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Sources of high-energy photons have important applications in almost all areas of research. How-
ever, the photon flux and intensity of existing sources is strongly limited for photon energies above a
few hundred keV. Here we show that a high-current ultrarelativistic electron beam interacting with
multiple submicrometer-thick conducting foils can undergo strong self-focusing accompanied by effi-
cient emission of gamma-ray synchrotron photons. Physically, self-focusing and high-energy photon
emission originate from the beam interaction with the near-field transition radiation accompanying
the beam-foil collision. This near field radiation is of amplitude comparable with the beam self-field,
and can be strong enough that a single emitted photon can carry away a significant fraction of the
emitting electron energy. After beam collision with multiple foils, femtosecond collimated electron
and photon beams with number density exceeding that of a solid are obtained. The relative sim-
plicity, unique properties, and high efficiency of this gamma-ray source open up new opportunities
both for applied and fundamental research including laserless investigations of strong-field QED
processes with a single electron beam.

Intense sources of high-energy photons have broad ap-
plications in industry, medicine, materials science [1–4]
as well as in nuclear physics, particle physics and labora-
tory astrophysics [5–7]. This large variety of applications
motivated the construction of numerous facilities world-
wide from synchrotrons and FELs [4, 8], which provide
bright sources of photons with energies up to some hun-
dred keV, to Compton-based facilities aiming at photon
energies up to 20 MeV [7].

Recently, the growing interest in intense high-energy
photon sources has stimulated several proposals to fur-
ther increase the attainable photon energy and flux.
These proposals include high-power laser-plasma interac-
tion [9–21], plasma instabilities [22], QED cascades [23,
24], multiple colliding laser pulses [25, 26] and beam-
strahlung [27–29]. A number of experiments, where
the generated photon beam properties could be accu-
rately measured and tuned, were also successfully per-
formed [30–37]. However, the attainable density of colli-
mated gamma-ray beams remains less than ∼ 1024 m−3.

The investigation of exotic phenomena such as light-
by-light scattering, birefringence and dichroism of the
quantum vacuum, catalytic generation of electron-
positron cascades by high-energy photons, quark-gluon
physics as well as the creation of dense electron-positron

FIG. 1. Schematic setup. An ultrarelativistic electron beam
sequentially collides with aluminum foils. At each beam-foil
collision, a strong transverse force which focuses the electron
beam and leads to copious gamma-ray emission is induced.

plasmas for laboratory astrophysics would greatly ben-
efit from substantial enhancements of the density of
multi-MeV photon sources to solid density levels (1029

particles/m3) [6, 38–40].

To this goal, here we introduce a novel concept for
an ultraintense gamma-ray source based on the in-
teraction of a single high-current ultrarelativistic elec-
tron beam with multiple submicrometer-thick conduct-
ing foils (see Fig. 1). By using fully 3D particle-in-cell
(PIC) simulations, we show that: (i) An ultrarelativis-
tic (10 GeV), dense (4.7× 1027 m−3) electron beam can
be radially focused up to 3.8 × 1029 m−3, i.e., beyond
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FIG. 2. (a) Electron beam density, (b) transverse magnetic field, and (c) transverse electric field in the collision with a
0.5µm-thick aluminum foil. For comparison, the magnetic and electric beam self-fields are 3.1 × 104 T, and 9.4 × 1012 V/m,
respectively. (d) Electron beam to radiation energy conversion efficiency η as a function of σ⊥ in the collision with one foil.
The electron beam has 2 nC charge, 10 GeV energy, and σ‖ = 0.55 µm. Black circles: 3D PIC simulations results; blue circles:
reflected-beam model predictions. (e) Same as in panel (d) but for σ⊥ = 0.55 µm and as a function of σ‖.

the 1.8 × 1029 m−3 electron density of solid aluminum;
(ii) Electron beam focusing is accompanied by intense
synchrotron photon emission with more than 30% of the
electron beam energy converted into a 4.1 × 1029 m−3

peak density collimated gamma-ray beam; (iii) When
the electron beam density exceeds the foil electron den-
sity, the beam self-fields expel the target electrons and
create an electron-depleted channel through the foil.
The fields experienced by the beam electrons inside the
plasma channel are so high that the quantum parame-
ter χ ≈ γ|f⊥|/eFcr exceeds unity [41, 42]. Here f⊥ =
q(E⊥ + β × B) is the Lorentz force transverse to the
beam velocity, γ is the beam relativistic factor, q = −e is
the electron charge, Fcr = m2

ec
3/e~ ≈ 1.3 × 1018 V/m is

the QED critical field [6, 41, 42]. This opens up the pos-
sibility of laserless strong-field QED investigations with
only one ultrarelativistic electron beam [43].

We start by considering the free propagation of an elec-
tron beam in vacuum. The electric E and magnetic B
self-fields of a cold electron beam in vacuum are related
by B = β × E [44], where β = v/c is the normalized
beam velocity (Gaussian units are employed for equa-
tions). Thus, f⊥ = qE⊥/γ2 is strongly suppressed for
large γ, and the beam propagates almost ballistically over
relatively long distances in vacuum.

When a beam collides with a conductor, it can be
subject to strong near-field coherent transition radiation
(CTR), which alters the nearly perfect cancellation of the
electric and magnetic terms in the Lorentz force. Elec-
tromagnetic boundary conditions require that the elec-
tric field component tangential to the surface of a perfect
conductor must be continuous and zero at the conduc-
tor surface, whereas the tangential magnetic field can
be discontinuous and remains large [44]. Thus, when
an electron beam encounters a conductor, the magnetic
term of the Lorentz force, which drives beam focusing,
can overcome the electric term, which drives beam ex-
pansion. Effectively, when the beam length is smaller
than its transverse size, this process can be visualized
as a beam colliding with its image charge (see below and

Supplemental Material). Notice that a large f⊥ naturally
results in intense emission of radiation. For instance, in
the classical regime the radiated power (mean photon en-
ergy) is proportional to γ2f2

⊥ (γ2f⊥) [42, 44].

For modeling, we consider an ultrarelativistic cold elec-
tron beam with cylindrical symmetry around its prop-
agation axis x. The description is simplified by em-
ploying cylindrical coordinates with r =

√
y2 + z2, θ =

arctan(z/y), and x being the radial, azimuthal and ver-
tical components, respectively. We assume that cylin-
drical symmetry is preserved throughout the interaction.
Hence, fields are independent of θ, the azimuthal elec-
tric field Eθ and the radial Br and vertical Bx compo-
nents of the magnetic field are zero. Here beam and
conductor fields are denoted by the superscript b and
c, respectively. For an ultrarelativistic charge distribu-

tion ρ(x, r, t) = ρ0e
−r2/2σ2

⊥e−(x−x0−vt)2/2σ2
‖ with Ne elec-

trons, initial position x0, velocity v along x, and peak
charge density ρ0 = qNe/(2π)3/2σ2

⊥σ‖, E
b
r � Ebx ≈ 0,

Ebr(x, r, t) =
2qNe√
2πσ‖

(1− e−r2/2σ2
⊥)e−(x−x0−vt)2/2σ2

‖

r
,

(1)
and Bbθ(x, r, t) = βEbr(x, r, t), provide an approximate
solution to Maxwell equations up to terms of order
1/γ2 around the beam [43]. To evaluate Ecr(x, r, t) and
Bcθ(x, r, t), we consider a flat perfectly conducting foil
with front surface at x = 0. When the electron beam
is outside the conductor, the method of images can be
employed for determining Ecr(x, r, t) and Bcθ(x, r, t) in
x < 0 [45]. This method cannot be applied when the
beam enters the foil, because the image would be located
in x < 0, where conductor fields must satisfy source-
free Maxwell equations. However, when σ⊥ � σ‖ one
can approximate Ecr(x, r, t) and Bcθ(x, r, t) with the im-
age charge fields. This “reflected’ beam” approximation
holds because CTR, which is emitted with transverse size
σ⊥ and typical wavelength σ‖, undergoes weak diffraction
over a Rayleigh length of approximately σ2

⊥/σ‖ � σ‖
from the boundary. The opposite limit σ⊥ � σ‖, cor-
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FIG. 3. Beam evolution. First column, initial electron beam density (a1), its magnetic (b1) and electric (c1) field, and the
initial photon density (d1). Second to sixth column, same quantities as in the first column but at the 3rd (a2)-(d2), the 6th
(a3)-(d3), the 7th (a4)-(d4), the 12th (a5)-(d5), and the 16th (a6)-(d6) beam-foil interaction, respectively.

responds to the magnetostatic approximation, yielding a
vanishing Bcθ and a surface-localized Ecr (see Supplemen-
tal Material). Note that beam focusing in the σ⊥ � σ‖
limit has been demonstrated in accelerators [46–50].

The electron beam to radiated energy conversion effi-
ciency η can be calculated from Er = Ebr +Ecr and Bθ =
Bbθ+Bcθ, where Eq. (1) is employed for the beam and im-
age charge fields. The average energy radiated per par-
ticle per unit time is conveniently approximated as [42]
ε̇γ = 2αmec

2χ2/3τc[1+4.8(1+χ) ln(1+1.7χ)+2.44χ2]2/3,
where α = e2/~c is the fine-structure constant, τc =
~/mec

2 is the Compton time, and χ ≈ γ|Er − Bθ|/Fcr.
Thus,

η =
2π
∫ +∞
−∞ dt

∫ 0

−∞ dx
∫ +∞
0

dr rρ(x, r, t)ε̇γ [χ(x, r, t)]

γmec2qNe
.

(2)
In Eq. (2) we have assumed that all electrons have the
same initial momentum and energy γmec

2. Furthermore,
we have neglected the change of γ during the beam-foil
interaction. The triple integral in Eq. (2) can be carried
out numerically.

Figure 2 shows the results of 3D PIC simulations
of a cold electron beam colliding with one 0.5µm-thick
aluminum foil. The electron beam has 2 nC charge,
10 GeV energy, and Gaussian spatial distribution with
σ‖ = 0.55µm, σ⊥ = 1.25µm, and 9.2 × 1026 m−3 den-

sity. Figure 2(a) displays a snapshot of the electron beam
density when the beam center has reached the front sur-
face of the foil. Figures 2(b) and 2(c) show the trans-
verse magnetic B⊥ and electric field E⊥, respectively.
Whilst B⊥ is amplified and its peak value nearly dou-
bles with respect to the beam self-field (3.1×104 T), E⊥
is suppressed and much smaller than the beam self-field
(9.4× 1012 V/m).

Figure 2(d) [Fig. 2(e)] plots η in electron beam-single
foil collision with the same parameters as above but for
σ‖ = 0.55µm (σ⊥ = 0.55µm ) and σ⊥ (σ‖) ranging from
0.275µm to 1.25µm. Black circles and blue circles cor-
respond to 3D PIC simulation and reflected model re-
sults, respectively. These simulations confirmed that the
mechanism of beam focusing and photon emission is ro-
bust and effective in a range of parameters that could
become within reach of existing accelerator facilities such
as FACET II [51].

Figures 2(d)-(e) show that simulation results approach
the prediction of the reflected field model with increasing
(decreasing) σ⊥ (σ‖). For beam density smaller than
the foil electron density, simulations indicate that foil
thickness is irrelevant provided that collisions and plasma
instabilities remain negligible. By contrast, foil thickness
is important when the electron beam density exceeds the
conductor density [43]. Note that synchrotron photon
emission also occurs when the beam exits the foil, as
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FIG. 4. (a) Initial (black dashed line) and final (blue line)
electron beam energy distribution. (b) Final photon spec-
trum. The inset displays η as a function of the number of
foils crossed by the electron beam.

Er is suppressed at the rear foil surface and Bθ grows
gradually during the beam exit [52]. However, for σ⊥ &
σ‖, the rear surface contribution to the radiated energy
is subdominant, and is neglected in our model.

The above considerations suggest that the effect can be
substantially enhanced by colliding the self-focused beam
with further foils. In fact, the increased beam density
due to self-focusing results in stronger beam self-fields
at the subsequent beam-foil collisions. Consequently,
one expects that both self-focusing and photon emission
should grow with increasing number of beam-foil colli-
sions. This expectation is corroborated by our simula-
tion results (see Figs. 3-4). Note that, for efficient self-
focusing, the distance between two consecutive foils needs
to be sufficiently large to allow beam self-field restora-
tion around its propagation axis (r . σ⊥). This re-
quires that the travelled distance is much larger than
σ⊥. Furthermore, the interfoil distance needs to be short
enough to prevent beam expansion. This can be esti-
mated by considering the effect of |f⊥| ≈ |2qBθ| calcu-
lated at x ≈ x0 + vt and r ≈ σ⊥, i.e., where focusing is
stronger. For σ⊥ & σ‖, CTR extends approximately over
a distance σ2

⊥/σ‖, which is larger than the beam length
σ‖. Thus, |f⊥| lasts for approximately σ‖/c, and the de-
flection angle is ϑ ≈ |f⊥|σ‖/γmec

2. Hence, to prevent
defocusing the interfoil distance must be much smaller
than σ⊥/ϑ.

In our multifoil 3D PIC simulations, the electron beam
has 2 nC charge, Gaussian spatial and momentum dis-

tribution with σ‖ = σ⊥ = 0.55 µm, 10 GeV mean en-
ergy, 212 MeV full width at half maximum (FWHM) en-
ergy spread, and 3 mm-mrad normalized emittance (ϑ ≈
2 mrad with these parameters). The beam collides with
20 consecutive aluminum foils with 0.5µm thickness,
10µm interfoil distance, and 1.8 × 1029 m−3 initial elec-
tron density. The computational box size is 6.6µm(x)×
8.8µm(y)×8.8µm(z) with 528(x)×352(y)×352(z) grid-
points, 4 particles-per-cell (ppc) for beam electrons and
8 ppc for foil electrons and ions were used. Simulations
were independently performed with Smilei [53, 54] and
CALDER [55] PIC codes with good agreement. The ini-
tial self-consistent beam fields, the effect of field and col-
lisional ionization and binary Coulomb collisions were in-
cluded. Synchrotron and bremsstrahlung emission, and
multiphoton Breit-Wheeler and Bethe-Heitler pair pro-
duction were implemented with state-of-the-art Monte-
Carlo methods [43, 54, 56, 57]. Consistently with the
submicrometer foil thickness, simulations showed that
collisional processes are negligible.

Figure 3 displays snapshots of the electron and gamma
beam evolution (see Supplemental Material for a movie).
Until the 6th foil, the beam interacts with the field “re-
flected” by each foil. This leads to the self-focusing
of the beam which gradually increases its density (see
the first to third column of Fig. 3). The electron beam
density rises from its initial value of 4.7 × 1027 m−3 to
8.2 × 1028 m−3 after the 6th foil, while the maximum
photon density and χ are 2.9×1028 m−3 and 0.8, respec-
tively [see Fig. 3(a3)-(d3)]. In the interaction with the 7th

foil, the electron beam density reaches 3.8 × 1029 m−3,
which exceeds the foil density of 1.8× 1029 m−3. Hence,
the foil is unable to reflect the fields of the beam, and a
channel where foil electrons are expelled is created [see
Fig. 3(b4)-(c4)]. Here χ and the photon beam density
rise up to 3 and 4.1× 1029 m−3, respectively. Moreover,
a fraction of approximately 10−4 photons with energies
> 2mec

2 convert into e−e+ pairs via the multiphoton
Breit-Wheeler process. Electron beam density stops in-
creasing when it becomes larger than the foil electron
density. In the following beam-foil collisions, the elec-
tron density beam profile undergoes longitudinal mod-
ulations [see Fig. 3(a5)-(a6)]. These modulations arise
because the reflected field strength is dependent on the
longitudinal position and stronger around the rear part of
the beam, which yields a longitudinally inhomogeneous
focusing force.

Figure 4(a) plots the initial (black dashed line) and fi-
nal (blue line) electron beam energy distribution after the
interaction with 20 consecutive foils. The broad distri-
bution around approximately 5 GeV results from intense
synchrotron emission occurring in the central and rear
part of the electron beam. The residual peak around the
initial electron beam energy is indicative of the small syn-
chrotron and collisional energy losses of the front part of
the beam, which experiences only weak amplitude CTR.
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Figure 4(b) reports the final photon spectrum and the
conversion efficiency η (inset) as a function of the num-
ber of crossed foils. The increase of η at the 7th foil is due
to the extremely high beam density and, consequently, to
the ultrastrong fields induced inside the foil. After col-
liding with 20 foils, more than 30% of the electron beam
energy is converted into a collimated (5 mrad rms pho-
ton energy angular distribution), 4 fs FWHM duration,
2.8× 1029 m−3 peak density gamma-ray pulse.

In summary, we have introduced a new scheme to effi-
ciently produce extremely dense gamma-ray beams from
the interaction of a high-current ultrarelativistic electron
beam with a sequence of thin foils. This scheme also pro-
vides a promising route to producing solid-density ultra-
relativistic electron beams and to exploring strong-field
QED processes with a single electron beam without the
need of an external powerful laser drive.
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S1. TRANSITION RADIATION BY AN ULTRARELATIVISTIC PARTICLE BEAM IN THE
NEAR-FIELD ZONE

A. Pseudophoton method

Let us consider an ultrarelativistic particle beam with cylindrical symmetry around its propagation axis and moving
along x > 0 at a velocity v in the laboratory frame. In its rest frame, the beam density distribution is chosen as

n′(x′) = n′0e
−r′2/2σ′2

⊥−x′2/2σ′2
‖ . (S1)

Here primed quantities refer to their values in the beam rest frame, n′0 = Ne/(2π)3/2σ′2⊥σ
′
‖, and Ne is the number of

beam particles of individual charge q. We assume that the longitudinal and transverse (rms) beam dimensions fulfill
σ′‖ = γσ‖ � σ′⊥ = σ⊥, where γ = (1 − v2/c2)−1/2 is the beam relativistic factor. Hence, the beam self-electric field

can be evaluated from Gauss’ law in the long-beam limit

E′b(x′) ≈ Eb⊥(x′) ≈ 4πn′0qσ
′2
⊥

(
1− e−r′2/2σ′2

⊥
)

r
e−x

′2/2σ′2
‖ r̂ , (S2)

which is valid for r′ � σ′‖, i.e., r � γσ‖. An inverse Lorentz transformation yields the beam self-field in the laboratory

frame

Eb⊥(x, r, t) ≈ 4πn0qσ
2
⊥

(
1− e−r2/2σ2

⊥
)

r
e−(x−vt)

2/2σ2
‖ r̂ . (S3)

Here we have introduced the beam density in the laboratory n0 = γn′0 and, for simplicity, the time origin is chosen
such that at t = 0 the beam center is located at x = 0.

By using the Weizsäcker-Williams approximation [1] the beam electric self-field can be decomposed into plane waves
(pseudophotons) whose electric components are

Ẽb⊥(x,k⊥, ω) =

∫∫
d2r⊥dtE

b
⊥(x, r, t)e−ik⊥·r⊥+iωt = −8i

√
2π5/2n0q

σ‖σ2
⊥

k⊥v
eiωx/ve−σ

2
‖ω

2/2v2−σ2
⊥k

2
⊥/2 k̂⊥ , (S4)

∗ matteo.tamburini@mpi-hd.mpg.de



S2

where we have used the integral formulae [2]

∫ 2π

0

dφ cosφeik⊥r cosφ = 2iπ J1(k⊥r) , (S5)

∫ ∞

0

dr Jν(k⊥r) = 1/k⊥ , (S6)

∫ ∞

0

dre−r
2/2σ2

⊥ J1(k⊥r) =

√
π

2
σ⊥e

−σ2
⊥k

2
⊥/4I1/2

(
σ2
⊥k

2
⊥/4

)
, (S7)

with I1/2(z) =
√

2/π sinh(z)/
√
z.

In the case of a perfect conductor with front surface at x = 0, the sum of the transverse incident (Ẽb⊥) and

induced/scattered conductor (Ẽc⊥) electric fields should vanish at the boundary, so that

Ẽc⊥(0−,k⊥, ω) = −Ẽb⊥(0−,k⊥, ω) . (S8)

The scattered field can then be exactly computed at any time and position in vacuum (x < 0) by using the plane-wave
decomposition [3]

Ec⊥(x, r⊥, t) = (2π)−3
∫∫

dωd2k⊥ Ẽc⊥(0−,k⊥, ω) e−iωt+ikxx+ik⊥·r⊥

= i

√
2

π

n0q

v
σ‖σ

2
⊥

∫ ∞

−∞
dω e−σ

2
‖ω

2/2v2−iωt
∫
d2k⊥
k⊥

e−σ
2
⊥k

2
⊥/2+ik⊥·r⊥+ikxx k̂⊥ . (S9)

We have introduced the longitudinal wavenumber

kx =

{
−sgn(ω)

√
ω2/c2 − k2⊥ if ω2/c2 > k2⊥

−i
√
k2⊥ − ω2/c2 if ω2/c2 < k2⊥

(S10)

In Eq. (S9), Fourier components with ω2/c2 > k2⊥ describe propagating waves, while components with ω2/c2 < k2⊥
correspond to evanescent waves confined to the conductor’s boundary [4]. The choice of the minus sign in the definition
of kx is consistent with waves propagating/damped along x < 0.

Equation (S9) can be simplified by expressing the transverse wavenumber as k⊥ = k⊥(cosφ r̂ + sinφ φ̂) and per-
forming the integration over φ, which gives

Ec⊥(x, r, t) = Ecr(x, r, t) r̂ = −
√

8π
n0q

v
σ‖σ

2
⊥

∫ ∞

−∞
dω e−σ

2
‖ω

2/2v2−iωt
∫ ∞

0

dk⊥ e
−σ2

⊥k
2
⊥/2+ikxxJ1(k⊥r) r̂ . (S11)

This equation is accurate in the domain of validity of the field approximation in Eq. (S3), and therefore holds in the
near beam region that is of central interest here.

The longitudinal electric field follows from Gauss’ law in vacuum [5],

∂Ecx
∂x

= −1

r

∂

∂r
(rEcr) , (S12)

yielding

Ecx(x, r, t) = −i
√

8π
n0q

v
σ‖σ

2
⊥

∫ ∞

−∞
dω e−σ

2
‖ω

2/2v2−iωt
∫ ∞

0

dk⊥
k⊥
kx
e−σ

2
⊥k

2
⊥/2+ikxxJ0(k⊥r) . (S13)

Finally, the induced magnetic field is given by Faraday’s law

1

c

∂Bcθ
∂t

=
∂Ecx
∂r
− ∂Ecr

∂x
, (S14)

and by using Eq. (S10) one obtains

Bcθ(x, r, t) = −
√

8π
n0q

vc
σ‖σ

2
⊥

∫ ∞

−∞
dω ωe−σ

2
‖ω

2/2v2−iωt
∫ ∞

0

dk⊥
kx

e−σ
2
⊥k

2
⊥/2+ikxxJ1(k⊥r) . (S15)
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FIG. S1. (a) Transverse and (b) longitudinal electric and (c) magnetic field of the conductor, compared with (d) transverse
electric field of the beam’s image charge at ωpt = 0. Beam parameters are γ = 2 × 104, σ‖ωp/c = 2 and σ⊥ωp/c = 6.

FIG. S2. Same as Fig. S1 but at a later time, ωpt = 4.

Figures S1 and S2 display 2D maps of the conductor electric (a)-(b) and magnetic (c) fields as computed numerically
from Eqs. (S11), (S13), and (S15). We first consider an ultrarelativistic electron (q = −e) beam with γ = 2 × 104,

σ‖ωp/c = 2 and σ⊥ωp/c = 6, where ωp =
√

4πn0e2/me is the beam plasma frequency. These fields are compared
with the radial electric field of the beam’s image charge Err (d) (the “reflected field”), obtained by setting q → −q
and v → −v in Eq. (S3). At t = 0 (see Fig. S1), both the transverse conductor electric and magnetic fields Ecr
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FIG. S3. (a) Transverse and (b) longitudinal electric and (c) magnetic field of the conductor, compared with (d) transverse
electric field of the beam’s image charge at ωpt = 0. Beam parameters are γ = 2 × 104, σ‖ωp/c = 2 and σ⊥ωp/c = 2.

and Bcθ are very similar to the reflected field around the boundary (Ecr ≈ −Bcθ ≈ Err ≈ 2.7mecωp/e). The induced
longitudinal electric field has a maximum amplitude slightly lower (Ecx ≈ −2.4mecωp/e), reached at r = 0 (in contrast
to the transverse fields which peak at r ≈ 1.6σ⊥ ≈ 9.5cωp). At ωpt = 4 (see Fig. S2), the transverse induced fields
detach from the boundary as is consistent for a propagating wavepacket. Yet diffraction causes these radiated fields
to drop in amplitude (Ecr ≈ 2.4mecωp/e and Bcθ ≈ −2.3mecωp/e), and to reach their maxima at a larger radius
(rωp/c ≈ 11) than the reflected field. The longitudinal induced field remains mainly confined to the boundary and
has been intensified (Ecx ≈ −3.8mecωp/e). Around the boundary and r ≈ σ⊥, the magnetic field is then mainly
driven through ∂Bcθ/c∂t ≈ ∂Ecx/∂r > 0, and so becomes of positive polarity [see Fig. S2(c)]

Figures S3(a)-(d) plot the same quantities as Figs. S1-S2 but for a spherical beam (σ‖ = σ⊥ = 2c/ωp) and at
t = 0. The scattered fields show a substantial divergence because the dominant wavenumber λ ∼ σ‖ is close to the
transverse beam size σ⊥. This translates into a longitudinal electric field Ecx about twice stronger than Ecr . The
amplitude of the scattered magnetic field is close to, yet a bit lower than the beam self-field (Bcθ ≈ −0.64mecωp/e vs.
Bbθ ≈ 0.90mecωp/e).

The case of a longitudinally elongated beam (σ‖ωp/c = 6, σ⊥ωp/c = 1) is illustrated at two successive times in
Figs. S4 and S5. The small σ⊥/σ‖ ratio leads to most of the induced fields being evanescent, and thus strongly
localized at the conductor’s boundary. At both t = 0 (see Fig. S4) and ωpt = 5 (see Fig. S5), the longitudinal electric
field exceeds its transverse counterpart. In parallel, the induced magnetic field gets considerably weaker than the
magnetic self-field of the beam, and changes polarity along the boundary [see Fig. S5(c)].

B. Evaluation of the surface magnetic field in the radiating and nonradiating regimes

We now demonstrate that the magnetic field induced at the boundary equals the beam self-field when σ⊥ � σ‖
and tends to vanish when σ⊥ � σ‖. To this purpose, we start by the expression of Bcθ at x = 0−

Bcθ(0
−, r, t) = −

√
8π
n0q

vc
σ‖σ

2
⊥

∫ ∞

−∞
dω ωe−σ

2
‖ω

2/2v2−iωt
∫ ∞

0

dk⊥
kx

e−σ
2
⊥k

2
⊥/2J1(k⊥r) . (S16)

When σ⊥ � σ‖, the dominant integration range over k⊥ is such that k2⊥ � ω2/c2 ≈ 2/σ2
‖, so that the scattered
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FIG. S4. (a) Transverse and (b) longitudinal electric and (c) magnetic field of the conductor, compared with (d) transverse
electric field of the beam’s image charge at ωpt = 0. Beam parameters are γ = 2 × 104, σ‖ωp/c = 6 and σ⊥ωp/c = 1.

FIG. S5. Same as Fig. S4 but at a later time, ωpt = 5.

field mainly consists of propagating waves. Approximating kx ≈ −ω/c yields

Bcθ(0
−, r, t) ≈

√
8π
n0q

v
σ‖σ

2
⊥

∫ ∞

−∞
dω e−σ

2
‖ω

2/2v2−iωt
∫ ∞

0

dk⊥ e
−σ2

⊥k
2
⊥/2J1(k⊥r) . (S17)

It is easily seen that the above approximate expression of Bcθ(0
−, r, t) exactly coincides with −Ecr(0−, r, t) from

Eq. (S11). Since by construction Ecr(0
−, r, t) = −Ebr(0−, r, t) = −Bbθ(0−, r, t), we conclude that Bcθ(0

−, r, t) =
Bbθ(0

−, r, t) in the radiating regime.
The calculation is more involved when σ⊥ � σ‖. By using Eq. (S10), we first decompose the integral over k⊥ in

Eq. (S16) as

∫ ∞

0

dk⊥
kx

e−σ
2
⊥k

2
⊥/2J1(k⊥r) = −sgn(ω)

∫ |ω|/c

0

dk⊥
J1(k⊥r)√
ω2/c2 − k2⊥

e−σ
2
⊥k

2
⊥/2

+ i

∫ ∞

|ω|/c
dk⊥

J1(k⊥r)√
k2⊥ − ω2/c2

e−σ
2
⊥k

2
⊥/2 ≡ I1 + I2 . (S18)
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where the integrals I1 and I2 account for the propagating and non-propagating (evanescent) modes, respectively.
In I1, one can neglect the variation of the exponential term because σ⊥k⊥ ≤ σ⊥ω/c ∼ (σ⊥/σx) � 1, and thus
approximate this integral as

I1 ≈ −sgn(ω)

∫ |ω|/c

0

dk⊥
J1(k⊥r)√
ω2/c2 − k2⊥

= −sgn(ω)

∫ 1

0

du
J1(|ω|ru/c)√

1− u2
= − sin2(ωr/2c)

(ωr/2c)
. (S19)

The latter equality follows from Eq. 6.552-7 in [2], and by noting that sin2(|ω|r/2c) = sin2(ωr/2c), and ω = sgn(ω)|ω|.
To evaluate I2, we first recast it as

I2 = i

∫ ∞

1

du
J1(|ω|ru/c)√

u2 − 1
e−σ

2
⊥ω

2u2/2c2 . (S20)

Let us first consider radial positions r � σ⊥. In this case, the effective integration range is [1,∼
√

2c/σ⊥|ω|], and one
can expand the Bessel function around zero J1(x) ≈ x/2 +O(x3). This yields

I2 ≈ i
|ω|r
2c

∫ ∞

1

du
u e−(σ⊥ωu/c)

2/2

√
u2 − 1

= i
|ω|r
4c

∫ ∞

1

dw
e−(σ⊥ω/c)

2w/2

√
w − 1

= i

√
π

8

r

σ⊥
e−(σ⊥ω/c)

2/2 . (S21)

By plugging Eqs. (S19) and (S21) into Eq. (S16) and using e−iωt = cos(ωt) + (i/ω)d cos(ωt)/dt one obtains

Bcθ(0
−, r � σ⊥, t) ≈

√
8π
n0q

vc
σ‖σ

2
⊥

[
2c

r

∫ ∞

−∞
dω e−(σ‖ω/v)

2/2 sin2(ωr/2c) cos(ωt)

+

√
π

8

r

σ⊥

d

dt

∫ ∞

−∞
dω e−(σ

2
‖/v

2+σ2
⊥/c

2)ω2/2 cos(ωt)

]
. (S22)

After some calculations, one obtains

Bcθ(0
−, r � σ⊥, t) ≈ 2πn0qr

[(σ⊥
r

)2 (
2e−(vt/σ‖)

2/2 − e−(v/σ‖)
2(t−r/c)2/2 − e−(v/σ‖)

2(t+r/c)2/2
)

−
√
π

2

σ‖σ⊥t

vc(σ2
‖/v

2 + σ2
⊥/c

2)3/2
e−t

2/2(σ2
‖/v

2+σ2
⊥/c

2)

]
. (S23)

Since v ≈ c and σ‖ � σ⊥, the above equation can be further simplified as

Bcθ(0
−, r � σ⊥, t) ≈ 2πn0qr

[(σ⊥
r

)2 (
2e−(ct/σ‖)

2/2 − e−(c/σ‖)
2(t−r/c)2/2 − e−(c/σ‖)

2(t+r/c)2/2
)

−
√
π

2

σ⊥ct
σ2
‖
e−(ct/σ‖)

2/2

]
. (S24)

From Eq. (S24) and expanding for small r, it follows that when the central beam slice reaches the conductor (t = 0),
the induced magnetic field close to the axis has an amplitude

Bcθ(0
−, r � σ⊥, 0) ≈ 2πn0qr

(
σ⊥
σ‖

)2

+O(r3) ≈
(
σ⊥
σ‖

)2

Bbθ(0
−, r � σ⊥, 0) , (S25)

where in the last equality we used the small r expansion of Eq. (S3) and Bb = v/c×Eb. The surface magnetic field
of the conductor at t = 0 is therefore (σ‖/σ⊥)2 lower than the beam self-field. The accuracy of this approximation
can be assessed for the parameters of Fig. S4. For ωpσ‖/c = 6, ωpσ⊥/c = 1, ωpr/c = 0.1 and ωpt = 0, the numerical

evaluation of Eq. (S16) gives Bcθ ≈ 1.35× 10−3meωp/e, close to the above formula, Bcθ ≈ 1.39× 10−3meωp/e.
By expanding Eq. (S24) for small r one gets

Bcθ(0
−, r � σ⊥, t) ≈ −2πn0qre

−c2t2/2σ2
‖

(
σ2
⊥
σ2
‖

c2t2

σ2
‖

+

√
π

2

σ⊥
σ‖

ct

σ‖
− σ2

⊥
σ2
‖

)
. (S26)

Thus, when t� r/c and t� σ2
‖/cσ⊥, which corresponds to the magnetostatic limit, the right-hand side of Eq. (S24)

is dominated by the second term,

Bcθ(0
−, r � σ⊥, t) ≈ −

√
2π3n0q

σ⊥r
σ2
‖
ct e−(ct/σ‖)

2/2 , (S27)
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FIG. S6. Equilibrium current distributions due to a particle beam propagating into a conductor. Ampère’s law is applied for
two different surfaces S1 and S2 (dashed green curve) bounded by the loop L (dotted green line).

that is, by the evanescent modes. The above expression could have been derived more directly by neglecting I1 in
Eq. (S18) and approximating kx ∼ −ik⊥ in I2.

Let us now estimate the surface magnetic field generated at large radii, r � σ⊥. Equation Eq. (S20) can then be
approximated as

I2 ≈ i
∫ ∞

1

du
J1(|ω|ru/c)√

u2 − 1
= i

sin(ωr/c)

ωr/c
. (S28)

By substituting Eq. (S28) and Eq. (S19) in Eq. (S16), and by using Euler’s formula and the trigonometric identity
2 sin2(ωr/2c) cos(ωt)− sin(ωr/c) sin(ωt) = cos(ωt)− cos(ω(t− r/c)), one obtains

Bcθ(0
−, r � σ⊥, t) ≈ −

√
8πn0q

σ‖σ2
⊥

vr

∫ ∞

−∞
dω e−(σ‖ω/v)

2/2 [cos(ω(t− r/c))− cos(ωt)] . (S29)

By explicitly calculating the integral one gets

Bcθ(0
−, r � σ⊥, t) ≈ 4πn0q

σ2
⊥
r

[
e−(vt/σ‖)

2/2 − e−(v/σ‖)
2(t−r/c)2/2

]
. (S30)

From Eq. (S30) and since v ≈ c, it follows that when the central beam slice reaches the conductor (t = 0), at large
radii the magnetic field of the conductor scales as

Bcθ(0, r � σ⊥, 0) ≈ 4πn0q
σ2
⊥
r

(
1− e−r2/2σ2

‖
)
. (S31)

This implies that for σ⊥ � r . σ‖, Bc(0−, r, 0) is lower than the magnetic self-field of the beam by a factor of

[1 − exp(−r2/2σ2
‖)], and that for r � σ‖ � σ⊥, Bc(0−, r, 0) approaches the (radially decreasing) beam self-field.

Interestingly, Eq. (S30) also indicates that Bcθ(0
−, r � σ⊥, t) changes its sign at t = r/2c, in agreement with Fig. S5.

Equations (S24) and (S30) demonstrate that the induced magnetic field vanishes everywhere along the conductor’s
surface when σ‖ → ∞, that is, in the nonradiating (stationary) limit. This result can be readily understood from
Fig. S6, which sketches the stationary current distribution induced in the conductor by the incoming particle beam. To
ensure charge conservation, the longitudinal current induced through the beam cross-section deep inside the conductor
must convert to a radial current along the conductor’s boundary. Integrating the azimuthal magnetic field over a loop
centered on r = 0 and tangential to the conductor’s surface (see Fig. S6), Ampère’s law tells us that

∫

L

B · dl = 2πrBθ(x = 0−, r) =
4π

c

∫

S

j · dS (S32)
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where the surface S is bounded by the loop L, and we have neglected the displacement current as we consider the
stationary regime. By choosing S as S1 (see Fig. S6, left panel) gives

2πrBθ(x = 0−, r) =
4π

c

∫

S1

jbxdS =
4π

c
Ibx . (S33)

This means that Bθ(0
−, r) is only due to the beam current, and conversely that the induced currents in the conductor

do not create a magnetic field outside of it. An alternative picture is provided by choosing the integration surface as
S2 (see Fig. S6, right panel)

2πrBθ(x = 0−, r) =
4π

c

(
Ibx − Icx + Ic⊥

)
. (S34)

In the steady state, one has Icx = Ic⊥, which again implies a vanishing contribution of the conductor to Bθ(x = 0−, r).
We recall that Ampère’s law in Eq. (S32) is valid only in the stationary case as it neglects the contribution of the
displacement current. Thus, the reasoning of the stationary case does not apply to the radiating regime.
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