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The conservation laws, such as those of charge, energy and 
momentum, have a central role in physics. In some special cases, 
classical conservation laws are broken at the quantum level by 
quantum fluctuations, in which case the theory is said to have 
quantum anomalies1. One of the most prominent examples is 
the chiral anomaly2,3, which involves massless chiral fermions. 
These particles have their spin, or internal angular momentum, 
aligned either parallel or antiparallel with their linear momentum, 
labelled as left and right chirality, respectively. In three spatial 
dimensions, the chiral anomaly is the breakdown (as a result of 
externally applied parallel electric and magnetic fields4) of the 
classical conservation law that dictates that the number of massless 
fermions of each chirality are separately conserved. The current that 
measures the difference between left- and right-handed particles 
is called the axial current and is not conserved at the quantum 
level. In addition, an underlying curved space-time provides a 
distinct contribution to a chiral imbalance, an effect known as the 
mixed axial–gravitational anomaly1, but this anomaly has yet to be 
confirmed experimentally. However, the presence of a mixed gauge–
gravitational anomaly has recently been tied to thermoelectrical 
transport in a magnetic field5,6, even in flat space-time, suggesting 
that such types of mixed anomaly could be experimentally probed 
in condensed matter systems known as Weyl semimetals7. Here, 
using a temperature gradient, we observe experimentally a positive 
magneto-thermoelectric conductance in the Weyl semimetal 
niobium phosphide (NbP) for collinear temperature gradients and 
magnetic fields that vanishes in the ultra-quantum limit, when only 
a single Landau level is occupied. This observation is consistent with 
the presence of a mixed axial–gravitational anomaly, providing 
clear evidence for a theoretical concept that has so far eluded 
experimental detection.

Weyl semimetals are materials in which electrons behave as a type 
of massless relativistic particle known as a Weyl fermion. Massless 
chiral fermions exist where conductance and valence bands in these 
materials touch in isolated points, so-called Weyl nodes. At energies 
near these points the electrons are effectively described by the Weyl 
Hamiltonian8,9, which implies that the energy of these Weyl fermions 
scales linearly with their momentum. Weyl nodes occur in pairs of 
opposite chirality10 that, in the absence of additional symmetries, are 
topologically stable when they are separated in momentum space  
(Fig. 1a). Chiral Weyl fermions are subject to a chiral anomaly, which 
results in a strong positive magneto-conductance that can be detected 
experimentally4,11. Inspired by the pioneering studies of the chiral 
anomaly in pion physics2,3, several research groups have recently 
reported on the observation of chiral-anomaly-induced positive lon-
gitudinal magneto-conductance in Na3Bi (ref. 12), TaAs (ref. 13), NbP 

(ref. 14), GdPtBi (ref. 15), Cd2As3 (ref. 16), TaP (ref. 17) and RPtBi  
(ref. 18). Three-dimensional chiral fermions are theoretically predicted 
to also exhibit a mixed axial–gravitational anomaly19,20. In curved 
space-time, this anomaly contributes to the violation of the covariant 
conservation laws of the axial current, which are relevant to the chiral 
anomaly, and to the conservation law for the energy–momentum 
tensor21. The energy–momentum tensor encodes the density and flux 
of energy and momentum of a system. The mixed axial–gravitational 
anomaly has been suggested to be relevant to the hydrodynamic 
description of neutron stars22, and to the chiral vortical effect in the 
context of quark–gluon plasmas5. However, a clear experimental 
signature has yet to be reported.

Although the flatness of space-time would imply that gravita-
tional anomalies are irrelevant for condensed matter systems, it has 
been recently understood that the presence or absence of a positive 
magneto-thermoelectric conductance for Weyl fermions is tied to the 
presence or absence of a mixed axial–gravitational anomaly in flat 
space-time5,6. The connection between the mixed axial–gravitational 
anomaly and the observed positive magneto-thermoelectric conduct-
ance can be understood by a calculation based on the conservation 
laws for charge and energy, and the standard Kubo formalism for the 
conductivities (Methods). Because the Weyl semimetal lives in a flat 
space-time, the mixed axial–gravitational anomaly does not affect the 
conservation laws for charge and energy directly. An anomalous con-
tribution to the energy current has nevertheless been identified in the 
Kubo formalism22. Inserting this contribution into the conservation 
laws and using a simple approximation for the relaxation time, we find 
that thermoelectric transport in flat space-time is explicitly modified 
as a result of the presence of the mixed axial–gravitational anomaly in 
the underlying field theory.

The connection between thermal transport and the mixed axial–
gravitational anomaly is also apparent in a relativistic quantum 
field theory computation of transport properties5 and in the hydro
dynamic formalism of the effective chiral electron liquid6. In the 
latter approach, the presence of a mixed axial–gravitational anomaly 
modifies the thermodynamic constitutive relations of the current and 
energy–momentum tensor in terms of gradients of the relevant hydro
dynamic variables: temperature, chemical potential and velocity6. These 
modifications can be viewed as the hydrodynamic equivalent of the 
anomalous contributions to the energy current identified in the Kubo 
formalism. Although the Kubo-based calculation (Methods) is thus 
qualitatively consistent with the hydrodynamic calculation6, transport 
in current Weyl semimetal samples is not consistent with the hydro-
dynamic regime, which involves strong interactions and features fast 
energy–momentum relaxation between the nodes. The predicted 
positive magneto-thermoelectric conductance is also consistent with 
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the semi-classical approach based on the Boltzmann equation23–26, 
which so far lacks a simple connection to the anomalous origin of 
this contribution. This consistency of different theoretical approaches 
illustrates that anomalies affect transport on a fundamental level; their 
effect can consistently be derived from any calculation that keeps track 
of conservation laws and symmetries, and that correctly captures the 
topological character of a Weyl node.

The positive magneto-conductance and magneto-thermoelectric 
conductance are fundamentally linked to the response of the charge 
current J when an electric field E and a thermal gradient ∇T are 
applied through the relation J =​ GE +​ GT∇T. Here, G =​ J/E denotes the 
electric conductance, which characterizes the response of the electrical 
current to electric fields, and GT =​ J/|​∇T|​ is the thermoelectric 
conductance, which characterizes the electrical current in the Weyl 
metal that is induced by a temperature gradient. (Note that we define 
the coordinate system such that the applied temperature gradient has 
only one non-zero component.) In low magnetic fields, the mixed 
axial–gravitational anomaly and the chiral anomaly implies a positive 
magneto-current contribution to the transport coefficients 
= +G d c a Be 1 c

2 2 and = +G d c a a BT th 2 c g
2, with c1,2 >​ 0 accounting for  

details of the band structure. Here de and dth express the classical  
electrical and thermal Drude parts, the coefficients ac and ag account 

for the contributions of the chiral and mixed axial–gravitational anom-
alies, respectively6,23,24,27, and B denotes the component of the mag-
netic field that is parallel to the electric field or thermal gradient. In the 
ultra-quantum limit at high magnetic fields, when only the lowest 
Landau level contributes to transport, G depends linearly on the mag-
netic field and the gravitational anomaly does not contribute to GT (see 
Methods). Analogously to the positive magneto-conductance, which 
requires parallel electric and magnetic fields as determined by the chiral 
anomaly, the positive magneto-thermoelectric conductance is expected 
to be locked to the magnetic-field direction as a result of the anomalous 
contribution6,23–26. The combined measurement of (i) a finite value of 
ag, (ii) the functional dependence for ∇T · B ≠​ 0 of the positive 
magneto-thermoelectric conductance at low fields (B is the magnetic 
field), and (iii) the absence of positive magneto-thermoelectric 
conductance at high fields represents the experimental signature of the 
mixed axial–gravitational anomaly in thermal transport.

The magneto-thermoelectrical conductance of the half-Heusler alloy 
GdPtBi (ref. 15) has recently been calculated from separate measure-
ments of thermopower and electrical conductance, revealing a positive 
magneto-thermoelectric conductance contribution at low magnetic 
fields. However, this contribution was interpreted as a signature of 
the node creation process, which depends on the magnetic field. To 
obtain experimental signatures of the presence of the mixed axial–
gravitational anomaly, it is therefore desirable to go beyond these 
experiments and investigate the electrical response of intrinsic Weyl 
semimetals to temperature gradients in collinear magnetic fields.

For our experiments, we used micro-ribbons (50 μ​m ×​ 2.5 μ​m ×​ 0.5 μ​m)  
cut out from single-crystalline bulk samples of the Weyl semimetal 
NbP with a gallium focused-ion beam. The transport direction in our 
samples matches the [100] axis of the crystal (see Methods for details). 
An on-chip micro-strip line heater near the micro-ribbon generates a 
temperature gradient along the length of the ribbon, with the resulting  
temperature differences (less than 350 mK) sufficiently small to ensure 
that the measurement is in the linear response regime (Extended Data 
Fig. 6). The temperature gradient ∇T was measured by resistance 
thermometry using two metal four-probe thermometer lines located 
at the ends of the NbP micro-ribbon (Fig. 1d). The metal lines for ther-
mometry also serve as electrodes for applying an electrical bias and for 
measuring the current response of the ribbon. The elongated geometry 
of the micro-ribbons, with contact lines across the full widths of the 
samples, was chosen to ensure that current jetting is suppressed and to 
provide homogenous field distributions15,17. To justify the description 
of the carriers in terms of Weyl fermions, it is essential that the Fermi 
level EF is as close as possible to the Weyl nodes of NbP (refs 28, 29). 
By means of gallium doping, we recently showed that EF is located only 
5 meV above the Weyl points, in the electron cone of our NbP sample14.

In a first set of transport experiments of electrical conductance meas-
urements under isothermal conditions (∇T =​ 0), we establish that the 
NbP micro-ribbon can be accurately described by Weyl fermions. For 
this purpose, a voltage V =​ 1 mV is applied along the ribbon, which sets 
an electric field E, and the corresponding current J is measured through 
a near-zero-impedance (1 Ω​) ammeter. When the magnetic field is 
switched on, the Weyl nodes split into Landau levels. For each Weyl 
node, the zeroth Landau level disperses linearly with momentum along 
B (Fig. 2a) and is thus chiral, unlike the remaining Landau levels, which 
disperse quadratically. Aligned electric and magnetic fields (E ​ B) 
generate a chiral flow of charge between the two valleys of different 
chirality4, with a rate that is proportional to E · B. To equilibrate the 
induced chiral imbalance between the left- and right-handed fermions, 
large-momentum internode scattering is required, which in general 
depends on B (refs 11, 27). In the low-field regime, in which many 
Landau levels are filled, it is possible to solve the corresponding 
Boltzmann11 or hydrodynamic6 transport equation, resulting in a 
chiral-anomaly-induced positive magneto-conductance contribution 
of = +G d c a Be 1 c

2 2 . In the high-field limit, in which only the lowest 
Landau levels contribute to transport, the magneto-conductance 
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Figure 1 | Positive magneto-conductance G(B) and magneto-
thermoelectric conductance GT(B) in the Weyl semimetal NbP.  
a, Sketch of two Weyl cones with distinct chiralities +​χ and −​χ, 
represented in green and red, respectively. E, kx and ky are the energy and 
the components of the momentum vector k in x and y directions, 
respectively. kD denotes the distance of the chiral nodes from their centre 
point in momentum space. b, c, False-coloured optical micrographs of the 
devices used to measure the electrical conductance G =​ J/E (b) and 
thermoelectric conductance GT =​ J/|​∇T|​ (c). The red and the green ends 
of the colour gradient denote the hot and cold sides of the device, 
respectively. Four NbP micro-ribbons (green) were investigated, all 
showing similar results. The data for the first ribbon are presented here.  
d, e, G(E ​ B) (d) and −​GT(∇​T ​ B) (e) as functions of the magnetic field 
B at a cryostat base temperature of T =​ 25 K (solid lines); the negative sign 
accounts for electron transport. The dotted lines show the predicted 
dependence (∝B2).
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behaves linearly with applied field. This is the transport fingerprint of 
the chiral anomaly. As shown in Fig. 2b, we observe a large positive 
magneto-conductance up to room temperature for E ​ B, which is 
sensitive to misalignments (Fig. 2c). Whereas the low-field regime is 
well described by a quadratic fit (Δ ∝G B2), in agreement with the 
Boltzmann description for chiral anomaly, the linear high-field regime 
can be explained by a transition from a multi-level state to the limit in 
which only the lowest chiral Landau levels contribute to the transport14. 
Accordingly, with chiral charge pumping, the positive magneto-
conductance at low magnetic fields is well approximated by cos2(ϕ), 
where ϕ is the angle between E and B (Fig. 2d). The narrowing of the 
angular width at higher fields is caused by strong collimation of the 
axial beams12. The observed locking pattern and the consistent 
quadratic dependence in the low-field regime are the fundamental 
signatures of the chiral anomaly11 and support the description of the 
system in terms of chiral Weyl fermions.

We now turn to testing the mixed axial–gravitational anomaly in the 
NbP micro-ribbon. We use a transport experiment, but in this case 
apply a thermal gradient instead of a voltage bias. Because the NbP 
sample is short-cut through a near-zero-impedance ammeter, no net 
electric field is imposed. Excluding electric fields is essential for a clear 
distinction from the chiral anomaly, which is induced by a finite E ​ B. 
Instead, applying ∇T ​ B leads to a net difference in energy density 
between the two chiral valley fluids6,21, proportional to ∇T · B, that is 
equilibrated through an intervalley energy transfer (Fig. 3a) The 
resulting imbalance leads to a charge current, owing to the chiral 
magnetic effect, which then leads to a positive magneto-thermoelectric 
conductance contribution of = +G d c a a BT th 2 c g

2 (refs 2, 6, 21, 23–26). 
This phenomenon allows us to probe the presence of the mixed axial–
gravitational anomaly through its effect on thermoelectric transport in 
a condensed matter system. The data corresponding to these 

measurements are shown in Fig. 3b, c. The applied temperature gradi-
ent indeed appears to result in magneto-transport features that are 
similar to those that result from the application of an electric field. 
When ∇T ​ B, the thermoelectrical conductance at low magnetic fields 
exhibits a positive magneto-thermoelectric conductance that fits to 
∝G BT

2  with the same cos2(ϕ) locking pattern as the positive 
magneto-conductance (Fig. 3d). At high temperatures (T >​ 150 K), the 
observed dependence of the magneto-transport on the field strength 
is consistent with the presence of a mixed axial–gravitational anomaly 
and its corresponding thermoelectric transport prediction6,23–26. At 
lower temperatures, however, we observe a decrease in GT. This 
decrease occurs in the same magnetic field range as the crossover from 
a quadratic to a linear field dependence in Δ​G, in agreement with the 
fact that both effects can be explained by the crossover to a one-
dimensional dispersion that Weyl metals show along B in the 
ultra-quantum limit15,30. As we show in Methods, the suppression of 
thermoelectric transport at high magnetic fields occurs because Δ​GT 
is proportional to the derivative of the electron density ρ with respect 
to temperature (Δ​GT ∝​ ∂​ρ/∂​T). Because the density of states is inde-
pendent of the temperature in the ultra-quantum limit, the electron 
density at large magnetic fields is independent of temperature and  
Δ​GT =​ 0.

The ratio GT/G should correspond to another measurable trans-
port coefficient, the thermopower S. Starting from the relation 
J =​ GE +​ GT∇T, the thermopower S can be determined either from 
a measurement using an open circuit (J =​ 0) or from combining the 
above experiments at E =​ 0 and ∇T =​ 0. The thermopower S expresses 
the response of the open-circuit voltage to a temperature gradient. To 
carry out this test, we removed the short-cutting ammeter from our 
experiment and measured the response of the open-circuit voltage to 
a temperature gradient in a collinear magnetic field (Fig. 1a). As shown 
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Figure 2 | Chiral anomaly in NbP. a, In a strong magnetic field, the Weyl 
nodes quantize into Landau levels. The lowest Landau levels exhibit a 
linear dispersion with distinct chirality (±​χ). Parallel electric (E) and 
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and magnetic fields (see inset), at T =​ 300 K. d, Angular dependence of Δ​G 
at T =​ 300 K, for varying magnetic field strength (colour scale).
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magneto-thermoelectric conductance without zero-field contributions  
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in Fig. 4b, the calculated GT/G matches the measured S excellently. 
The agreement is an important cross-check, confirming the results and 
interpretation above. Furthermore, this result implies that the thermo-
power is suppressed not solely by the presence of the chiral anomaly, as 
suggested previously15, but rather by the presence of both the chiral and 
mixed axial–gravitational anomalies (Extended Data Fig. 11).

In conclusion, our measurements reveal a positive magneto-
thermoelectric conductance in the Weyl semimetal NbP, a signature 
that is linked to the presence of the mixed axial–gravitational anomaly 
of chiral fermions in three spatial dimensions. In short, the thermally 
biased experiment confirms the predicted B2 dependence of GT at low 
magnetic fields, its dependence on the relative orientation of the 
magnetic field and the thermal gradient, and the suppression of 
thermoelectric transport at high magnetic fields. These effects arise 
concurrently with the standard chiral anomaly, the signatures of which 
we observed in the field-induced correction to the standard electric 
conductance. Our results show that it is possible to detect the presence 
of the mixed axial–gravitational anomaly of Weyl fermions, particularly 
elusive in other contexts, in relatively simple transport experiments 
using a macroscopic condensed matter system in a flat space-time.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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magneto-thermopower GT/G of the anomalous transport coefficients 
match quite well, as demonstrated for T =​ 25 K.
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Methods
Micro-ribbon fabrication. High-quality single bulk crystals of NbP are grown 
via a chemical vapour transport reaction using an iodine transport agent. A poly-
crystalline powder of NbP is synthesized by direct reaction of niobium (Chempur 
99.9%) and red phosphorus (Heraeus 99.999%) within an evacuated fused silica 
tube for 48 h at 800 °C. The growth of bulk single crystals of NbP is then initialized 
from this powder by chemical vapour transport in a temperature gradient, starting 
from 850 °C (source) and increasing to 950 °C (sink), and in a transport agent with 
a concentration of 13.5 mg cm−3 iodine (Alfa Aesar 99.998%).

Subsequently, NbP micro-ribbons are cut out from the bulk crystals (Extended 
Data Fig. 1a,b) using gallium focused-ion beam etching (voltage, 30 kV; current, 
65–80 pA). The samples are prepared such that their longitudinal direction 
coincides with the [100] crystal axis of NbP. Focused-ion beam etching caused in situ 
gallium doping of the ribbons. The final composition of the samples is analysed by 
scanning electron microscopy energy-dispersive X-ray spectroscopy (SEM-EDX), 
yielding 53% Nb, 45% P and 2% Ga (Extended Data Fig. 1c). We study ribbons  
50 μ​m ×​ 2.5 μ​m ×​ 0.5 μ​m in size. The dimensions of the ribbons are obtained from 
SEM. The high aspect ratio of our samples ensures the suppression of jet currents 
during the transport measurements. The single-crystallinity of the ribbons is evident 
from the X-ray diffraction (XRD) pattern shown in Extended Data Fig. 1d.
Device fabrication. After cutting, the NbP micro-ribbons are directly transferred 
onto Si/SiO2 chips in a solvent-less approach, using a micromanipulator. A soft 
mask for electrical contacts to the micro-ribbon is defined via laser-beam litho
graphy (customized μ​PG system). A double layer of photoresist is spin-coated and 
baked (first photoresist: LOR 3B, spin-coated at 3,500 r.p.m. for 45 s, baked at 180 °C 
for 250 s; second photoresist: ma-P 1205, spin-coated at 3,500 r.p.m. for 30 s, baked 
at 100 °C for 30 s), before laser exposure and development for 40 s in ma-D 331 
solution. Sputter deposition of Ti/Pt (10 nm/400 nm) is performed after 5 min of 
argon sputter cleaning. Titanium serves as the adhesion promoter and diffusion 
barrier for the platinum. Finally, a lift-off is performed, 1 h at 80 °C in Remover 
1165. An optical micrograph of a final device is shown in Extended Data Fig. 2.
Thermoelectric measurements. Thermoelectric measurements are performed 
in a temperature-variable cryostat (Dynacool, Quantum Design) in vacuum. The 
cryostat is equipped with a ±​9 T superconducting magnet. After fabrication, the 
micro-ribbon devices are wire bonded and mounted on a sample holder that allows 
rotation in angles from −​10° to 370°. We specifically investigate three thermo
electric transport parameters of the NbP micro-ribbons: the electrical conductance 
G =​ J/V, the thermoelectric conductance GT =​ J/|​∇T|​, and the thermopower 
S =​ −​Vth/|​∇T|​, where J denotes the electrical current, V the voltage bias, ∇T a 
temperature gradient and Vth the voltage response to ∇T. All transport coeffi-
cients are measured in the linear response regime as a function of the cryostat base 
temperature T, magnetic field B and rotation angle ϕ, which is defined with respect 
to the transport direction along the longitudinal axis of the samples.

Electrical conductance measurements in a two-probe configuration are carried 
out under isothermal conditions with d.c. bias voltages of up to V =​ 1 mV applied 
with a Yokogawa voltage source and a 100-times voltage divider across the length 
of the ribbon. Our results are independent of contact iteration. The responding 
current signal J is enhanced using a current preamplifier (Stanford Research, model 
SR570) with an input impedance of 1 Ω​. Contact lines across the full width of the 
sample ensure a homogeneous electric field distribution in the ribbon. Temperature-
dependent J–V measurements (Extended Data Fig. 3) reveal ohmic contacts. The 
magneto-conductance is measured by sweeping the magnetic field with 5 mT s−1.

Thermoelectric conductance measurements are performed with the same 
current recording set-up, but, crucially, without an electric field imposed at the 
sample. Instead, the on-chip Joule heater line near the end of the micro-ribbon 
is used to generate a temperature gradient ∇T along the length of the micro-
ribbon. ∇T is measured by resistive thermometry, using two metal four-probe 
thermometer lines located at the ends of the micro-ribbons (Extended Data  
Fig. 2). The thermometers are driven by lock-in amplifiers (Stanford Research, 
model SR830) with a 500-nA a.c. bias current at distinct frequencies (<​15 Hz) 
to prevent crosstalk. The thermometers are calibrated under isothermal condi-
tions against the base temperature of the cryostat (Extended Data Fig. 4), from 
which T(R) is determined, where R is the electrical resistance of the thermometers. 
The heating voltage VH applied across a 2-kΩ​ shunt resistance at the heater line 
(Extended Data Fig. 5) is chosen to ensure a linear response of the current J to the 
temperature gradient (J ∝​ |​∇T|​; Extended Data Fig. 6). GT is then obtained from 
linear fits of J versus the corresponding |​∇T|​ at fixed base temperatures; |​∇T|​ 
values of up to 350 mK are obtained. The magneto-thermoelectric conductance 
is measured at a fixed heating voltage of 12 V, sweeping the magnetic field with 
5 mT s−1. ∇T showed no dependence on the magnetic field. The field sweeping 
rate is chosen such that the results are independent of it.

To obtain S, the current measurement set-up is removed and replaced by a 
nanovoltmeter (Keithley, model 182A) to measure the open-circuit voltage Vth 

of the NbP micro-ribbons in response to ∇T. Choosing the same VH as in the 
thermoelectric conductance measurements ensures a linear response of Vth to the 
temperature gradient (Vth ∝​ |​∇T|​; Extended Data Fig. 7). S is then extracted from 
linear fits of Vth versus |​∇T|​.
Temperature dependence of the transport coefficients at zero magnetic field. 
In the absence of an applied magnetic field, the electrical conductance exhibits 
a non-metallic G(T) dependence with a negative temperature coefficient of 
resistance (Extended Data Fig. 8). Furthermore, without magnetic and electric 
fields applied along the sample, the measurement of thermoelectric conductance 
versus temperature reveal a change in sign at approximately 250 K (Extended Data 
Fig. 9). Below 250 K, the transport in the NbP micro-ribbons is dominated by 
conduction-band electrons, indicated by a negative sign of the thermoelectric 
conductance in the GT–T plot. Because of the zero bandgap, holes are thermally 
excited in parallel, governing the transport at higher temperatures (positive GT). 
The same generic features are observed in S(T) (Extended Data Fig. 10).
Connection between the mixed axial–gravitational anomaly and thermal 
transport. The mixed axial–gravitational anomaly. For completeness, we present 
established quantum field theory and hydrodynamic theory results for chiral Weyl 
fermions that support the interpretation that the measurements presented here 
stem from a mixed axial–gravitational anomaly. We start by noting that, unlike 
pure gravitational anomalies, which are allowed only in space-time dimension 
D =​ 4k −​ 2, where k is an integer, mixed axial–gravitational anomalies are allowed 
in the D =​ 3 +​ 1 that is relevant for Weyl semimetals19. In particular, we are 
interested in the Abelian version of the mixed axial–gravitational anomaly, which 
is expressed via the non-conservation of axial current μjA

 in a curved space-time 
that is characterized by the Riemann tensor βμν

αR . Following the notation of  
ref. 21, we write the conservation law for this current as

ε ε∂ =
π

+
π

μ
μ μνρσ

μν ρσ
μνρσ

βμν
α

αρσ
βj d F F b R R

32 768
(1)A

AVV
2

V V A
2

where the labels ‘A’ and ‘V’ denote tensors built out of axial and vector fields, 
respectively, and dAVV and bA are numerical coefficients (defined below). The first 
term on the right-hand side of equation (1) represents the non-conservation of 
axial current due to the presence of external non-orthogonal electric and magnetic 
fields. It involves the electromagnetic (vector) field strength =∂ −∂μν μ ν ν μF A AV V V 
through the U(1) vector gauge field νAV where μ ∈​ {0, 1, 2, 3}. Its coefficient is set 
by the chiral anomaly coefficient dabc, with a, b, c ∈​ {A, V}; when dabc ≠​ 0, the 
chiral anomaly is present. For the Abelian case, of interest here, it is simply deter-
mined by the difference between a triple product of charges q of right (‘r’) and  
left (‘l’) chirality:

∑ ∑= − ( )( )d q q q q q qabc a b c a b c
r

r r r

l

l l l

where = =q q 1V
r

A
r  and =− =q q 1V

l
A
l . Therefore, dAVV =​ 2 for a pair of chiral 

fermions.
The second term on the right-hand side of equation (1) is the contribution of 

the mixed axial–gravitational anomaly to the non-conservation of chiral current. 
In the Abelian case, its coefficient is given by

∑ ∑= −b q qa a a
r

r

l

l

with a ∈​ {A, V}. If ba ≠​ 0, then the mixed axial–gravitational anomaly is present1,3,4 
and ba =​ 2 for each pair of chiral fermions.
Connection with thermal transport. Given the form of the gravitational term in 
equation (1), it is natural to ask how it is possible to detect its presence in a flat 
space-time in which =βμν

αR 0. The key but subtle observation is that the 
temperature dependence of linear transport coefficients for systems of Weyl 
fermions depends on ag, even in flat space-time. This conclusion can be reached 
from the standard Kubo formalism5, holography31, hydrodynamic theory8 or 
arguments based on a global version of the axial–gravitational anomaly32.

Although hydrodynamic6 and Kubo approaches lead to consistent predictions 
for the thermoelectric coefficient presented here, the former relies on interactions 
being the dominant scattering mechanism. Because the scattering in experimental 
samples seems to be mostly dominated by impurity scattering, we believe the Kubo 
approach to be more suitable for the description of our data.

In what follows we sketch a simple derivation that justifies the functional form 
of the positive magneto-thermoelectric conductance that we use. We consider a 
single Weyl cone, in which case the anomaly coefficients are dχ =​ bχ =​ ±​1, and we 
define aχ =​ dχ/(4π​2) and ag =​ bχ/24. Our calculation relies on the Kubo formalism; 
although the low-field predictions obtained by this treatment are consistent with 
those from Boltzmann kinetic theory23–26, key advantages of the Kubo formalism 
as compared to the Boltzmann approach are that it tracks the relationship to the 
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mixed axial–gravitational anomaly in a transparent way and that it is directly appli-
cable to large magnetic fields. We start with the equations that describe particle 
and energy conservation for a single Weyl fermion:

ρ ∇+ = ⋅ρ χ J E Ba (2)

∇+ = ⋅ρε εJ J E (3)

where ρ is the electronic density and ε is the energy density. Jρ and Jε are the electric 
and the energy current, respectively. Because the system lives in flat space-time,  
only the chiral anomaly enters these equations. We furthermore note that  
the energy conservation equation (3) includes a term that describes the work  
performed by the electric field.

We are interested in the magnetic-field-dependent contribution to the 
energy and charge current that will ultimately determine the positive magneto-
thermoelectric conductance. As discussed in ref. 20, the standard Kubo formalism 
for Weyl fermions leads to

μ=ρ χJ Ba (4)

μ= 

 + 




χ
εJ B

a
a T

2
(5)2

g
2

Equation (4) describes the chiral magnetic effect for a single Weyl fermion at 
chemical potential μ, which depends on the chiral anomaly coefficient aχ. The 
energy current given in equation (5) is composed of two terms. The first term 
describes that the directed flow of particles in a system with a chiral anomaly leads 
to an energy current that is simply due to the energy associated with each electronic 
state. This term is normalized such that the energy current vanishes in the vacuum 
state, which corresponds to μ =​ 0. The second term, which describes the thermal 
contribution of interest, has recently been highlighted to be a consequence of the 
mixed axial–gravitational anomaly5,31–35. It is hence governed by the coefficient 
ag, which establishes a link between the existence of a thermal contribution in Jε 
and the gravitational contribution to equation (1).

We now turn to the thermoelectric transport. To this end, we assume a finite 
magnetic field B and compute the anomalous response due to a gradient in 
temperature ∇T and an electric field E (all of which are assumed to be spatially 
homogeneous) in the linear-response approximation. With these assumptions, we 
can insert equations (4) and (5) into equations (2) and (3) to obtain

μ ∇= ⋅ − ⋅χε E B Ba a T T2 (6)g

ρ= ⋅χ E Ba (7)

The first term on the right-hand side of (6) is the work performed by the electric 
field on the background chiral-magnetic-effect current. If there are two nodes of 
opposite chirality, then this term encodes that each particle pumped between the 
Weyl nodes in parallel electric and magnetic fields also transfers its energy from 
one node to the other. The second term on the right-hand side of equation (6) 
shows that, in a completely analogous way, a temperature gradient parallel to the 
magnetic field leads to energy pumping between Weyl cones owing to the mixed 
axial–gravitational anomaly. In a Weyl semimetal, intervalley scattering will stop 
this pumping on a timescale τ, known as the intervalley scattering time. (In a 
strongly interacting electron fluid the energies of different Weyl cones could in 
principle equilibrate on a shorter timescale, owing to electron–electron 
interactions; however, this is not the case here.) The steady state is accounted for 
by the replacement ρ ρ τ→ δ δ / ε ε( , ) ( , ) . 

At this point it is convenient to introduce the matrix
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and equations (6) and (7) can be written as
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From equations (4) and (5), we obtain the ith components of the energy and 
particle currents,

τ
μ
μ





δ
δ




=












δ
δ


ρ

χ

χ

εJ
J

a T a
a

T B
2

0
i

i
i

,

,

g

which together with equation (8) define the response tensor κij as

κ
μ
Ξ

μ
τ=
















− 




χ

χ

χ

χ

−a T a
a

a T a
a

B B
2

0
2
0ij i j

g 1 g

The anomaly-induced response in the current is thus given by

= ∇ +J G T G Ei
ij

j
ij

jT

where the conductance tensors have components
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To explain our experimental measurements, we now consider the regimes of 
either low or high magnetic field, assuming a homogenous Fermi velocity of vF 
(we use units such that the elementary charge e =​ 1). In the first case, the system 
behaves as a gas of free Weyl fermions with an energy density of

π
μ μ=


 + π + π


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v
T T1

8
2 7

15 (11)2
F
3
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(see for instance ref. 36). In the second case, the system splits into degenerate 
one-dimensional systems, the number of which is set by the Landau level 
degeneracy, and the energy density is

μ
=


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 π

+
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For small and large magnetic fields, the particle densities are given respectively by

ρ μ μ
=

+π
π

T
v6

(13)
3 2 2

2
F
3

and

ρ μ=
π
B

v4
(14)B 2

F

Combining the above allows us to obtain Gij and Gij
T in different magnetic-field 

regimes. For low magnetic fields, substituting equations (11) and (13) into equation 
(9) yields

μ

μ μ μ
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π + +
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whereas, for large magnetic fields, substituting equations (12) and (14) into 
equation (9) leads to

τ= πχ B
G a v

B B
4ij i j2 2

F

=G 0ij
T

By adding a Drude contribution and summing over the contributions from the 
different nodes, we obtain the functional form used in the main text.

Equations (10) and (16) establish a link between the presence of the chiral and 
mixed axial–gravitational anomalies, represented by aχ ≠​ 0 and ag ≠​ 0, respectively, 
and the enhancement of the thermoelectric response function of Weyl fermions 
in flat space-time due to a magnetic field applied parallel to a thermal gradient. 
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In particular, if the axial–gravitational anomaly is absent, then there is no 
thermal transport. Because we probe the presence of the chiral anomaly (aχ ≠​ 0) 
independently by measuring a positive magneto-conductance, our results indicate 
that ag ≠​ 0. This is the main finding of our work.

The physical effects can be summarized as follows. The thermal gradient 
increases (decreases) the energy density of left-moving (right-moving) charge 
carriers, which leads to an effective chiral imbalance that generates a current 
in the direction of the magnetic field via the chiral magnetic effect. Finally, 
as mentioned above and in the main text, the functional dependence used in 
here is consistent with more conventional semi-classical treatments based on 
the Boltzmann equation23–26; however, these do not track the origin of these 
anomalous transport features explicitly, and cannot access the high-magnetic-
field limit directly.
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Data availability. All data generated and analysed during this study are available 
within the paper and its Extended Data. Further data are available from the 
corresponding author on reasonable request.
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Extended Data Figure 1 | Material analysis of the NbP micro-ribbon.  
a, Sketch of the structure of the NbP crystal. b, SEM image of a NbP 
micro-ribbon before device processing. The longitudinal direction of the 
ribbon corresponds to the [100] axis of the crystal. c, Spatial composition 
of an exemplary NbP micro-ribbon, measured from the top along [100] 
using SEM-EDX, reveals an average of 53% Nb, 45% P and 2% Ga. x100 is 
the distance from the end of the sample along [100]. d, XRD spectrum of 
the NbP at room temperature (Cu Ka radiation). a.u., arbitrary units.
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Extended Data Figure 2 | Optical micrograph of a measurement 
device. The NbP micro-ribbon (green) is placed between two four-probe 
thermometers (grey), which also serve as electrical probes. The electrically 
insulated heater line (grey) close to one end of the sample creates a 
temperature gradient along the length of the sample.
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Extended Data Figure 3 | Isothermal (∇T = 0 K) current–voltage (J-V) 
characteristic of the NbP micro-ribbon at selected temperatures and 
zero magnetic field (B = 0 T). The linearity of the curves reveals ohmic 
electrical contacts.
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Extended Data Figure 4 | Thermometer calibration. Resistance R versus 
base temperature T of the cryostat, measured at isothermal conditions.
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Extended Data Figure 5 | Temperature gradient ∇T along the sample 
as a function of the square of the heating voltage VH at different base 
temperatures, which is proportional to the heating power. 
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Extended Data Figure 6 | Linear response of the thermoelectric 
current J to the temperature gradient ∇T. We determine the thermo-
conductance GT =​ J/|​∇T|​ from the slope of the linear fits. The error bars 
in Extended Data Fig. 8b are the uncertainties obtained from these fits.
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Extended Data Figure 7 | Linear response of the thermovoltage Vth 
to the temperature gradient ∇T. The thermopower S =​ −​Vth/|​∇T|​ is 
determined from linear fits of the data.
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Extended Data Figure 8 | Zero-field transport. a, Electrical conductance 
G at zero magnetic field (B =​ 0 T) in isothermal conditions (∇T =​ 0 K)  
as a function of the base temperature. Values of G are obtained from  
the slope of the linear fits of the data given in Extended Data Fig. 3.  
b, Thermoelectric conductance GT at zero magnetic field (B =​ 0 T) 
and with no electric field imposed (E =​ 0) as a function of the base 
temperature. Values of GT are obtained from the slope of the linear fits of 
the data shown in Extended Data Fig. 6. Error bars, fit uncertainty of the 
slope. c, Themopower S at zero magnetic field (B =​ 0 T) as a function of 
the base temperature. Values of S are obtained from the slope of the linear 
fits of the data shown in Extended Data Fig. 7. Error bars, fit uncertainty 
of the slope.
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Extended Data Figure 9 | Magneto-conductance G(E  B) as a function 
of magnetic field B at selected base temperatures (colour scale). 
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Extended Data Figure 10 | Magneto-thermoelectric conductance 
GT(∇T  B) as a function of magnetic field B at selected base 
temperatures (colour scale). 
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Extended Data Figure 11 | Magneto-thermopower S(∇T  B) as a 
function of magnetic field B at selected base temperatures (colour 
scale). 
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