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Abstract – The average individual is typically a mediocre singer, with a rather restricted capacity
to sing a melody in tune. Yet when many singers are assembled to perform collectively, the
resulting melody of the crowd is suddenly perceived by an external listener as perfectly tuned
—as if it was actually a choral performance— even if each individual singer is out of tune. This
collective phenomenon is an example of a wisdom of crowds effect that can be routinely observed
in music concerts or other social events, when a group of people spontaneously sings at unison.
In this paper we rely on the psychoacoustic properties of pitch and provide a simple mechanistic
explanation for the onset of this emergent behavior.
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The wisdom of crowds [1] is a popular concept englobing
several examples of collective intelligence, that emerges
where the collective response of a group of entities is in
some sense better than individual ones. Pioneered by
Galton [2], this effect was in its simpler incarnation a di-
rect consequence of the law of large numbers. Evidence
of collective intelligence spans today social systems in dif-
ferent species [3–5] and activities ranging from optimal
estimation [3], navigation [6], or sensing [7] to cite a few.
In this work we focus on the phenomenon of collective
musical performance. We are not interested in choral
performances but in self-organized “crowd performances”
that take place in popular music concerts [8], sport events
(e.g. in football stadiums) or other social events, or sim-
ply within groups of people that join together to perform
a song or melody. Our contention is that whereas the av-
erage individual is not necessarily a gifted performer and
does not particularly sing in tune (i.e. individual musi-
cal performances are typically of poor quality), when a
large group of these imperfect singers perform at unison
the resulting collective signal is surprisingly tuned. As a
consequence, crowd performance is enhanced as compared
to individual ones and is thus perceived as a choral one.
Whereas some research suggests that individuals improve
while performing at unison [9] —pointing that imitation
might be underpinning this phenomenon— here we show
that imitation, while clearly boosting this effect, is not
itself required for the enhancement to occur in the first
place. We present a toy model that supports this claim

and that provides a simple explanation for the origin of
this collective phenomenon.

Perceived pitch. – It should be stressed that in order
to assess whether a crowd or an individual has a good into-
nation, the listener evaluates such intonation on the basis
of the tone he perceives, or more accurately, based on the
perceived pitch. Now, pitch is indeed a perceptual (subjec-
tive) property of sound [10], a psychoacoustic phenomenon
more similar to a sensation synthesized by the brain than
an objective reality. The perceived pitch indeed coincides
with the frequency in the case where sound is formed by
a pure tone (sinusoidal wave). In the more realistic case
of a complex tone —a sound composed by several tones—
the perceived pitch is a vaguely-defined concept which has
been the source of debate and research since the 19th cen-
tury. To substantiate this statement, we can refer to the
so-called missing fundamental illusion, originally discov-
ered by Seebeck in 1841 and observed experimentally by
de Boer [11] and Schouten et al. [12], which dictates that
when several harmonics are played together, in some cir-
cumstances the perceived pitch does not correspond to any
of the frequencies at which the air is vibrating but indeed
corresponds to a frequency which is not physically present.

In our toy model, the melody to be played consists of
a pure tone with frequency T , which the crowd interprets
at unison. As individuals (or agents, from now on) do
not usually have a perfect pitch, the collective output
produced by the crowd will be a inharmonic complex tone
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that develops out of the mixture of each agent’s contribu-
tion. For simplicity we will assume that each agent con-
tributes with a pure tone —i.e. a sinusoidal wave with a
single frequency. Now, consider two tones with frequency
f1 and f2 and similar amplitudes, played simultaneously.
What is the pitch of this complex tone? If f1 and f2
are sufficiently close, then the pitch is somewhere close to
(f1 +f2)/2 and is accompanied with a beating at |f1 −f2|.
As their difference increases the beating disappears, and
for sufficiently different frequencies one can indeed per-
ceive both frequencies. Furthermore, if f2 = pf1 for some
integer p, then the pitch of the complex tone is just f1, co-
inciding with the fundamental frequency that corresponds
to the greatest common divisor between both frequencies,
GCD(f1, f2). Remarkably, if two tones f1 and f2 are har-
monically related with a third one f0 such that f1 = pf0
and f2 = p′f0 with p, p′ > 1, then the perceived pitch
reduces again to the fundamental frequency f0, which in
this case is not physically present. Despite the absence
of energy at f0 (there is no actual source of air vibration
at that frequency) as a result of constructive interferences
the missing fundamental frequency emerges as the per-
ceived pitch. Schouten called this missing fundamental
the residue pitch [12,13]. For a complex tone with N > 2
partials, the story is far more intricate. Let us consider
initially the case where all frequencies are harmonically
related. If we superpose frequencies f, 2f, 3f, . . . (that
is, a fundamental f and a few higher harmonics) with
more or less the same amplitude, then the resulting pitch
will indeed be f , coinciding again with the fundamental
frequency. If we now remove f0 and only superimpose
2f0, 3f0, 4f0, . . . , Nf0 again GCD(2f0, 3f0, . . . , Nf0) = f0:
we will still perceive f which in this case is, as before, a
missing partial, the residue pitch of Schouten. This hap-
pens as in the range 20–2000 Hz, the ear has the ability
to fuse harmonically-related frequencies into a single en-
tity with a fundamental frequency, even in the case where
such fundamental frequency is missing. Now, in general
the fundamental frequency (either physically present or
missing) does not necessarily correspond to the perceived
pitch, i.e., to the effective frequency perceived by an exter-
nal agent who is listening to the collective output: pitch
is a psychoacoustic phenomenon far more complex than
basic frequency superposition. This fact becomes evident
when we combine partials which are not harmonically re-
lated. Consider the mixture of frequencies at 120, 220,
320, 420, 520, and 620 Hz in equal measure. The GCD of
the mixture is 20 Hz (a frequency which is indeed barely
audible), however the perceived pitch coincides in this case
with a mysterious frequency located at 104.6 Hz [13].

There are essentially two theories (or groups of theories)
on pitch perception [13–16], namely those focusing on spa-
tial separation of partials in the ear (Fourier decomposi-
tion theories pioneered by Ohm and Helmholtz) and those
that focus on the temporal separation, pioneered by Lick-
lider [17]. These are not necessarily mutually exclusive,
and both might have their range of validity. The problem

of the missing fundamental or residue pitch has also been
extensively addressed, and a variety of mechanisms oper-
ating underneath have been proposed, ranging from delay
lines [17], integration circuits [18], timing nets [16] or neu-
ral networks [19] to cite some. Recent works have linked
this very same problem to a mechanism entitled ghost
stochastic resonance [10,20], by which linear interference
of tones is boosted nonlinearly by using noisy thresholds,
thus providing a minimal and biologically plausible mech-
anism by which the strongest resonance is the one that
enhances the missing fundamental [21].

Here we adhere to the perspective where pitch is associ-
ated with something more fundamental than the presence
or absence of a particular partial: its tendency to repeat
itself at given intervals. The extension of this concept to
signals that are not strictly periodic is the autocorrela-
tion function. There is evidence that temporal theories
—i.e., based on autocorrelation— indeed apply to most
of what happens below 5000 Hz, which is where all mu-
sic belongs. Spatial (Fourier) theories on the other hand
play a prominent role above 5000 Hz. As a matter of fact,
our neural processes cannot keep track of time intervals
shorter than about 0.0002 seconds, or 5000 Hz, so it is
reasonable that we lose the precision of timing above that
frequency and switch over to a place mechanism for de-
tecting frequency —the region of maximum excitation of
the basilar membrane- above 5000 Hz [13]. Interestingly,
in the example above with a complex inharmonic mixture
of six frequencies, the first non-trivial peak of the signal’s
autocorrelation function occurs precisely at t = 0.009565 s
which is related to a periodic repetition at f = 104.6 Hz,
coinciding with the mysterious perceived pitch.

To be more precise, let us consider a complex tone of
N sinusoidal partials with frequency fi and amplitude ai.
The resulting signal is s(t) =

∑N
i=1 ai sin(2πfit), and let

us denote by f̄ the perceived pitch of this mixture. Then
f̄ coincides with 1/τM where τM is the time position of the
earliest tall peak in the autocorrelation function C(τ) =
〈s(t)s(t + τ)〉t. This is an extremum thus dC/dτ |τM = 0.
Moroever, as the product sin(t) sin(t+τ) is maximized for
τ being a multiple of 2π, it is easy to see that for any
local peak at τM of the autocorrelation function one has
sin(2πfiτM ) ≈ 2π(fiτM −βi), for some integer βi. Putting
all these conditions together, according to Heller [13] the
peaks of the autocorrelation function fulfil the following
self-consistent equation

1/τM = f̄ ≈
∑N

i=1 a2
i f

2
i∑N

i=1 a2
i βifi

, (1)

where for i = 1, . . . , N , βi ∈ Z is the nearest integer
to fi/f̄ . This formula was first derived in the context
of molecular spectroscopy to account for the so-called
missing mode effect (MIME) [22–24]. It is important to
highlight that f̄ is not just a convoluted average of each
frequency [23], but in some sense is an emergent quan-
tity out of the combination of partials, much like in the
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Fig. 1: Left panel: numerical evaluation of the roots of eq. (1) for a complex tone of three partials with f1 = 820 Hz, f2 =
1020 Hz, f3 = 1220 Hz. Each solution —denoted as a frequency with low numerical error— corresponds to a local peak in the
autocorrelation function (and its harmonics). Two possible solutions with different βi are depicted. The perceived pitch is
indeed f̄ = 203.9 Hz [13,25], which corresponds to βi = 4, 5, 6. Right panel: autocorrelation function of the same complex tone,
where one can appreciate that the perceived pitch is indeed associated with the first non-trivial “large peak”, whereas other
peaks that take place sooner are not strong enough to develop into the perceived pitch.

luminescence spectra of complex molecules some regularly
spaced vibronic progressions emerge even if they do not
correspond to any ground-state normal mode of vibration
(or average) of the molecule [24]. In other words, despite
the fact that pitch is a psychoacoustic phenomenon, it is
still quantitative [13], as it can be associated to objective
features such as the autocorrelation function of the signal.

We solve eq. (1) numerically and assume that fapp is a
good approximation to f̄ if

(
fapp −

∑N
i=1 a2

i f
2
i∑N

i=1 a2
i β̂ifi

)
· 100/fapp < ε,

where β̂i is the nearest integer to fi/fapp. As a rule of
thumb, we set ε = 10−2, which means that fapp satisfies
eq. (1) self-consistently with an error which is less 0.01%
of the frequency fapp.

Now, it is easy to observe that that eq. (1) is multi-
valued: at least it admits as solutions the perceived pitch
and its infinitely many subharmonics. Indeed, for equal
frequencies fi = k ∀i, the perceived pitch is trivially f̄ = k
and this is a solution of eq. (1) for βi = 1 ∀i, but so are
subharmonics k/p, for p ∈ N

+ and βi = p ∀i. Also, for
two close enough frequencies f1 ≈ f2, then (f1 + f2)/2
is an approximate solution which indeed corresponds to
the perceived pitch. Now, eq. (1) captures the location of
peaks in the autocorrelation function, but unfortunately
not their height. Consider for instance the complex tone
formed by partials of equal amplitude at frequencies 820,
1020, and 1220 Hz. The GCD is 20 Hz, right at the thresh-
old of hearing, and seems an unlikely perceptual result of
combining these much higher frequencies. Pierce [25] cites
this case as an interesting example and reports that the
perceived pitch is 204 Hz. A possible solution can be found

for β1 = 1, β2 = β3 = 2, for which setting ai = 1, we get
f̄ = 604 Hz. According to the left panel of fig. 1, this
seems indeed the solution with minimal numerical error.
The solution with second minimal error corresponds to a
higher combination β1 = 4, β2 = 5, β3 = 6 for which
f̄ ≈ 203.9 Hz. However, it is this latter candidate that
coincides with the empirical value found by Pierce. If
we look at the autocorrelation function of the complex
tone (right panel of the same figure), we indeed discover
peaks at 1/604 = 0.001655 and 1/203.9 = 0.004908 sec-
onds (among others), however the latter is the sharpest
peak and hence constitutes the perceived pitch.

All in all, the systematic computation of the perceived
pitch is not straightforward. Heller [13] speaks about
three criteria to determine what peak corresponds to
the perceived pitch of a complex tone: i) the sooner in
the autocorrelation function (sooner times corresponds to
larger frequencies), ii) the larger the autocorrelation of the
peak, and iii) the sharper the peak. However looking at
the solutions of eq. (1) we are only able to discern crite-
rion i), therefore in what follows we will focus on the au-
tocorrelation function to discern the perceived pitch from
the set of solutions of eq. (1).

Basic model. – We return now to the toy model briefly
discussed above. Consider N agents aiming to sing at
unison a given frequency T . We assume that all agents
sing pure tones (i.e., sinusoids of frequency fi) at approx-
imately the same amplitude (ai = K ∀i for some K ∈ R

+)
and model the imperfection of each agent as an indepen-
dent Gaussian deviation. That is, ∀i = 1, . . . , N the fre-
quency fi = T + ξ, where ξ ∼ N (0, σ2). The standard
deviation σ therefore tunes the diversity of imperfections.
Note that trivially, limN→∞ GCD(f1 . . . fN ) = 0. Is there
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Fig. 2: (Colour online) Left panel: autocorrelation function of a complex tone formed by N frequencies fi ∼ N (1000, 50), for
N = 10 (solid line), N = 102 (dashed line) and N = 103 (dashed dotted line). In every case the first non-trivial large peak
in the autocorrelation function lies at τ = 0.001 seconds, yielding a perceived pitch f̄ = 1000 Hz. Interestingly, other peaks in
the autocorrelation function (associated with other solutions of eq. (1)) vanish as N increases with a where one can appreciate
that the perceived pitch is indeed associated with the first non-trivial “large peak”, whereas other peaks that take place sooner
are not strong enough to develop into the perceived pitch. Right panel: autocorrelation function of a complex tone formed by
N = 100 frequencies fi ∼ N (1000, σ2), for increasing values of σ2. The perceived pitch converges to f̄ = 1000 Hz for a rather
large range of values σ2, after which the complex tone does not have a clear perceived pitch.

a perceived pitch for this complex tone? Applying eq. (1)
in this case, one finds a frequency

f̄ ≈
∑N

i=1(T + ξi)2∑N
i=1 βi(T + ξi)

=
∑N

i=1 T 2 +
∑N

i=1 ξ2
i + 2

∑N
i=1 Tξi∑N

i=1 βiT +
∑N

i=1 βiξi

.

To prove that the crowd sings better than each individual
in a nontrivial way, we need to i) find that f̄ ≈ T is a
solution to the latter equation that ii) corresponds to an
early tall peak in the autocorrelation function of the sig-
nal and that iii) this holds for a range of values of σ. The
criterion iii) is required as if the phenomenon only holded
for very small σ, one could argue that in practice the per-
ceived pitch would be harmonically fusing barely audible
deviations from the correct pitch. In the contrary, if σ
is large enough such that every random sample is almost
surely out of tune then the emergence of a tuned perceived
pitch would be a genuine emergent phenomenon.

First, as eq. (1) is multivalued for simplicity we focus
in the solution associated to βi = 1 ∀i. In this case, triv-
ially

∑N
i=1 T 2 = NT 2 and

∑N
i=1 βiT = NT . According to

the central limit theorem, the sum of N Gaussian random
variables N (0, σ2) variables is a Gaussian random variable
N (0, Nσ2). Thus for N � 1 we can use expected values
such that

∑N
i=1 βiξi → 0 and

∑N
i=1 ξ2

i → N〈ξ2〉 = Nσ2

(alternatively, the sum of N squared standard Gaussian
random variables is a random variable which is distributed
as a χ2 distribution with mean N , so if the original
Gaussian variables are not standard but have variance σ2,
then the mean of the rescaled χ2 distribution is Nσ2). Al-
together, the solution to eq. (1) associated to βi = 1 ∀i is

f̄ ≈ NT 2 + Nσ2

NT
= T + σ2/T (2)

Provided that extremely large deviations from the correct
tone are not abundant among individual performance (so
that σ 
 T is a good approximation) then the second
term in the latter solution is 
 T and then at leading
order f̄ ≈ T . Now, to evaluate whether this frequency
indeed corresponds to the earliest tall peak in the auto-
correlation funcion, we have tested this prediction numer-
ically in fig. 2. While human hearing ranges from 20 to
20000 Hz, the greater sensitivity is known to lie within 200
and 2000 Hz. We therefore discard solution frequencies un-
der 100 Hz (that is, times larger than 10−2 seconds) as they
will only contribute to perceived background noise. In the
left panel of fig. 2 we plot the autocorrelation function of a
complex tone made by N sinusoids with equal amplitude
and frequencies fi ∼ N (T, 50), for T = 1000 Hz. We can
observe that as the number of agents N increases, the fre-
quency f̄ = T indeed emerges as the clear perceived pitch
(numerical evaluation of the solutions of eq. (1) are plot-
ted in an appendix figure). In the right panel of the same
figure we explore the effect of increasing σ in the shape
of the autocorrelation function for N = 100 frequencies
(solutions of eq. (1) in this case are again summarized in
an appendix). As expected, the frequency f̄ = 1000 Hz
coincides with the perceived pitch for a reasonably large
range of values of σ. For σ = 10 and 100 the peak is clearly
visible although it decreases as σ increases. Note that the
just noticeable difference (which quantifies the threshold
at which a change in pitch is perceived) depends on the
frequency and for 1000 Hz this is smaller than 10 Hz. This
means that for σ = 100 most of the individual agents will
be effectively out of tune, however the perceived pitch of
the aggregate will still emerge as being in tune. Accord-
ingly, the emergent pitch is robust even if each agent is not
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particularly gifted, musically speaking. For even larger val-
ues (σ = 400) the spectrum approaches a flat shape, the
peak has faded away and no clear pitch emerges accord-
ingly. All in all, we can conclude that a crowd indeed sings
better as a whole than each individual separately, even if
no synchronization takes place among individuals.

Introducing short-range interactions. – Remark-
ably, our basic model suggests that it is not required that
each agent interacts for the perceived pitch to collective
emerge as the “correct” intonation. It is however true
that in realistic cases individuals that sing in groups tend
to tune up with their surrounding, if in their close neigh-
borhood there is at least some other person with better
intonation [9]. While intonation and imitation capacities
are definitely heterogeneous across people, in what follows
we show that under general conditions this imitation pro-
cess effectively reduces the value of σ in eq. (2).

To explore the effect of imitation we propose the fol-
lowing toy model: we model a crowd as a set of agents
located in the vertices of a two-dimensional lattice. Each
agent i vibrates (sings) at a given frequency f

(t)
i which

can now be dynamically updated. Initially we again
assign f

(0)
i = T + ξ, for Gaussian i.i.d. random variables

ξ ∼ N (0, σ2). Then, at each simulation time t each agent
i updates its frequency according to the following rules: if
any neighbor is singing more in tune than i (modeled by
the fact that in the Von Neumann neighborhood of i we
find |f (t)

i − T | > min{|f (t)
j − T |}nn), then agent i updates

his frequency after a process of imperfect imitation with
the agent with better intonation, such that his updated
frequency reads f

(t+1)
i = f

(t)
i + C(i)[M − f

(t)
i ], where M

is the frequency to be imitated and C(i) ∈ [0, 1] is a real
number that describes the fitness of agent i to imitate or
tune up. Intuitively, an agent with good imitation skills
will initially perform close to T , so for simplicity we define

C(i) = 1 − |f(0)
i −T |

T . Accordingly, for initial performances
close to T , C will be close to 1, and conversely for bad
initial performances the agent will have a low capacity, C
close to zero.

Parallel iteration of this updating process models the
adaptation and imitation of agents over time. The rele-
vant observable of the system is again the perceived pitch
f̄(t) which is now a function of time and will change as the
frequencies variance σ2(t) is modified. If imitation is null
(C(i) = 0) then this model reduces to the non-interacting
case above. At the other extreme, if every agent has per-
fect imitation skills (C(i) = 1) then there is an absorbing
state where all the agents end up vibrating at the same
characteristic frequency f∗

i that corresponds to the one for
which |f (0)

i −T | is minimized. That is to say, amongst the
initial values of the partials, the one closest to T perco-
lates and emerges as a consensus. In this ideal situation,
it is easy to see that as N → ∞, f̄(∞) → T . In the more
realistic case where C(i) ∈ (0, 1), the absorbing state will
be such that ξ

(∞)
i will not just have one value but several

Fig. 3: Numerical evaluation of standard deviation of the distri-
bution of frequencies of the lattice model, as interactions take
place over time. Already after one simulation step, the effec-
tive standard deviation considerably decreases, what in turn
implies that the virtual pitch approximates its leading order
f̄ ≈ T .

(corresponding to several degrees of intonation). However
what is straightforwardly guaranteed is that the variance
of the frequencies distribution σ2 will decrease over time
with respect to the initial condition (non-interacting case).
That is to say, the second term in eq. (2) will get necessar-
ily by monotonically decreasing over time, boosting even
further the collective intonation effect. These tendencies
are confirmed by numerical simulations in fig. 3.

As a final comment, note that in the event that the
crowd is the audience of a concert which follows the band’s
lead singer (i.e., the system is coupled to an external
“pitch field”), then the imitation process directly takes
place with the singer, instead of locally. This mechanism
trivially uncouples the system and reduces the problem
to the original non-interacting case, albeit with a new σ
which is much smaller than in the original case.

To conclude, we have given a simple explanation for the
emergence of collective intonation in crowds that sing at
unison. Within reasonable limits, regardless of the into-
nation of each singer the collective tone will be perceived
as to be in tune. This collective effect is further boosted if
one allows individuals to adjust their frequency by any de-
gree of imperfect imitation with his neighbors, although,
remarkably, this additional mechanism is not required for
the collective effect to emerge in the first place. Further-
more, this result does not require subjects to follow any
leader, and emerges in a self-organized way due to the
psychoacoustic properties of the perceived pitch.

∗ ∗ ∗

The author thanks Andrew Berdahl for fruitful
discussions and encouragement and Dante Chialvo for
showing the relation with ghost stochastic resonance.

Appendix

The solutions of eq. (1) are plotted in figs. 4 and 5.

68004-p5



Lucas Lacasa

Fig. 4: (Colour online) Numerical evaluation eq. (1) for
N = 102 frequencies fi ∼ N (T = 1000, σ2). For σ � T , there
are few solutions that consist of T and its subharmonics. As σ
increases, other solutions start to appear, and f̄ = T eventually
disappears.

Fig. 5: Numerical evaluation of the roots of eq. (1), where
frequencies fi ∼ N (1000, 50) for N = 10, 102 and 103,
respectively. As N increases, just a few frequencies (and
subharmonics) emerge as the numerical solutions.
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