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The proofs below follow [1], [2] and [3].

1 e is transcendental

We start by assuming that e is the root of a non-zero integer-coe�cient polynomial. Choosing such a
polynomial of lowest degree, we would then have

(1) a
n

en + a
n�1e

n�1 + · · ·+ a0 = 0 , a0 6= 0.

In order to prove that this is impossible, we’ll show that we can write

(2) ek =
N

k

+ �
k

N
, k = 1, · · · , n,

with N and the N
k

integers, and the �
k

tiny. Substituting into (1) and multiplying by N , we will then have

(3) a0N + (a1N1 + · · ·+ a
n

N
n

) + (a1�1 + · · ·+ a
n

�
n

) = 0 .

We shall construct the approximations so that the integer part of this expression is non-zero and the � part
has magnitude less than 1. That will then be a contradiction, proving (1) is impossible.

The proof uses an integral relation between the function e�x and factorials. Specifically, with p a large prime
to be determined later, we have1

(4)
1

(p� 1)!

1Z

0

e�xxj dx =
j!

(p� 1)!
=

8
<

:

1, j = p� 1,

a multiple of p, j > p.

Note also that if f is any polynomial then, as long as the denominator is not zero, trivially

(5) ek =

1R

0
ek�xf(x) dx

1R

0
e�xf(x) dx

.

We now choose

(6) f(x) = xp�1(x� 1)p(x� 2)p · · · (x� n)p .

1
This is a standard integration by parts exercise. See, for example, the Wikipedia page on the gamma function.
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(justifié dans la vidéo)



Justification plus progressive des éléments dans la vidéo :
https://www.youtube.com/watch?v=WyoH_vgiqXM



For k = 1, · · · , n we then define 8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

N =
1

(p� 1)!

1Z

0

e�xf(x) dx ,

N
k

=
1

(p� 1)!

1Z

k

ek�xf(x) dx ,

�
k

=
1

(p� 1)!

kZ

0

ek�xf(x) dx .

Noting that
f(x) = (�1)p(�2)p · · · (�n)pxp�1 + higher powers of x,

it follows from (4) that
N = (�1)np (n!)

p

+ a multiple of p.

So, N is an integer. Moreover, if we choose the prime p to be larger than n, then n! cannot be a multiple
of p, and so neither is N . In particular, N 6= 0 and (2) is now immediate from (5). If, further, we ensure
p > |a0| then, noting a0 6= 0, it follows that a0N also cannot be a multiple of p.

Next, we perform the substitution t = x� k in the integral for N
k

, giving

N
k

=
1

(p� 1)!

1Z

0

e�tf(t+ k) dt .

Clearly f(t+ k) has a factor tp, and so from (4) again, N
k

is an integral multiple of p. It follows that the N
part of (3) is a non-zero integer, as desired.

It remains to show that if p is large then �
k

is tiny, and this is just the standard business. We just have to
note that |x� k| 6 n on [0, n], and so on this interval

|f | 6 n(np+p�1) .

Applying this estimate, we see

�
k

6 c · dp

(p� 1)!
,

with c = en and d = n(n+1). It follows that �
k

! 0 as p ! 1, and we’re done.
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2 ⇡ is transcendental

By way of contradiction, we assume that ⇡ is the root of a non-zero polynomial p with integer coe�cients,

p(⇡) = 0 .

This would imply that i⇡ is a root of the integer polynomial

q(x) = p(ix)p(�ix) .

We show that this latter equation leads to a contradiction. We first give the main argument, and in §2.2 we
fill in some details on the symmetric polynomials employed in the argument.

2.1 The Main Argument

Write

(7) q(x) = a(x� ↵1)(x� ↵2) · · · (x� ↵
n

) , a 6= 0.

with ↵1 = i⇡ and a 2 Z. Then 1 + e↵1 = 0, and so trivially

(8) (1 + e↵1) (1 + e↵2) · · · (1 + e↵n) = 0 .

Expanding gives

(9) e�1 + e�2 + · · ·+ e�2n = 0 ,

where �
k

ranges over all sums of distinct ↵
j

, including the empty sum. Letting �1,�2, · · · ,�m

be the non-zero
�, we then have the key identity

(10) r + e�1 + e�2 + · · ·+ e�m = 0 ,

where r = 2n �m. Note that r > 0, since at least the empty sum of ↵ gives � = 0.

We can now mimic and adapt the proof that e is transcendental. To this end, for z complex define

(11) f(z) = zp�1gp ,

where p is a large prime to be determined later, and

(12) g(z) = am(z � �1)(z � �2) · · · (z � �
m

) .

We now define the N and � quantities analogously to the definitions in the e proof, but in terms of complex
line integrals:2

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

N =
1

(p� 1)!

1Z

0

e�zf(z) dz , (along the positive real axis),

N
k

=
1

(p� 1)!

1Z

�k

e�k�zf(z) dz , (along the horizontal line from �
k

to +1),

�
k

=
1

(p� 1)!

�kZ

0

e�k�zf(z) dz , (along the radial path from 0 to �
k

).

2
So, for example, the radial path from 0 to �k can be parametrised by z = �kt with 0 6 t 6 1. Then dz =

dz
dt dt = �kdt, and

so on. The subsequent integral is complex-valued but it can be interpreted, computed and estimated with standard real-variable

techniques.
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⤹ mais cette fois avec des β complexes











Then, by a routine application of Cauchy’s integral theorem,3

(13) N
k

+ �
k

= Ne�k .

So, once we determine N 6= 0, it will follow from (10) that

(14) rN + (N1 + · · ·+N
m

) + (�1 + · · ·+ �
m

) = 0 .

Now, q has integer coe�cients, and g is symmetric in �1, · · · ,�m

, with a suitably large power of a as a factor.
It then readily follows that g, and so also f , has integer coe�cients; see §2.2, below. We can now choose the
prime p to be larger than the magnitude of the constant term of g. Then, as in the proof for e, (4) implies
that N is an integer and is not divisible by p, and in particular N 6= 0. If we further choose p larger than r,
then rN also will not be divisible by p.

Next, setting M = max
k

|�
k

|, it is easy to see that if |z| 6 M then

|f(z)| 6 |a|mp (2M)
mp

Mp�1 .

It follows that

�
k

6 c · dp

(p� 1)!
,

where c = eM and d = 2m|a|mMm+1. So, �
k

! 0 as p ! 1.

It remains to consider the N
k

, which will in general be complex. We can complete the contradiction, however,
by showing that the sum N1 + · · ·+N

m

is an integral multiple of p, implying that the integral part of (14)
is non-zero. In order to do this, we make the substitution w = z � �

k

in the integral for N
k

. Summing then
gives

N1 + · · ·+N
m

=
1

(p� 1)!

1Z

0

e�wh(w) dw ,

with the integral along the positive real axis, and where

(15) h(w) = f(w + �1) + · · ·+ f(w + �
m

) .

It is clear from the form of f that h(w) has a factor wp. As well, using that q has integer coe�cients and
that h is symmetric in �1, · · · ,�m

, it is straight-forward to show that h has integer coe�cients; see §2.2. It
then follows from (4) that N1 + · · ·+N

m

is an integral multiple of p, and we have our contradiction.

3
Let T be a large real number and let � be the closed parallelogram path through the vertices 0, �k, �k+T and T . Cauchy’s

theorem says

R
� F = 0 for our (complex di↵erentiable) function F ; see Wikipedia or, for example, the nice presentation

at people.reed.edu/

~

jerry/311/cauchy.pdf. Now let T ! +1. Noting that e�T ! 0 rapidly, it is easy to prove that

�k+TR

T
F ! 0, and (13) follows.
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2.2 Symmetric Polynomials

We need to show that f given by (11) and (12), and h given by (15), have integer coe�cients. The arguments
are standard applications of the fundamental theorem of symmetric polynomials: any integer-coe�cient

symmetric polynomial is an integer-coe�cient polynomial function of the elementary symmetric polynomials.4

The theorem is of use to us because the integer coe�cients of q are ±a times the elementary symmetric
polynomials of ↵1, · · · ,↵n

. It follows that any symmetric integer polynomial of a↵1, · · · , a↵n

is an integer,
and thus the same is also true for any symmetric integer polynomial of a�1, · · · , a�2n .

We can now apply this to the polynomial

(16) G(z) = (z � a�1) (z � a�2) · · · (z � a�
m

) =
1

zr
(z � a�1) (z � a�2) · · · (z � a�2n) .

The coe�cients of G are symmetric integer polynomials of the a�1, · · · , a�2n , and thus are integers. It follows
that g(z) = G(az) also has integer coe�cients, and therefore so does f .

A similar but messier argument shows that h is also integer coe�cient. Let

8
>>><

>>>:

H(w) = wp�1Gp(w) ,

J(w) =
1

wp

mX

k=1

H(w + a�
k

) =
1

wp

"
�rH(w) +

2nX

k=1

H(w + a�
k

)

#
.

Noting that H has a zero of degree p at all of a�1, · · · , a�m

, it follows from the fundamental theorem that
J is an integer coe�cient polynomial. But then combining the definitions (11), (12), (15) and (16),

h(w) =
mX

k=1

(w + �
k

)
p�1

gp(w + �
k

) =
awp

(aw)p

mX

k=1

h
(aw + a�

k

)
p�1

Gp(aw + a�
k

)
i
= awpJ(aw) .

It follows that h has integer coe�cients.
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4
The presentation in http://www-users.math.umn.edu/

~

garrett/m/algebra/notes/15.pdf is as nice as we’ve found, though

the Wikipedia page on elementary symmetric polynomials is good enough. The theorem is standard and important, and not

di�cult to prove, but we are unaware of any particularly pretty proof.
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