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1. INTRODUCTION 
 
The rapid development of nanoelectronics in the 

last 10-15 years has led not only to the creation and 
wide use of nanotransistors and a variety of nanoscale 
electronic devices, but also to the deeper understanding 
of the causes of current, exchange and energy dissipa-
tion, and the operation principles of nanoscale devices 
as well as conventional electronic devices [1-4]. Nowa-
days, the revolutionary changes in electronics require 
reviewing the content of physics studies at the univer-
sity. A similar revolutionary situation was 50 years ago 
after the discovery of the transistor, which led not only 
to the widespread use of microelectronic devices, but 
also to a radical revision of the university and engi-
neering courses of General Physics, not to mention the 
special courses in electronics and related disciplines. 
The materials and substances used in electronics are 
characterized by such integral properties as carrier 
mobility and optical absorption coefficient, with further 
use to explain the observed physical phenomena and 
modeling of various electronic devices from the time of 
formation physics of solid state. Now with the shift to 
meso- and nanoscopic the nano- and molecular transis-
tors require using of laws of quantum mechanics and 
non-equilibrium statistical thermodynamics for its de-
scription and simulation from the very outset, which 
inevitably leads to a revision of university physics 
courses at the beginning. 

According to Ohm's law, the resistance R and con-
ductance G of the conductor with length L and cross-
sectional area A are given by expressions: 

 
  / / and 1/ /R V I L A R G A LU V{  {  , (1) 
 

where the resistivity ρ and its inverse conductivity V 
does not depend on the geometry of the conductor and 
the properties of the material from which the conductor 
is made. Ohm's law says that length reduction of the 
conductor several times reduces the resistance in the 
same number of times. And if we reduce the length of 
the conduction channel to a very small size, does it 
mean that the resistance will be almost "neutral earth-
ing"? 

With usual "diffusive" motion of electrons through a 
conductor the mean free path in conductor is less than 
1 micron and varies widely, depending on the tempera-
ture and the nature of the conductor material. The 
length of the conduction channel in the current FET is 
~ 40 nm, which are few hundred atoms. It is appropri-
ate to ask the question: if the length of the conductor is 
less than the diffusion length of the mean free path, 
does the electron motion become ballistic? Will re-
sistance obey Ohm's law in the usual record? And what 
if one reduces the length of the conduction channel to a 
few atoms? Does it make sense to speak of the re-
sistance in itself? All these questions were the hot dis-
cussion topic 15-20 years ago. Nowadays the answers to 
these questions are given and reliably supported by 
numerous experimental data. And even the resistance 
of the hydrogen molecule was measured. [5] 

Attention is drawn to the fact that the impressive 
success of the experimental nano-electronics didn’t 
have any effect on the way we think, learn, and explain 
the concept of resistance, conductivity and operation of 
electronic devices in general. And until now, apparent-
ly, for historical reasons the familiar concept of "top-
down" from the massive conductors to molecules domi-
nates. This approach was acceptable as long as there 
was not enough experimental data on the measure-
ment of conductivity of nanoscale conductors. In the 
last decade, the situation has changed. Vast experi-
mental data are accumulated for large and maximum 
small conductors. The development of the concept of 
"bottom-up" conductivity, which was not only found to 
be complementary to concept of "top-down" but also led 
to a rethinking of the operation principles of conven-
tional electronic devices, has begun [6-8]. Recall that 
the concept of "bottom-up" from the hydrogen atom in 
the direction of the solid dominates in quantum me-
chanics from the start. 

There is another range of problems in nanoelectro-
nics, for which the concept of "bottom-up" is very inter-
esting. This is the transport problem. In conventional 
electronics transport of particles is described by the 
laws of mechanics-classical or quantum. Transport in 
bulk conductors is accompanied by heat, which is de-
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scribed by the laws of thermodynamics-conventional or 
statistical. Processes are reversible in mechanics, and 
irreversible in thermodynamics. Strictly speaking, it is 
impossible to separate these two processes – the 
movement and heat. There is quite different situation 
in nanoelectronics. Here the process of electron motion 
and heat are spatially separated: the electrons move 
elastically, ballistic ("elastic resistance"), and heat gen-
eration occurs only at the interface of the conductor 
and the electrodes. The concept of "elastic resistor" was 
proposed by Landauer in 1957 [9-11] long before its 
experimental confirmation in nanotransistors. The con-
cept of "elastic resistor", properly speaking, is an ideal-
ization, but it is reliably confirmed by numerous exper-
imental data for the ultra-small nanotransistors. The 
development of the concept of "bottom-up" [12] has led 
to the creation of the unified picture of transport phe-
nomena in nanoscale electronic devices as well as in 
macrodimension ones. 

The paper presents the causes of the origin of cur-
rent and the role of electro-chemical potentials under 
the concept of "bottom-up" and the Fermi functions in 
this process. Furthermore, the model of «elastic resis-
tor» is considered and a new formulation of Ohm's law 
is given. Within the framework of conception "below-
up" the general questions of electronic conductivity will 
also be considered, including the example of graphene. 

 
2. THE CAUSE OF THE CURRENT 

 
When asked about the cause of current by applying 

the potential difference at the ends of the conductor 
usually refer to the relationship of the current density j 
and the external applied electric field E 

 
 j   VE, (2) 
 

in other words, electric field is usually considered the 
cause of current. The answer is, at the best case, in-
complete. Before connecting conductor to the cleats of 
the voltage source the strong electric fields created by 
nuclei affects electrons of the conductor and current is 
still not arise. Why do the strong internal electric fields 
not cause the movement of electrons, but much weaker 
external electric field of battery causes movement of 
electrons? It is usually said that the internal micro-
scopic fields can’t cause movement of the electrons, it is 
necessary to attach an external macroscopic field. This 
explanation can not be satisfactory. It is impossible 
definitively separate the internal and external electric 
fields in present-day experiments of measuring the 
individual molecules conductivity. We have to take this 
lesson learned us by present experimental nanoelec-
tronics, and re-ask the question why the electrons move 
when the battery is connected to the ends of the con-
ductor. 

To answer the question about the cause of current 
from the start we need two concepts – the density of 
free states, those occupied by electrons per unit energy 
D (E) and electrochemical potential P0 (Fig. 1). For 
simplicity's sake, that will not affect the final conclu-
sions, we will use the point model of conductor (the 
channel of electron transfer), which assumes the im-
mutability of the density of states D (E) as they move 

along a conductor. If the system comprising the source 
electrode (S / Source), conductor M and stock electrode 
(D / Drain) are in equilibrium (shorted), the electro-
chemical potential P0 is the same everywhere, and all 
states with E < P0 filled with electrons, and the states 
with E > P0 are empty (Fig. 1). 

 

 
 

Fig. 1 – The first step in explaining the operation of any elec-
tronic device should be setting the density of states D (E) as 
the function of the energy E in the conductor M and determi-
nation of the equilibrium value of the electrochemical poten-
tial P0, separating the occupied electron states from empty 
states 

 
When the voltage source in the circuit (Fig. 2) the 

potential difference V reduces all energies on the posi-
tive electrode D on the value of qV, where q – charge of 
electron, resulting in the electrodes the electrochemical 
potential difference is created 

 

 1 2–  qVP P  . (3) 
 
Just as the temperature difference causes heat flow, 

and the difference in the levels of fluid leads to its 
flows, and electrochemical potential difference is the 
cause of the current. Only the state of the conductor in 
the interval P1 – P2 and located enough close to the val-
ues of P1 and P2 contribute to the electron flow, while 
all the state that are much higher μ1 and lower P2 do 
not play any role. The reason is as follows. 

Each contact seeks to lead the current channel to 
the equilibrium with itself by filling all the states of the 
channel with electrons with energy less than the elec-
trochemical potential P1, and emptying of states of 
channel with energy greater than the potential μ2. 
Consider the current channel with the states with en-
ergy less than P1, but more P2. Contact 1 is seeking to 
fill these states, because their energy is lower than P1, 
and contact 2 tends to empty these states because their 
energy is greater than P2, which leads to the continu-
ous movement of electrons from contact 1 to contact 2. 
Now consider the state of the channel with energy 
greater than P1 and P2. Both contacts tend to empty 
these states, but they are empty and do not make their 
contribution to the electrical current. The situation is 
similar to the states when energy is less at the same 
time than both potentials μ1 and μ2. Each contact is 
seeking to fill them with electrons, but they are already 
filled, and can’t make the contribution to the current,  
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Fig. 2 – When the voltage V is applied at the terminals of the 
conductor the anode potential D is reduced by the value of qV, 
creating the electrochemical potential difference P1 – P2 = qV 
at the ends of the conductor 

 
or rather can’t make one within a few kT of the window 
width of the conduction, that we will see later. 

A similar picture is almost self-evident, if not for 
the usual claim that the electrons move in the electric 
field inside the conductor. If this was the case, all the 
electrons, not just those ones, whose state energy lies 
within the potential difference on the ends of the con-
ductor, would have to make the contribution to the cur-
rent. 

 
3. THE ROLE OF THE FERMI FUNCTIONS  

 
Thus, it was argued that in equilibrium all states 

with energy E < P0 are filled with electrons and the 
states with energy E > P0 are empty. This is true only 
to near of absolute zero. More precisely, the transition 
from the fully filled states to empty ones occurs in the 
gap ~ ± 2 kT, covering the value E   P0, where k – 
Boltzmann constant, T – absolute temperature. Math-
ematically, this transition is described by the Fermi 
function 

 

 � �
0

1

exp 1
k

f E
E
T
P

 
�§ · �¨ ¸

© ¹

 (4) 

 
Graph of the Fermi function is shown in Fig. 3 on 

the left, perhaps in a slightly unusual form of energy in 
dimensionless units on the vertical axis, which will 
later allow us to combine Fermi function with graph of 
the density of states D (E) in order to explain the rea-
sons for current generation. 

Fermi function plays the key role in statistical me-
chanics, but also for our purposes enough to under-
stand that the state with the low energy are always 
occupied (f   1), while the states with high energy are 
always empty (f   0), and the transition from f   1 to 
f   0 occurs in the narrow energy range ~ ± 2 kT, cover-
ing the value E   P0. 

Indeed, in Fig. 3 it is shown the derivative of the 
Fermi function, multiplied by kT in order to make it 
dimensionless 

 

 � �, kT
f

F E T
E

P w§ · �¨ ¸w© ¹
 (5) 

 
 

Fig. 3 – Graphs of the Fermi function and the normalized 
function of thermal broadening 

 
Substituting the expression for (4), we see that 
 

 � �
� �2

,
1

x

T
x

e
F E

e
P  

�
, (6) 

 
where x ≡ (E – P) / kT. From (6) we see immediately 
that 

 

 � � � � � �,T T TF E F E F EP P P �  �  (7) 
 

and from equations (6) and (4) it follows that 
 

 � �1TF f f � . (8) 
 
Integrating of the function (8) in the entire range of 

energy gives the area equal kT 
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 (9) 

 
So that the function FT can roughly be thought of as 

a rectangular “impulse”, centered about the meaning of 
E   P0 with height equal to 1/4 and width about 4 kT. 

 
4. OUT OF BALANCE  

 
When the system (Fig. 1) is in equilibrium, the elec-

trons are distributed according to the available states 
according to the Fermi function. There are no simple 
rules for calculation of the electron distribution func-
tion when out of balance. It all depends on the specific 
task to be solved by the methods of nonequilibrium 
statistical mechanics. 

In this special case of out of equilibrium (Fig. 2) you 
can be safely argued that both contacts S and D are so 
large compared to the electron-transfer channel that 
they can’t get out of equilibrium. Each contact locally is 
in equilibrium with its own electrochemical potential, 
producing two Fermi function (Fig. 4) 

 

 � �1
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1
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and 
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Fig. 4 – When they get out of balance the electrons in the 
contacts take available to them the states in accordance with 
the Fermi distribution, and the values of electrochemical po-
tentials 

 
Summing up, it is stated that the reason of the cur-

rent is the difference in the preparation of the equilibri-
um states of contacts, displayed by their respective Fer-
mi function f1(E) and f2(E). Qualitatively, this is true for 
any conductors – nanoscale and macrodimension ones. 
However, for nanoscale conductors the current is propor-
tional to the difference I (E) ~ f1 (E) – f2 (E) of the Fermi 
distributions in both contacts at any value of the energy 
of the electronic states in a conductor. This difference 
vanishes if the energy E is greater P1 and P2, as in this 
case; both the Fermi functions are zero. This difference 
also vanishes if the energy E is smaller P1 and P2, as in 
this case, both the Fermi functions are equal to one. 
Current arises only in the window P1 – P2, if it contains 
at least one electronic state of the conductor. 

 
5. LINEAR RESPONSE 

 
The current-voltage characteristic is usually non-

linear, but it could be single out plot of "linear re-
sponse", which implies conductance dI / dV at V → 0. 

We construct the function of the difference of the 
two Fermi functions, normalized to the applied voltage 

 

 � � � � � �1 2

q / k
f E f E

F E
V T
�

 , (12) 

 
Where 

 

 
� �
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1 0

2 0

q / 2

q / 2

V

V

P P

P P

 �
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. (13) 

 
Function of the difference F (E) is narrowed as the 

voltage V, multiplied by the charge of the electron, be-
comes smaller than kT (Fig. 5). Note also that as kT 
begins to exceed the energy qV, function F (E) is get-
ting closer to the function of the thermal broadening (5) 
F (E) → FT (E) at qV / kT → 0, so that from equations 
(12) follows that 
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1 2 0

q
, q

k T
fV

f E f E F E V
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P
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 (14) 

 
if the applied voltage multiplied by the electron charge, 
P1 – P2   qV becomes much smaller kT. 

 
We also need the following expression 
 

 � � � � � �0
0 0

f
f E f E

E
P P

w
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w
 (15) 

 
 

Fig. 5 – The graph of the difference F (E) depending on the 
value (E – P0) / kT for different qV / kT ≡ y 

 
which, like the equation (14), can be obtained as fol-
lows. 

For the Fermi function 
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we have 
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where from 
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Equation (15) is obtained from the decomposition of 

the Fermi function in Taylor series near the point of 
equilibrium 
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From equation (18) it follows 
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. (20) 

 
Let f(E) corresponds to f(E, P), and f0(E) corresponds 

to f (E, P0), then 
 

 � � � � � �0 0
f

f E f E
E

P P w§ ·| � � �¨ ¸w© ¹
, (21) 

 
that after rearrangement gives the required equation 
(15), which is true for P – P0 << kT. 
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Preliminary results. Conductivity of materials can 
vary by more than 1020 times, going, for example, from 
silver to glass – the substances that very distant from 
each other in the scale of conductivity. The standard 
explanation for the difference in the conductivity is 
alleged that the density of "free electrons" in these ma-
terials is very different. This explanation immediately 
requires explanations which electrons are free, and 
which are not. This difference becomes more and more 
absurd as the transition to the nanoscale conductors. 

The concept of "bottom-up" offers the following sim-
ple answer. Conductivity depends on the density of 
states in the window with width of a few kT, covering 
the equilibrium electrochemical potential μ0, defined by 
the function FT (equation 5, Fig. 3), which is different 
from zero in a small gap with width a few kT around 
the equilibrium value of the electrochemical potential. 

It's not in the total number of electrons, which is of 
the same order as in silver, and in the glass. The key 
point is the presence of the electronic states in the 
range of meaning of electrochemical potential P0 that 
basically distinguishes one substance from another. 

The real answer is not new, and it is well known to 
experts in the field of nanoelectronics. However nowa-
days discussion usually starts with the Drude theory 
[13], which has played an important historical role in 
understanding the nature of the current. Unfortunate-
ly, the approach of the Drude spawned two misunder-
standings that should be overcome, and especially in 
the teaching of physics, such as: 

(1) Current is generated by an electric field; 
(2) Current depends on the number of electrons. 
Both misconceptions related to each other, as if the 

current would indeed be generated by an electric field, 
then all the electrons would be affected by the field. 

Lessons learned from our experimental nanoelec-
tronics, show that the current generated by the "prepa-
ration" of the two contacts f1(E) – f2(E), and this differ-
ence is not zero only in the window around the equilib-
rium electrochemical potential P0. Conductivity of the 
channel is high or low depends on the availability of 
the electronic states in the window. This conclusion 
usually come through the Boltzmann transport equa-
tion [14] or Kubo formalism [15], while we use the con-
cept of "bottom-up" immediately gives a physically cor-
rect picture of the current. 

 
6. MODEL OF ELASTIC RESISTANCE  

 
Thus, the current generated by the "preparation" of 

the two contacts 1 and 2 with the Fermi functions f1(E) 
and f2(E). The larger value of the electrochemical po-
tential corresponds to negative terminal 1, and a lower 
value – to positive. Negative terminal is willing to 
transfer the electrons in the conduction channel, and 
positive contact seeks to extract electrons from the 
conduction channel. This is true for any conductors – 
either nanoscale, or macrodimension. 

Model of elastic resistor serves as a useful idealiza-
tion that provides physically correct explanation of 
functioning of nanoscale conductors and opens the pos-
sibility for a new interpretation of macrodimension 
devices. Rolf Landauer proposed the concept of «elastic 
resistor» in 1957 [9-11] long before its experimental 

confirmation in nanotransistor. [1] The concept of 
"elastic resistor", strictly speaking, is an idealization, 
but it is reliably confirmed by numerous experimental 
data for ultra small nanotransistors. [3] Development 
of the concept of elastic resistor [6-8, 12] has led to the 
creation of a unified picture of transport phenomena in 
electronic devices of any dimension. 

In the elastic resistor model electrons swaps the 
conduction channel from the source contact S to stock 
one D elastically, without loss or acquisition of energy 
(Fig. 6). 

 

  
 

Fig. 6 – In the elastic resistor electrons move ballistically 
through the channels with constant energy 

 
Current in the range of energy from E to E + dE is 

separated from the channel in the elastic resistor with 
different values of energy that allows us to write for the 
current in the differential form 

 

 � � � � � �� �1 2dI dEG E f E f E � , (22) 
 

and after integration to obtain an expression for the 
total current. Then, using the expression (14), we ob-
tain the expression for the low voltage conductivity 
(linear response) 

 

 � �0fI
G dE G E

V E

�f

�f

w§ ·
{  �¨ ¸w© ¹

³ , (23) 

 
in which the negative derivative (– ðf0 / ðE) can be 

thought as a rectangular impulse, whose area is equal 
to one and the width ~ ± 2 kT (Fig. 3). According to 
(23), the conductivity function G(E) for the elastic resis-
tor, being averaged over the range of ~ ± 2 kT, which 
includes the value of the electrochemical potential P0, 
gives the experimentally measured conductance G. At 
low temperatures, you can simply use the value of G(E) 
with E   P0. 

Such energetic approach to the conductivity in the 
elastic resistor model provides the significant simplifi-
cation in understanding of the current causes, although 
it sounds paradoxical, because we traditionally associ-
ate the current I through the conductor with the re-
sistance R and the Joule heat I2R. How can we talk 
about resistance when electrons moving through a con-
ductor do not lose energy? 

The answer is that since the electrons do not lose 
energy when driving on elastic resistor, energy loss 
occurs at the conductor boundary with the source and 
stock contacts, where Joule heat is dissipated. In other 
words, the elastic resistance, characterized by the re-
sistance R of the conductance channel, dissipates Joule 
heat I2R outside of the conductance channel. This is 
indicated by the many different experimental meas-
urements, direct and indirect, on the nanoscale conduc-
tors [3, 4], not to mention the fact that the dissipation 
of heat, whether a single molecule or nanoconductor, 
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would lead to their combustion, and the general opin-
ion now is that the combustion does not occur in real 
experiments as overwhelming majority of the heat is 
generated at the contacts, which are quite massive and 
thus fairly easy dissipate heat. 

The concept of elastic resistor does not include the 
obligatory follow of an electron along a straight path 
from the source to the drain and it is allowed the "dif-
fusion" motion with the variable impulse vector, but no 
change in energy. 

Model of elastic resistor is introduced not only as a 
useful concept for explaining the operation of nanoscale 
devices, but also because this model allows explaining 
the transport properties such as conductivity in 
macrodimension conductors. This model makes the 
concept of a "bottom-up" [8, 12] so effective in explain-
ing the transport phenomena in general. We will re-
turn to this statement later, but now we will get the 
expression for the conductivity of the elastic resistor. 

 
7. THE CONDUCTIVITY OF THE ELASTIC  

RESISTOR 
 
In the spirit of the concept of "bottom - up", we will 

consider a simple elastic resistor with a single channel 
of energy ε, from which the electron jumps from the 
source to the drain (Fig. 7). 

 

  
 

Fig. 7 – One-level model of elastic resistor with energy in the 
channel H 

 
Recall that by assigning a negative charge to elec-

tron, which is not possible to change, the contact with 
more voltage D has a smaller electrochemical potential, 
and the motion of the electron through the channel 
comes from the larger value of the electrochemical po-
tential to a smaller, so that the current direction is 
opposite to the actual movement of electrons from the 
source S to the drain D. In fact, we always have in 
mind that this is the real current of electrons, rather 
than the current in the usual sense. 

The resulting single-channel current is 
 

 � � � �� �1 2
q

I f f
t

H H �  (24) 
 

where t is the time required for an electron leakage 
from the source S to the drain D. You can now general-
ize the expression (24) to arbitrary elastic resistor 
(Fig. 6) with the arbitrary density of states D(E), bear-

ing in mind that all the energy channels in elastic re-
sistor conduct independently and in parallel mode. 
First, we write down the expression for the current in 
the channel with the energy from E to E + dE 
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q

2
D E

dI dE f E f E
t

 � , (25) 
 

which takes into account that there are D(E)dE states 
in this channel and only half of them contribute to the 
current from the source S to the drain D. Integrating, 
we obtain an expression for the current through the 
elastic resistor 
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where 
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If the difference P1 – P2   qV by voltages V on con-

tacts is much smaller than kT, it is entitled to use 
equation (14) and write 
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which leads to the equation (23). In general case, 

 

 
2q
2
D

G
t

 , (29) 
 
However, we must remember that the density of 

states D and the time of flight t in general case depend 
on the energy and should be averaged within ± 2kT, 
including electrochemical potential P0. This expression 
is submitted correct and intuitive. It argues that the 
conductivity is proportional to the product of two fac-
tors, namely, the presence of states (D) and the ease 
with which the electron covers the distance from the 
source to the drain (1 / t). This is the key result for fur-
ther discussion. Now we turn to the more detailed con-
sideration of heat dissipation by the elastic resistor. 
8. HEAT DISSIPATION BY ELASTIC RESISTOR  

 
The resistance R of the elastic resistor is deter-

mined by the channel, and the corresponding heat I2R 
is released outside the conductance channel. Let us 
consider the situation on the example of a single-level 
model of the elastic resistor with energy in the channel 
ε (Fig. 7). Each time when an electron jumps ballistical-
ly the channel from the source, it is in the state of "hot  

 
 

Fig. 8 – Instantaneous picture after breakthrough of electron 
from source to drain in the channel with energy H, excess elec-
trochemical potential of drain P2 
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electron" at the drain of energy ε, excess electrochemi-
cal potential of drain P2 (Fig. 8). 

In the drain contact the dissipation processes quick-
ly dissipate the excess energy H – P2. Similarly, on the 
source contact "hole" with energy H, less than the elec-
trochemical potential P1 of the source, filled with elec-
trons, and the excess energy P1 – H dissipates on source 
(Fig. 9). 

 

 
 

Fig. 9 – After the ballistic flight of the electron from the 
source to the drain through the channel with energy H, on 
source energy P1 – ε is released , and on the drain the energy 
H – P2 is released, and contacts are in balance again 

 
The total energy dissipated on the contacts is P1 –

 μ2   qV. If N electrons skip from the source to the 
drain in the time t, then the power dissipated at the 
contacts 

 
 q /P V I V N t �  � . (30) 
 
Thus, the heat generated by the passage of current 

in elastic resistor dissipates on the contacts, which al-
ready has experimental evidence for nano- and meso-
dimensional conductors [16]. The attractiveness of the 
elastic resistor model is that the mechanical and ther-
modynamic processes are spatially separated. 

 
9. MODEL OF ELASTIC RESISTOR AND MAC-

ROCONDUCTORS 
 
It is natural to wonder about the validity and use-

fulness of the elastic resistor model to explain and un-
derstand the physics of the phenomenon of current flow 
in normal macroconductors, in which the electron mo-
tion is apparently inelastic. In macroconductors inelas-
tic processes are combined with flexible and randomly 
distributed throughout the conductor (Fig. 10). We par-
tition a macroconductor with randomly distributed the 
inelastic collisions on sequence of elastic resistors 
(Fig. 11) of length L, that much shorter than the real 
macroconductor, and with the voltage drop between the 
adjacent elastic resistors, which is the small fraction of 
the potential difference at the ends of the real conduc-
tor P1 – P2   qV. In the partition the lengths L must be 
less than the length of Lin, which is the electron mean 
free path to the next inelastic collision. While partition-
ing except the condition L < Lin it should be comply the 
requirement that the voltage drop between the adja-
cent elastic resistors ΔV < kT / q. 

 

 
 

Fig. 10 – In macroconductors the inelastic processes combined 
with elastic ones 

 

 
 

Fig. 11 – Hypothetical partition of the real macroconductor on 
the series of the elastic resistors 

 
Partitioning the large conductor to the elastic resis-

tors requires some care. As will be shown below, the 
standard expression for Ohm's law should be changed 
to 

 
 � � /R L AU O � , (31) 
 

where A − the cross-sectional area of  the conductor, in 
which the additional resistance UO / A does not depend 
on the length of the conductor and can be interpreted 
as borderline resistance, which occurs at the boundary 
of the channel / contact. In the expression (31) O is the 
length, which is close to the mean free path, so such 
modification of Ohm's law is significant only for ballis-
tic conductors (L ~ O) and is not significant for large 
conductors (L >> O). However, conceptually, this addi-
tional resistance will be extremely important if using 
the hypothetical structure in Fig. 11 to explain the real 
situation in Fig. 10. Structure in Fig. 11 has a lot of 
boundary interfaces that do not exist in the real situa-
tion (Fig. 10), so you should get rid of the virtual 
boundaries. For example, if a resistance (31) character-
izes each section of length L in Fig. 11, the correct ex-
pression for the conductor in Fig. 10, for example, with 
the length 3L will be 

 

 � �3 /R L AU O � , (32) 
 

rather than 
 

 � �3 3 /R L AU O � . (33) 
 
Thus, to obtain the correct expression for the con-

ductivity of the long conductor in the frame of the elas-
tic resistor model you should carefully separate the 
boundary resistance from the conductor resistance, 
depending on its length. 

 
10. BALLISTIC AND DIFFUSIVE TRANSPORT  

 
As we saw above, the conductivity of the elastic re-

sistor is given by (29) 2q / 2G D t . 
We will show that the transit time t through the re-

sistor of length L in diffusion mode with the mean free 
path O is related to the transit time in the ballistic re-
gime tB by ratio 

 

 1B
L

t t
O

§ · �¨ ¸
© ¹

. (34) 

 
Substituting (34) into (29) and taking into account 

that 
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 2q / 2B BG D t{  (35) 
 

we  will finally obtain for the conductivity in the diffu-
sive mode 

 

 BGG
L

O
O

 
�

. (36) 
 
Inverting the conductivity (36), we will obtain for 

Ohm's law in a new formulation 
 

 � �R L
A
U O � , (37) 

 
where 

 

 1 1

BA A G
U

V O
  . (38) 

 
Until now, it was the three-dimensional resistor 

with a cross-section A (Fig. 12). 
 
 
 
 
 
 
 
 

Fig. 12 – Conductors of dimension 3d, 2d and 1d 
 
The various experiments are performed on two-

dimensional conductors with a width W and single-
dimensional cross-section. For such 2d-resistors the 
corresponding expressions for Ohm's law, obviously, 
have the form 

 

 � �
W

R L
U O �  (39) 

 
where 

 

 1 1

BW W G
U

V O
  . (40) 

 
Finally, for one-dimensional conductors we have 
 � �R LU O � , (41) 
 

where 
 

 1 1

BG
U

V O
  . (42) 

 
We will write Ohm's law compactly for conductors of 

all three dimensions 
 

 � � 1 1
1, ,R L

W A
U O ­ ½ � ® ¾

¯ ¿
, (43) 

 
where 

 

 1 1 1
1, ,BG W A

V O
U

­ ½  ® ¾
¯ ¿

. (44) 

 
The expression in the curly brackets corresponds 

1d-, 2d-and 3d-conductors. Note that the resistivity 

and conductivity have different dimensions, depending 
on the dimensions of the conductor, and the conductivi-
ty and the length is still measured in meters and sie-
mens. 

Standard Ohm's law says that the resistance tends 
to zero with decreasing length of the conductor to zero. 
Nobody expects that the resistance becomes zero, but 
common consensus is that the resistance tends to the 
certain boundary resistance, which can be made arbi-
trarily small with the improvement of measurement 
technology. The experimentally established fact is that 
under the most carefully prepared contact the observed 
minimal resistance is associated with the channel con-
ductance and is independent of the contact [2]. Modi-
fied Ohm's law reflects this fact: even at approaching 
the length conductor to zero the residual resistance 
associated with the effective length of O is remained. It 
is appropriate, however, to ask yourself what sense is 
to talk about a non-zero length O at zero length of the 
conductor. The answer is the fact that for nanoscale 
conductors neither resistivity ρ, nor the length O has 
sense separately, and only their product is essential. 

 
11. BALLISTIC AND DIFFUSIVE TRANSPORT 

 
Consider how the density of states D and the time 

of flight t in the expression for the conductivity (29) 
correlate with the size of the channel in large conduc-
tors. As for the density of states, it is an additive prop-
erty. At two times large channel has twice the electron 
states, so that the density of states for large conductors 
should be proportional to the volume of the conductor 
A∙L. 

As for the time of flight t, it is usually considered 
two transport modes: 

ballistic one with t ~ L and diffusion one with t ~ L2. 
Ballistic conductance is proportional to the cross sec-
tional area of the conductor and, according to (29) does 
not depend on the length of the conductor. Such "non-
ohmic" behavior is actually observed in nanoscale con-
ductors [17]. As for conductors with diffusive transport 
mode, they show normal "ohmic" behavior of the con-
ductivity G ~ A / L. 

The difference of the two transport modes can be 
explained as follows. In the ballistic regime the time of 
flight from the source to the drain 

 

 B
L

t
u

 , (45) 
 

where 
 

 zu Q  (46) 
 

is the average velocity of the electrons along the axis z of 
the motion direction of electrons from source to drain. 

In the case of the diffusion mode time t quadratical-
ly depends on the length of the conductor 

 

 
2

2
L L

t
u D

 � , (47) 
 

where the value D  is the diffusion coefficient in the 
frame of theory of random walks [18] 

Current 
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 2
zD Q W  (48) 

 
where W is the mean free time. 

Using (45), we rewrite the (47) in the form 
 

 1
2B
Lu

t t
D

§ · �¨ ¸
© ¹

, (49) 

 
which together with the equation (34) for the length of 
O yields 

 

 2D
u

O  . (50) 
 
To calculate the constants ū according to the equa-

tion (46) and D  according to the equation (48) it is re-
quired to the average electrons velocity in the direction 
of their movement (axis z) for all angular variables, 
depending on the dimension of the conductor d   {1, 2, 
3}. Simple calculations yield for 

 

 2 21d-conductor andz zQ Q Q Q  ,  (51) 
 

 2 22d-conductor 2 / and / 2z zQ Q S Q Q  ,(52) 
 

 2 23d-conductor / 2 and / 3z zQ Q Q Q  ,(53) 
 

with the result that 
 

 � � 2 1
1, ,

2zu EQ Q
S

­ ½  ® ¾
¯ ¿

, (54) 

 

 � �2 2 1 1
1, ,

2 3zD EQ W Q W ­ ½  ® ¾
¯ ¿

, (55) 

 
or finally for the mean free path O we have 
 

 2 4
2, ,

2 3
D
u

SO QW ­ ½  ® ¾
¯ ¿

. (56) 

 
We emphasize that the length λ includes a numeri-

cal factor depending on the dimensions of the conduc-
tor, as compared to its standard value of O   v u W. Can 
we use this standard value of O? Yes, we can, but then 
in the new formulation of Ohm's law (43) L should not 
only be replaced by L + O, but add O to L , multiplied by 
the numerical factor that depends on the dimension of 
the conductor, or use the definition of the length of O in 
(56). It’s curious that this factor even for one-
dimensional conductor is not equal to one, and is two. 
The value of W is the mean free time of the flight to the 
next encounter. Since the scattering is assumed to be 
isotropic, only half of the acts collision leads the elec-
tron from the source to the drain. With regard for the 
inverse scattering the length value for O for 1d-
conductor is equal 2vW. 

Now we will obtain the equation for the ballistic 
conductance. From equations (35) and (45) we have 

 

 2q 2BG Du L{ , (57) 
 

and substituting equations (54), we obtain 
 

 
2q 2 1

1, ,
2 2B
D

G
L
Q

S
­ ½{ ® ¾
¯ ¿

. (58) 

 
Finally, substituting (56) and (58) into (44) and tak-

ing (55) we will obtain for the conductivity 
 

 2 1 1
1, ,

D
q D

L W A
V ­ ½ ® ¾

¯ ¿
. (59) 

 
So, the expressions for the conductivity in the bal-

listic mode (59) and diffusion mode (36) are obtained 
based on the general expression for the conductivity 
(29) and transit times (45) and (47). 

 
12. CONDUCTIVITY MODES 

 
From equation (58) it is shown that the ballistic 

conductance is proportional to the density of states per 
unit length of the conductor D / L. Since the density of 
states is proportional to the volume, it can be expected 
that the ballistic conductance is proportional to the 
cross sectional area A of the 3d-conductor or width W of 
the 2d-conductor. 

Numerous experiments have shown [17] that for 
nanoscale conductors the ballistic conductivity does not 
vary linearly with their cross-sectional area, and mul-
tiple of the quantum of conductance 

 

 
2q

BG M
h

{ . (60) 
 
In other words, the real conductor can be considered 

as M independent modes of conduction, giving a total 
ballistic conduction. Taking into account (58), we ob-
tain for the number of conduction modes  

 2 1
1, ,

2 2
hD

M
L
Q

S
­ ½{ ® ¾
¯ ¿

, (61) 

 
and from equations (44) and (60) the conductivity is 
expressed through the number of conduction modes M 
and the mean free path O 

 

 
2q 1 1

1, ,M
h W A

V O ­ ½ ® ¾
¯ ¿

. (62) 

 
We will explain in complete detail the concept of 

conduction modes hereafter. 
 

13. FUNDAMENTAL RELATIONSHIP 
 
Standard expression for the conductivity is given by 

the Drude formula [13] relating the conductivity V with 
the electron density n, the effective mass m and the 
mean free time W 

 

 
21 q n
m
WV

U
{  , (63) 

 
or using the concept of mobility 

 

 q
m
WP  , (64) 
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we have 
 
 qnV P . (65) 
 
On the other hand, it results in two equivalent ex-

pressions for the conductivity in the concept of a "bot-
tom-up", one of which expresses the conductivity 
through the product of the density of states and the 
diffusion coefficient D (59), and the other − through the 
product of the number of modes M in the channel of 
conductance and the average mean free path O (62). 

As the conductance 
 

 � �0fI
G dE G E

V E

�f

�f

w§ ·
{  �¨ ¸w© ¹

³ ,  

 
conductivity of the equations (59) and (62) must be av-
erage over the energy of a few kT, including E   P0 us-
ing the function of the thermal broadening 

 

 � �0fdE E
E

V V
�f

�f

w§ ·
 �¨ ¸w© ¹
³ . (66) 

 
Equation (59) is well known, it is deduced in the 

standard textbooks on solid state physics [13], which is 
not an equivalent equation (62), the deduce of which 
usually requires the use of statistical thermodynamics 
of irreversible processes such as the Kubo formalism 
[14, 15]. 

As for the Drude model we would like to emphasize 
the following. The applicability of the Drude model is 
very limited, while the equation for the conductivity 
(59) and (62) have the most general meaning. For  
example, these equations are applicable to graphene 
[19, 20] with nonparabolic behavior of zones and "mass-
less" electrons – with properties that can’t be described 
in the Drude model. One of the lessons learned by 
nanoelectronics is broad applicability of the equations 
for the conductivity (59) and (62). 

The fundamental difference between (59) and (62) 
and the Drude theory is that the averaging (66) makes 
the conductivity as property of the Fermi surface: the 
conductivity is determined by the energy levels close to 
E   P0. And according to the equations (63)-(65) of the 
Drude theory conductivity depends on the total electron 
density, summed over the entire spectrum of energy, 
which leads to the limited applicability of the Drude 
model. Conductivity of materials varies widely in spite 
of the fact that the number of electrons approximately 
equal. Low glass conductivity not because there are few 
of so-called "free" electrons in it; glass is characterized 

by a very low density of states and the number of 
modes near E   P0. The concept of a "free" electron be-
longs to intuitive concept. 

For any conductor, either with the crystal or amor-
phous structure, and for molecular conductors, follow-
ing [12], we show that, regardless of the functional de-
pendence of E(p), the density of states D(E), velocity 
v(E) and impulse p(E) are related to the number of 
electron states N(E) with energy less than the values of 
E, by the ratio of 

 

 � � � � � � � � dD E E p E N EQ  � , (67) 
 

where d – the dimension of the conductor. Using (67) to 
calculate the conductivity (59) with the diffusion coeffi-
cient (55) 

 

 2 .zD Q W   
 

we obtain for 3d-conductor 
 

 � � � � � �
� �

2q
N E E

E
A L m E

W
V  

�
. (68) 

 
where the mass is defined as 

 

 � � � �
� �
p E

m E
EQ

 . (69) 

 
It is easy to see that the fundamental relation (67) 

is valid for the parabolic dependence of E(r) and linear 
as in graphene [20]. For the parabolic dependence the 
mass of the carrier does not depend on the energy, 
which is not so in general case. 

Equation (68) looks like the expression (63) of the 
Drude theory, if to assume N / A·L as the electron den-
sity n. At low temperatures, it is true, as the average 
(66) at E   P0 gives 

 

 
0

2 2q q /
E

N
n m

A Lm P

WV W
 

§ ·  ¨ ¸�© ¹
, (70) 

 
as N(E) with E   P0 is the total number of electrons 

(Fig. 13). At nonzero temperature the situation is all 
the more sobdifficult if the density states is non-
parabolic. Note that the key factor in the reduction of 
the general expression for the conductivity (59) to (68), 
similar to the Drude formula (63), there is the funda-
mental expression (67) connecting the density of states 
D(E), velocity v(E) and impulse p(E) for the given value 
of the energy with the total number of states N(E), ob-
tained by integrating the density 

How the total number of states N(E) in (71) can be 
unambiguously associated with the density of states 
D(E), velocity v(E) and impulse p(E) for the specific 
value of energy? The answer is in the fact that (67) is 
satisfied only when the energy levels are calculated 
explicitly from the expression for E(p). It may not be in 
the energy region of the overlapping bands or, for ex-
ample, for amorphous, when the function E(p) is not 
known. In these cases, the equations (59) and (62) are 
not equivalent to (68) and you can use only the first 
one. 

 

  

Fig. 14 – The parabolic 
dispersion 

Fig. 15 – The linear dis-
persion 
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 � � � �
E

N E dE D E
�f

 ³ . (71) 

 

 
 

Fig. 13 –The equilibrium Fermi function f0(E). The density of 
states D(E) and the total number of electrons N(E) 

 
Let’s see how single zones described by the different 

ratios of E(p) leads to the fundamental equation (67), 
and thus opens the possibility to establish the relation-
ship between the expressions for the conductivity (59) 
and (62) and Drude formulas (63-65). It will also lead to 
a new interpretation of modes M(E), introduced above, 
and to explaination of their integrality. 

 
14. DISPERSION E (P) FOR CRYSTALLINE  

SOLIDS 
 
Let the standard relation between energy and im-

pulse is parabolic (Fig. 14) 

 � �
2

2c
p

E p E
m

 � , (72) 
 
where m is the effective mass. We will use the rela-

tion E(p) instead of E(k), although you can always go to 
the wave vector k   p / ħ. Dispersion (72) is widely used 
for various substances – for metals and semiconduc-
tors. But this is not the only possibility. For graphene 
[19, 20], which use in nanoelectronics is expected to 
lead to the next step in miniaturization, it takes place 
linear dependence from impulse (Fig. 15) 

 
 0CE E pX � , (73) 
 

where vo – the constant equal to about 1/300 of the 
speed of light. Here and formerly it is used absolute 
value of impulse p. In other words, it is implied that 
the dependence of E(p) is isotropic. 

For isotropic E (p) the velocity is parallel to the im-
pulse, and its value is equal to 

 

 dE
dp

Q { . (74) 

 
15. TO COUNTING THE NUMBER OF STATES 

 
The length L resistor must fit an integer de Broglie 

waves with length O   h / p 
 

 
h /
L
p
   integer or p = integer • (h / L).  

 
This means that the allowed states are uniformly 

distributed for given value of p and each of the states 
occupies the interval 

 

 h
p

L
'  . (75) 

 
We define N(p) as the total number of states with 

the values of the impulse less than the specified value 
of p. For one-dimensional conductors 1d (Fig. 16) this 
function is the ratio of available length 2p (from – p to 
+ p) to the interval Δp 

 

 � � 2
2

h / h
p p

N p L
L

§ ·  ¨ ¸
© ¹

. (76) 

 

 
For 2d-conductors (Fig. 17) it must be divided the 

cross sectional area Sr2 on intervals with the length of 
h / L and cross-sectional area h / W, so that finally 

 

 � � � �� �

22

h / h / h
p p

N p W L
L W
S S § ·  � ¨ ¸

© ¹
. (77) 

 
For 3d-conductors the volume of sphere of radius r 

is divided on the product of the intervals 
(h / L) u (h / W1) u (h / W2), where the cross-sectional 
area A   W1 u W2, so that finally 

 

 � � � �
� �� �

33

2

4 / 3 4
3 hh / h /

p p
N p A L

L A

S S § ·  � ¨ ¸
© ¹

, (78) 

 
or gathering together for d   {1, 2, 3} we have 

 

 � �
� � � �2 3

4
2 , ,

h / 3h / h /

L L W L A
N p

p p p

SS
­ ½� �° ° ® ¾
° °¯ ¿

. (79) 

 
Specifying the dispersion law E(p), we can now cal-

culate the dependence of the number of states N(E) c 
energy less than the given value of E. 

 
16. THE DENSITY OF STATES D(E) 

 
Resulting the function of the number of states N(E) 

must be equal to the density of states D(E), integrated 
over up to the state energy E 

 

 � � � �
E

N E dED E
�f

 ³ ,  

 
so that the density of states 

 

 � � dN
D E

dE
  (80) 

 

  
 

Fig. 16 – To counting the 
number of states for the 1d-
conductor 

Fig. 17 – To counting the 
number of states for 2d-
conductor 
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and using equations (79) 
 

� �
1 4

2 , ,
3

d

d

dN dp dp p d
D E L LW LA

dp dE dE h
S S

� ­ ½  ® ¾
¯ ¿

.(81) 

 
Using (74) and (79) we finally obtain the required 

fundamental equation (67), independent of the disper-
sion law. 

 
17. DRUDE FORMULA 

 
As it has been shown, using (67) to calculate the 

conductivity (59) for the 3d-conductor we obtain the 
expression (68), in which mass depending on the ener-
gy is determined by equation (69). It was also shown 
that equation (68) reduces to the Drude formula (63) at 
temperatures close to zero. Now consider the conductor 
of n-type and p-type separately at temperatures differ-
ent from zero. 

 
17.1 n-type conductors 

 
Using equation (68), and assuming its independence 

of the mass m and the time τ from the energy, we ob-
tain 

 

 � �
2

0q 1 f
dE N E

m A L E
WV

�f

�f

w§ ·
 �¨ ¸� w© ¹

³ . (82) 

Integrating by parts, we have 
 

 
� � � � � � � �

> @ � � � �

0
0 0

00 0  the total number of electrons,

f dNdE N E N E f E dE f E
E dE

dE D E f E

�f �f�f

�f
�f �f

�f

�f

w§ · ª º�  � �¨ ¸ ¬ ¼w© ¹

 � �  

³ ³

³

 (83) 

 
since the product dE u D(E) u f0(E) is the number of 
electrons in the energy range from E to E + dE. Thus, 
equation (82) reduces to the Drude 

 

 
2q N
m A L
WV  

�
, (84) 

 
keeping in mind that N / A u L    n. 

 
17.2 p-type conductor 

 
An interesting situation occurs for the p-conductors 

with the downward dispersion, for example, 
 

 � �
2

2c
p

E p E
m

 � . (85) 
 
Instead of the number of states in (71) we now have 

(Fig. 18) 
 

 � � � �
E

N E dED E
�f

 ³  (86) 

 
which gives 

 

  � � dN
D E

dE
 � . (87) 

 
Since the function N (E) is determined by the func-

tion N(p), which gives the total number of states with 
impulse less than a given value of p, which corresponds 

to the energy larger than the given value of E according 
to the dispersion relation (85). 

If, as before, we integrate by parts 
 

 
� � � � � �

� �

0
0

0

f
dE N E N E f E

E

dN
dE f E

dE

�f �f

�f
�f

�f

�f

w§ · ª º�  � �¨ ¸ ¬ ¼w© ¹
³

³

, (88) 

 
now the first summand does not vanish, since N(E) and 
f0(E) in the lower limit is not zero. 

This situation can be bypassed in the following way: 
to take the derivative of (1 – f0) instead of taking the 
derivative of f0 
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In other words, for the p-type conductors you can 

use the Drude formula 
 2q /n mV W , (90) 
 

if the value of n means the number of "holes": smaller 
number of electrons corresponds to larger value of n. 

 

 
 

Fig. 18 – The equilibrium Fermi function f0(E), the density of 
states D(E) and the number of states N(E) for the p-conductor 
with the dispersion (85) 

 
17.3 Graphene 

 
How to calculate the value of n when zones spread 

in both directions as in graphene with dispersion 
E   ± v0p [19, 20] (Fig. 7, left). It is impossible not to 
recognize the ingenious to split zone in graphene on the 
n-type zone and p-type zone (Fig. 19, right), so that 

 

 � � � � � �n pD E D E D E �  (91) 
 

and then use the formulas of Drude. 
It has to be emphasized that there is no need for 

such ingenuity, because (59) and (62) are applied in all 
cases and correctly reflect the physics of conduction. 

 
18. IS THE CONDUCTIVITY PROPORTIONAL TO 

THE ELECTRON DENSITY?  
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Experimental measurements of the conductivity are 
often performed depending on the electron density, 
which, according to the Drude theory, related linearly, 
so that the deviation from linearity is interpreted as a 
manifestation of the dependence of the mean free path 
of energy. They do not take into account that, for non-
parabolic dispersion the mass of the current carrier 
defined as p / v may depend on the energy and thus 
lead to nonlinearity of conduction from the electron 
density. 

 

 
 

Fig. 19 – Artificial splitting of the band structure of graphene 
on the zone of n- and p-type 

 
First, we will define the electron density from the 

equation (79) 
 

 � �
2 3

2 3

4
2 , ,

h 3h h
p p p

n p
SS

­ ½° ° ® ¾
° °¯ ¿

, (92) 

 
where n is the density of N / L, N / W u L and N / A u L 
for d   1, 2, and 3. Rewrite (92) as 

 

 � � dn p K p , (93) 
 

where the proportionality factor K   {2/h, S/h2, 4S/3h3}. 
Now for the conductivity (70) with (69) we have 

 

 � � � �
� � � � � �2 2 1q q dn p p

K p p p
m p

W
V Q W�  . (94) 

 
If it is known or chosen the dependence of velocity 

and time of the mean free path on the energy, and 
therefore also on the impulse, in the equations (93) and 
(94) we can get rid of dependence on the impulse and 
thus establish the link between the conductivity σ and 
the electron density n. 

For example, in the case of graphene, E   ± v0p, the 
rate dE / dp is constant and equal to v0, and is inde-
pendent of the impulse. Assuming the free path time 
independent of energy, the dependence of the conduc-
tivity on the electron density from the equations (93) 
and (94) and considering equation (56) for the mean 
free path 

 

 2 4
2, ,

2 3
D
u

SO QW ­ ½  ® ¾
¯ ¿

  

 
we obtain the following 

 

 
2q 4

h
nV O
S

  (95) 
 

or with the g-factor (for graphene g   4) 
 

 
2q 4

h
gnV O
S

 . (96) 
 
Thus, the conductivity in graphene is obtained pro-

portional ~ √n, but not as it is usually assumed ~ n, 
and with the mean free time, independent of energy. 
Calculation with (96) with O   2 Pm and O   300 nm 
(Fig. 20) are in agreement with experimental data [21]. 

 

 
Fig. 20 – The conductivity of graphene according to (96) as the 
function of the electron density for the values of O   2 Pm (sol-
id) and O   300 nm (dotted line) is consistent with the experi-
mental data (Fig. 1 in [21]) 
 
19. QUANTIZATION OF CONDUCTANCE AND 

CONDUCTIVITY MODES 
 
Ballistic conductance is quantized 
 

 
2q

hBG M{ .  
 

where for low-dimensional conductors at low tempera-
tures the number of M is integer. Above an expression 
for the number of modes 

 

 h 2 1
1, ,

2 2
D

M
L
Q

S
­ ½{ ® ¾
¯ ¿

 (97) 

 
through the product of the density of states D and the 
electron velocity v, and quite non obvious the integer of 
expression (97). Using the expression for the dispersion 
of E(p), it is possible to give another interpretation of 
M(p) indicating the integer nature of M 

Using (67), we rewrite (97) as 
 

 h 4 3
1, ,

2 2
N

M
Lp S

­ ½ ® ¾
¯ ¿

, (98) 

 
where N (p) is the total number of states with impulse 
less than the given value of p. Using (79) we transform 
(98) to 

 

 � �
� �2

1, 2 ,
h / h /

W A
M p

p p
S

­ ½° ° ® ¾
° °¯ ¿

. (99) 

 
As well as the number of states N(p) gives us the 

number of de Broglie wavelengths that stacked in the 
conductor, and M(p) gives the number of modes that 
stacked in the cross section of the conductor, and this 
number is independent of the dispersion law, since for the 
derivation of (99) any specific dispersion law was not used. 
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In practice while assessing the number N(p) and 
M(p) in the specific task it is obtained, of course, the 
fractional numbers. However, these numbers must be 
integer by the physical meaning. In large conductors at 
high temperatures the quantization of M(p) is smeared, 
however, in the meso- and nanoscale conductors the 
integer nature of the number of modes M (p) and the 
quantization of conductance are observed. Therefore, it 
is more correct to rewrite equation (99) as 

 

 � �
� �2

1, 2 ,
h / h /

W A
M p Int

p p
S

­ ½° ° ® ¾
° °¯ ¿

, (100) 

 
where Int {x} means the greatest integer number less 
than value of x. 

In one-dimensional conductors the number of modes 
coincides with the g-factor equaled to the number of 
valleys, multiplied by the spin degeneracy of 2. Re-
sistance of the ballistic conductors ~ M u h/q2, so that 
the resistance of the ballistic 1d-conductor is approxi-
mately equal to 25 KΩ, divided by g, that is observed 
experimentally [1]: most metals and semiconductors 
such as GaAs have g   2 and the ballistic 1d-sample 
resistance of order of 12.5 KΩ, and carbon nanotubes 
are two-valley with g   4 and their ballistic resistance 
of order of 6.25 KΩ. 

This work is the result of prof. Yu.A. Kruglyak visit 
to the «Fundamentals of Nanoelectronics, Part I: Basic 
Concepts» and «Fundamentals of Nanoelectronics, Part 
II: Quantum Models» course lectures, given on-line in 
January ― April, 2012 by prof. Supriyo Datta in the 
framework of the Purdue University initiative / nano-
HUB-U [www.nanohub.org/u]. 
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