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Exploring 4D quantum Hall physics with a 2D 
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The discovery of topological states of matter has greatly improved 
our understanding of phase transitions in physical systems. Instead 
of being described by local order parameters, topological phases are 
described by global topological invariants and are therefore robust 
against perturbations. A prominent example is the two-dimensional 
(2D) integer quantum Hall effect1: it is characterized by the first 
Chern number, which manifests in the quantized Hall response 
that is induced by an external electric field2. Generalizing the 
quantum Hall effect to four-dimensional (4D) systems leads to the 
appearance of an additional quantized Hall response, but one that is 
nonlinear and described by a 4D topological invariant—the second 
Chern number3,4. Here we report the observation of a bulk response 
with intrinsic 4D topology and demonstrate its quantization by 
measuring the associated second Chern number. By implementing 
a 2D topological charge pump using ultracold bosonic atoms in an 
angled optical superlattice, we realize a dynamical version of the 4D 
integer quantum Hall effect5,6. Using a small cloud of atoms as a local 
probe, we fully characterize the nonlinear response of the system via 
in situ imaging and site-resolved band mapping. Our findings pave 
the way to experimentally probing higher-dimensional quantum 
Hall systems, in which additional strongly correlated topological 
phases, exotic collective excitations and boundary phenomena such 
as isolated Weyl fermions are predicted4.

Topology, originally a branch of mathematics, has become an impor-
tant concept in different fields of physics, including particle physics7, 
solid-state physics8 and quantum computation9. In this context, a 
hallmark achievement was the discovery of the 2D integer quantum 
Hall effect1. This discovery demonstrated that the Hall conductance 
in a perpendicular magnetic field and in response to an electric field 
E is quantized. In a cylindrical geometry, following Laughlin’s thought 
experiment, E can be generated by varying the time-dependant mag-
netic flux φx(t) along the axis (x) of the cylinder10 (Fig. 1a). The inter-
play between the perpendicular magnetic field and the induced electric 
field Ez creates a quantized Hall response in the x direction: an integer 
number of particles, determined by the first Chern number, is trans-
ported between the edges per quantum of magnetic flux that is threaded 
through the cylinder2.

Dimensionality is crucial for topological phases and many intrigu-
ing states were recently discovered in three dimensions, such as Weyl 
semimetals11,12 and three-dimensional (3D) topological insulators13. 
Ascending further in dimensions, a 4D generalization of the quan-
tum Hall effect has been proposed in the context of astrophysics3 and 
condensed-matter systems4, and has received much attention in theo-
retical studies8. Unlike its 2D equivalent, the 4D quantum Hall effect 
can occur in systems with and without time-reversal symmetry3,4. The 
former constitutes the fundamental model from which many low-
er-dimensional time-reversal-symmetric topological insulators can 
be derived8,14. Furthermore, a 4D quantum Hall system might exhibit 
relativistic collective hyperedge excitations and new strongly corre-
lated quantum Hall phases, revealing the interplay between quantum 
correlations and dimensionality4. This interest was renewed recently as 

a result of the unprecedented control and flexibility made possible by 
engineered systems such as ultracold atoms and photonics. Such sys-
tems have been used to study various topological effects15,16, including 
a measurement of the second Chern number in an artificially generated 
parameter space17, and offer a direct route for realizing 4D physics 
using synthetic dimensions18–20.

In the simplest case, a 4D quantum Hall system can be composed of 
two 2D quantum Hall systems in orthogonal subspaces (Fig. 1a, b). In 
addition to the quantized linear response that underlies the 2D quan-
tum Hall effect, a 4D quantum Hall system exhibits a quantized non-
linear 4D Hall response6. The latter arises when—simultaneously with 
the perturbing electric field E—a magnetic perturbation B is added. 
The 4D geometry implies multiple possibilities for the orientation of E 
and B; however, the resulting nonlinear response is always character-
ized by the same 4D topological invariant, the second Chern number. 
Here, we focus on the geometry depicted in Fig. 1a, b, in which the 
nonlinear response can be understood semi-classically as originat-
ing from a Lorentz force created by B, which couples the motion in 
the two 2D quantum Hall systems21. The direction of this response is 
transverse to both perturbing fields. Hence, it can occur only in four 
or more dimensions and has therefore never been observed in any 
physical system.

Topological charge pumps exhibit topological transport properties 
that are similar to higher-dimensional quantum Hall systems and pro-
vide a way to probe 4D quantum Hall physics in lower-dimensional 
dynamical systems. The first example of a topological charge pump 
was the one-dimensional (1D) Thouless pump5, in which an adiaba-
tic periodic modulation generates a quantized particle transport. This 
modulation can be parameterized by a pump parameter and, at each 
point in the cycle, the 1D system constitutes a Fourier component of 
a 2D quantum Hall system14,22. The induced motion is thus equiva-
lent to the linear Hall response and is characterized by the same 2D 
topological invariant, the first Chern number. Indeed, the quantum 
Hall effect on a cylinder can be mapped to a 1D charge pump with the 
threaded magnetic flux φx acting as the pump parameter10 (Fig. 1a). 
Building on early condensed-matter experiments23, topological charge 
pumps have recently been realized in photonic waveguides24 and by 
using ultracold atoms25,26.

A dynamical 4D quantum Hall effect can accordingly be realized by 
using a 2D topological charge pump6. Using dimensional reduction14,22, 
the Fourier components of a 4D quantum Hall system can be mapped 
onto a 2D system. For the geometry in Fig. 1a, b, the corresponding 2D 
model is a square superlattice (Fig. 1c, Methods), which consists of two 
1D superlattices along the x and y directions, each formed by superim-
posing two lattices: Vs,μsin2(πμ/ds,μ) + Vl,μsin2(πμ/dl,μ − ϕμ/2), with 
μ ∈ {x, y}. Here, ds,μ and dl,μ > ds,μ denote the period of the short and 
long lattices, respectively, and Vs,μ and Vl,μ the depths of the short and 
long lattice potentials. The position of the long lattice is determined by 
the corresponding superlattice phase ϕμ.

The phase ϕx is chosen as the pump parameter; that is, pumping is 
performed by moving the long lattice along x. This method of pumping 
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is equivalent to threading the flux φx in the 4D model, leading to a 
quantized motion along x (the linear response; Fig. 1c, d). The magnetic 
perturbation Bxw corresponds to a transverse phase ϕy that depends 
linearly on x and thereby couples the motion in the x and y directions 
(see Methods). We realize this by tilting the long y lattice relative to the 
short one by an angle θ� 1 (Fig. 1c) such that ϕ ϕ θ= + π /x x d( ) 2y y y

(0)
l,  

to first order in θ. When ϕx is varied, the motion along x changes ϕy 
and—analogously to the Lorentz force in 4D—induces a quantized 
nonlinear response along y, which is equivalent to the nonlinear Hall 
response of a 4D quantum Hall system6 (Fig. 1c, d).

For a uniformly populated band in an infinite system, the centre-of-
mass (COM) displacement during one cycle ϕx = 0 → 2π is

ν ν θ+e ea a
d

ax
x x

x

y
y y1 2

l,

with ax (ay) the size of the superlattice unit cell and ex (ey) the unit 
vector along x (y) (see Methods). The first term describes the quantized 
linear response along x. It is proportional to the first Chern number of 
the pump (ν x

1 ; denoted ν in ref. 31), which is obtained by integrating 
the Berry curvature

Ω ϕ = 〈∂ |∂ 〉− 〈∂ |∂ 〉ϕ ϕk i u u u u( , ) ( )x
x x k kx x x x

over the generalized 2D Brillouin zone spanned by the quasi-
momentum kx and ϕx. Here, |u(kx, ϕx)〉 denotes the eigenstate of a given 
non-degenerate band at kx and ϕx. Because ν x

1  can take only integer 
values, the motion is quantized25. The second term is the nonlinear 
response in the y direction. It is quantified by a 4D integer topological 
invariant, the second Chern number of the pump (denoted V in ref. 31):

∮ν Ω Ω ϕ ϕ=
π

k k1
4

d d d dx y
x y x y2 2

BZ

where BZ indicates the generalized 4D Brillouin zone (Fig. 1e). 
Therefore, the nonlinear response is also quantized and has intrinsic 
4D symmetries that result from the higher-dimensional non-commu-
tative geometry.

We implement a 2D topological charge pump by using bosonic 
87Rb atoms that form a Mott insulator in isolated planes of a 3D opti-
cal lattice with superlattices along x and y, with ds ≡ ds,x = ds,y and 
dl ≡ dl,x = dl,y = 2ds (see Methods), creating double-well potentials along 
x and y (Fig. 1c). In the tight-binding limit, this implementation realizes 
a 2D Rice–Mele model27 in each plane with dimerized on-site energies 
and tunnel couplings between neighbouring sites in both directions 
(see Methods). The corresponding unit cell is a four-site plaquette, 
ax = ay = 2ds, and the lowest band splits into four subbands.

In the experiment, we study the nonlinear response of the lowest 
subband, for which ν2 = +1 for dl = 2ds. Our main results are: (i) the 
observation of a 4D-like bulk response; (ii) the local probing of its 4D 
geometric properties; and (iii) the revealing of the 4D quantum Hall 
effect by demonstrating the quantization of the response. As the initial 
state, a quarter-filled Mott insulator that uniformly occupies the lowest 
subband is prepared at ϕx = 0 (see Methods). The pumping is per-
formed along x by adiabatically varying ϕx; we examine the resulting 
motion of the atoms. We probe the system locally by using a small cloud 
of atoms that extends over approximately 20 sites in the x direction. In 
this case, the variation in Ωy(ϕy) over the cloud is negligible and the  
y displacement per cycle is given by Ω ϕ θ /a a d( )y x y

(0)
l, with

∮Ω Ω Ω ϕ=
π

k k1
2

d d dx y
x y x

(see Methods). From this local response, the quantized nonlinear 
response of an infinite system can be reconstructed by sampling all 
ϕ ∈ π[0, 2 )y

(0) , thereby integrating over the entire 4D Brillouin zone.  
To probe the motion of the cloud, we measure its COM position as a  
function of ϕx. Because the nonlinear response results from two weak 
perturbations, the displacement per cycle is typically only a fraction of 
dl. It is therefore too small to be resolved experimentally, because the 
number of experimental cycles is limited by heating. However, for  
suitable lattice parameters, signatures of the nonlinear drift—the key 
feature of the 4D Hall effect—can be seen at ϕ =π/2y

(0)  (Fig. 2), at which 
Ω  is strongly peaked (see Fig. 1e). Unlike the linear response, this 
motion depends on θ, demonstrating the intrinsically 4D character of 
the nonlinear response, which results from the two independent  
perturbations in orthogonal subspaces. This result demonstrates the 
existence of this dynamical, transverse, bulk phenomenon directly.
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Figure 1 | 4D quantum Hall system and the corresponding 2D 
topological charge pump. a, A 2D quantum Hall system on a cylinder 
pierced by a uniform magnetic flux Φxz (blue arrows). Threading a 
magnetic flux φx(t) through the cylinder creates an electric field Ez on 
the surface (red arrows), resulting in a linear Hall response along x with 
velocity vx (green arrow). b, A 4D quantum Hall system can be composed 
of two 2D quantum Hall systems in the x–z and y–w planes. A weak 
magnetic perturbation Bxw in the x–w plane couples the two systems 
and generates a Lorentz force Fw (orange arrow) for particles moving 
along x. This force induces an additional nonlinear Hall response in the 
y direction with velocity vy (green arrow). c, A dynamical version of the 
4D quantum Hall system can be realized by using a topological charge 
pump in a 2D superlattice (blue potentials). Such a superlattice is created 
by superimposing two lattices with periods ds (grey) and dl > ds (red) along 
both x and y, depicted here for dl = 2ds, as in the experiment. The black 
circles show the lattice sites that are formed by the potential minima, and 
the black (grey) lines indicate strong (weak) tunnel coupling between 
neighbouring sites. The system is modulated periodically by moving the 
long lattice adiabatically along x, mimicking the perturbing electric  
field Ez in the 4D model. The magnetic perturbation Bxw maps onto a small 
tilt angle θ of the long lattice along y with respect to the corresponding 
short lattice. In this case, the shape of the double wells along y depends on 
the position along x. The dashed red lines indicate the potential minima 
of the tilted long lattice. d, The pumping shifts the cloud of atoms (grey) 
in the x direction (with velocity vx), as per the quantized linear response 
of a 2D quantum Hall system. For non-zero θ, the two orthogonal axes are 
coupled, leading to an additional quantized nonlinear response with 4D 
topology in the perpendicular y direction (with velocity vy). e, The velocity 
of the nonlinear response is determined by the product of the Berry 
curvatures ΩxΩy (see Methods; a.u., arbitrary units), depicted here for the 
lowest subband with dl = 2ds and lattice depths as in Fig. 3. The left (right) 
torus shows a cut at ky = 0, ϕy = π/2 (kx = π/(2dl), ϕx = π/2) through the 
generalized 4D Brillouin zone spanned by kx, ϕx, ky and ϕy.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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To quantify this nonlinear response, instead of in situ imaging we use 
site-resolved band mapping, which measures the number of atoms on 
even (Ne) and odd (No) sites along y. This method enables us to deter-
mine the average double-well imbalance, ℐy = (No − Ne)/(No + Ne), 
accurately. If no transitions between neighbouring unit cells along  
y occur, then ℐy is related directly to the COM motion (see Methods). 

An example measurement of ℐy(ϕx) is shown in Fig. 3a. The measured 
nonlinear response is smaller than expected for an ideal system, owing 
to the appearance of doubly occupied plaquettes and band excitations 
along y during the pumping and to a finite pumping efficiency along x 
(see Methods). Taking these imperfections into account, we find excel-
lent agreement between the experimental data and the expected imbal-
ance (Fig. 3a). By performing a linear fit to the differential  
double-well imbalance ℐy(ϕx) − ℐy(−ϕx), we extract the change in the 
population imbalance during one cycle, δℐy = ℐy(ϕx = 2π) − ℐy(ϕx = 0) 
(see Methods). For a homogeneously populated band, this slope is 
determined by Ω  and thus characterizes the transport properties of the 
system.

To reconstruct the quantized response of an infinite system and 
thereby obtain ν2, we repeat the measurement of ℐy(ϕx) for different 
ϕ y

(0) starting from the same initial position. This is equivalent to using 
the small cloud of atoms as a local probe at different positions along x 
for fixed ϕ y

(0) (Fig. 3b). To demonstrate the quantization of the non
linear response, we determine the second Chern number of the lowest 
subband by averaging δℐy over ϕ ∈ π[0, 2 )y

(0) . For symmetry reasons, it 
is sufficient to restrict ϕ y

(0) to [0, π) for dl = 2ds (see Methods). In this 
interval, the nonlinear response has large contributions only in the 
vicinity of ϕ =π/2y

(0) . For the range of data shown in Fig. 3c, this 
process gives ν = .0 8(2)2

exp , with the error resulting from the fit and the 
uncertainty in θ. By taking the above-mentioned experimental imper-
fections into account we isolate the contribution from the lowest sub-
band δI y

gs (see Methods). The experimentally determined slope of the 
nonlinear response for ground-state atoms agrees very well with the 
slope expected in an ideal system (Fig. 3c). To determine ν 2

exp, the ideal 
slope is fitted to the measured one by scaling it with a global amplitude, 
ν ν ϕ/ δI( ) ( )y y2

exp
2

gs (0) . This yields ν = .1 07(8)2
exp , in agreement with the 

expected value of ν2 = +1. The error in here additionally takes into 
account the uncertainties in the lattice depths.

In the 4D quantum Hall system, the defining feature of the nonlinear 
response is its linear dependence on the magnetic perturbation. The 
same scaling is thus expected for the 2D charge pump with respect to θ.  
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Figure 2 | 4D-like nonlinear centre-of-mass (COM) response. a, Shift in  
the COM of the cloud of atoms along y (Δy) versus the number of pump  
cycles along x (represented by ϕx) measured for two different angles,  
θ1 = 0.78(2) mrad (red) and θ2 = −0.85(2) mrad (blue), with  
ϕ = . π0 500(5)y

(0) . When pumping along x, the cloud moves in the  
perpendicular y direction with the sign depending on the pumping  
direction and the sign of θ. Δy is the differential displacement for 
Vs,x = 7.0(2)Er,s, Vs,y = 17.0(5)Er,s, Vl,x = 20.0(6)Er,l and Vl,y = 80(3)Er,l 
compared to a reference sequence with Vs,y = 40(1)Er,s and Vl,y = 0Er,l  
(see Methods). Here = /E h m d(8 )i ir,

2
a

2 , with i ∈ {s, l}, denotes the 
corresponding recoil energy, with ma the mass of an atom. Each point is 
averaged 100 times and the error bar takes into account the error of the 
mean as well as a systematic uncertainty of ±0.3ds. b, Difference in the 
COM drift between θ1 and θ2 for the x (grey) and y (green) directions: 
Δrμ = Δμ(θ1) − Δμ(θ2), with μ ∈ {x, y}. The direction of the nonlinear 
response reverses when changing the sign of θ, whereas the linear  
response is independent of θ. Data are calculated from the measurements 
in a (see Methods).

Figure 3 | Local probing of the quantized nonlinear bulk response for  
θ = 0.54(3) mrad. a, Double-well imbalance ℐy versus the number of 
pump cycles in the x direction at ϕ = . π0 500(5)y

(0) , Vs,x = Vs,y = 7.0(2)Er,s 
and Vl,x = Vl,y = 20.0(6)Er,l. The data are the average of 14 measurements 
for the point at ϕx = 0 and 7 measurements for all others; the error is the 
error of the mean. The dashed line shows the response of an ideal system; 
the solid line includes corrections for the finite pumping efficiency along x 
and for the creation of doubly occupied plaquettes and band excitations 
along y. Both curves are shifted by a constant offset ℐ0 = 0.002 (see 
Methods). For simplicity, the theoretical curves assume a homogeneous 
Berry curvature Ω ν= / πa (2 )x x

x1 , neglecting the variation in Ωx during a 
pump cycle. b, The response of an infinite system can be reconstructed 
with a small cloud of atoms by repeating the measurement from a for 
different values of ϕ y

(0). A single measurement probes the response locally 
at the position of the cloud (grey frames on the left). Changing ϕ y

(0) is 

equivalent to sampling a different position in the lattice (magnified frames 
on the right). Note that the tilt of the long y lattice (indicated by the red 
solid line, as in Fig. 1c) is greatly exaggerated compared to the angle used 
in the experiment. c, Change in the double-well imbalance per cycle for 
the lowest band (δI y

gs) as a function of ϕ y
(0). δI y

gs is determined by the 
integrated Berry curvature Ω ϕ( )y

(0)  and so exhibits a pronounced peak 
around ϕ =π/2y

(0)  (see Fig. 1e and Methods). The slope δI y
gs is extracted 

from a fit to the measured imbalance ℐy(ϕx) (see Methods) and the solid 
line is the theoretically expected slope. Error bars show the fit error and 
the blue-shaded region indicates the uncertainty of the theoretical curve 
that results from the errors in θ and the lattice depths. The insets show two 
additional examples of individual measurements of ℐy(ϕx) (for the values 
of ϕ y

(0) indicated by the grey shading), as in a.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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We verify this by measuring the peak slope δI y
gs at ϕ =π/2y

(0)  as a func-
tion of θ (Fig. 4). Doing so also provides another way of obtaining the 
second Chern number, by determining the slope of θδI ( )y

gs  (see 
Methods). This linear fit gives ν = .1 01(8)2

exp , where the error is deter-
mined as described above. Furthermore, we confirm that the peak slope 
at fixed θ scales with the depth of the short y lattice Vs,y as expected 
(Extended Data Fig. 1, Methods). In particular, the direction of the 
nonlinear response is independent of Vs,y, indicating its robustness 
against perturbations of the system.

In conclusion, we present an observation of a dynamical 4D quan-
tum Hall effect, opening up a route to studying higher-dimensional 
quantum Hall physics experimentally. Extending our work, additional 
density-type nonlinear responses that are implied by the intrinsic 
4D symmetry of a 2D charge pump can be measured6. By adding a 
spin-dependent Yang–Mills gauge field, a dynamical version of the 
time-reversal-symmetric 4D quantum Hall effect, which exhibits a 
ground state with SO(5) symmetry, could be realized6. Including inter-
actions may yield intriguing fractional phases that originate in the 4D 
fractional quantum Hall effect4, similarly to previous proposals for 1D 
charge pumps28, and might enable the study of open questions in the 
context of Floquet engineering15. Going beyond the limit of weak per-
turbations, quantized electric quadrupole moments could be observed 
in spatially frustrated systems with θ = π/4 (ref. 29). Furthermore, a 
quantum Hall system with four extended dimensions might be realized 
with cold atoms20 using recently demonstrated techniques for creat-
ing synthetic dimensions18,19. In finite systems, this would permit the 
observation of boundary phenomena such as isolated Weyl points30. 
Ultimately, the ability to experimentally realize 4D quantum Hall 
systems could provide insight into lattice quantum chromodynamics 
models based on the Yang–Mills theory7, and even quantum gravity4.

We note that, simultaneously with this work, complementary results 
on topological edge states in 2D photonic pumps have been obtained31.
Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Figure 4 | Scaling of the 4D-like response with the tilt angle θ. The linear  
dependence on θ reveals the nonlinear character of the response,  
demonstrating that it is induced by two independent perturbations, ∂ϕx/∂t  
and θ. The slope δI y

gs is determined as a function of θ at ϕ = . π0 500(5)y
(0)   

by measuring the double-well imbalance when pumping along x, as  
described in Fig. 3 and using the same lattice depths. The solid line shows 
the slope that is expected for an ideal system. The fit errors for δI y

gs are 
smaller than the size of the data points and the insets show two examples 
of the measurement of ℐy(ϕx) (for the values of θ indicated by the grey 
shading), as in Fig. 3a.
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Methods
Hall response of the 4D quantum Hall system. Assuming perfect adiabaticity, 
the Hall response of the 4D system shown in Fig. 1a, b can be evaluated from the 
semi-classical equations of motion for a wave packet centred at position r and 
quasi-momentum k (ref. 32)

Ω=
∂
∂

+

= +

µ

µ
ν
νµ

µ µ
ν
µν

� �

� �

E k kr
ħ k

k

ħk qE qr B

1 ( ) ( )

Here, ℰ(k) is the energy of the respective eigenstate at k, q is the charge of the 
particle and Einstein notation is used for the spatial indices μ, ν ∈ {w, x, y, z}. The 
orientation of the axes in Fig. 1a, b is chosen such that the 4D Levi–Civita symbol 
is εwxyz = +1. The velocity of the wave packet = �v r has two contributions: the group 
velocity, which arises from the dispersion of the band, and the anomalous velocity, 
which is due to the non-zero Berry curvature

Ω = 〈∂ |∂ 〉− 〈∂ |∂ 〉νµ
ν µ µk i u u u u( ) ( )k k k kv

For a filled or homogeneously populated band, the group velocity term  
vanishes and with E = Ezez and B = 0 the linear Hall response is given by the 
COM velocity

ν=v eq
h

A Exz
z

zx
xCOM

(0)
M 1

where Axz
M denotes the size of the magnetic unit cell in the x–z plane and

∮ν Ω=
π

k1
2

dzx zx
1

BZ

2

denotes the first Chern number of the 2D quantum Hall system in the x–z plane. 
The integration is performed over the 2D Brillouin zone (BZ) spanned by kx 
and kz.

Adding the perturbing magnetic field Bxw generates a Lorentz force that acts on 
the moving cloud20, = −�k e eħ qE qv Bz z x xw w

(0) . (This additional force can alterna-
tively be interpreted as arising from a Hall voltage in the w direction that is created 
by the current along x in the presence of Bxw.) This force in turn induces an addi-
tional anomalous velocity along y, giving rise to the nonlinear Hall response. The 
resulting average velocity is then

ν ν= − 




v e eq

h
A E q

h
A E Bxz

z
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x z xw yCOM M 1

2
M 2

with AM the size of the 4D magnetic unit cell. The second Chern number is given by

∮ν Ω Ω Ω Ω Ω Ω=
π

+ + k1
4

dxw zy xy wz zx wy
2 2

BZ

4

where BZ denotes the 4D Brillouin zone.
Tight-binding Hamiltonian of the 2D superlattice. In the tight-binding limit, the 
motion of non-interacting atoms in a 2D superlattice is captured by the following 
Hamiltonian
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Here, âm m,
†

x y
 (âm m,x y) is the creation (annihilation) operator acting on the (mx, my)th  

site in the x–y plane. The first (second) term describes the hopping between neigh-
bouring sites along the x axis (y axis), with tunnelling matrix elements + δµ µ

µJ Jm , 
with μ ∈ {x, y}. The last term contains the on-site potential of each lattice site, 
∆ ∆+x

m
y
mx y. In the presence of the long lattices, the tunnel couplings and on-site 

energies are modulated periodically by δ µ µJm  and ∆ ∆+x
m

y
mx y, respectively. Both 

modulations depend on the respective superlattice phases ϕμ.

For the lattice configuration used in the experiment, where dl,μ = 2ds,μ, these 
modulations can be expressed as − δ /µµ J( 1) 2m  and ∆− /µµ( 1) 2m , and equation (1) 
reduces to the 2D Rice–Mele Hamiltonian27
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Mapping a 2D topological charge pump to a 4D quantum Hall system. The 
Hamiltonian of a 2D topological charge pump for a given set of parameters {ϕx, ϕy}, 
ϕ ϕĤ ( , )x y2D , can be interpreted as a Fourier component of a higher-dimensional 

quantum Hall system. Using the approach of dimensional extension6,22, a 2D 
charge pump can be mapped onto a 4D quantum Hall system, the Fourier compo-
nents of which are sampled sequentially during a pump cycle. This is demonstrated 
in the following for the deep tight-binding limit /µ µ�V V E(4 )s, l,

2
r,s , μ ∈ {x, y}, in 

which the corresponding 4D system consists of two 2D Harper–Hofstadter–
Hatsugai models33–36 in the x–z and y–w planes. A similar analogy can be made in 
the opposite limit of vanishingly short lattices, Vs,x → 0 and Vs,y → 0. In this case, 
each axis of the 2D lattice maps onto the Landau levels of a free particle in an 
external magnetic field in two dimensions25. For the lowest band, these two limit-
ing cases are topologically equivalent; that is, they are connected by a smooth 
crossover without closing the gap to the first excited band. The topological invar-
iants that govern the linear and nonlinear response are thus independent of the 
depth of the short lattices.

In the deep tight-binding regime, Jx and Jy become independent of the super
lattice phases and the modulations can be approximated as37
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with Φ = π /� d d2xz x xs, l,  and Φ = π /� d d2yw y ys, l, . δ µJ
(0) and ∆µ

(0) denote the modulation 
amplitudes, which are determined by the lattice depths. In this case, Ĥ2D is equiva
lent to the generalized 2D Harper model33, which describes the Fourier components 
of a 4D lattice model with two uniform magnetic fields in orthogonal subspaces. 
The 4D parent Hamiltonian is obtained via an inverse Fourier transform6
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and where m = {mx, my, mz, mw} indicates the position in the 4D lattice. This yields

= + + δH H H Hˆ ˆ ˆ ˆxz yw J4D

The first term (Ĥxz) describes a 2D Harper–Hofstadter model33–35 in the x–z plane 
with a uniform magnetic flux per unit cell, Φ Φ Φ Φ= / π = /� d d(2 ) ( )xz xz x x0 s, l, 0  , with 
Φ0 denoting the magnetic flux quantum
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Correspondingly, the second term (Ĥyw) is an independent 2D Harper–Hofstadter 
model in the y–w plane with Φyw = (ds,y/dl,y)Φ0. Owing to the positional dependence 
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of the transverse superlattice phase ϕy, this term also contains the magnetic  
perturbation, that is, a weak homogeneous magnetic field in the x–w plane
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with Φ θ=− π /� d d2xw x ys, l, . The strength of the perturbing magnetic field is then

Φ θ=−B
d dxw

w y

0

s, l,

where ds,w is the lattice spacing along w. For δ ≠µJ 0(0) , the third contribution ( δĤ J) 
leads to the appearance of additional next-nearest-neighbour tunnel coupling ele-
ments in the x–z and y–w planes, with amplitudes of δ /J 4x

(0)  and δ /J 4y
(0) , respec-

tively. The individual 2D models without the magnetic perturbation Bxw then 
correspond to the Harper–Hofstadter–Hatsugai model36 with a uniform magnetic 
flux Φxz and Φyw, the same flux as for δ =µJ 0(0) .
Transport properties of a 2D topological charge pump. When the pump 
parameter ϕx is changed slowly, a particle that is initially in an eigenstate 
|u(kx, ϕx(t = 0), ky, ϕy)〉 of the 2D superlattice Hamiltonian Ĥ2D (equation (1)) will 
adiabatically follow the corresponding instantaneous eigenstate 
|u(kx, ϕx(t), ky, ϕy)〉. In absence of a tilt (θ = 0), the particle acquires an anomalous 
velocity Ωx∂tϕxex during this evolution, analogously to the linear Hall response in 
a quantum Hall system. In this case, the Berry curvature Ωx is defined in a 4D 
generalized Brillouin zone (kx, ϕx, ky, ϕy)

Ω ϕ ϕ = 〈∂ |∂ 〉− 〈∂ |∂ 〉ϕ ϕk k i u u u u( , , , ) ( )x
x x y y k kx x x x

For a homogeneously populated band, the COM displacement along x during one 
cycle, obtained by integrating the average anomalous velocity over one period, 
can be expressed as an integral of the Berry curvature over the 2D generalized 
Brillouin zone spanned by kx and ϕx. It is therefore determined by the first Chern 
number of the pump

∮ν Ω ϕ=
π

k1
2

d dx x
x x1

When a tilt is present (θ ≠ 0), this motion along x leads to a change in ϕy. This 
induces an additional anomalous velocity in the y direction, giving rise to the 
nonlinear response. Neglecting the contribution from the group velocity (which 
averages to zero for a homogeneously populated band), we obtain for a given 
eigenstate
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The distribution of ΩxΩy in the 4D generalized Brillouin zone is shown in Fig. 1e 
for the lattice parameters used for the measurements in Figs 3 and 4. It exhibits 
pronounced peaks around ϕx ∈ {π/2, 3π/2} and ϕy ∈ {π/2, 3π/2}. For dl = 2ds, ΩxΩy 
is π-periodic in both ϕx and ϕy because the corresponding eigenstates are related 
by a gauge transformation, owing to the translational symmetry of the superlattice 
potential38.

For a small cloud that homogeneously populates a single band, as in the experi
ment, the variation in ΩxΩy over the size of the cloud along x (Lx) due to the 
position dependence of ϕy is negligible for θ/�L dx yl, . The average velocity for 
the nonlinear response can then be calculated by averaging equation (2) over both 
quasi-momenta kx and ky. The COM displacement after a complete cycle can be 
determined by integrating the velocity over one period. We can thus express the 
change in the COM position per cycle as
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If the number of pump cycles is small, then the change in ϕy as a result of the linear 
pumping response can be neglected and the nonlinear displacement per cycle is 
very well approximated by Ω ϕ θδ ≈ /y a a d( )y x y yCOM

(0)
l, .

The response of a large system with θ/�L dx yl,  can be obtained by averaging 
equation (3) over ϕy(x) ∈ [0, 2π), yielding

∮ Ω ϕ θ ϕ ν θδ =
π

=y a
d

a a
d

a1
2

( ) dy
x

y
y y

x

y
yCOM

l,
2

l,

where the second Chern number ν2 is calculated by integrating ΩxΩy over the 
entire 4D generalized Brillouin zone
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x y x y2 2

BZ

Note that to probe the intrinsic transport properties of the unperturbed system, 
both fields that generate the response have to be small perturbations such that the 
evolution remains adiabatic and the energy gap to the excited subbands remains 
open, which protects the topological invariants. Nonetheless, going beyond this 
limit can result in additional exciting phenomena. For example, a configuration 
with θ = π/4 can lead to spatial frustration and the resulting model might enable 
the observation of quantized electric quadrupole moments similar to those  
proposed previously29.
Pump path. Varying the pump parameter ϕx periodically modulates the tight-
binding parameters δJx(ϕx) and Δx(ϕx) that describe the superlattice along x  
(equation (1)). For dl = 2ds, the modulation of δJx and Δx is out of phase and the 
system therefore evolves along a closed trajectory in the δJx–Δx parameter space 
(Extended Data Fig. 2a). This pump path encircles the degeneracy point 
(δJx = 0, Δx = 0), at which the two lowest subbands of the Rice–Mele model touch. 
This singularity can be interpreted as the source of the non-zero Berry curvature 
Ωx in the generalized Brillouin zone, which gives rise to the linear pumping 
response. All pump paths that encircle the degeneracy can be continuously trans-
formed into one another without closing the gap to the first excited subband and 
are thus topologically equivalent with respect to the linear response; that is, the 
value of ν x

1  does not change.
Similarly, the tight-binding parameters δJy and Δy depend on the phase of the 

transverse superlattice ϕy. For a large cloud, all possible values of ϕy, and thus δJy 
and Δy, are sampled simultaneously (Extended Data Fig. 2b). During a pump cycle, 
the system therefore traces out a closed surface in the 4D parameter space of δJx, 
Δx, δJy and Δy (Extended Data Fig. 2c). In this parameter space, the two lowest 
subbands touch in the two planes (δJx = 0, Δx = 0) and (δJy = 0, Δy = 0), which 
intersect at a single point at the origin (Extended Data Fig. 2d). Analogously to the 
linear response, this degeneracy generates the non-zero Berry curvatures Ωx and 
Ωy, which cause the nonlinear motion in the y direction. Owing to the 4D character 
of the parameter space, the 4D pump path can enclose the degeneracy (Extended 
Data Fig. 2e). Whenever this is the case, the topology of the cycle does not change 
and the value of ν2 remains the same.

To visualize the pump path in the 4D parameter space in Extended Data Fig. 2, 
we apply the following transformation

∆ ∆

∆ ∆












=







− −

− −
− −













δ /δ

/

δ /δ

/







r
r
r
r

J J

J J
1
4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

(4)

x x

x x

y y

y y

1
2
3
4

(0)

(0)

(0)

(0)

where the tight-binding parameters are normalized by their respective maximum 
values. The degeneracy planes are then given by r1 = −r2, r3 = −r4 and r1 = r2, 
r3 = r4, respectively; that is, they become perpendicular planes in (r1, r2, r3) space.
Lattice configuration. All experiments were performed in a mutually orthogonal 
retro-reflected 3D optical lattice consisting of superlattices along x and y and a 
simple lattice in the z direction. Each superlattice is created by superimposing two 
standing waves: a short lattice with wavelength λs = 767 nm and a long lattice with 
λl = 2λs. The vertical lattice along z is formed by a standing wave with λz = 844 nm.
Initial state preparation for band-mapping measurements. For all sequences, a 
quarter-filled Mott insulator consisting of about 5,000 87Rb atoms was prepared 
with one atom localized in the ground state of each unit cell, creating a uniform 
occupation of the lowest subband in the 2D superlattice. To this end, a Bose–
Einstein condensate was loaded from a crossed dipole trap into the lattice by first 
ramping up the blue-detuned short lattices along x and y to 3.0(1)Er,s over 50 ms 
to lower the initial density of the cloud of atoms. These lattices were then switched 
off again within 50 ms, while the vertical lattice and both long lattices were 
increased to 30(1)Er,z and 30(1)Er,l, respectively, with ϕx = 0.000(5)π and ϕ ϕ=y y

(0). 
Subsequently, doubly occupied lattice sites were converted to singly occupied ones 
(see below), creating a Mott insulator with unit filling and a negligible fraction of 
doublons. Each lattice site was then split into a four-site plaquette by ramping up 
the short lattices along x and y to their final depth of 7.0(2)Er,s and decreasing the 
long lattices to 20.0(6)Er,l over 5 ms.
Removing doubly occupied sites. After preparing the Mott insulator with 
unit filling in the long lattices, sites containing two atoms were converted to 
singly occupied ones using microwave-dressed spin-changing collisions and a 
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resonant optical push-out pulse39,40. For this, the lattice depths are increased to 
Vs,x = 70(2)Er,s, Vl,x = 30(1)Er,l, Vl,y = 70(2)Er,l and Vz = 100(3)Er,z over 5 ms to 
maximize the on-site interaction energy. The atoms, which were initially in the 
(F = 1, mF = −1) hyperfine state, were converted to (F = 1, mF = 0) by using an 
adiabatic radio-frequency transfer. Here, F denotes the total angular momentum of 
the atoms. By ramping a magnetic offset field in the presence of a microwave field, 
we performed a Landau–Zener sweep that adiabatically converted pairs of mF = 0 
atoms on the same lattice site to an mF = +1 and an mF = −1 atom via coherent 
spin-changing collisions. The mF = −1 atoms were subsequently removed via an 
adiabatic microwave transfer to (F = 2, mF = −2), which was followed by a resonant 
optical pulse after lowering the lattices to Vs,x = 0Er,s, Vl,x = 30(1)Er,l, Vl,y = 40(1)Er,l 
and Vz = 40(1)Er,z.
Sequence for pumping. The superlattice phase can be controlled by slightly changing  
the frequency of the lasers used for generating the long lattices and thereby moving 
the relative position between the short and long lattices at the position of the atoms. 
The pumping along x is performed by slowly changing ϕx, starting from the 
staggered configuration at ϕx = 0.000(5)π, in which the energy difference between 
neighbouring sites (|Δx|) is largest and the tunnel couplings are equal (δJx = 0). To 
minimize non-adiabatic transitions to higher bands, each pump cycle consists of 
three S-shaped ramps: ϕx ∈ [0, 0.5π], [0.5π, 1.5π] and [1.5π, 2π]. This reduces the 
ramp speed in the vicinity of the symmetric double-well configuration (Δx = 0) 
at ϕx = (l + 1/2)π, with l ∈ ℤ, at which the gap to the first excited band is smallest. 
The duration of the π/2 ramps is 7 ms, and 14 ms for the ramp by π. Owing to 
the limited tuning range of a single laser, a second laser is required for imple-
menting multiple pump cycles, which is set to a constant phase of ϕx = 0.000(5)π.  
At the end of each cycle, an instantaneous switch from the primary laser to the 
secondary one is made, and within 5 ms the frequency of the former is ramped 
back to its initial value, corresponding to an identical lattice configuration. After 
switching back to the first laser, the next cycle continues as described above. We 
checked experimentally that this handover between the two lasers does not create 
any measurable band excitations.
Measuring the in situ position. To determine the nonlinear COM displacement 
along y, a double-differential measurement was conducted to minimize the effect 
of shot-to-shot fluctuations of the atom position. To do this, the COM position is 
measured before (yi) and after (yf) the pumping and compared to a reference 
sequence (y i

(0), yf
(0)). For the latter measurement, the pumping is performed with 

only the short lattice along y (at Vs,y = 40(1)Er,s); there is therefore no nonlinear 
response. The initial position is obtained during the doublon removal sequence, 
where the atoms are initially prepared in the (F = 1, mF = 0) hyperfine state and 
one atom from each doubly occupied site is transferred to (F = 2, mF = −2) using 
microwave-dressed spin-changing collisions (see above). In addition, we transfer 
50% of the atoms on singly occupied sites to the F = 2 manifold, by applying a 
microwave π pulse resonant on the (F = 1, mF = 0) → (F = 2, mF = 0) transition. 
The F = 2 atoms thus have the same density distribution as the remaining F = 1 
atoms and are imaged before the push-out pulse, which removes them from the 
lattice. The motion of the atoms due to the nonlinear response is then 
∆ = − − −y y y y y( ) ( )f i f

(0)
i
(0) . The difference in the COM displacement along y 

between θ1 and θ2 is defined as Δry = Δy(θ1) − Δy(θ2). For the x direction, it is 
obtained from ∆ = − − δx x x x( )f i  directly without comparing it to the reference 
sequence. Here, δx is the average displacement of all data for a given angle, account-
ing for a small constant offset between the measured initial and final positions.
Relation between COM position and double-well imbalance. If there are no 
inter-double-well transitions along y, then the change in the double-well imbalance 
δℐy = ℐy(ϕx) − ℐy(ϕx = 0) can be related directly to the COM motion along y. The 
COM position in the y direction is

∑= − / + + /y d
N

j N j N[( 1 4) ( 1 4) ]
ij

ij ijCOM
l

e, o,

where the sum is over all unit cells, Ne,ij (No,ij) is the occupation of the even (odd) 
sites along y in the (i, j)th unit cell and N is the total number of atoms. Expressing 
this in terms of the total number of atoms on even and odd sites, =∑N Nij ije e,  
and =∑N Nij ijo o, , and assuming that there are no transitions between neighbour-
ing unit cells along y (that is, ∑ +N N( )i ij ije, o,  remains constant), the change in the 
COM position can be written as δyCOM = yCOM(ϕx) − yCOM(ϕx = 0) = dlδℐy/4. Note 
that this derivation implicitly assumes that the COM of the maximally localized 
Wannier functions on the lattice sites along y is independent of ϕy, which is a valid 
approximation deep in the tight-binding regime; otherwise, the proportionality 
factor dl/2 has to be replaced by the distance between the COM of the Wannier 
functions on the even and odd sites of a double well.
Direct determination of the second Chern number. To determine the second 
Chern number directly from the measured double-well imbalance ℐy(ϕx), the 

average change in the imbalance per cycle for the entire cloud ϕδI ( )y y
(0)  is obtained 

from a linear fit of the differential imbalance ℐy(ϕx) − ℐy(−ϕx) for each value  
of ϕ y

(0). The influence of the excitations can be reduced by restricting the fitting 
region to a small number of pump cycles. The response of an infinite system is 
reconstructed by averaging ϕδI ( )y y

(0)  over ϕ y
(0) using linear interpolation between 

the data points. When taking into account all points with ϕx/(2π) ≤ 3, this gives 
ν = .0 84(17)2

exp  for the data in Fig. 3. Note that the linear interpolation for the 
discrete sampling used in Fig. 3c leads to a systematic shift in ν 2

exp of +0.05. When 
correcting for the finite pumping efficiency along x (see below), which can be 
measured independently without prior knowledge about the system, we obtain 
ν = .0 94(19)2

exp .
Model for double-well imbalance including experimental imperfections. To 
isolate the nonlinear response of the lowest band from the band-mapping data, we 
use a simple model that takes into account band excitations and double occupation 
of plaquettes, and the experimental pumping efficiency of the linear response. The 
average double-well imbalance ℐy(ϕx) can be written as

ϕ ϕ ϕ ϕ= + +I I I In n n( ) ( ) ( ) ( )y x y y y y y ygs
gs

exc
exc

2
2,gs

where ngs (nexc) is the fraction of atoms on singly occupied plaquettes in the ground 
(first excited) state along y and n2 is the fraction of atoms on doubly occupied 
plaquettes, which we assume to be in the ground state. These quantities can be 
determined experimentally at each point in the pumping sequence. I y

gs, I y
exc and 

I y
2,gs denote the imbalances of the corresponding states, which depend on the local 

phase of the y superlattice at the position of the cloud along x, ϕy(xCOM). The 
imbalance curves can be calculated theoretically using the respective double-well 
Hamiltonian (equations (5) or (6)) and can be obtained experimentally by study-
ing the linear pumping response. The COM position in turn depends on the pump 
parameter ϕx and includes corrections for the finite pumping efficiency

∑ϕ ϕ β β β= −
ϕ

=

| |/π
x d( ) sgn( ) (2 )x x

i

i
COM

1
0 s

x

for ϕx/π ∈ ℤ. Here, β0 = 0.980(4) is the initial ground-state occupation along x 
and β = 0.986(2) is the pumping efficiency, given by the fraction of atoms that 
remain in the lowest subband during each half of a pump cycle and are there-
fore transferred by one lattice site along x. The main contributions that limit 
the pumping efficiency are band excitations in the pumping direction and non-
adiabatic transitions between neighbouring double wells induced by the external 
harmonic confinement. Although the local slope of the transverse response for 
doubly occupied plaquettes differs from that for single atoms, they exhibit the same 
quantized transport along x and y for the parameters used in the experiment when 
covering the entire 4D pump path.
Measuring band excitations. Band excitations in the y direction are measured by 
adiabatically ramping the superlattice phase ϕ y

(0) from its initial value to 
π/2 ± 0.156(5)π and subsequently increasing the short lattice depth to 
Vs,y = 40(1)Er,s. In this lattice configuration, ground-state atoms on singly and 
doubly occupied plaquettes are fully localized on the lower-lying site along y, owing 
to the large double-well tilt Δy and the suppression of tunnelling as Jy, δJy → 0.  
On the other hand, atoms in the excited band along y localize on the higher- 
lying site and can be detected directly by measuring the resulting double-well 
imbalance.
Detecting doubly occupied plaquettes. The doublon fraction can be determined 
by taking advantage of the fact that two atoms in the same double well localize on 
the lower-lying site only at much larger double-well tilts than for a single atom, 
owing to the repulsive on-site interaction. For this, the double wells along y are first 
merged into a single site by removing the short lattice and increasing the long 
lattice to Vl,y = 30(1)Er,l within 5 ms. At the same time, the orthogonal lattice depths 
are ramped up to Vs,x = 70(2)Er,s and Vz = 100(3)Er,z to increase the interaction 
energy. After that, ϕ y

(0) is shifted adiabatically to either 0.474(5)π or 0.431(5)π and 
the sites are again split into double wells by ramping up the short lattice to 
Vs,y = 40(1)Er,s. At ϕ = . π0 431y

(0) , single atoms and doublons are both fully localized 
on the lower-lying site. On the other hand, at ϕ = . π0 474y

(0)  single atoms are still 
very well localized on the lower site, but two atoms in the same double well localize 
on different sites owing to the large interaction energy U > Δy. By determining the 
site occupations for both phases, we can therefore infer the doublon fraction from 
the difference in the even–odd imbalance between the two measurements.
Calculating the double-well imbalance along y. The measurement of the popula-
tion imbalance in the y direction as a function of ϕx for Figs 3 and 4 is performed 
after an integer or half-integer number of pump cycles (ϕx = lπ, l ∈ ℤ). At these 
points, the superlattice along x is in the staggered configuration, with the maximum 
energy offset ∆ � Jx x and δJx = 0. The atoms are thus fully localized on either even 
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or odd sites along x for ϕx = 2lπ or ϕx = (2l + 1)π, respectively. The four-site unit 
cell of the 2D superlattice therefore effectively reduces to a double well along y.

For singly occupied double wells, the expected imbalance in the y direction for 
atoms in the ground I( )y

gs  and first excited state I( )y
exc  can then be calculated from 

the single-particle double-well Hamiltonian

ϕ
∆ ϕ ϕ

ϕ ∆ ϕ
=






/ −

− − /






H

J

J
ˆ ( )

( ) 2 ( )

( ) ( ) 2
(5)y

y y y y

y y y y
DW
(1)

0

0

with ϕ ϕ ϕ= + δ /J J J( ) ( ) ( ) 2y y y y y y
0  and using the Fock basis for the atoms on even 

and odd sites, |1, 0〉 and |0, 1〉, respectively.
Correspondingly, the imbalance for the ground state of a doubly occupied dou-

ble well I( )y
2,gs  can be determined using the two-particle double-well Hamiltonian

ϕ

∆

∆

=







+ −

− −

− −







H

U J

J J

J U

ˆ ( )

2 0

2 0 2

0 2

(6)y

y y

y y

y y

DW
(2)

0

0 0

0

in the Fock basis {|2, 0〉, |1, 1〉, |0, 2〉}. Here, U denotes the on-site interaction 
energy for two atoms localized on the same lattice site.
Fit function for nonlinear response. On the basis of the above model, the 
experimental data are fitted with the function ℐ y(ϕx) +  ℐ 0 with 
ϕ ϕ ϕ α ϕ ϕ→ = + −( )y y y y y

exp (0) (0) . The two fit parameters are the pre-factor α,  
which describes the change in the superlattice phase along y with ϕx compared to the 
ideal case ϕ ϕ=y y

exp , and an overall offset ℐ0. The transport properties of the lowest 
band are encoded in the slope of the ground-state imbalance at ϕx = 0. Knowing α, it 
can be related to the ideal slope via

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ
α

ϕ

ϕ

∂

∂
=
∂

∂

∂

∂
=
∂

∂

I I I( ) ( ) ( )y y

x

y y

y

y

x

y y

x

gs exp gs exp

exp

exp gs

Per cycle, this gives a change in the population imbalance for ground-state atoms of

α ϕ ϕδ = 




− 


ϕ ϕ= π =

I I I( ) ( )y y y y y
gs gs

2
gs

0x x

Determining the second Chern number from the scaling of the nonlinear 
response with θ. The COM displacement per cycle along y for an infinite system, 
δyCOM = ν2θaxay/dl,y, scales linearly with the perturbing angle θ. The second Chern 
number can thus be extracted from the slope of δyCOM(θ). Having confirmed that 
the measured shape of ϕδI ( )y y

gs (0)  is the same as expected theoretically, the response 
of an infinite system at a given angle θ can be inferred from a single measurement 
of δI y

gs at a fixed ϕ y
(0). This holds for all angles because the shape of Ω ϕ( )y

(0)  is 
independent of θ. To obtain ν2, it is therefore sufficient to determine the slope of 

θδI ( )y
gs  at a constant ϕ y

(0).
Nonlinear response versus lattice depth. The technique for detecting the 
nonlinear response with site-resolved band mapping, introduced in the main text, 
allows us to determine the slope over a wide range of lattice parameters accurately. 
To demonstrate this, we measure the slope of the nonlinear response at 
ϕ = . π0 500(5)y

(0)  and θ = 0.54(3) mrad for various values of the transverse short-
lattice depth Vs,y (Extended Data Fig. 1). As expected, the slope increases with 
larger depths as the band gap decreases and the Berry curvature Ωy becomes more 
and more localized around ϕ = + / πl( 1 2)y

(0)  with l ∈ ℤ.
At Vs,y = 6.25Er,s, the first and second excited subbands along y touch for 

ϕ = πly
(0) , leading to a topological transition where the signs of the first and second 

Chern number of the first excited subband change from +1 for Vs,y < 6.25Er,s to 
−1 for Vs,y > 6.25Er,s. This corresponds to a transition between the Landau and 
Hofstadter regimes25. For the lowest band, the two regimes are topologically 
equivalent and the atoms therefore move in the same direction. In both limits, the 

experimentally determined slope matches very well with the one expected in an 
ideal system. This nicely illustrates that the transport properties of the lowest band 
can be extracted correctly in both regimes, even in the presence of atoms in the 
first excited band.
Alignment of the tilted superlattice. Each optical lattice is created by retrore-
flecting a laser beam, which is focused onto the atoms by a lens on either side of 
the cloud. For the superlattices, the incoming beams of the short and long lattices 
are overlapped using a dichroic mirror in front of the first lens. To control the tilt 
angle θ of the long lattice along y, a glass block is placed in the beam path before the 
overlapping. By rotating this glass block, a parallel displacement of the incoming 
beam can be induced, which is then converted into an angle θ relative to the short 
lattice beam at the first lens. The two beams intersect at the focus point of the lens, 
which corresponds to the position of the cloud of atoms. After passing through the 
second lens behind the cloud, both beams are retroreflected by the same mirror. 
The counter-propagating beams travel along the paths of the incoming beams, 
thereby creating the lattice potentials with the same relative angle θ.
Determining the angle θ. When the long lattice in the y direction is tilted by 
an angle θ with respect to the short lattice, the phase of the superlattice along 
y depends on the position along x. This leads to a modification of the on-site 
potential, which for small angles can be approximated as a linear gradient along 
the x axis, pointing in opposite directions on even and odd sites in y

∆ ϕ ∆ ϕ≈ + − δm( ) ( ) ( 1)y
m

y y
m

y
m

x
(0)y y y

The strength of the gradient is

δ
∆
ϕ

θ=
π ∂
∂

=

d
d

y

y x

s

l
0

for a given superlattice phase ϕ y
(0) and can therefore be used to determine θ. To do 

this in the experiment, a superfluid is prepared at k = 0 in a 2D lattice with 
Vs,x = 13.0(4)Er,s and Vl,y = 10.0(3)Er,l. After increasing Vl,y to 70(2)Er,l within 
0.2 ms, the lattice sites are split along y by ramping up the short lattice in the  
y direction to Vs,y = 20.0(6)Er,s in 0.4 ms. The superlattice phase ϕ y

(0) is set to either 
0.344(5)π or 0.656(5)π such that the atoms fully localize on even or odd sites along y,  
respectively. The resulting Bloch oscillations that are induced by the gradient are 
probed by measuring the momentum distribution of the atoms after a variable hold 
time. The angle θ is then calculated from the average Bloch oscillation period of 
both phases to minimize the influence of additional residual gradients.
Data availability. The data that support the findings of this study are available 
from the corresponding author on reasonable request.
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Extended Data Figure 1 | Nonlinear response versus depth of the short 
lattice along y. Slope of the nonlinear response at ϕ = . π0 500(5)y

(0)  and 
θ = 0.54(3) mrad as a function of Vs,y, with all other lattice parameters as in 
Figs 3 and 4. ϕ ϕ= + δ /J J J( ) ( ) 2y y y y y

(0) (0) (0)  with ϕ =π/2y
(0)  is the maximum 

intra-double-well tunnelling rate along y, which is calculated from the 
corresponding lattice depth. The solid line indicates the theoretically 
expected slope and the error bars show the fit error for the slope. The 
dashed line at Vs,y = 6.25Er,s marks the point at which a topological 
transition occurs in the first excited subband along y, indicating the 
transition between the Landau regime for Vs,y < 6.25Er,s and the 
Hofstadter regime for Vs,y > 6.25Er,s.
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Extended Data Figure 2 | Pump cycle of the 2D topological charge 
pump. The 4D tight-binding parameter space (δJx, Δx, δJy, Δy) is 
visualized using the transformation in equation (4). a, Changing the pump 
parameter ϕx leads to a periodic modulation of δJx and Δx along a closed 
trajectory, as shown in the inset for a full pump cycle ϕx = 0 → 2π. This 
pump path (green) encircles the degeneracy point at the origin (grey), at 
which the gap between the two lowest subbands of the Rice–Mele model 
closes. The surface in the main plot shows the same trace transformed 
according to equation (4) and with ϕy ∈ [0.46π, 0.54π]. The spacing of 
the mesh grid illustrating ϕx is π/10. b, For a given ϕx, a large system 
simultaneously samples all values of ϕy. This corresponds to a closed path 

in δJy–Δy parameter space, in which a singularity also occurs at the origin 
(inset). The main plot shows the transformed path for ϕx ∈ [0.46π, 0.54π]. 
c, In a full pump cycle, such a system therefore covers a closed surface 
in the 4D parameter space by translating the path shown in b along the 
trajectory from a. d, In the transformed parameter space, the singularities 
at (δJx = 0, Δx = 0) and (δJy = 0, Δy = 0) correspond to two planes that 
touch at the origin. e, Cut around r3 = 0 showing both the pump path from 
c (red/blue) and the singularities from d (grey). Whereas they intersect in 
the 3D space (r1, r2, r3), the value of r4 is different on both surfaces and the 
4D pump path thus fully encloses the degeneracy planes.
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