3/ Networks
* Nonlocality of quantum transport

* Large regular networks

4/ Electron-electron interaction

* Altshuler-Aronov correction

5/ Phase coherence
* Dephasing (B field, spin-orbit)

+ Decoherence due to e-e interaction

6/ Fluctuations
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1. INTRODUCTION

LENGTH SCALES

e Fermi wavelength \p = 27/kp

e | Disorder

— elastic mean free path :

H )«

X

le

ge = VUfpTe

X

» Ballistic / Diffusive

L </,




Phase coherence length|: | L,

Interaction with other degrees of freedom :
— Electron-electron interaction : L_,
— Electron-phonon interaction : Le_py

— Interaction with magnetic impurities : Ly,

» Ballistic : L, < £,

x

» Diffusive : |{. < L,




Diffusive regime : k;l </l <KL, L,

e~ experiences many elastic collisions before losing its phase memory

Interference phenomena occur over lengths > /7,




DIMENSIONALITY

Coherent diffusion (r ~ v/ Dt) is limited by L and/or L,

. 2 . 1 2
Thouless time : |7p = L*/D with | D = Zvpl, = o
0) Te t
I I >
ballistic diffusive ergodic
. g
L L L

» Effective dimensionality :

7

3D :

1D : W




Examples of order of magnitude in quasi 1d wires :

Metal® | Semiconductor®)
(Au) (GaAs/GaAlAs)
3d 2d
Fermi wave length : /{:];1 0.085 nm 6 nm
Elastic mean free path : 7, 30 nm 220 nm
Diffusion constant : D 0.013m?/s|  0.030 m?/s
kpl, 360 37
spin-orbit : L, 50 nm 00
c-e scattering : Lee (at 50 mK) |~ 8 ym ~ 2 pm

— electron-phonon scattering is negligible below 1 K

(@) metallic networks : Schopfer, Béuerle, Saminadayar, Mailly.
() semiconducting networks : Ferrier, Guéron, Bouchiat, Mailly.
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CONDUCTANCE OF WEAKLY DISORDERED METALS

Landauer :

V
(l/{bj Proba(ﬁ — B)
_ 7 2
G = —~ Ac(A — B)
R "C § % ; ¢
— - S Y e

C CAC!

amplitude A ~ e#F1C) has a large random phase

Average conductance :

<G> = GDprude + <AG>

classical ~ quantum correction

Does not survive disorder averaging

10



Classical transport :|| C =’

section 9
G =0 ~ E A
Drude Olength < - ‘ C| >
v
Dimensionless conductance j
S
W

2
GDrude . h Ne€ Te S

gDrude:W_? —

/e~ K

kFTe kff?lS
L

le
— 9Drude ™~ ch > 1

gDrude ™~

Exercice : a coherent gold wire

S = 50 nm x50 nm
L = L,(25mK) ~ 10pm
= NC = 27500 JDrude =2 110

11



Quantum interferences :|| C # C’

Crossing

Phase eFrlC)~IC] g gmall = survives disorder averaging
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Quantum correction to the probability : some properties

2
P(?“ ?“ < | ZC AC ’r’ — 7“) > = Pclass(ra Tl>+Pquant (Ta Tl)

e Crossing = A small correction

Pquant(ra Tl) ===

e Increase of backscattering

‘ ‘ = P(r,r) =2 Paas(r,r)

(fully coherent)

— WL for the wire : (AG) < 0

e COHERENT contribution

— Only loops smaller than L, contributes

Experimental probe of phase coherence

e Magnetic field sensitivity

Died /h

Loop carries a phase € where ¢ is the flux.
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Weak localization : heuristic point of view

We will show that

2 T
(Ac) ~ — Z ~ —% Tt P(r,r;t)

loops for t<r, I Te

P(r,r;t) : return probability

e2

Conductance : G=5g=o0

195!

=

L

S T
(Ag) ~ —ZD/ dt P(r,r;t)

Exercice : For an effective dimension d : P(r,7;t) o< 1/ (4w Dt)4/?

(Ag) ~ —Z(Lgp — /) for d =1
~ —% In(Ly,/¢) for d = 2

S [1 1
N_E(Z_L_@) ford =3
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Probing weak localization with magnetic field

* |Magnetoconductance of a plane

X

B field destroys contributions for Dt = L* > ¢y /B.

cutoff at t ~ 73 = ¢g/(D|B|)
l /1, — 1)1, +1/75

1 e|B]
L.(B)? L2 O

WL correction is

(Ag) ~ ~In(Ly(B)/L) ~n B

Positive magnetoconductance

15



PHYSICAL REVIEW B VOLUME 28, NUMBER 2 15 JULY 1983

Consistent temperature and field dependence in weak localization

Gerd Bergmann
Institut fiir Festkorperforschung der Kernforschungsanlage Jiilich, Postfuch 1913, D-5170 Jiilich, West Germany
(Received 25 February 1983)
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FIG. 2. (a) Magnetoresistance (i.e., [ L{H)—L(0)]/L vsing the right scale) of a Mg film (d=8.4 nm} as a function of the field
The units of the field are shown beside each magnetoresistance curve. The points represent the experimental results. The solid cur
are calculated wsing the characteristic fields H,(T) plotted in Fig. 5 and H,,=0.0046 T.
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* | Magnetoconductance of a wire

L ==
:‘EIID@!}IW

B field destroys contributions for W/ Dt = WL 2 ¢o/B.

cutoff at t ~ 75 = %(%)2

l

L1, (B ’
L,B2 2" '\ &
WL correction is
LSO(B) 1

A A
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VOLUME 34, NUMBER 14 PHYSICAL REVIEW LETTERS 8 APRIL 1985

Weakly Localized Behavior in Quasi-One-Dimensional Li Films

J. C. Licini,'*) G. J. Dolan, and D. J. Bishop
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
{Received 3 January 1985)

The low-lemperature magnetoresistance of quench-condensed Li films of varying widths is stud-
ied in order to observe the one-dimensional localization effects first predicted by Thouless. The lo-
calization effects are dominant and clearly differentiated from other contributions to the resistivity.
The roles of the various scattering mechanisms controlling the localizalion contribution are deter-
mined.
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FIG. 1. Magnetoresistance data for L; films varying in
width, ¥, down to 0.03 £0.01 xm.
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In networks : Magnetoconductance oscillations

e Aharonov-Bohm (AB) oscillations

AC.Az/ X eie /fl

= G(¢) : h/e AB oscillations

e Al'tshuler-Aronov-Spivak (AAS) oscillations

(AG(¢)) : h/2e AAS oscillations

19



e |[How to realize disorder averaging 7

— Large networks : size > L,

L/2
a Q Q Q Q Q b
L/2
-0
100(} P ,
s
N = 100C
’ 4

N=1000

20



AAS oscillations & penetration of B in the wires

2@/,

o

AAS oscillations Barg =
2 X area

penetration of B field B, =

21



SUMMARY

<g> = rwr’ +r **\>—f*‘/:~»f?-— r’—+---
Classical U/
Crossing :

Quantum correction (WL) : (Ag)

e Coherent wire (L ~ L) : g~ Nc% > 1

(Ag) ~ 1 and (Ag) <0

e Positive magnetoconductance

Ag(B)

B
0.0 T T
. C :B C - Byas
e AAS oscillations c
@ -0.5 -
3 \ ”
\ ﬂ i
-1.0 \ /
\
-15 —iO —‘5 0 é lb 15
2¢/@,
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LINEAR RESPONSE & KUBO

e | Linear response theory

H=Hy—Af(t)

How observable B responds to the force coupled to A7

(Bl = / At ypalt — ) f(F)

with

Xpat) =10(t) (B(t), A])g

e | Conductivity (Kubo)|: Response to an external electric field

Ja(r) = [ dr' oas(r, ") E5(r')

oap(r, r') is a current-current correlation function ~ ([j(¢), j])

Atw=0and T =0 :

e2

ooy(F, 7)) = AG(7, 7' Er) VoV, AG(, 7 Ep)

4tm?

—

Current operator : V=

(V- V)

DN —

AG(Erp) = GR}(Er) — GMNEp) = —2ir §(Ep — H)

= Fermi surface property.

23



For our purpose :

62

GR(7 ') VaVh G, 7)

Oag(FT") = 2mm?
(&

Transport <  GR(r,r") GAr',r)

24



PERTURBATION THEORY FOR RANDOM POTENTIALS

Weak disorder = Only (V(7)V (7)) is needed

e Gaussian disorder + local correlations

(V(r)) =0
(VFV(I) = wd(i — i) =

e | Expansion of the Green function| G =

G =Go+ GoVGo+ Gl VG VGo+ -

example : the 4st-order correction §*G = G VGV GV GV G,

SMG(r,r") = N

r r

25




e | Expansion of the conductivity

Four point Green function : o ~ GF G4

r

SGT(r, ") °GA(r' r) = .

disorder average U

A possible contribution to (G (r, ") GA(r', 7)) :

o |Self energy|: A series of diagrams for the price of 1 diagram

1

<G>:m

= Go+ GGy + GGGy + -+ - = G+ GoX <G>

X

example : 1f 5% =/

26



Average Green function

e [ree Green function

1 ik pl[r=i|]
GY (7, 7 = (7 — |7 ~
) =l )~ T
e Average Green function
— =—ImX"(Fp)=—Im ~ . =—1Im [w Gy (0, O)]
27, —
1
— = 2TpywW
elastic mean free path :
ge — UpTe

(7, ) = Gy () e It

Short range object

27



2. PERTURBATION THEORY FOR TRANSPORT

Our purpose :

Compute the average nonlocal conductivity (o;;(r, "))

—  (GR(r,7") G ', 7))

Nonlocal / local :

e Nonlocal conductivity (o;;(r, ')
— required to study networks

— discussion of current conservation

e If distribution of current is uniform (wire, plane,...)

drdr’

/ . .
S o(r,7') is sufficient

— local conductivity o =

28




What diagrams 7

<GR(T’, ”]"/) GA<7"/7 T>> — r*/?ﬁi?@éwg,—”r’ —|—r _—

Strategy : use scale separation

Cooperon| (reversed paths) : long range

Crossing| : short range

Diffuson | : long range

29



DIFFUSON : LADDER

> Diffuson Py(r,r’) =1 emee——<—~—<—1'

=l
%

ol

K
I

— wé(f’—f’/)—l—w/df’” ?R(T

— =/

, T

)@A(T—g/l’ ?;2 Fd(F”a ,r—,»/)

57— AN L7 DA+ -]

1
w

CUZT) = wd(F —7') + Dy #7) + 7.D ATy(F, 7') + - - -

w

Ll ) = 75

This is the diffusion approximation

Pd<777 77,)

—AP(F, ) = 6(7F — )

30



The diffusion approximation :

physics on length scales > ¢, > k!

31




COOPERON : MAXIMALLY CROSSED

(reversed paths)

> Cooperon P.(r,r’) =T e=—=r—s—xs—-r

R R
— =/ e .e s
FC(T7 r ) = x * + + =
® .._> _. X .._>_;. _>‘:‘. .X{."’) o
A A A
. —<—e —<——<— W

i i i i i i s
= x tx x tx x x -t =2 T

S S S SO SO ZZ

— Magnetic field sensitive

— Loops longer than L, do not contribute

32



Summary : Building blocks

Long range objects :

Diffuson : 5=FPy(r,r') =T g 5

/
Cooperon : —F(r, ") = T2 ~ e Ir=l/Ly

Short range objects (Hikami boxes) :

(see appendix)

?@? =(F— i1+ 7. DA+ ]
>
T m P = —i¥2epyf2 §(7 — ') V,
S>>
r
?1 : = —217Tp07'62 5(771 — 772) (5(771 — 773)
r

3

33



NONLOCAL CONDUCTIVITY

Drude contribution|: G G

<Oij (777 77/>>Drude -

.....

: —R —,=A k%2 —<R-—=A
Exercice : use V,G' Vi G ~6;; £ G G

(04 (7, 7)) Drude = 009 X 0 0(F — 1)

is short range

34



Diffuson contribution (INCOHERENT)

ﬁg\m
x\\

<Uij (779 77/)>diffuson =

diffuson : long range

Hikami box : short range

We combine the box

w
B Pyr.r
a(r, 1) Dr. a(r, 1)
2T 5 94 W 2T 5 99 1 2 U%Po neeT,
2.2 T2 2y _ —
2D T g P e T T g m
(04;(7, ")) difiuson = —00 ViV Py(7, 7")

is long range

35



Classical conductivity & Current conservation

—/ —/

<0ij (Fa F/)>classical — <Uij (777 r >>Drude + <0ij (Fa r )>diffuson

» Current conservation : |V;o,;(7, ") =0

Classical = Drude + Diffuson

| |
<Uij (777 77/)>classical = 0y [513 5(77_ 77/) - vzv]/PdO?a 77,)]

l l

short range long range

N /

Vy;a,;j(ﬁ 77,) = O

36



Cooperon contribution (COHERENT)

<O—ij(777 7:)/)>(:oopelron — .

We combine the box

5
R,

— —

ilwv//iwj = —00 2720, 6(F — ') §(7 — Ry) 6(F — Ry)

-

R,
and the cooperon I'e(r, ') = 5= P(r, 1)
o2
<Uij(777 Fl)>coopcron = — 5@‘ 5(77— 77/) PC(F, 77)
s

is short range

37



> Divergencies in long range diagrams :

Long range diagrams :

Hikami box :
// // // //Nvl Vs + _%Zleﬁg

Divergency|: Vy - V4Pu(F, 74)|ry=r, ~ 0(0)

Agvvil.re - _% + %L(S(O)

(5(6) — 1/€g

— Volumic divergency Vol /¢¢

Problem with current conservation

38



The procedure of KSL

Kane, Serota & Lee, PRB (1988).

() = (j;(r) - - ) a correlation function

0 =% |

long range

current conservation (V;5;(r) = 0) = V,;Q;(7) = 0

where

L L 1 L
Cbij(T, Tl) — - vivjp(l<rv Tl) - _<O-z'j(r7 r/>>classical

o

39



e |Current conserving weak localization :

— use current conservation (Kane, Serota & Lee, (1988) for (65?%)).

current

v

short rang
diagrams

long range
diagrams

conservation

where ¢;(, 7') = 0y 0(7 — ') — Vi Vi Py(r, )

equivalent to replace H by H ~ 2V, - 63

— current conservation is satisfied : V;(Aogy;(7, 7)) =0

40



Set of diagrams satisfying current conservation

— Other approach :

generate the correct set of diagrams satisfying current conservation

(For UCF : Hershfield, Ann. Phys. (1989))

For WL : Hastings, Stone & Baranger, PRB (1994).




LLOCAL CONDUCTIVITY

§ J(r) , g translation invariance :
—>

]<T) :j - secfion

S N and E(r) =& =¥

=T

0 L

Nonlocal conductivity : j(r) = [ dr'o(r,7") E(r')

|

drdr’
local conductivity : j = o€ with o = / il

Vol

o(r,r")

Conductance : G = gsectTlon

Long range diagrams do not contribute to the local conductivity :

e (Classical transport :

(o) drdr” m o
classical — ) — 0o
1 Vol S

e Weak localization correction :




Why it is simpler to consider (o) instead of (o (r, 1)) 7

Spectrum of the diffusion equation : F,, ¥, (r)
—D (V = 2ieA) %, (r) = Ep(r)

1 1
E/drpcmr) - /drml/m—D(V—Q@A)Q‘T>

1 © 5
- 21/T¢+En_/o e t/wzn:e .

n

e? 1 e?D [
Aog) = — rd—- L =7 P(t) et/
(Aa) mVol r{l/l)a — A} T Jo dtP(t)e

where .
_ = —FEnt
PO =% zn: ¢

We only need the eigenvalues F),

What is P(t) 7

In a time representation

0 : p oy /
[E — D (V = 2ieA)?| Pr,r';t) =6(r — 1) (¢)

d
P(t) = / V—TIPC(T, ;1) : return “probability” averaged over space
0

43



THE INFINITE WIRE

P(t) =
Q VAam Dt
WL correction is
€2D 00 e—t/np
Aog) = ——— dt =
\Aa) ™ Jo VA Dt
L
Ag) = — =%
(Ag) 7

44



THE FINITE WIRE

1 -
P(t) — ZZG Ent

Wire connected to reservoirs = Dirichlet boundaries

nm

m:D<
i

)2 . neN*

oD [* > 2 - 1
(Ag) = —"= [ dte /ey e P = _
7 ey B T TR

L L L
Ag) = —=2 [ coth — — =2
(Ag) = —~ <a> I L)

Al'tshuler, Aronov & Zyuzin, 1984.

x Long wire (L > L)

* Short wire (L < L) = | (Ag) ~ —

1
3

) v/ W s
ol

Lo
Universal result : Mello & Stone, 1991.
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EFFECT OF A MAGNETIC FIELD

perturbatively in A = @, A, (y)

Al'tshuler & Aronov, 1981.

* quasi 1d and diffusive limit : L > W > /..
* weak magnetic field : W < /h/eB

choose the gauge | A, (W —y) = —A,(y) : Zid y
3/00// | =
— 1 -
(7] =—————|7")
v —(V —2ieA)?
= (Pl ) — 4P )
v—A y-A y-A
1 1 / (68W)21 1 /
= whrhal g Tl
= 1(96\ : | 2")
- Wy (eBW)/3 — 2
1 1 1(63W)2
L? L2 3\ h

46



BEffective phase coherence length :
L 1 1feBW ’
L,(B)? N La 3 h
L,(B)
Age. — 2%
Huire L T LU
B
o [f|W </,

(wires etched at GaAl/GaAlAs interface)

— Flux cancellation :

Z

1 L . eBW 2 w
12 12 hi ‘.

¥ ¥

Dugaev & Khmel'nitskii, Sov. Phys. JETP (1984)
Beenakker & van Houten, PRB (1988)

47



THE PLANE

Solution of the diffusion equation is :

1

Pt) = A Dt

— introduce a cutoff at short time

WL correction is

2D [ e—t/Tsp e?

Ao) = ——— dt ~———] .
\Aa) T Jn 47 Dt 472 {7/ 7e)
o2
(Ao) ~ —%ln(l«p/ée)

48



MAGNETOCONDUCTANCE OF THE PLANE

Spectrum of
—D (V T 2i€A) 2%(7“) - Enwn(r>

is the Landau spectrum

b =D
eB — 2eB3

. eBB 1 Laplace
27 sinh(2eBDt)

Digamma function v

P(t)

(B0(8) — (@010} = 1555 [ (5+ saz) " (55

Low field :

High field :

e? 87TBL?0
(Ao (B)) — (Ac(0)) =~ 47727iln < o >

— Experiments : Bergmann, Phys. Rep. (1984).
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ISOLATED RING : AAS OSCILLATIONS

Al'tshuler, Aronov & Spivak, Sov. Phys. JETP (1981)

0 = 4mg/do @ L

e—(m—x/)2/4t '
Pz, 2 t) = Z Pz +nL,z';t) e™
R virnt s

. -v .
infinite wire

0

P(t) = e—(nL)2/4Dt ein@
() VAr Dt n;@@
Then ) LT
(Bo(®)) = - 1, —EL)

h 7 cosh(L/L,) — cosf

The harmonic (Ao,) = 0% % (Ac(0)) e~ involves

trajectories that wind n times around the flux

2 00 —(nL)?/4Dt 9
<A0-n> = _Q dt ¢ e_t/Tw — & Lgo e—|n|L/L¢
™ Jo Var Dt h

20



THE CYLINDER

Al'tshuler, Aronov & Spivak, Sov. Phys. JETP (1981)

N
__
2D [ e—(nL)?/4Dt o o2
<A0-n> = —T ; dt 11Dt e t/ Y = —ﬁ 50(77,5/[/%02

modified Bessel

Finally

2

(Ag) = —% <1n(L¢/€€) +2) Ko(nL/Ly) cos 477n¢/¢0>

n=1

o1



Observation of the Aaronov-Bohm effect in holiow
metal cylinders

B. L. Al'tshuler, A. G. Aronov, B. Z. Spivak, D. Yu. Sharvin, angd
Yu. V. Sharvin

B. P. Konstantinov Institute of Nuclear Physics, Academy of Sciences of the USSR ang
Institute of Solid State Physics, Academy of Sciences of the USSR and Instityse of
Problems, Academy of Sciences of the USSR

{Submitted 22 April 1982)
Pis’'ma Zh. Eksp. Teor. Fiz. 35, No. 11, 476-478 {5 June 1982}

Phpsicq)

The oscillatory dependence of the resistance on the magnitude of the Magnetic
flux in the cross section of a specimen with period Ac/2e and negative
longitudinal magnetoresistance are observed in cylindricall[ithium films) at
helium temperatures. The phase of the oscillations and the sign of the
magnetoresistance are opposite to those observed for magnesium,* which g
attributed to the smallness of the spin-orbital interaction in lithium, The resulty

agree well with the theoretical predictions.
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LANDAUER APPROACH

Diffusive wire :

Transverse mode decomposition

1 d?

- %d—yQXn (y) = €nXn (y)

Write conductance as

I €
Gy =5 2T

n,m

T Transmission probability from channel m to channel n

Relation between T;,,, and Green functions :

G®(r,r'": Ep) ~ proba. amplitude to go from r’ to r with an energy

Er.

4

Tom ~ |GR(L,0; Ep)|?

23



More precisely :
G = /dydy (L, y;0,9) ZTnm
Transverse mode decomposition

GR (L.0) = / dydy ' (y) CX(L, 30, 9') xoulo/)

Transmission probability from channel m to channel n :

T = Vg G (L, 0: Ep) G2 (0, L; Ey)

o4



e | Drude conductance

Long range term = diffuson

P
1 d
Tr(;m — <Tnm>diffuson — L’n__m_ _'__§R: 0,m
A B A

1
Oszcfe

cd
Tnm T

Pd (L — UnTe, vae)

e | WL correction

A 2 1t d d
Tnm - W E_g . dx @Pd([j — UnTe, CU) R’:(Jja lE) @Pd@ja UmTe)

This is not a uniform integration of P,
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Boundary conditions

— Diffuson must be evaluated near the boundary

— Careful treatment of boundary conditions

For the finite wire :

Py(z,2") = min (z + xg, 2" + 24) —

~|e

26

<$ + xd) (CE/ + xd)
L+ 2x4

with xg = Ozdfe/Q
(n =2, g = /2 and a3 = 4/3)



THE WIRE

(Ag) = 2 ATum =7 /O dr (—%) P, z) (%)

2 T{ 1 } - 1
= —— 17T - —_
27 /12 - A L2 4= 1/L2 + (nw /L)’

Al'tshuler, Aronov & Zyuzin, 1984.

— We have recovered the result obtained from the local conductivity
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3. NETWORKS

H Landauer-Buttiker : Conductance matrix

a OVD ; IQ—%:GWUﬁ

62

P Gaﬁ:_ﬁ op  fora#

Fisher & Lee formula : T,5 ~ G®«, 8; Er) G*(8, «; ER)

<Ta5> = Tadﬁ + ATag
/ N\

classical  quantum correction

CLASSICAL TRANSPORT

cl Pd
Taﬁ:GWB NPd<047ﬁ)

— Network of classical resistances

58



WEAK LOCALIZATION CORRECTION

ATys =
d
= a(, 5)
da
o7T¢ 1)}
ATa _ e!
’ Z Ol
ford=1, 2, 3 :
N, : number of conducting channels ag=2,7/2,4/3

C. T. & G. Montambaux, PRL 92 (2004)

This is not a uniform integration of P,

Weights depend on topology and connection
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EQUIVALENT LENGTH

Wire :
o (L
(Ag) = I dz P.(z,x)

Networks :

Classsical conductance involves the equivalent length £

L Oéchge
gcl = [,

2 oL
<Ag> B _E i a_lz /wirodix PC(x’ x)

Exercice :
— C
=)=
d
2
(Ag) = —

(lo + lc||d + 1p)?

ot [ [ foeres
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AN HEURISTIC ARGUMENT :

used by Santhanam (1991) for \z@z'

Ty = Ra(Ryws )

Resistance of the wire (uv) : Ry, = Rf}u + AR,
* Drude : RZIV =1,,/(20.) (d=1)

AR 14 62 X
* Weak loc. 1 — % = & | () L pir ).

R/C}V el L
AR = ——AR,, = — dx P.(x,x
oy Ot ' mmija%fww )

1/6, (ind=1)

— This result is non trivial due to nonlocality
e starts from a classical formula for transport (no quantum inter-
ferences).

e A formula for the quantum resistance of the network as a function

of quantum resistances of the wires does not exist

o ATa’ﬂ’ 1S global
contributions of the wires cannot be computed separatively :

the Cooperon in a given wire depends on the whole network
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2 NONLOCALITIES

ATO&ﬁ — O ——

S . Py P
1], “Classical” nonlocality o «;@/V% B

— similar origin as in

1
1
log ===
2] “Quantum’” nonlocality
— Nonlocality of P.(z,x)
Tc] _ Olchge
lo + 1y

AT = — :

(la+1,)?% )

62

a-+b

= P. integrated over a + b only

dx P.(z, )



How weak localization can increase a transmission ?

C. Wire with arms : l, ly

e one long arm

* Classical transport :

3-terminal network : conductance matrix — I, = > 3 GasVs

Ry Toz 1oy 2 a Db 3
62
G=%1| Ths Rss T c
Toy T34 Ry 4
o1
T3 = aaNelepg i = |a, >V
* Weak localization correction :
— In the fully coherent limit L, — oo
1 Lapje  Lauyse 1 (
ATy = - | =1+ - — -1+
e ( e Ly o> o, by 3
wire

63

la

Last
+ 1

l

arml

)



2PN N

*x With several arms :
., l, le
21 =3

N, long arms

For [, < lam < Ly

1 N,
AThe ~ - [ -1+ 2
23 3( + 4)

— for N, >4 = ATy >0

— Purely geometrical effect
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4 TERMINAL RESISTANCES

Uu,—U,
-~ Raﬁ,uy d T
e Weak localization correction
9 aRclB
ARop i = M/ dx P.(z, )
O‘chge (p0) 0 lpa (po)
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Proof of the relation

e Conductance matrix : I, = ) ;5 GapUp

current conservation = Y Gag =0

e Resistance matrix : Uy, = )5 Raplp

gauge invariance = 2,3 not unique

1
Z RCWGV)\ N Z GCWRV)\ )\ Nterm

e Four-terminal resistance :

Raﬁ,,uy —
= RMQ — Rug — R,o + R,/g

|

Raguw = f{Gpo})

e Weak localization correction
_ 2 .
(f(G)) = f({G))+O(1/N;) iAfzﬁfggl)AG
= f(G?+ AG) + O(1/N?)
AROK@/W - Zv,A(Rf}y o Rglv) AGV)\(R()B\IQ o Rg\lﬁ)

2 ORGs.
ARG = M/ dr P.(x, x
o Odecge % 0 lpa (po) ( )
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How weak localization can be large 7

WL correction to the four terminal resistance :

R1234 — N0

A 2
Ri2 B4 - / da Pc(x7 x)
(R12 34) [ wire b

— Long connecting wires o, l., l4, [y > L,

Ang 34 - L<p 5 COth(lb/Lgﬁ +4 — 3L<p/lb
Santhanam, 1987.

x Long wire [ > L, * Short wire [, < Ly,
A L A 1L,
7:\)/12 ,34 ~ % ng 342 ~ e >> 1
(R12 34) by (R12 34) 2 1y

Reminiscent of the large fluctuations of resistances measured by

Benoit et al PRL 58 (1987).
Skocpol et al PRL 58 (1987).
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VOLUME 58, NUMBER 22

PHYSICAL REVIEW LETTERS

1 JUNE 1987

Length-Independent Voltage Fluctuations in Small Devices

Conductance fluctuations in one-dimensional lines of length L shorter than the phase-coherence length
L, are not universal but diverge as L 2. Using the Onsager relations and voltage additivity, we show
that the voltage fluctuations are independent of the distance between voltage probes. The antisymmetric
(Hall-type) contribution to the voltage fluctuations is constant for all values of L. Measurements of the
voltage fluctuations and correlation function between different regions in Au and Sb lines confirm these

results.

A. Benoit,® C. P. Umbach, R. B. Laibowitz, and R. A. Webb
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598

(Received 25 August 1986)

‘;g ¥* & }
3 " L&
Y vy-’\f - ke
> 8 Py

Rt h g

B S R FoS o
* ;i%i. T T . SUNNCA
o
3

5% - {d/n}

P

19"

FIG. 20 {8} Measured ravs voltage Muctustions normalized
by A as a functiva of (070,05 The syovunetrds tonteibu-
tiony are reprosemied by solfd symbolsc The solid Hse
represents the oxpecied bebavior fur £ >4, The satisyme
yastric part of the voltage Huctuntions is ropresented by the
open sypthols and the dashed hine is the predicied sonsiant be-
havior, The symbols refer fo difforont samples and oepera-
tures: oircles, Shoat =40 mK and L2108 goy toverted tei
angles, 8h @ T =300 mK and L0060 gm) squarss, Au @t
T30 mK and L,20 pm. faset A photograph of the $b
sample. (b} Condustance Bustnativns in units of & Y¥honw fog-
arithimic seale for the data displaved in {8}, Dotied Rassare
weak-jocalization predivtivms for tweo dilferent boundary condt
fHons.
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VOLUME 58, NUMBER 22 PHYSICAL REVIEW LETTERS 1 JUNE 1987

Nonlocal Potential Measurements of Quantum Conductors

W. J. Skocpol, P. M. Mankiewich, R. E. Howard, L. D. Jackel, and D. M. Tennant
AT&T Bell Laboratories, Holmdel, New Jersey 07733

and

A. Douglas Stone

Department of Applied Physics, Yale University, New Haven, Connecticut 06520
(Received 14 October 1986)

Multiterminal measurements of magnetoresistance fluctuations in silicon inversion-layer nanostruc-
tures are extended to probe spacings L & L,, the phase-preserving diffusion length. Unlike for L > L,,
the sizes of the voltage fluctuations are independent of £, and have novel correlations consistent with in-
dependent potential fluctuations of each probe. The corresponding ““conductance” fluctuations §G (L)
are e %/h; however, this can be understood if each pair of probes effectively measures voltage fluctua-
tions at scale Z,, determined by the condition 8G(1,) =e?/h.

e g

Rﬂ

W Ray Mﬂ\q ol -
ot o5 o R\;;MMW

i, v g

1 2 1 2
(tesla) B (teslal
FIG. 1. Resistance measured between various pairs of
probes for the short device with 0.15 um probe spacing.
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FIG. 2. Amplitude of resistance fluctuations as a function of
probe spacing for the long and short devices, showing distinctly
different dependence.
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EFFECT OF THE ARMS ON THE AAS OSCILLATIONS

A consequence of the nonlocality of P,

e Small coherence length : | L, < {,, L

>0 1 (nL)?
(Agp) N/ dt —e @ et/ ~ e InlL/Le
0
Proba to wind n times

Winding around the loop : ny ~ t'/2/L

e Large coherence length : |L < L, < [,| = New behaviour.

(Agy) =~ — L\" | L o-Inl\/2L7L,
"\ | 2L,

C. T. & G. Montambaux, J. Phys. A 38 (2005).
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Origin of the behaviour for L < L, : slow winding

mapping to the diffusion in a comb :

la

trapping by the arms

L/Z\/\/_\/

- —O——O——O——O0——0O-

Trapping time distribution :

first return probability in 1d : Q(t) ~ 1/ $3/2

for a trapping time distribution Q(¢) ~ 1/t"+1 = n; ~ /2
O<pu<l

ngy ~ t1/4/\/z

Tail of winding distribution is :

m/f) 4/3

Pn(t) o< exp —3 <4t1/4

o8 /I 4/3
(Aga) ~ / i e GR) VTE
0 N

Proba to and n times

g
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WL in large regular networks

e large networks

AAS oscillations in honeycomb metallic lattices :
Pannetier et al, 1984.

arrays of rings, ladders, square lattice... XK
Bishop, Dolan & Licini 1985, 1986. 1L [ [ [

large square lattices
2DEG : Ferrier, Bouchiat et al (2003).
metal : Bauerle, Mallet, Saminadayar, Schopfer
(2004).

sHUE R

00
200t ™ DK m/
e NN

Interest of networks to |probe phase coherence

— good disorder averaging

— rich AAS harmonic content
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Comparison of AAS harmonics in rings and square network

For L, < L — periodic orbits analysis

Akkermans, Comtet, Desbois, Montambaux & C. T., Ann. Phys. (2000)

Harmonic 1 | Harmonic 2 | Harmonic 3

2000C

o—L/Ly % o—2L/Ly g o—3L/Ly

o—L/Ly % o—3L/2L, % o—2L/Lg

— harmonics decay faster in chain of rings
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VOLUME 56, NUMBER 14 PHYSICAL REVIEW LETTERS 7 APRIL 1986

Quantum Interference Effects in Lithium Ring Arrays

G. J. Dolan, J. C. Licini, and D. J. Bishop

AT&T Bell Laboratories, Murray Hili, New Jersey 07974
(Received 22 July 1985)

We report detailed measurements on the weak-localization corrections in well-defined and
-characterized arrays of quasi one-dimensional normal-metal rings. The Bohm-Aharonov oscilla-
tions are very well resolved. Measurements on sets of samples of varying ring size and geometry
determine the distinct effects of these parameters and allow an unambiguous, quantitaiive compar-
ison to the weak localization theory for ring geometries.

o4

03

AR/Ry(%)
O
M

Olr

200 0 200 200 600
H(Oe.}

FIG. 1. The magnetoresistance R (7,H) for T=0.13 K
for the wire control sample (top), three necklace arrays
(next three curves), and two meshes (bottom two curves).
The upper-right-hand sketches define the control, necklace,
and mesh geometry. The size, S, of the unit-cell side is indi-
cated next to each curve. Some of the curves have been dis-
placed vertically for clarity.
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VOLUME 53, NUMBER 7 PHYSICAL REVIEW LETTERS 13 Aucust 1984

Magnetic Flux Quantization in the Weak-Localization Regime
of a Nonsuperconducting Metal

B. Pannetier, J. Chaussy, R. Rammal, and P. Gandit
Cenire de Recherches sur les Trés Basses Temperatures, Centre National de la Recherche Scientifique,
F-38042 Grenoble-Cedex, France
(Received 7 May 1984)

The magnetic flux quantization effect, with period ¢o= hc/2e, is observed with high accu-
racy in the resistance of a Mg honeycomb network at temperatures 50 mK =7 =6 K. As
expected, the phase of the oscillations and the sign of the magnetoresistance are dominated
by the spin-orbit interaction. Qur resulls confirm, for a new geometry, the reality of the
Bohm-Aharonov effect for a nonsuperconducting metal in the weak-localization regime.

VOLUME 55, NUMBER 10 PHYSICAL REVIEW LETTERS 2 SEPTEMBER 1985

Quantum Oscillations in Normal-Metal Networks

B. Dougot and R. Rammal
Cenire de Recherches sur les Trés Basses Temperatures, Centre National de la Recherche Scientifique,
F-38042 Grenoble Cédex, France
(Received 8 April 1985)

A general formalism is outlined for the calculation of the transport coefficients of a normal-metal
network in the weak-localization regime. Simple circuits such as loops and ladders are used to illus-
trate our approach. A closed expression for the magnetoresistance of an infinite regular network is
derived. We find that, in contrast with superconducting networks, no fine siructure due to interfer-
ence effects between adjacent loops is expected. Our results agree very well with the recently ob-
served oscillations in normal-metal networks.

16 a1 ) T
R F
&1
3t
ZL
n - -
Q-
~15 10 -5 o} 5 H(Ce) 15

FI1G. 2. Quantitative comparison between the theoretical
results (triangles) and experimental data (solid line}, for Cu
at 7'=133 mK, taken from Rel. 2. The hexagonal elemen-
tary cells (side # = 1.5 wm) are made of wires of widih 0.42
um. In this fit, we have Lp=5.36 and L., =312 um,
respectively (L., is the spin-orbit length).
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Comparison between Square & 73 lattices

DIFFUSIVE TRAJECTORIES

Square network 75 network

4\/;/

| &//7@;
harmonic 1 %Z:i - Q <>/

- 7/\\\ TAY

4\/;/

/N
/

| Y/
harmonic 2 __ Q <>T\<>/

i i 7/\\\ TAY

;\//7 T\

harmonic 3 - ©/7<>T\<>/

- 7/\\\ TAY

Therefore : harmonic 3 is larger in 73

— Experiment : C. Bauerle, F. Mallet, L. Saminadayar & F. Schopfer
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Weak localization & spectral determinant

Pascaud & Montambaux, (1999).

— Improvement of the work of Dougot & Rammal, (1985).

0 Py (Y
o) =——— x P.(x,x
77\/01 Network

with (y=D3)P.(z,2") = §(x—2')
D, =4 — 2

_ /72
v=1/L;

1 s, s,
P —T — ~ Tr{ln(v—D?)} = —— Indet(v—D?
[ o o) = T{— 55} = STe{Ia(-D2)} = - ndet(3-D3)

Spectral determinant :

S(y) € det(y — D2)

e2 1 0
(Ao) = _?W%m S()

7



The spectral determinant for graphs

M. Pascaud & G. Montambaux, PRL 82 (1999)

Akkermans, Comtet, Desbois, Montambaux & C.T., Ann. Phys. 284
(2000)

inh /7,
st =2 g ? det M
(af3)

where

ﬁ e—i9a5
Mg =0as | Ao + V7 Aoy, cOth(y/ Yo — A f—
8 = 0a8 ( f%: ucoth(y/y u)) NI

(qp : connectivity matrix 3 4
anp = 1 if (af) is a wire 1 2 a= 1
_ a..=0
an3 = 0 otherwise 16 6 >

A, = 0 for an internal vertex

A, = 00 for a vertex connected to a reservoir.

78



x
<

Exercice : The connected wire

A1+ /7y coth /7L _smﬁ/%L
= Vi
~ sinh jﬁL Az + /7 coth /YL

Dirichlet = A = Ay = 00 = det M ~ A\ \y = cste

sinh /7L
Supel(y) = VTS
val
e?1 0 e L L
Aoy =————1 =——L th — — =2
\Bo) =T Tgy S0 =75 *0<CO L, L)
Exercice 2 : The isolated ring
S(y) = 2(cosh \/yL — cos §)
0 = 47T¢/¢0
2 .
(Ao — ey sinh L/ L,

h™ ¥cosh L/ L, — cos
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Chain of N, symmetric rings

L/2
a b cl ~o 4agNele
90000 ~
L/2
e Weak localization : AAS oscillations
2 1
Ag) = — /PC+—/ PC+/PC)
< g> (la+%L+lb>2 ( a 4 rings b
8 0
~ = —1 Srins
(N, L2y r )
2L inh(L/2L
_ _]QVLZIcoth(L/QL¢)— 2 Sinh(L/2L,)
d \/coshQ(L/QL@ — cos?(0/2)

Amplitude of AAS oscillations :

(Agaas) ~

Ly,

gcl

o 204ch€€

€
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Measurement of L, in large networks

Direct measurement of L, in large GaAs/GaAlAs square networks

One-parameter fit.

M. Ferrier, L. Angers, A. Rowe, S. Guéron & H. Bouchiat (2004).

Lo

100 i 3
Lattice spacing : }_ E
a=1pm

N= 100C
Number of channels :
N, ~ 10 5 4
N = 1000

— Probe :
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Analysis of large networks” Magnetoconductance

e Theory :
e2 1 0
AU(% Ly) = _?Wﬁ_yln S(v)

AAS only

B =0 : Envelope of MC curve

ez L a L, 2 a 1
Ac(0.L,)) = —— =2 | coth(—)——2+= tanh(—) K
o(0, L) B | (LSO) o 7 (Lgp)\ (Cosh(a/Lgp))J
Elliptic integral
dimensional crossover
o limit L, < a
o2
Ao ~ —ELw — 1d result
o limit a K Lgp
2 T
Ao =~ ——a [ln(éngp/a) + % — 2d result
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0,L,(B))>

<Ag(B

[
=
o

Envelope for L, 2 a

square network (envelope)

—

aln(L,/a)
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> |B # 0 : AAS oscillations

e small L, (periodic orbit) expansion :

> L

<A0‘> — —%Tw 2 _ % +e_2a/L<p _|_£e_4a/Ls0 I
1 3
+§ cos 0 e~/ Ly <1 —56_2"/L‘F’ + - )

3 19
2 cos20 e 6u/Ly (1 _ 22 g2a/Ly o ...
+8 COS ( o +

3 15
+§ cos 30 e84/ Ly (1 — — ey 4. )

o] |

e arbitrary L, : numerics
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> Penetration of B into the wires : | L, —— L‘fpﬁ(B)

(AAS

Ao (B, L) only)

— Ao(B, L (B))

Fourier transform U/ Ao (K) = /dB e B Ag(B)

AG (K) 2a? N 2a2
%o < %
Lk A
0 0
Area is function of only

e Fxperimental fit :

Step 1 :| Extract L, from ratio of AAS harmonics of Ao (13, L)

Step 2 :| Extract W from fit of the envelope Ac (0, L‘fpﬁ( )
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e Comparison Experiment-Theory :

— Meydi Ferrier’s thesis (2004); Ferrier et al PRL 93 (2004)
B(G)

-200 -100 0 100

AG(nS)

e Phase coherence length :

— Dominated by electron-electron interaction for 7' — 0

o sample A LAAK(T) X T_1/3
11 N ¥
sample B e
® sample C
= sample A (from envelope)
e sample C (from envelope) N
[ N
I I0.1 I I — I1
T(K)
T—O 36

— No saturation down to 25 mK
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4. ELECTRON-ELECTRON INTERACTION

Diffusive motion increases effect of interaction.

— Lifetime of quasiparticle ? Still Fermi liquid ?

— electron feels  « disordered (impurity) potential

* the potential created by other electrons

Hartee-Fock :

n(r’)

7\

st = / Ardr’ [P P UG = 1) S Flem)lom ()

m

s = — / Ardr’ $5(r) u(r) UGr = 1) 3 Flem)da(r") dm(r)

m

Average displacement of levels :

Al = > e e )

Dos correction :

dp(e) O0A(e)
Po de
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Al’'tshuler-Aronov correction to the DoS

Hartree contribution :

1

A = L [arar v - <Zae—en F(em) 16a(r)P | >r>

P0

_ 1 de’f(e/)/drdr’ Ulr —1')
Po
1 ror
><_47T2<AG(7“,7“,6)AG(7“,7“,e)>

Fock contribution :

Affe) = — [ ... AG(r,r";e) AG(r',r: €)
[ )

(GRG?) — Diffuson

— Screened interaction U(r — r') = ﬁé(r — 1)
A, [ w1t
5 =_° dt t t
ple) 21 Jo sinh w1t Pt) cose

Pt) = [ EPa(r,r;t) : diffuson
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For T' < €

dp(e)

>\P
2T 0

d =1 : The wire

dp(e) ~

A

e dt P(t) coset = ——L Re

27

A, 1
4T \/2De

|

1 0

Vol 0~

6p(e) ~ =1/\/T fore < T

d = 2 : The plane

op(€) ~

Ap
872D

Iner,

Coulomb dip

89
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VOLUME 86, NUMBER 8 PHYSICAL REVIEW LETTERS 19 FEBRUARY 2001

Electrodynamic Dip in the Local Density of States of a Metallic Wire

F, Pierre, H, Pothier, P, Joyez, Norman O. Birge,* D, Esteve, and M, H, Devoret

Service de Physique de 'Etat Condensé, Commissariat a I'Energie Atomigue, Saclay, 91191 Gif-sur-Yvette, France
(Received 15 January 1999; revised manuscript received 3 February 2000)

We have measured the differential conductance of a tunnel junction between a thin metallic wire and
a thick ground plane, as a function of the applied voltage. We find that near zero voltage, the differential
conductance exhibits a dip, which scales as 1/v/V down to voltages V ~ 10kzT/e. The precise voltage
and temperature dependence of the differential conductance is accounted for by the effect on the tunneling
density of states of the macroscopic electrodynamics contribution to electron-electron interaction, and
not by the short-ranged screened-Coulomb repulsion at microscopic scales.

experiment exp. & theory

0 100 200 300
-3 1 1 -3

-0.2 -01 0.0 0.1 0.2
V (mV)

FIG. 3. Symbols in main panel: same experiment as in Fig. 2,
but with data near V = 0 plotted on linear scale. Solid lines:
Predictions for our finite length wire. Inset: V = 0 differential
conductance. Solid line: Prediction for our finite length wire.
Dotted line: 7~'/? dependence expected for an infinite wire.
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Al'tshuler-Aronov correction to o

From Einstein relation o = e?pyD

o) _ [, (~211) 90

o)) Oe L0

sinh 7Tt

2 00 2
Aoe(T) = —)\UQ/ dt ( Kl ) P(t)
™ Jo

Incoherent contribution

Insensitive to a B field

In a wire :

L 1
Agee = —0.782 Ny - ¢ ———

LT

Interest : Local probe of the temperature.
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VoLUME 48, NUMBER 25 LETTERS

PHYSICAL REVIEW 21 June 1982

Evidence for Interaction Effects in the Low-Temperature Resistance Rise
in Ultrathin Metallic Wires

Alice E. White, M. Tinkham, and W. J. Skocpol‘?
Physics Depavtment, Harvavd Untversity, Cambridge, Massachusetts 02138

and

D. C. Flanders
Massachusetts Institute of Technology Lincoln Laboratory, Lexington, Massachusefts 02173

(Received 12 April 1982)

New measurements are reported of the low-temperature resistance rise in altrathin
wires of Cu, Ni, and AuPd, which confirm the proporticnality to -1 predicted by the
interaction model. Moreover, these results and those in the literature show an absolute
magnituds consistent within a factor of ~ 2 with the predictions of this model, using in=
dependently determined parameters of similar accuracy. It is inferred that interaction
effects are at least as important as locallzation effects in these systems.
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FIG. 2. (a) Data of Fig. 1, plotted vs 1/¥T to isolate
the interaction effect. Only the low-temperature points,
where the 7 term is negligible, are fitted. (b Plot of
slopes found in (a) vs 1/4 to separate the one~dimen-
sional effect from any bulk effect also giving a resist-
anece rise at low temperatures. The point at 1/4=0 is
an upper bound set by the experimenial accuracy.
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PHYSICAL REVIEW B VOLUME 50, NUMBER 8 15 AUGUST 1994-11

Temperature dependence of the resistance of one-dimensional metal films
with dominant Nyquist phase breaking

P. M. Echternach,* M. E. Gershenson,T and H. M. Bozler
University of Southern California, Department of Physics, Los Angeles, California 90089-0484

A. L. Bogdanov and B. Nilsson
Swedish Nanometer Laboratory, Chalmers University of Technology, S-412 96 Giteborg, Sweden
(Received 15 October 1993; revised manuscript received 28 March 1994)

We report the results of a comprehensive study of the temperature dependences of the resistance of
one-dimensional narrow gold films with respect to the effects of weak localization (WL) and electron-
electron interaction (EEI) in a wide temperature range. The electron wave-function coherence for such
samples is limited by electron-electron collisions with small energy transfer (the Nyquist phase-breaking
mechanism). It is shown that the temperature dependence of the WL contribution to the resistance, ob-
tained for such a case, is in excellent agreement with the theory by Altshuler, Aronov, and Khmelnitskii,
The experimental dependences AR (T) for one-dimensional samples are described quantitatively by the
sum of the WL contribution, the contribution of the singlet part of the diffusion channel of EEI, and the
contribution of the quantum interference between electron-phonon and electron-impurity scattering.
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FIG. 1. Temperature dependences of the resistance of sample
No. 1 at H=0 (a) and 100 Oe (b). The solid line in (a) is the
theoretical dependence {Eq. (5)] calculated from Eqgs. (2), (3),
and {(4). In (a) the full circles are measurements with measuring
current 100 nA and open circles 20 nA. The solid line in (b} is
the theoretical prediction for the EEI contribution [Eq. (3)].
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5. COHERENCE

Dephasing (1) : magnetic field

Penetration of the B field in the wires

JDt

-
X

W ‘P8 .

-

L, — L(B)
1 1 1 1 1 /eBW)\?
LEBY  IZ I3 12 3\ h
@ @ B @

Al'tshuler & Aronov, 1981.

1/1 1\ Y2
<Ag> = ——(— + —)
AV
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Dephasing (2) : spin-orbit scattering

WL : — Hikami, Larkin & Nagaoka, Prog. Theor. Phys. (1980)
UCF : — Chandrasekhar, Santhanam & Prober, PRB (1990)

a,r r,Y
— Interaction vertex on disorder depends on spin indices : %I’C “x
B’F) % r—% , 6

Weo — Ly, : spin orbit

Wy, — Ly, ¢ spin flip on localized (static) magnetic impurities

In the Bethe-Salpether equation : vertex for cooperon (for WL) is now

Kida ey W+ W L

— B 5 = OayBa5 +

f 3w Gary 7 Op8
Ke K5
In the basis {| ++), | +—), | —+), | ——)}:
1 1
(c) _ 1 _wso+wm -1 2
b 1 + 3w 2 —1
1 1
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Bethe-Salpether equation| is now (in Fourier space)

w

I'.(q) =
9= GO (1= Drwd?

Wtot

1S a matrix

— Diagonalization of b : Singlet and Triplet channels decouple.

1 1
P.(q) = Tl + (1 — )
1/L% + ¢ 1/L% + ¢2
/LS +q /L7 +4q

projector on singlet

for w > wy,, wy, :

1 2 LoL_a
— = — an =
L2 L2 L2~ 312 ' 3L2

Reversing of trajectories = reversing the singlet = |—

(Aco) = (singlet > 0) + (triplet < 0)

Weak antilocalization
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Infinite wire

singlet
T/ 9\ /7
A - _ =
Ba®) = 7|+ (4 )
1 4 2\ /2
B (LT%* +3Lzo+3L%n) ]

triglet
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Magnesium (Z = 12) : weak spin-orbit
Gold (Z = 79 : heavy metal) : strong spin-orbit

PHYSICAL REVIEW B VOLUME 28, NUMBER 2 15 JULY 1983

Consistent temperature and field dependence in weak localization

Gerd Bergmann
Institut fiir Festkorperforschung der Kernforschungsanlage Jiilich, Postfach 1913, D-5170 Jiilich, West Germany
{Received 25 February 1983)

The temperature and magnetic field dependence of the resistivity of thin Mg and An f{ilms are
measured. The parameters of weak localization such as the inelastic lifetime 7,(T) and the spin-orbit
{so) coupling time 7, are evaluated. The Mg film which has a small spin-orbit coupling can be
changed into a strong spin-orbit coupler by covering it with 0.25 monolayers of Au. Since the ineias-
tic lifetime is not affected by the small amount of Au only one parameter is changed. This does not
only alier the magnetoresistance but also the temperature dependence of the film resistance. The
whole set of magnetoresistance curves is well described by the theory. The change of the spin-orbit
coupling essentially allows one to separate the temperature-dependent resistance caused by weak lo-
calization from other temperature-dependent contributions. It is consistent with the theory.
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a6k ” 20.8K i
g GoT
R«859%2
o] 64K e 0 0
/ -40 -2 20 40 H/H;
/ / Taat FIG, 4. Magnetoresistance (or [L{H)—L{0}]/Ly) of a Au
film as a function of the field /' measured in units of the inelas-
// . tic field H{T). The poinis represent the experimental results.
13.9K P ot The solid curves are calculated using the characteristic fields
/ plotted in Fig. 5.
/ R-79%2 "
19.9K py—
(a)
. e

FIG. 2. (a) Magnetoresistance (i.e., [L(H)—L{0}]/L o using the right scale) of a Mg film (d=8.4 nm) as a function of the field H.
The units of the field are shown beside each magnetoresistance curve. The points represent the experimental results. The solid curves
are calculated uwsing the characteristic fields H{T) plotted in Fig. 5 and H,,=0.0046 T.
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Decoherence due to electron-phonon interaction

— Chakravarty & Schmid, 1986.

— Lin & Bird, J. Phys. C (2002).

Te—ph X T3

— negligible below 1 K
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Decoherence due to electron-electron interaction

Let us come back on the simple modelization used up to now

Al ["Exponential relaxation” | : Effective parameter L, = /D7,

e Conductance of a long wire :  Al'tshuler & Aronov, 1981.

1 [ dt 1/1 —1/2
Ag) = —— | S otim _

where

e Exp. relax. describes — Penetration of B field
— Spin-orbit scattering

— Spin-flip (magnetic impurities)

e | Does not describe correctly e-e interaction
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Al'tshuler, Aronov & Khmel'nitzkii (AAK), J. Phys. C 15 (1982).

— Electron feels the random electromagnetic field created by

other electrons

r (1)

The loop receives a random phase el
r

= /Ot dr [V(F(T), )= V(r(7r),t — 7')]

where V(r,t) is the electric potential due to other electrons

(Ac) ~ Cooperon ~ Z {e@m}‘/
loops C
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e Fluctuation-dissipation theorem :

VEDVE )y = T 6(t — t') PiF, 7)

a0

1/3
Nyquist length : = (ﬁNcﬁeLQT)
T

Ly = /DJT.

Ly characterizes the efficiency of e-e interaction

Exercice : a gold wire

S = 50 nm x50 nm
¢, = 30 nm
N, = 27500 Ly(T) ~ 3.2 pum x T71/3

e Phase averaged over potential fluctuations :

(€)y = e

where

5@ = g [ e Wia(r).a(r)

with
1
W(CU, lj) - §[Pd(x7 x) + Pd(x/7 Il)] - Pd(xa $/>
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(Ac) ~ Cooperon ~ Z

loops C <L,

e Path integral formulation :

exp. relax.

62 0 —N—
(@0) = == [Cat e
™ Jo

z(t)=x .
></ Da(r)e 1hodr?
\x(O):x P

diffusion (€®),,: e-e interaction

\ . g

— Electron-electron interaction enters through a complicate functional.

This functional is network dependent

In general Ao (L., 00) and Ao(oo, L) do not coincide
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INFINITE WIRE

Py(z,2) = —3|x — 2| = W(z,2') = 1|z — 2|

W(z,z") = f(x — 2’) = get rid of time nonlocality

Cooperon is solution of :

1 d? 1

2 da? L%

lz|| Pz, 2')=0(x — )

(Ao) = —2—62 P.(0,0)

v

One finds (AAK, 1982)

o Ly MR ak
\89) = TR I < L *
Al (exp. relax.) — (AAK)
L, —
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VOLUME 56, NUMBER 11 PHYSICAL REVIEW LETTERS 17 MARCH 1986

One-Dimensional Conduction in the 2D Electron Gas of a GaAs-AlGaAs Heterojunction

T. J. Thornton
Cavendish Laboratory, Cambridge CB3 O0HE, United Kingdom

M. Pepper

Cavendish Laboratory, Cambridge CB3 OHE, United Kingdom, and GEC Hirst Research Cenrre,
Wembley, Middiesex, United Kingdom

H. Ahmed
Cavendish Laboratory, Cambridge CB3 OHE, United Kingdom

and

D. Andrews and G. J. Davies

British Telecom Research Centre, Martlesham, Ipswich, United Kingdom
{Received 17 September 1985}

We present results on the transport properties of the 2D electron gas in a narrow channel formed
by the split gate of a GaAs-AlGaAs heterojunction field-effect transistor. There are both
quantum-interference and interaction corrections to the conductivity. We find that the temperature
dependence of the phase relaxation length is in agreement with a recent theory based on scattering

by electromagnetic fluctuations. Beyond the regime of quanium interference the conductivity
varies with temperature as T2,

0. 41K
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O30 m ! .
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3
o 20 - T 62 F
o e P
. ES
10+ = -
-
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UD 1 i 1 i 1
000 002 004 006 008 090 012 0%
Magnetic Field {TESLA) . .

FIG. 1. The values of conductance as a function of mag-
netic field, indicated by crosses. The lines indicate the best
fit of Eq. (2) at each temperature. Inset: The gate defining
the narrow channel in the underlying heterojunction.

0.9 1.0
T/K
FIG. 2. The phase relaxation length plotted against tem-
perature on a log-log scale.
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VOLUME 57, NUMBER 5 PHYSICAL REVIEW LETTERS 4 AUGUST 1986

One-Dimensional Electron-Electron Scattering with Small Energy Transfers

S. Wind,® M. J. Rooks, V. Chandrasekhar, and D. E. Prober
Section of Applied Physics, Yale University, New Haven, Connecticut 06520
{Received 28 March 1986)

We report magnetoresistance studies o Al and Ag wires of width 35 1o 110 nm which probe the
eiectron phase-breaking rate. We find that this rate at low temperatures is determined by one-
dimensional electron-electron scattering with small energy transfers. This confirms the importance
of this mechanism for eleciron energy loss in one-dimensional systems, as suggested by Al'tshuler
et al., and defines clearly the relevant dimensional length scales.

2/3
-1 RE] kB \/ﬁ T2/3. (1)
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FIG. 3. Electron-electron contribution to 75 '= [(total

phase-breaking rate) — (electron-phonon rate=A4,,7°)] as a
function of wire width, The solid lines give the theoretical
prediction of Eq. (1). The data are normalized 1o the Rg
and D of samples Al2, according to Eq. (1).
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PHYSICAL REVIEW B 68, 085413 {2003)

Dephasing of electrons in mesoscopic metal wires

F. Pic11'c,1’2’3’* A. B. Gougaa.m,l’T A, Am;hore,2 H. POthiCl‘,Z D. Este\.'f:,2 and Norman O. Birgc1
1Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-2320, USA
2Service de Physique de I'Etat Condense, Direction des Sciences de la Matiere, CEA-Saclay, 91191 Gif-sur-Yvette, France
3Deparnent of Applied Physics, Yale University, New Haven, Connecticur 06520, USA
{Received 11 February 2003; published 26 August 2003)

We have extracted the phase coherence time 7, of electronic quasiparticles from the low field magnetore-
sistance of weakly disordered wires made of silver, copper, and gold. In samples fabricated using our purest
silver and gold sources, 7, increases as T~ % when the temperature 7 {s reduced, as predicted by the theory of
electron—electron interactions in diffusive wires. In contrast, samples made of a silver source material of lesser
purity or of copper exhibit an apparent saturation of 74 starting between 0.1 and 1| K down to our base
temperature of 40 mK. By implanting manganese impurities in silver wires, we show that even a minute
concentration of magnetic impurities having a small Kondo temperature can lead to a quasisaturation of 7,
over a broad temperature range, while the resistance increase expected from the Kondo effect remains hidden
by a large background. We also measured the conductance of Aharonov—Bohm rings fabricated using a very
pure copper source and found that the amplitude of the Afe conductance oscillations increases strongly with
magnetic field. This set of experiments suggests that the frequently observed “saturation” of 7, in weakly
disordered metallic thin films can be attributed to spin—{flip scattering from extremely dilute magnetic impu-
rities, at a level undetectable by other means.

AR/R

Ty (ns)

FIG. 4. Phase coherence time vs temperature in samples
Ag(6N)a (R), Ag(6N)b (¥), Ag(6N)c (@), Ag(6N)d (A), and
Au{6N) (*), all made of 6N sources. Continuous lines are fits of the
data to Eq. {4). For clarity, the graph has been split in two parn,
shifted vertically one with respect to the other. The quantitative
prediction of Eq. (3) for electron—electron interactions in sample
Ag{6N)c is shown as a dashed line.
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Time analysis : relaxation of phase coherence

_ >~ . —t/Ty
(Ao) = /0 At Por, ) @

l

What replaces the exponential 7

e AAK : non exponential phase coherence relaxation

G. Montambaux & E. Akkermans, PRL 95 (2005)

— Inverse Laplace transform of AAK’s result

3/2
- t
<elq)>v’c — ﬁ (—) for t < 7y

4 TN

w1 ¢
— —exp—|u|— fory <t
TN ’Ul‘ TN

2

12

(Jug| = 1.019 is the first zero of Ai'(2)).
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week ending
PRL 95, 016403 (2005) PHYSICAL REVIEW LETTERS 1T0TY 2008

Nonexponential Quasiparticle Decay and Phase Relaxation in Low-Dimensional Conductors

G. Montambaux' and E. Akkermans”
Laboratoire de Physigue des Solides, CNRS UMR 8502, Université Paris-Sud, 91405 Qrsay, France

2Department of Physics, Technion Israel Institute of Technology, 32000 Haifa, Israel
(Received 15 April 2004; revised manuscript received 29 July 2004; published 29 June 2005}

We show that in low-dimensional disordered conductors, the quasiparticle decay and the relaxation of
the phase are not exponential processes. In the quasi-one-dimensional case, both behave at small time as
¢~/ where the inelastic time, 7y, identical for both i T3 of th

5 Tins processes, 18 a power ot the temperature.
The nonexponential quasiparticle decay results from a modified derivation of the Fermi golden rule. This
result implies the existence of an unusual distribution of relaxation times.

0.8

.06

0.2 |

FIG. 2. Behavior of (¢/*™); . The continuous line is the exact
result (20). The dotted line is obtained from the small time

expansion (17). The dashed line shows the exponential fit
e—t/ZTi“.
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MC harmonics of a ring

$o/2 do '
Ag, :/ 7 a—4mne /g0 A

— Magnetoconductance’s harmonics

A} (exp. relaxation) gives Ag, o exp —\n\LL

Question is : Does give Ag, o< exp —|n|-~ 7

Answer is NO
Ludwig & Mirlin (LM), PRB (2004) :

Ag, x exp —|n| for L > Ly
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How to characterize phase coherence relaxation in the ring 7

e Harmonic n of WL can be written

= ——/ dt o t) e®yve

Proba to Wmd n times

C,, : diffusive trajectories with winding n

= We analyze

; _1l/32
(€)ve, = (72" )¢,
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Why phase coherence relaxation is different for n =0 and n #£ 0 7

e Diffusion of the phase : Johnson-Nyquist

d
d
dt

Small time t K 7p = r(t) ~ VDt

Long timet > 71p =1r(t)~ L

g2y, = / Ir(V(NV(O0)y = 2°TR, ~ ¢

New length scale L, = Lf,)’f/Ll/2 oc T—1/2

e For v > 7mp

(€ )y, = (072

1

t<< T
. e_ a
Harmonic n = 0 e
. _ 1t _ 1t
Harmonics n # 0 o 67c e 67
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For harmonics n = 0, phase relaxation is non exponential

<e@> ViCo -

t

ﬁ 1 tﬂ
F juy &Pz

—_— — — — — — — — — - —_——— — — —_— —_— -

.......................

t
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(©®)ve, :

t
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| |
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! : I A !
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| TT°t I , |
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: | g 641T; :: | t :
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T
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(L 32
Origin of Ao, ox € Iy Exponential phase relaxation

Forn # 0 : <ei®>v,cn ~ exp — [t/ T,

. . 3/2, 1/2
with 7. = 7" /7

B =1/6or m*/64

e Weak localization :

phase relax. diffusion
—N— %

oC "1 N
oo [0 T
0 Vi

L L
NeXp—ﬂ’n’f = GXP—\/BW(L—N)S/Q

Ao, ~ exp —nL>*T"?

for L > Ly
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1

Exact result for isolated ring of perimeter L

C. T. & G. Montambaux, PRB 72 (2005) @ L

— One can compute exactly the path integral

Wix,x') = f(x — 2’) = get rid of time nonlocality

Cooperon is solution of :

1 (d | )2 1 ( \ﬂ)
— — | ——2ied | +—=|z|[1——=
L2 dx L3; L

(2o) = — 2 P0,0)

v

P.(x,2") = 6(x — o)

(Acy) o< exp —[n|les

— Analytical expressions for the prefactor and g

o Lffective perimeter o for Ly, = 00

1 I, 3/2
N
7\ 32
~ g (L_> for L > Ly  (LM)
N
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e Combination of Ly (e-e interaction) and L, (exp. relaxation) :

1 1 1
_>><
Ty -

L 3/2 L3/2
— 2 2 . Ly
goff - <LN) X U(LC/LSO) with Lc = —L1/2

3 2
*FOI"L<<LN:€eﬂc:\/%(%) _|_(LL¢>

3 2
*ForL>>LN:€eﬂrf:\/76T—z (ﬁ) +(L%>

et AI(LY/LY)
7 AL /L12)
AAK
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Connected ring

L,, Ly < L|: Arms have almost no effect

e Exp. phase coherence relaxation : Ag, o L, exp—|n|L/L,

e Flectron-electron interaction : Ag, x Ly exp —|n|( )3/ 2

L,, Ly 2 L|: The arms strongly manifest

Lo

Winding is anomalously slow : n; & /4

(in the isolated ring : n; oc t'/?)

e For exponential phase coherence relaxation :

00 W\ /3
(Agn) ~ / dttl%e_g(‘*t”‘l> et/
0

Ag, o exp —|n|(2L/L,)"?
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e Ly = L|For

Phase coherence relaxation occurs mostly in the wires

= <ei®>vvcn = <eiq)>V,C‘oo wire

o0 1 _3 n\/z 4/3 :
<Agn> ~ / dt m e (4t1/4> <e ‘I)>V’C|OO e
0

Agn o exp —k|n|( V2| o xp — L1210

rk~ 1.421
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Let us come back to experiments

— Meydi Ferrier’s thesis (2004) ; Ferrier et al PRL 93 (2004)

— Large square network

e Phase coherence length : | Analysis of ratio of AAS harmonics

— Analysis with model |A|. (Exp. phase relaxation)

sample A
sample B
sample C

sample A (from envelope)
sample C (from envelope) N

AAK —1/3
LAM(T) oc T7Y

e B ¢ X O

0.1 1
T(K)
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Why we do not see LM’s behaviour 7

— Exp. phase relaxation analysis should give L, — L. o T2

(for L, < L)

From harmonics

© I
~ -
©
\U/ | L

o sample A d)<
1} >R
* sample B 9,
For LN Z a . o sample C QOOQ
= sample A (from envelope) N N
L e sample C (from envelope) RN
| [ N
L L N | L L N R | |
0.1 1
THI T(K)
- From envelope (~ AAK)
E=X ]

— Experiment : behaviour of Ag, at higher T" 7

— Theory : behaviour of Ag, at low T (when L < Ly) ?
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L$ (um)

Observation of LM’s result ?

o (for L > Ly) Ag, X exp —%‘n‘(L/LN)?’/Q o e-nL32T

e New analysis of experimental data (M. Ferrier & H. Bouchiat)
— Extract parameters W, £, from envelope

— Then follow the 1st harmonic (instead of ratios)

T—1/3

Harm | »

100 500
T(mK)

Ag, ~exp—|n|L/L, (Exp. relax.)

L L _(L\32 . L)
L, 7= (g)" T

121



Current theoretical understanding about e-e interaction in networks

WEAK LOCALIZATION Ag,

Modelization

A

Modelization

M
A

Ly

Q| e

1 @.. i e Lo for L, < L
e nCL/Le) " for L, > L
5 ti envelope : analytic

] r harmonics : numerics

_ Ai(L3,/L2)

Ly o VALY

Ly = En(L/Ln)"

o—rn(L/Ly)!)?

Ly < L: AAK
Ly> L :

Ly < L+ eCnl/ix)’
Ly > L :

Experiment is required on :
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What experiments show ?

e Meydi Ferrier’s thesis (2004); Ferrier et al PRL 93 (2004)
— semiconducting networks

— regime Ly < L

e C. Béuerle, F. Mallet, L. Saminadayar & F. Schopfer (2004)
— Metallic networks (Ag & Au)

— regime Ly = L

Oscillating part of MC curve is well described

by modelization |A| (with spectral determinant).

— analysis of Grenoble’s experiments within modelization | A

] &/ D@

OO ™ R0
e NAN/ ™™

Ratios of harmonics (1/2 & 2/3) give the same L, (T

= Meaningful procedure
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Limit of the AAK theory

Nyquist length

1/3
Ly = <%N066L%) with Ly = /D/T
T

e Strong localization in a fully coherent weakly disordered wire

localization length is (DMPK) :

Lloc ~ Ncge

AAK is only valid for Ly < Ly t.e.

e Strong localization threshold : T < T™

LN ~ LT ~ Lloc

T ~ 1/(N?7.d)
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Exercice : a metallic gold wire

S = 50 nm x50 nm

¢, = 30 nm
D =0.013m?*/s Ly ~ 0.3 pym x T2
N, = 27500 Ly(T) ~32umx T3

T* ~ 0.7 uK

Exercice 2 : a semiconducting narrow wire

T ~ few 10 mK
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PHYSICAL REVIEW B VOLUME 58, NUMBER 12

15 SEPTEMBER 1998-11
Strong localization of electrons in quasi-one-dimensional conductors

Yu. B. Khavin and M. E. Gershenson
Deparmnent of Physics and Astronomy, Serin Physics Laboratories, Rutgers University, Piscataway, New Jersey 08854-8019

A. 1. Bogdanov
Lund Universiry, MAX-lab, Narional Laboratory, 5-221 00 Lund, Sweden
(Received 7 May 1998)

We report on an experimental study of electron transport in submicrometer-wide “‘wires’” fabricated from Si
& doped GaAs. These quasi-one-dimensional (Q1D) conductors demonstrate the crossover from weak to strong
localization with decreasing temperature. On the insulating side of the crossover, the resistance has been
measured as a function of temperature, magnetic field, and applied voltage for different values of the electron
concentration, which was varied by applying the gate voltage. The activation temperature dependence of the
resistance has been observed with the activation energy close to the mean energy spacing of electron states
within the localization domain. The study of nonlinearity of the current-voltage characteristics provides infor-
mation on the distance between the critical hops that govern the resistance of Q1D conductors in the strong
localization (SL) regime. We observe the exponentially strong negative magnetoresistance; this orbital mag-
netoresistance is due to the universal magnetic-field dependence of the localization length in QLD conductors.
The method of measuring the single-particle density of states (DOS) in the SL regime has been suggested. Our
data indicate that there is a minimum of DOS at the Fermi level due to the long-range Coulomb interaction.
[S0163-1829(98)03936-8]
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FIG. 1. The temperature dependence of the resistance of the
0.05-pm-wide wires (sample 1) in zero magnetic field without the
gate, the solid curve is a guide to the eye. The arrow indicates the
temperature T that corresponds to the activation energy of hopping
transport on the insulating side of the crossover. Inset: the tempera-

ture dependence of the phase-breaking length L. The dashed line
is the Nyquist phase-breaking length [Eq. (2)].
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0. FLUCTUATIONS

PHYSICAL REVIEW B VOLUME 35, NUMBER 3 15 JANUARY 1987-11

Universal conductance fluctuations in metals:
Effects of finite temperature, interactions, and magnetic field

P. A Lee
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

A. Douglas Stone*
Deparitment of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3800

H. Fukuyama
Institute of Solid State Physics, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106, Japan
(Received 9 July 1986)

The conductance of any metallic sample has been shown to fluctuate as a function of chemicat po-
tential, magnetic field, or impurity configuration by an amount of order ¢®/k independent of sample
size and degree of disorder at zero temperature. We discuss the relationship of these results to other
results in the theory of weak and strong localization, and discuss its physical implications. We dis-
cuss the physical assumptions underlying the ergodic hypothesis used to relate theory to experiment.
We review the zero-temperature theory and provide a detailed discussion of the conductance correla-
tion functions in magnetic field and Fermi energy. We show that the zero-temperature amplitude of
the fluctuations is unaffected by electron-electron interactions ta lowest order in (k;)~", and at fi-
nite temperature interactions only enter insofar as they contribute to the inelastic scattering rate.
We calculate the effects of finite temperature on both the amplitude of the fluctuations and their
scale. We discuss the conditions for dimensional crossover at finite temperature, and the behavior
of different experimental measures of the fluctuation amplitude, in order to facilitate quantitative
comparisons of experiment and theory.
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FIG. 1. Comparison of aperiodic magnetoconductance fluctuations in three different systems. (a} g{B) in 0.8-um-diam gold ring,
analysis of data from Refs. 3 and 4, reprinted with the permission of Webb ef al. {the rapid Aharonov-Bohm oscillations have been
filtered out). (b} g (B) for a quasi-1D silicon MOSFET, data from Ref. 9, reprinted with the permission of Skocpel et al. (c) Numeri-
cal calculation of g (B) for an Anderson model using the technique of Ref. 11. Conductance is measured in units of ¢2/k, magnetic
field in tesla. Note the 3 order-of-magnitude variation in the background conductance while the fluctuations remain order unity.
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Reproducible structures : Magnetofingerprints
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CONDUCTANCE FLUCTUATIONS
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Quantum crossings :
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Order of magnitude :
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CONDUCTIVITY CORRELATIONS | (Short range terms)

(dau(r, ") doeq(r”, r™))

Contribution 1
€, B

Es

e B

We use the box :
RZ

7. T
“/W\'//’\’\M = —0y 27'62(52']' 5(77— 77/> 5(77— RQ) 5(77— R4)
R,

and
5 W e

ooT, =
“Dr. h

2\ 2
Contrib. 1 =4 <%) 8O 5(7:*_ 7:»//) 5(7;»/ _ 77”/)|Pd(?7, f”)|2

Contribution 2|: P; — P.

2

2
Contrib. 2 =4 (%) Sl 6 (F — 7Y S(F! — 7| Pu(7, 7) 2

130



Contribution 3

62

2
Contrib. 3 =2 ( h) 5ap0eq O(F — 7Y 8(F" — 7" Re [Py(7, 7") Py(7", 7)]

Contribution 4|: P; — P.
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Einstein relation : o;; = €2p0Dij

Correlations :

(600 00cq) = €*(6p%) D? Sap0eq + € p2{6 Doy, 6D o)

Contribution 3+4|: DoS correlations e*(§p?) D?

Contribution 1+2|: diffusion constant correlations 64p% (0D gy 6 Deg)
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Last step :

— Following KSL, construct long range terms (divergenceless) :
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FLUCTUATIONS OF LOCAL CONDUCTIVITY

(60%) =6 (%2)2 / d\t(izl [Py(r,r")? + Por,r')?]

Spectral determinant

1 1
/ nN2 / / /
/drdr P(r,r')" = /drdr(r!v_ ") (r -

1 0
" 2 GrEy a0

The diffuson in UCF is also affected by decoherence

Diffuson : vq = 1/L

Cooperon : 7. = 1/L7 + 1/Lj

[7)

(60%) = —6 ¢ 2L 8—211&5( )+ 7 InS(v.)
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THE CONNECTED WIRE

B sinh \/’_yL

S(y) 7

e | Incoherent wire L, < L

(56%) ~ 6 (%)

e | Coherent wire L < L, |: UCF

2
2\ ~ 2

e | Reduction in strong magnetic field

It Ly < L, : Contributions of the cooperon vanish

(0g(B)?) ~ =(3g(0)*)

DN | —

Crossover for the long wire :

oy =] (%) s (e ) ]
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EFFECT OF B FIELD
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Fig. 2. — 46 reproducible MC curves at T = 45 mK in the same wire.
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Fig. 3. — a) The mean conductance deduced from figure 2 and the weak localisation fit [10]. b) The
variance over the 50 disorder configurations (at fixed magnetic field) as a function of the magnetic
field. Note the reduction by a factor 2, for the same field range than for the mean MC effect in figure
3
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THE MESOSCOPIC REGIME

e Coherent wire L < L, :

(Ag) ~ 1 and dg ~ 1

Mesoscopic regime

e Incoherent wire L, < L :

L
Ag) ~ ——F
(Ag) 7

7\
o~ () <l

Ag = g — g is self averaging
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EFFECT OF TEMPERATURE

At finite temperature :

o(Er) — [ de (<5} ot

We have to consider

(doap(r, 15 €) doca(r", 1" €))

New length scale : thermal length Ly = /D/T

REGIME L1 < L Contributions 3 & 4 are negligible

2T

(00%) == = (%)2 VLT%Q / dr [Pa(r, 7) + Pe(r, 7)]

o [\ L2 [ 0 0
Sy ~ — | — —T[—IS + InS C]
(6% = 3 () o | () + 5 S(a

Exercice : Long wire




PARAMETRIC CORRELATIONS

Study (do(B) do(B'))

[LL?O — (V —ie(A — A’))] Py(r,r') = o(r —1')

Cooperon :

[L%% —(V —ie(A+ A’))] v’} = o(r — 1

If Ly < L,|: [Relation between WL and fluctuations




AB AMPLITUDE

Conductance of a network :

g(¢) = go + dgap cos(2mp /g + 01) + - - -

Correlations of conductance :

(9(6)9(6") = (68) + 50} cosl2m(6 — &) /] + -

dgap appears in parametric correlations

dgap involves both Ly and L,

(Agaas is only function of L)

For Ly < L,|: |Relation between AAS & AB amplitudes

2 2
5 e 2m L
~ ———= (A
(00hp) = 7 5 V01< TAAS)

Exercice : The isolated ring

(0g3p) ~ LyL,e H/ke
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FROM MESO- TO MACRO-

Disorder averaging in a chain of N, rings :

— Consider symmetric rings — spectral determinant

Amplitude of AAS oscillations :
(Agaas) Ly

~ e_L/LSD
gd 204ch£€
For L+ < L,
327 L2 0 0
5g(0)6g(0")) ~ L InS In S(~.
(B90)30(6) = 3L |5 () + 5 SO

Amplitude of AB oscillations :

0gAB 2N 1z L7 L, o~ L/Ly
g°! N, 3(agNAL )L

= AB oscillations vanish with N, :

0gAB 1

X
g VN
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VOLUME 56, NUMBER 4

PHYSICAL REVIEW LETTERS

27 JANUARY 1986

Direct Observation of Ensemble Averaging of the Aharonov-Bohm Effect
in Normal-Metal Loops

C. P. Umbach, C. Van Haesendonck,'®! R. B. Laibowitz, S. Washburn, and R. A. Webb

IBM T.J. Warson Research Center, Yorktown Heighis, New York 10598
(Received 6 November 1985}

Aharonov-Bohm magnetoconductance oscillations have been measured in series arrays of one,
three, ten, and thirty submicron-diameter Ag loops. At constant temperature, the amplitude of the
k/ e oscillations is observed to decrease as the square root of the number of loops, while the ampli-
tude of the h/2Ze conductance oscillations, measured in the same samples, is independent of the
number of series loops. This is direct confirmation of the ensemble-averaging properties of &/e os-
cillations in mulitiloop systems. The amplitude of the h/e oscillations is in good agreement with re-

cent calculations.
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FIG. . (a) Transmission eleciron micrograph of the
three-loop sample. (b) Magnetoresistance data at 7 =10.32
K. Clockwise from the lower right-hand corner: the thirty-
loop sample for 0.2 < H < 0.3 T, the thirty-loop sample for
—0.02 < H <002 T (the dash-dotted line is the fit by the
AAS theory); the single-loop sample for —0.02 < H# < 0.02
T; the single-ioop sample for 0.15< H < 025 T. (¢) The
Fourier transforms of the data in (b). The arrows in the fig-
ure indicate the bounds for the flux periods h/e and k/2e
based on the measured inside and outside areas of the loop.
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FIG. 2. (a) The h/e oscillations near zero field for the
four samples extracted from the raw data by a digital filter
set to include all perieds allowed by the measured inside and
outside areas. (b) The rms conductance amplitude of the
hie (circles} and the #/2¢ (squares) oscillations as a func-
tion of the number of loops in the sample. The dashed line
represents the calculated amplitude of the A/e oscillations,
and the solid line is the theoretical value for the h/2e oscilla-
tions predicted by AAS for L,=22 pm, Lgy=047 pm,
and Lg=23.1 um.



Disorder averaging in large networks :

Large network of dimension L, x L, with IV cells

2 LyS L,S dr
€= Ag) = —92 P
A G ) an/\/ol (r,7)
o7 L2
2 T
_ A

— Vary N with L, /L, = 10 fixed

® |2d regime|: L, < L,, L,

Agars o< NV

Sgap o< N71/2

e |quasi 1d regime|: L, < L, < L, = P. ~1/L,

Agaas oc N71/2
Sgap o< N3/
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— C. Béuerle, F. Mallet, L. Saminadayar & F. Schopfer (2005)

— Ag networks

1 E LA S A REL LI B R A 030 1R L DO 0 U RAE | LD S YR B A I S e A ] 0.1
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CONDUCTANCE CORRELATIONS (6G,30G )

Network — nonlocal effects — Landauer approach

x > / d / dx’%Pd(a,x) [Py, )]

J

0G0 , ,
(6Gap GV o Y=ot = / dgj/ &' [Pyl )
i, ! Joo
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no correlation of indices

Dos (3 & 4) :
O e—— =
ot
C
aGcl
(0G5 O<Z az T [dx/jdx/[pd(xx)]g
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FOUR-TERMINAL RESISTANCES

<5Ra6,w

Contribution 1

({97_\),3157 aRle, d dz' 1P N2

i i J

Contribution 2

aRgﬁ, aRZIV, d do' 1P NP
S e e [an faatpe)

i i J

Contribution 3

aRgﬁ,MV IR, d de' 1P 12
o, ol / m/j o [Filw o)

0]

Contribution 4

aRg}ﬁ;/w OR! d do' 1P N2

0J
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RESISTANCES Rg AND R4

Casimir-Onsager : R1234(—B) = Rs4.12(B)

Rsa==(Rizs1 £ Rs112)

N | —

VOLUME 58, NUMBER 22 PHYSICAL REVIEW LETTERS

1 JUNE 1987

Length-Independent Voltage Fluctuations in Small Devices

A. Benoit,”® C. P, Umbach, R. B. Laibowitz, and R. A. Webb

[BM Thomas J. Watson Research Center, Yorkiown Heights, New York 10598
(Received 25 August 1986)

0.0

0 (VAL 3

FIG. 2. (a) Measured rms voltage fluctuations normalized
by AV,, as a function of (L/7,)"2. The symmetric contribu-
tions are represented by solid symbols. The solid line
represents the expected behavior for L > L,. The antisym-
metric part of the voltage fluctuations is represented by the
open symbols and the dashed line is the predicted constant be-
havior. The symbols refer to different samples and tempera-
tures: circles, Sb at T=40 mK and L,=1.05 uym; inverted tri-
angles, Sb at 7=300 mK and L,=0.60 um; squares, Au at
7=40 mK and L,=2.0 um. Inset: A photograph of the Sb
sample.

— Kane, Lee & DiVincenzo, PRB (1988)
— Hershfield & Ambegaokar, PRB (1988)
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At strong B field = Contributions 2 & 4 = 0

(<5R%2,34> == <5R12,345R34,12>)

R§12,34 o< I
Rilz,lz X g+ 1y + L,

Ry o< la+l+1;
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e |Fluctuations <(5R%2734>

Weight of | fj[Pd(a:, 2')]? for contribution (3) :
IR 31 IRy 34
ol; 0l

X X’
H“ H

Cs = /bda: /bda:/ [Py(z, 2)]* ~ Lilb for |L, < 1,

x, 2 €b

Weights for contribution (1) :
OR{y10 ORG1 3
ol; 0l

r€a,b canda’ €d, b, f

9 contributions

Ci1 = C3= — NLilb

o X<
X

Cio = ) = /da: /bda:/ [Py(z, 2")]* ~ Lf‘o

etc.

<5R%2’34> — 2 Cg +\C172 —I_ tt e 61’9

7

~ L}l ~ L}
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e |Correlations (0R12,340R34.12)

Weights for contribution (1) :
ORS, 51 ORSy 10

/
b
o, al, LS
Weights for contribution (3) :
aRcl aRcl
12,34 97%34 12 v 2 €b

o, ol

(0R12310R3412) =2 _Cs

~ LI,

e |Symmetric & antisymmetric resistances

In the limit L, < I}

Symmetric resistance fluctuations increase with [, :

(0RS) ~ LI,

Antisymmetric resistance fluctuations saturate :

Ry ~ L
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ELECTRON-ELECTRON INTERACTION

Relation between WL and CF (since Ly < Ly necessary) :

— Aleiner & Blanter, PRB (2002).

AB harmonics for Ly < L :

0gap ~ L1/ Ly e~ (LI

Ludwig & Mirlin, PRB (2004)
C. T. & G. Montambaux PRB (2005).
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WHAT I HAVE NOT MENTIONED

e Thermodynamics — magnetization, persistent current.

e Shot noise

e Role of the dynamic of magnetic impurities on decoherence

Kondo impurities (Saclay & Grenoble’s experiments)

e Measurements of local distribution functions in diffusive wires

(Saclay’s experiments)

e Superconducting fluctuations : contributions to transport.

(DoS, Maki-Thomson, Alsamazov-Larkin)

e Technical aspects :
— Semiclassical approach (Boltzmann-Langevin)

— Field theory and nonlinear-o-model
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In a wire

7. CONCLUSION

e Classical transport : gpruge X Nele/L

e Weak localization :

e D

ol

1/1 \ Y 1 e2BW?
<Ag<B, Lgp)> = —E (L_?O—i_) where L%, = 372
e Interaction : Al'tshuler-Aronov correction
Lt 1
AG(L7)Yeo = —0.782\;— X ———=

e Fluctuations :

* For L, < Lt :

*x For Ly < Ly, :

(6g°(B, Ly, Lt)) ~ ——%

2
7TL2T 1
VE LSD-F(L—?D‘F
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AAS/AB HARMONICS

For exponential phase coherence relaxation (L) :

— spin-orbit

— spin-flip
amplitude of AAS/AB oscillations for a ring are :

Agaas ~ L, e Hhe

dgas ~ L7/ L<p e_L/2L<P

This is true only for |L, < L

Does not apply to L, — Le_
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AQAM@
5gAB ~ Mw
1. Network effect

o L, <KL < >

Agaas ~ Ly €

o L,>1L ( }

Agaas ~ L, e V2L

2. electron-electron interaction effect| Ly oc T71/3

o Ly <K L

Agaag ~ Ly e /N )2

13/2
0gap ~ Lr+/Ly e~ /EN)

o | Ly > L|(network effect)

Agaas o< e~ H/E0"?
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NETWORKS

AT, =

e (Quantum nonlocality of P.

e For large regular networks : spectral determinant

ez 1 21 0
A —- — d PC 9 - 1
< O> 7 Vol Netwoi (x z) m Vol 0 ! SW)

e Dephasing due to e-e interaction is not well understood
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APPENDICES

A. FREE GREEN FUNCTION

1
Gy (7, 7" Ep) = (7 7
N ) 2 (Pl e ™)
In Fourier space .
G(];{(kj) — 1 _’2 .
EF—%]{? —|_10+
In real space
1 . /
GMz, o) = —elkrle=o] ind=1
1V
G ) = SeH kel lF = 7Il) ind =2
m : -
GR e AN e elk‘FHT—T’ | d=3
) = o= .
DoS & IDoS

Vi 4 Fkrur
e i
Me = omatt T g M
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B. HIKAMI BOXES
Hikami boxes are short range objects

Example :

? A ? — ER(’]’_')7 7:»/) EA('I:)/”]'_')) ~ e_||F_F/||/€e
>

The poor’s man Hikami box : d =1

. /\ r = [@ ) P ey _ 2 L e
> 2 2
N
1/w

The sharp function can be expanded as a series of distributions :

e lr— | fle _ / 280
% Ox—a )+ 00" (x—2")+

One can show that in any dimension :

?/\?—57“—7') 1+7.DA+---]
~>-
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Hikami boxes

?<5R>? O(F =7 )= [1+7.DA+--]
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