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Fat tail statistics and beyond

Joachim Peinke1, Malte Siefert1, Stephan Barth1, Christoph Renner1, Falk
Riess1, Matthias Wächter1, and Rudolf Friedrich2

1 Institute of Physics, Carl von Ozzietzky University of Oldenburg, D 26111
Oldenburg, Germany

2 Inst. Theor. Physik, University of Münster , D–48149 Münster, Germany

Abstract. Based on data from three different systems, namely, turbulence, finan-
cial market and surface roughness we discuss methods to analyze their complexi-
ties. Scaling analysis and fat tail statistics in the context of Lévy distributions are
compared with a stochastic method, for which a Fokker-Planck equation can be
estimated from the data. We show that the last method provides a more detailed
characterization of the complexity.

1 Introduction

Complex systems whose variables are governed by nongaussian statistics,
displaying fat tails, also called heavy tails, have gained considerable interest.
On the one side, there is often the fundamental challenge to explain the
mechanism leading to such a kind of statistics, as it is the case for turbulence,
which is up to now one of the major unsolved probleme of physics. On the
other side, such statistics have very important consequences for applications,
as it is the case for risk management.

In this contribution we want to focus mainly on the problem of fat tails
in the statistics of data from turbulence, from the financial market, and from
the surface roughness. In each case the question is to characterize the disorder
of the system by the statistics of a scale resolving quantity, q(l, x), where l
denotes the scale and x the location. Usually, properties of the quantity q are
analyzed for different fixed scales l over the whole space x. Typical points of
interest are to what kind of statistics the probability density (distribution)
p(q, l) belongs and what the functional l dependencies of general moments
< q(l, x)n > are.

The question about the form of the distribution p(q, l) is directly linked
to the topic of fat tail distributions. There is the famous approach by Lévy
statistics. Variables governed by Lévy statistics belong to stable processes,
i.e. the random variables and the sum over these random variables have the
same form of statistics. The crucial point of Lévy statistics pL(q) is that their
fat tails do not decay exponentially fast as Gaussian distributions do. Lévy
distributions decay with a power law for large or extreme events,

pL(q) ∼=
1

qβ
for large q and 1 < β < 3. (1)
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It is easily seen that moments of the random variable < qn > diverge for
n > β − 1. This is a quite unusual behavior. The reader may think over
the implications of a system whose mean value is known but its variance is
diverging. For example, what can we deduce from a results like the following:
the probability of the magnitude of the next event is < q > ±∞. (For further
reading we refer for example to [1].)

The other question of the functional l dependence of < q(l, x)n > is
often connected with the question whether power law scalings is present.
If < q(l, x)n >∝ lξn multiscaling or respectively multifractal properties are
given. Per definition

< qn >=

∫

∞

−∞

qnp(q)dq, (2)

the nth moment < qn > is directly linked to the probabilities p(q). It is
evident that if they obey Lévy laws, the question of multiscaling becomes
inconsistent. For the case of turbulence we will show here, how these two
aspects of multiscaling and fat tail distributions are connected.

So far we have reported on methods to analyze the disorder of a sys-
tems for separated scales. In this paper we want to report on an approach,
which enables to achieve a more complete characterization. Namely, we aim
to achieve the knowledge of the joint probabilities of finding different values
of q(l, x) for any scale l : p(q, l1; q, l2; ....q, ln). From this new approach we will
see that the other approaches, like the multiscaling analysis, are not unique.
For example, there are infinite many different ways to construct structures
with the same multiscaling features.

2 Turbulence

The profound understanding of turbulence is up to now regarded as an un-
solved problem. Although the basic equations of fluid dynamics, namely the
Navier Stokes equations, are known for more than 150 years, a general solu-
tion of these equations for high Reynolds numbers, i.e. for turbulence, is not
known. Even with the use of powerful computers no rigorous solutions can
be obtained. Thus for a long time there has been the challenge to understand
at least the complexity of an idealized turbulent situation, which is taken to
be isotropic and homogeneous. This case will lead us to the well known in-
termittency problem of turbulence, which is nothing else than the occurrence
of fat or heavy tailed statistics. The central question is to understand the
mechanism which leads to this anomalous statistics (see [2,3]).

The intermittency problem of turbulence can be reduced to the ques-
tion about the statistics of the velocity differences over different distances l,
measured by the increments q(l, x) = u(x + l) − u(x). Usually the velocity
increments are taken from the velocity component in direction of the distance
vector l. These are the so-called longitudinal velocity increments. By the use
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of energy considerations, a simple l-dependence of q(l, x) was proposed. It can
be shown that the dissipation of energy takes place on small scales, namely,
scales smaller than the so-called Taylor length θ. On the other hand, the
turbulence is generated by driving forces injecting energy into the flow on
large scales, l ≥ L0, where L0 is given by the correlation length of u(x).
Thus for the transition from q(l, x) to q(l′, x) with l′ < l, the same amount of
energy is transferred to a scale l, as it is transferred from this scale to even
smaller scales l′. The conservation of the transferred energy (more precisely
the energy rate per unit volume) can be assumed as long as L0 > l, l′ > θ.
This range is called the inertial range, where the turbulent field develops
independently from boundary conditions and dissipation effects. It has been
proposed that in this range universal features of turbulence arise.

Kolmogorov proposed that the disorder of turbulence expressed by the
statistics of q(l, x) and its nth order moments < q(l, x)n > should depend
only on transferred energy ε and the scale l: < q(l, x)n >= f(ε, l). By simple
dimensional arguments it follows that

< q(l, x)n > ∝ < εn/3 > ln/3. (3)

The simplest ansatz is to take ε as a constant, thus the Kolmogorov scaling
n/3 is obtained [4]. Assuming a lognormal distribution for ε, i.e. not ε but
ln ε has a Gaussian distribution, Kolmogorov and Oboukhov proposed for
< εn/3 > an additional scaling term, leading to the so-called intermittency
[5] correction [6]

< q(l, x)n > ∝ lξn with ξn =
n

3
− µ

n(n− 3)

18
and n > 2 (4)

with 0.25 < µ < 0.5 (for further details see [2]). The form of ξn has been
heavily debated during the last decades.

Here we want to point out a general consequence of nonlinear scaling
exponents ξn, namely, that the probability densities of p(q(l, x)) cannot be
Gaussian but must change their forms with l. This point is easily seen, if the
definition of the moments Eq. (2) is considered. From the scaling relation
Eq. (4), we take the scale dependence of the variance of the distributions:
σ2

l :=< q(l, x)2 > ∝ l2α (for a general consideration, α is any real number,
for turbulence it is close to 1/3.). Next, we express the integral of the nth
moment (2) by the normalized variable q̃(l, x) = q/σl

< q(l, x)n >= σn
l

∫

∞

−∞

(
q

σl
)np(q)dq = σn

l

∫

∞

−∞

(q̃)np̃(q̃)dq̃. (5)

If the normalized probabilities p̃(q̃) do not change their form with l, like it
would be the case if all probabilities are Gaussian, the integral on the right
side is a constant and thus < q(l, x)n >∝ σn

l ∝ lnα or the scaling indices ξn

are linear in n. Saying this in another way, the nonlinear n- dependence of ξn

means nothing else than that the probabilities p(q(l, x)) must change their
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form with the scale parameter l. In this way the discussion on the nonlinearity
of ξn is linked to the discussion of non-Gaussian statistics. We see in Fig. 1
that for large scales (l ≈ L0) the distributions are nearly Gaussian. As the
scale decreases, the probability densities become more and more fat tailed.
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Fig. 1. Probability distributions obtained from a turbulent velocity signal mea-
sured in a free jet (bold symbols). The probabilities are compared with the nu-
merical solution of the Fokker-Planck equation (solid lines). The scales l are (from
top to bottom): l = L0, 0.6L0, 0.35L0, 0.2L0 and 0.1L0. The distribution at the
largest scale L0 was parameterized (dashed line) and used as initial condition for
the Fokker-Planck equation (L0 is the correlation length of the turbulent velocity
signal). The pdfs have been shifted in vertical direction for clarity of presentation
and all pdfs have been normalized to their standard deviations; after [7].

Based on this finding, we can argue why a Lévy process, discussed above,
is not consistent with the statistics of velocity increments of turbulence. As
already mentioned, the Lévy statistics is based on the stability. Thus, the sum
of the variables should have the same statistics. The sum of two successive
increments q(l, x) + q(l, x + l) = (u(x + l)− u(x)) + (u(x + 2l)− u(x + l)) is
nothing else than the increment q(2l, x) of a scale twice as big. We have just
seen that p(q(2l, x)) has a different form, i.e. the process is not stable.

3 Finance

Next, we present some anomalous statistical features of data from the fi-
nancial market. These features are astonishingly quite similar to the just
discussed intermittency of turbulence [8] and are often called clustering of
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volatility (cf. [9–11]). The following analysis is based on a data set Y (t),
which consists of 1 472 241 quotes for US dollar-German Mark exchange
rates from the years 1992 and 1993. Many of the features we will discuss here
are also found in other financial data like for quotes of stocks. One central
issue is the understanding of the statistics of price changes over a certain time
interval τ which determines losses and gains. The changes of a time series of
quotations Y (t) are commonly measured by returns r(τ, t) := Y (t+ τ)/Y (t),
logarithmic returns or by increments q(τ, t) := Y (t+τ)−Y (t). The moments
of these quantities display often power law behavior similar to the just dis-
cussed Kolmogorov scaling for turbulence, cf. [8,13–16]. In addition one finds
for the probability distributions an increasing tendency to fat tail probability
distributions for small τ (see Fig. 2) and [16]. This represents the high fre-
quency dynamics of the financial market. The identification of the underlying
process leading to these fat tail probability density functions of price changes
is a prominent puzzle (see [9,14,15,17–19]), like it is for turbulence.
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Fig. 2. Probability densities (pdf) p(q(t), τ ) of the price changes q(τ, t) = Y (t +
τ )− Y (t) for the time delays τ = 5120, 10240, 20480, 40960s (from bottom to top).
Symbols: results obtained from the analysis of middle prices of bit-ask quotes for
the US dollar-German Mark exchange rates from October 1st, 1992 until Septem-
ber 30th, 1993. Full lines: results from a numerical iteration of the Fokker-Planck
equation (14); the probability distribution for τ = 40960s (dashed lines) was taken
as the initial condition. The pdfs have been shifted in vertical direction for clarity of
presentation and all pdfs have been normalized to their standard deviations; after
[12].
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4 Surface roughness

As a last example of structures whose complexity has attracted a considerable
amount of interest we discuss the surface roughness. Among the techniques
used to characterize scale dependent surface roughness, the most prominent
ones are the concepts of self-affinity and multi-affinity, where the multi-affine
f(α) spectrum has been regarded as the most complete characterization of
a surface [20–23]. Different definitions have been proposed to measure the
scale dependent surface roughness. Here we are interested in the method of
the analysis, thus we will process with a simple height increment,

q(l, x) := h(x + r/2)− h(x− r/2). (6)

The meaning of left, mid or right centered increments will be discussed in
[24]. In Fig. 3 the scale dependent distributions of the height increments are
shown, which display nongaussian tails in a quite different structure of the fat
tails (compare Figs. 1 2). The investigation based on multiscaling properties
with respect to the moments of the height increments, suggest similarities to
turbulence and financial data [24].

5 Stochastic Process for Scale Dependent Complexity

Based on the examples of complex structures and their analysis by means
of the statistics of a scale dependent quantity q(l, x), we want to report on
an alternative, non conventional way to characterize anomalous statistics
[7,12,25–28]. This method is based on the idea of a cascade process as dis-
cussed in the context of turbulence. In particular we show how from given
data a stochastic process can be estimated. This makes it possible to model
the measured statistics quite detailed. Guided by the finding that the statis-
tics changes with scale, as shown in Figs. 1, 2 and 3, we consider the evolution
of the quantity q(l, x), or q(τ, t) with the variable l or τ respectively. Thus,
we will consider processes which evolve in the scale variable. This we take as
a stochastic cascade process.

For the following, we present a generalized discussion. Let us denote the
given complex structure by Y (x). With respect to the preceding sections,
Y (x) denotes the velocity of a turbulent flow at the location x, the price
of a stock at the time “x”, or the height at x. To characterize the disorder
of the structure Y (x) a local scale resolving quantity q(l, x) is considered.
This quantity q is here defined as an increment q(l, x) := Y (x + l) − Y (x),
but may also be a wavelet, a local measure, or the sum of the square of
derivatives of Y , just to mention some possibilities. For time series, like the
financial market data, l stands for the time lag. Note, the moments of p(q) are
called structure functions if q is an increment. It is easily seen that the second
moment corresponds to the autocorrelation function < Y (x)Y (x+l) >, which
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Fig. 3. Probability densities obtained from the surface roughness of a cobble-
stone road. Numerical solution of the integrated form of Fokker-Planck equation
compared to empirical pdf (symbols) at different scales r. Solid line: empirical
pdf parameterized at r = 188mm, dashed lines: reconstructed pdf. Scales r are
188, 158, 112, 79, 46mm from top to bottom. Pdf are shifted in vertical direction for
clarity of presentation, after [27].

is related by the Wiener - Khintchine theorem to the power spectrum of Y (x).
Higher order moments correspond to higher order two point correlations.

For one fixed scale l we get the scale dependent disorder by the statistics
of q(l, x). More complete stochastic information of the disorder on all length
scales is given by the joint probability density function

p(q1, . . . , qn), (7)

where we set qi = q(li, x). Without loss of generality we take li < li+1. This
joint probability may be seen in analogy to joint probabilities of statistical
mechanics (thermodynamics), describing in the most general way the occupa-
tion probabilities of the microstates of n particles, where q is a six-dimensional
state vector.

Next, the question is discussed whether it is possible to simplify the joint
probability. In general, such joint probabilities can be expressed by condi-
tional probabilities:

p(q1, . . . , qn) = p(q1 | q2, . . . , qn)p(q2 | q3, . . . , qn) . . . p(qn−1 | qn)p(qn). (8)
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A simplification is given, if for the multiple conditioned probabilities

p(qi | qi+1, . . . , qn) = p(qi | qi+1) (9)

holds. Eq. (9) is known as the condition for a Markov process evolving from
state qi+1 to the state qi, i.e. from scale li+1 to li.

A “single particle approximation”, as used for the statistical mechanics
of the ideal gas, would correspond to the condition:

p(q1, . . . , qn) = p(q1)p(q2) . . . p(qn). (10)

Based on equations (8) and (9), Eq. (10) holds if p(qi | qi+1) = p(qi). Only for
the last case, the knowledge of p(qi) is sufficient to characterize the complexity
of the whole system. Otherwise, an analysis of only p(qi), for the scale li,
is a non unique projection of the whole complexity of the system. Such a
projection is done by the investigations of the moments as presented in Eqs.
(3) and (4). This is also the case for the characterization of complex structures
by means of fractality or multiaffinity (cf. for multiaffinity [22], for turbulence
[2,3], for financial market [13]). A much more general characterization of the
disorder is obtained if the transition probabilities from one scale to a smaller
one are investigated and if equation (9) is fulfilled.

In the following, we focus on the more complete statistical characterization
proposed above. The basic idea is to consider the evolution of q(l, x) at one
fixed point x as a stochastic process in scale l. (The extensive discussion of
the analysis of financial and turbulent data can be found in [7,12]).

To prove that a Markov process is given, it has to be shown that (9) holds.
For a given data set Y (x) it is easy to evaluate the corresponding conditional
probabilities by the calculation of q(l, x) at different points x for several fixed
scales li. Having shown that the multiconditioned probabilities are equal to
the single conditioned probabilities, the evolution of the conditional proba-
bility density p(q, l | q0, l0) starting from the initial scale l0 follows

− l
∂

∂l
p(q, l | q0, l0) =

∞
∑

k=1

(

−
∂

∂q

)k

D(k)(q, l) p(q, l | q0, l0). (11)

(The minus sign on the left side is introduced, because we consider processes
running to smaller scales l, furthermore we multiply the stochastic equation
by l, which leads to a new parameterization of the cascade by the variable
ln(1/l), a simplification for a process with scaling law behavior of its mo-
ments.) This equation is known as the Kramers-Moyal expansion [29]. The
Kramers-Moyal coefficients D(k)(q, l) are defined as the limit ∆l → 0 of the
conditional moments M (k)(q, l, ∆l):

D(k)(q, l) = lim
∆l→0

M (k)(q, l, ∆l) ,

M (k)(q, l, ∆l) :=
l

k! ∆l

+∞
∫

−∞

(q̃ − q)
k

p (q̃, l −∆l | q, l) dq̃. (12)
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Thus, for the estimation of the D(k) coefficients it is only necessary to esti-
mate the conditional probabilities p (q̃, l −∆l | q, l). For a general stochastic
process, all Kramers-Moyal coefficients are different from zero. According to
Pawula’s theorem, however, the Kramers-Moyal expansion stops after the
second term, provided that the fourth order coefficient D(4)(q, l) vanishes.
In that case the Kramers-Moyal expansion is reduced to a Fokker-Planck
equation (also known as Kolmogorov equation [30]):

− l
∂

∂l
p(q, l | q0, l0) =

{

−
∂

∂q
D(1)(q, l) +

∂2

∂q2
D(2)(q, l)

}

p(q, l | q0, l0).(13)

D(1) is denoted as drift term, D(2) as diffusion term. The probability density
function p(q, l) obeys the same equation:

− l
∂

∂l
p(q, l) =

{

−
∂

∂q
D(1)(q, l) +

∂2

∂q2
D(2)(q, l)

}

p(q, l). (14)

We remind the reader that the Fokker-Planck equation describes the proba-
bility density function of a stochastic process generated by a corresponding
Langevin equation (we use Itô’s definition)

−
∂

∂l
q(l) = D(1)(q, l)/l +

√

D(2)(q, l)/l f(l) (15)

where f(l) is white noise (Gaussian distributed and delta correlated). This
feature provides an approach to simulate numerically typical data by the
knowledge of the process coefficients, as it was proposed for example in [27]
and shown in [28].

6 Discussion and conclusion

Let us return to the discussion of scale dependent complexity in turbulence,
finance and surface roughness. We have reported on a way to characterize
this complexity by means of stochastic processes. A new point is that we
consider processes running in the scale variable and not in time as usually. The
presented features of the stochastic process have been well known for decades
[30]. A strength of this analysis is that it does not depend on assumptions.
By the estimation of the conditional probabilities, the Markovian property
(9) as well as the Kramers-Moyal coefficients (12) can be evaluated [31,32].
Knowing the evolution equation (11), the n-increment statistics p(q1, . . . , qn)
is known, too. Definitely, an information like the scaling behavior of the
moments of q(l, x) can also be extracted from the knowledge of the process
equations. Multiplying (11) by qn and successively integrating over q0 and q,
an equation for the moments is obtained:

− l
∂

∂l
< qn > =

n
∑

k=1

(

−
∂

∂q

)k
n!

(n− k)!
< D(k)(q, l)qn−k > . (16)
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Scaling, i.e. multi affinity, is obtained if D(k)(q, l) ∝ qk, see [33].
Based on this procedure we were able to reconstruct directly from the

given data the corresponding stochastic processes. Knowing these processes
one can perform numerical solutions (see [7,12,27]). In Figs. 1, 2 and 3 the
numerical solutions are shown by solid curves. We see that the heavy tailed
structure of the probabilities is well described by this approach over a Fokker-
Planck equation. This result may be taken as a verification of the above
described method to reconstruct the process from pure data analysis.

The knowledge of the stochastic process equations allows a detailed anal-
ysis. For financial as well as for the turbulent data it was found that the
diffusion term is quadratic in the scale resolved variable q. With respect to
the corresponding Langevin equation (15), the multiplicative nature of the
noise term becomes evident. It is this multiplicative noise which causes fat
tails of the probability densities and eventually multifractal scaling. The scale
dependency of drift and diffusion term corresponds to a non-stationary pro-
cess in scale variables τ and l, respectively. From this point we conclude and
confirm our previous finding that a Lévy statistics for one fixed scale, i.e. for
the statistics of q(x.l) for fixed l, is not the adequate class of statistics. The
true structure of the complexity is unveiled by the two scale statistics.

Comparing the tips of the distributions at small scales in Figs. 1 and 2
a less sharp tip for turbulence is found. This finding is in accordance with
a larger additive term in the diffusion term D(2) for the turbulence data.
Knowing that D(2) has an additive and quadratic q dependence it is clear
that for small q values, i.e. for the tips of the distribution, the additive term
dominates. Taking this result in combination with the Langevin equation,
we see that for small q values Gaussian noise is present, which leads to a
Gaussian tip of the probability distribution, as found in Fig. 1. Thus we see
that the detailed analysis of the Fokker-Planck process allows to distinguish
the complexity of turbulence and finance more profoundly, as it is the case
for the multiscaling analysis where only different scaling indices are found.
Here it should be noted, that the additive term in D(2) violates the proposed
proper scaling behavior for turbulence (4). In [34] it was even shown that
the stochastic process will change considerable with the Reynolds number,
putting into question concepts on universal turbulence.

As a last comment we want to point out, that the results for the surface
roughness shows, that also other forms of probability densities can be grasped
quite well with this method. Thus the analysis with scale dependent stochastic
process does not depend on scaling behavior or some special form of the
probabilities. The basic features like Markov condition (9) can even be verified
with the experimental data.

We acknowledge helpful discussions with F. Böttcher St. Lück, and A.
Naert.
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