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Recent progress in manipulating atomic and condensed matter systems has instigated a surge of interest
in nonequilibrium physics, including many-body dynamics of trapped ultracold atoms and ions, near-field
radiative heat transfer, and quantum friction. Under most circumstances the complexity of such
nonequilibrium systems requires a number of approximations to make theoretical descriptions tractable.
In particular, it is often assumed that spatially separated components of a system thermalize with their
immediate surroundings, although the global state of the system is out of equilibrium. This powerful
assumption reduces the complexity of nonequilibrium systems to the local application of well-founded
equilibrium concepts. While this technique appears to be consistent for the description of some phenomena,
we show that it fails for quantum friction by underestimating by approximately 80% the magnitude of the
drag force. Our results show that the correlations among the components of driven, but steady-state,
quantum systems invalidate the assumption of local thermal equilibrium, calling for a critical reexamination
of this approach for describing the physics of nonequilibrium systems.
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In recent years the physics of nonequilibrium systems
has attracted a lot of attention from different disciplines,
such as stochastic thermodynamics and many-body quan-
tum dynamics [1–3]. In particular, there has been a renewed
interest in nonequilibrium dispersion forces. Better known
for equilibrium phenomena such as the van der Waals and
Casimir-Polder force [4] as well as the Casimir effect [5],
these interactions play an important role in several fields of
physics, including atomic [6] and statistical physics [7,8],
gravitation [9], and cosmology [10]. Nonequilibrium phys-
ics enters in the description of these phenomena when, for
example, temperature gradients or mechanical motion
become relevant elements of the system.
From the theoretical standpoint, one must often rely on

approximations in order to predict the nonequilibrium
physics of a specific system. One of the most ubiquitous
approaches relies on the local thermal equilibrium (LTE)
approximation, which consists in treating the individual
components of a system as if they were in local thermal
equilibrium with their immediate surroundings. The main
advantage of such a technique is that common equilibrium
tools, such as the fluctuation-dissipation theorem (FDT)
[11], can be applied locally, and then these local results are
combined to describe the nonequilibrium dynamics of the
full system. The usual justification for the LTE approxi-
mation is that the correlation length of the fields that
mediate the interactions is often rather short (the dynamics
in sufficiently well-separated locations are incoherent and
can be treated as being independent [12,13]), and the

subsystems locally relax to equilibrium on a fast time scale.
The LTE approximation has been used in several non-
equilibrium contexts, such as near-field radiative heat
transfer [12], Casimir forces between bodies at different
temperatures [14,15], and quantum friction [16–21]. In all
these cases, however, a quantitative assessment of the LTE
approximation is missing. In the present work, we show
that this common approach actually fails to provide reliable
predictions for quantum friction.
Let us consider an atom moving in vacuum with non-

relativistic velocity v at a distance za > 0 above and parallel
to a flat surface placed at z ¼ 0 (see Fig. 1). The atom
couples to the electromagnetic field via its dipole moment
d̂ðtÞ (the hat indicates a quantum operator). The frictional
force can be obtained from the expectation value of the
Lorentz force on the moving atom [22,23]. In our case
this is equivalent toFfric ¼ limt→∞

P
ihd̂iðtÞ∇∥ÊiðraðtÞ; tÞi,

where raðtÞ is the instantaneous position of the atom. In
previous work [24] it was shown that this force at zero
temperature (quantum friction) can be written as

Ffric ¼ −2
Z

∞

0

dω
Z

d2k
ð2πÞ2

× kTr½Sðk · v − ω; vÞ ·GIðk; za;ωÞ�: ð1Þ

Here, Sðω; vÞ is the nonequilibrium velocity-dependent
dipole power spectrum tensor (related to the spectral
distribution of energy in the dipole), and Gðk; za;ωÞ is
the Fourier transform [in time and along the (x, y) plane] of
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the Green tensor describing the electromagnetic response
of the surface. In the following the subscript I (R) means that
the imaginary (real) part has to be (component-wise)
considered, while “Tr” traces over tensor indices.
The standard approach used in the literature to compute

the frictional force has been to resort to the LTE approxi-
mation. It is assumed that the particle and the surface
surrounded by its electromagnetic field are locally in
thermal equilibrium at T ¼ 0 in their respective rest frames,
and that the fluctuation-dissipation theorem separately
applies to each subsystem [18–21]. In this case one
assumes that Sðω; vÞ is related to the imaginary part of
the particle’s polarizability tensor αðω; vÞ via the zero-
temperature FDT,

Sðω; vÞ ≈ ℏ
π
θðωÞαIðω; vÞ ð2Þ

[the function θðωÞ is the Heaviside function]. In this LTE
approximation, the frictional force at low velocities takes
the form [24]

Ffric ≈ −
2ℏv3

3ð2πÞ3
Z

∞

−∞
dky

Z
∞

0

dkxk4xTr½α0Ið0Þ ·G0
Iðk; za; 0Þ�;

ð3Þ
where the primes denote frequency derivatives and we
assumed that the motion is along the x direction. A detailed
evaluation of Eq. (3) requires the low-frequency behavior
of the polarizability, which is often calculated within
second-order perturbation theory [22,25–27]. Although

the use of the LTE approximation can be justified within
a second-order perturbative approach in the dipole strength
for particles with large intrinsic dissipation [28], it becomes
less rigorous for atoms, where dissipation is induced by
the interaction with the electromagnetic field. For systems
where radiative damping dominates, quantum friction
requires a higher-than-second-order perturbative calcula-
tion: Since this necessarily encompasses correlations
between the atom and the surface (see Fig. 1), one can
expect in this case a failure of the local thermal equilibrium
approximation. This is the key insight of this Letter.
In order to test the validity of the LTE approximation in

quantum friction, we compute the dipole power spectrum
Sðω; vÞ, evaluate the resulting drag force, and compare it to
the LTE result. This entails the computation of the non-
equilibrium steady state (NESS) of the joint atomþ fieldþ
matter system. This difficult problem becomes manageable
by modeling the internal atomic dynamics as a harmonic
oscillator [29,30], for which it is possible to obtain an exact,
nonperturbative form for the dipole power spectrum thanks
to the quadratic nature of the full system Hamiltonian [24].
We work in the Heisenberg picture to calculate the dipole
correlator in the steady state and then derive the power
spectrum.
For simplicity, we consider a dipole with a fixed direction

moving along a prescribed trajectory raðtÞ ¼ ðr∥aðtÞ; zaÞ.
In the nonrelativistic approximation the dipole operator’s
equation of motion is given by

∂2
t d̂ðtÞ þ ω2

ad̂ðtÞ ¼ ω2
aα0 · ÊðraðtÞ; tÞ; ð4Þ

whereωa is the oscillator’s frequency, Ê is the electric field,
and α0 is the static polarizability tensor, assumed to be
symmetric for simplicity (it is proportional to a projector
parallel to the direction of the dipole moment). We assume
that the oscillator has no intrinsic dissipation—all dissipa-
tive dynamics arise from the coupling to the electromagnetic
field. The electric field at the position of the atom is given by

ÊðraðtÞ; tÞ ¼ Ê0ðraðtÞ; tÞ þ
Z

t

ti

dt0
Z

∞

−∞
dωe−iωðt−t0Þ

×
Z

d2k
ð2πÞ2 Gðk; za;ωÞ · d̂ðt

0Þeik·ðr∥aðtÞ−r∥aðt0ÞÞ;

ð5Þ

where Ê0 is the field that is generated by the quantum
fluctuating currents in the medium, while the second term is
the field induced by the dipole and scattered by the surface.
In the stationary t → ∞ limit, we use that r∥aðtÞ ≈ r∥a þ vt.
Upon inserting (5) into the equation ofmotion for the dipole,
we obtain the stationary solution in Fourier space as

d̂ðωÞ ¼
Z

d2k
ð2πÞ2 αðω; vÞ · Ê0ðk; za;ωþ k · vÞeik·r∥a ; ð6Þ

FIG. 1. Schematic representation of the difference between the
LTE approximation (a) and the full nonequilibrium description
(b) for quantum friction. In the first case it is assumed that the
atom and the surface are separately in thermal equilibrium with
their immediate local environments. This description applies the
fluctuation-dissipation theorem for each subsystem, to approx-
imately describe the full nonequilibrium system. Correlations
between the atom and surface [pictorially represented by the
black arrows in (b)] lead to a failure of the LTE approximation,
which underestimates the magnitude of quantum friction by
approximately 80% (see the main text).
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wherewe have defined the velocity-dependent polarizability

αðω; vÞ ¼ ω2
a

ω2
a − Δðω; vÞ − ω2 − iωγðω; vÞ α0: ð7Þ

In this expression, γ is the radiative damping while Δ is
related to a frequency shift [24,31], and they are given by

Δðω; vÞ ¼ ω2
a

Z
d2k
ð2πÞ2 Tr½α0 · GRðk; za;ωþ k · vÞ�; ð8aÞ

γðω; vÞ ¼ ω2
a

ω

Z
d2k
ð2πÞ2 Tr½α0 · GIðk; za;ωþ k · vÞ�: ð8bÞ

The dipole correlation tensor, derived fromEq. (6), defines
the power spectrum hd̂ðωÞd̂ðω0Þi≡ð2πÞ2Sðω;vÞδðωþω0Þ,
where the average is taken over the initial factorized state
of the system, ρ̂ðtiÞ ¼ ρ̂aðtiÞ ⊗ ρ̂f=mðtiÞ. Here, ρ̂aðtiÞ is the
atom’s initial density matrix and ρ̂f=mðtiÞ represents the state
of the coupled field plusmatter subsystem.Both the atomand
the fieldþmatter are assumed to be initially in their
respective ground states. Using Eq. (6), we can compute
the dipole-dipole correlation in terms of the Ê0 field
correlator, and since this field is solely generated by the
static surface its correlator can be evaluated using the usual
equilibrium FDT. In this way we derive the following
expression for the power spectrum of the moving atom
(see Supplemental Material [32]):

Sðω; vÞ ¼ ℏ
π
θðωÞαIðω; vÞ þ

ℏ
π
Jðω; vÞ; ð9Þ

where

Jðω; vÞ ¼
Z

d2k
ð2πÞ2 ½θðωþ k · vÞ − θðωÞ�

× αðω; vÞ ·GIðk; za;ωþ k · vÞ · α�ðω; vÞ: ð10Þ
Equation (9) constitutes the generalized nonequilibrium
FDT for the moving harmonic oscillator. It shows that, when
the system is in a NESS, an extra term J is added to the
standard FDT, Eq. (2). The expression in (9) is similar to
classical nonequilibrium generalizations of the FDT (see, for
example, Refs. [33–37]), where the additional term is related
to entropy production. However, these works often include
assumptions (e.g., Markovianity) which are incompatible
with the description of quantum friction [28].
Upon inserting Eq. (9) into (1), we obtain two distinct

contributions to the quantum frictional force,

Ffric ¼ FLTE
fric þ FJ

fric; ð11Þ
which respectively arise from the first and second terms
on the right-hand side of (9). As we will show below, the
low-velocity expansion of FLTE

fric corresponds to Eq. (3)

[17,21,38], while FJ
fric is entirely due to the nonequilibrium

dynamics of our system. We assume that the motion occurs
along the x direction, so that Ffric ¼ Ffricx, (here x, and
below y and z, are the unit vectors along the corresponding
directions). The total Green tensor in Eq. (1) can be
decomposed as the sum of the vacuum G0 and the scattered
contribution g [39]. Because of Lorentz invariance,G0 does
not contribute to the frictional force [38,40–42]. For
simplicity, we consider the near-field limit for g, which
has an imaginary part that for our calculation can be written
as [32]

g
I
ðk; za;ωÞ ¼

rIðωÞ
2ϵ0

ke−2kza
�
k2x
k2

xxþ k2y
k2

yy þ zz

�
; ð12Þ

where k ¼ jkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
, ϵ0 is the vacuum permittivity,

and rðωÞ is the quasistatic approximation of the transverse
magnetic reflection coefficient for the planar surface. Using
the previous expression one can show that in the low-
velocity limit the first term on the right-hand side of (11)
gives (see Supplemental Material [32])

F̄LTE
fric ≈ −

90ĀLTE

π3
ℏα20ρ

2
v3

ð2zaÞ10
; ð13Þ

where α0 ¼ Tr½α0�=3 is the static isotropic (i.e., averaged
over the solid angle) atomic polarizability, ρ is the material
resistivity, and ĀLTE ¼ 21=20 ≈ 1 is the average over the
solid angle of a geometrical factor describing the dipole’s
orientation [32]. Equation (3) reduces to the above expres-
sion when we use the polarizability given in (7). For the
nonequilibrium correction term in Eq. (11), we obtain
similarly [32]

F̄J
fric ≈ −

72ĀJ

π3
ℏα20ρ

2
v3

ð2zaÞ10
; ð14Þ

where ĀJ ¼ 87=80. Adding the low-velocity expansions of
F̄LTE
fric and F̄J

fric, the full quantum frictional force becomes

F̄fric ≈ −
864

5π3
ℏα20ρ

2
v3

ð2zaÞ10
; ð15Þ

which differs by almost a factor of two from the approxi-
mate LTE result in Eq. (13). This is the main result of our
paper and demonstrates that the nonequilibrium contribu-
tion to the frictional force is certainly not negligible.
In Fig. 2 we depict the quantum frictional force Eq. (1) as

a function of velocity. For simplicity the dipole is oriented
along a specific direction (see caption of Fig. 2 and
Supplemental Material [32]) and moving above a metallic
surface described by the Drude model permittivity ϵðωÞ ¼
1 − ω2

p½ωðωþ iΓÞ�−1, where ωp is the plasma frequency
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and Γ is the metal’s relaxation rate [in this case the material
resistivity is given by ρ ¼ Γ=ðϵ0ω2

pÞ]. For small velocities
the friction is well described by the asymptotic expression
Eq. (15) (black dotted line). In this region the integrals
in Eq. (1) are dominated by the low frequency behavior
of Sðω; vÞ and Gðk; za;ωÞ, resulting in the power-law
dependency on velocity and separation [32]. The relative
difference between the full nonequilibrium and LTE results
is more than 80% in this region (see inset of Fig. 2). At high
velocities (v=c≳ 10−3 for the parameters in Fig. 2) we
observe a crossing between the previous asymptotic
expressions and

Fð2Þ
fric ≈ −

ℏω4
spα0

πc4
Γ

16ϵ0

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωa
ωsp
Þ7

πðωspza
c Þ5ðvcÞ3

vuut �
1þ 5v

2zaωa

�
e−ð2zaωa=vÞ ð16Þ

(black dashed curve in Fig. 2), where ωsp ¼ ωp=
ffiffiffi
2

p
is the

surface plasmon frequency. Equation (16) is the result of a
second-order perturbative expansion of Eq. (1), and can be
explained by a resonant process involving the atom-surface

interaction [28], for which the radiative damping is
neglected. This process is dominant right after the crossing,
as exemplified by the very good agreement between
Eq. (16) and the numerical evaluation of quantum friction
in this range of velocities. This agreement indicates that the
atom and the surface are uncorrelated to a good approxi-
mation and hence that, in contrast to the lower-speed
region, for these velocities the LTE description is sufficient
to completely characterize the quantum frictional process.
This is also clearly seen in the sharp decrease of the relative
difference between the exact and LTE results (see inset
of Fig. 2). In Fig. 2 one can see, however, that further
increase of the velocity leads again to a deviation from
the LTE approximation due to the strengthening of the
nonequilibrium-induced atom-surface correlations.
Due to its small value, an experimental detection

of quantum friction is challenging and designing setups
that increase the strength of the interaction is certainly
desirable. Specifically, Eq. (15) can be rewritten as

F̄fric ≈ −
216

5π
ℏγ2ðzaÞ

v3

ð2zaωaÞ4
; ð17Þ

where γðzaÞ ¼ α0ω
2
aρ=ð4πz3aÞ is the leading-order (i.e.,

low-frequency and small-velocity) expansion of the func-
tion γðω; vÞ defined in Eq. (8b). This demonstrates that,
at low velocities, quantum friction is proportional to the
square of the induced decay rate. This feature suggests
possible pathways to increase the strength of the quantum
frictional force. For instance, material properties or geo-
metric configurations, such as hyperbolic nanostructures
[44], which are known for producing large Purcell factors,
are potentially favorable for enhancing the quantum
frictional force.
In conclusion, we have shown that the local thermal

equilibrium approximation fails in quantum friction. We
demonstrated this point with an exact solution to a model of
a harmonic oscillator moving parallel to a surface, in which
the LTE approach underestimates the quantum friction
force by approximately 80%. Motion-induced atom-surface
correlations are ultimately responsible for the breakdown of
the local equilibrium assumption. It is worth emphasizing
that, despite its extensive and often reasonable application,
the LTE approximation relies more on phenomenological
considerations than on quantitative estimations. Our results
in quantum friction call for a critical assessment of the
range of applicability of local thermal equilibrium in other
nonequilibrium dispersion interactions. Such an analysis
could potentially provide new insights and unravel impor-
tant features of these and other nonequilibrium systems.
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FIG. 2. Velocity dependence of the (normalized) quantum
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ωa=ωsp ¼ 0.2 and moves at a distance zaωsp=c ¼ 0.05 above and
parallel to the surface with dissipation rate Γ=ωsp ¼ 0.1. At low
velocities the LTE approximation underestimates the frictional
force by approximately 80% (see inset). As the velocity increases
(v=c ≳ 10−3 for the parameters above), the oscillator’s radiative
damping becomes less relevant and the force is accurately
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