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We study the role of geometrical and topological concepts in the recent developments of the-
oretical physics, notably in non-Abelian gauge theories and superstring theory, and further
we show the great significance of these concepts for a deeper understanding of the dynam-
ical laws of physics. This work aims to demonstrate that the global topological properties
of the manifold’s model of spacetime play a major role in quantum field theory and that,
therefore, several physical quantum effects arise from the nonlocal metrical and topological
structure of this manifold. We mathematically argue the need for building new structures
of space with different topology. This means, in particular, that the “hidden” symmetries
of fundamental physics can be related to the phenomenon of topological change of certain
classes of (presumably) nonsmooth manifolds.
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1. Introduction. We analyze the role of geometrical and topological concepts in the
developments of theoretical physics, especially in gauge theory and string theory, and
we show the great significance of these concepts for a better understanding of the
dynamics of physics. We claim that physical phenomena very likely emerge from the
geometrical and topological structure of spacetime. The attempts to solve one of the
central problems in twentieth century theoretical physics, that is, how to combine grav-
ity and the other forces into a unitary theoretical explanation of the physical world,
essentially depend on the possibility of building a new geometrical framework concep-
tually richer than Riemannian geometry. In fact, this geometrical framework still plays
a fundamental role in non-Abelian gauge theories and in superstring theory, thanks to
which a great variety of new mathematical structures has emerged. A very interesting
hypothesis is that the global topological properties of the manifold’s model of space-
time play a major role in quantum field theory and that, consequently, several physical
quantum effects arise from the nonlocal metrical and topological structure of these
manifold. Thus the unification of general relativity and quantum theory requires some
fundamental breakthrough in our understanding of the relationship between spacetime
and quantum process. In particular the superstring theories lead to the guess that the
usual structure of spacetime at the quantum scale must be dropped out from physical
thought. Non-Abelian gauge theories satisfy the basic physical requirements pertaining
to the symmetries of particle physics because they are geometric in character. They pro-
foundly elucidate the fundamental role played by bundles, connections, and curvature
in explaining the essential laws of nature. Kaluza-Klein theories and, more remarkably,
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superstring theory showed that spacetime symmetries and internal (quantum) sym-
metries might be unified through the introduction of new structures of space with a
different topology. This essentially means, in our view, that “hidden” symmetries of
fundamental physics can be related to the phenomenon of topological change of a cer-
tain class of (presumably) nonsmooth manifolds.

2. The geometrization of theoretical physics: from Cartan’s theory of gravitation
to geometric quantum theories. This expository article, which summarizes the main
subject of a book in progress on the same topic, is aimed at analyzing some of the
most important mathematical developments and the conceptual significance of the ge-
ometrization of theoretical physics, from the work of Cartan and Weyl to the recent non-
Abelian gauge theories. The starting point of our reflections is the question of how to
characterize the properties of space (topological and algebraic invariants, group struc-
tures, symmetries and symmetry breaking) at the quantum level physics. More gener-
ally, we will try to highlight some striking aspects of the mathematical developments
inspired by the attempts to solve one of the central problems in twentieth century
theoretical physics: how to combine general relativity and quantum field theory into
a unitary theoretical description of the physical world. Another point, which is in all
likelihood intimately connected to the above, is the question of how to determine the
topological (global) structure of the universe, as well as the physical conditions for its
early formation. Finally, we seek to outline some theoretical remarks which raised the
recent developments in theoretical physics concerned by the above questions.

Moreover, these two questions lead to the fundamental issue of the nature of space
and spacetime: is it a purely formal structure, or does it include a generative princi-
ple for physical phenomena? What relation is there among the physical properties of
microscopic and macroscopic matters, the kind of extended (or pointless) objects they
yield, and features of space into which they are embedded? Generally, an answer to
these fundamental questions and an explanation of the basic aporias such as contin-
uous/discrete, local/global, deterministic/nondeterministic, linear/nonlinear, depend
on a satisfactory geometric theory whose concepts are somewhat different from the
ones underlying the progress of physics at the beginning of this century (general rel-
ativity and quantum mechanics). In particular, it seems necessary to build a geometry
conceptually richer than Riemannian geometry. This has been partly achieved in the
last two decades, and we can now see the possibility of unifying theory of gravita-
tion with quantum mechanics. The enriched geometry plays a basic role in non-Abelian
gauge theories and in superstring theory, for which a great variety of new mathematical
structures has emerged.

This more general post-Riemannian geometry is based upon two very interesting
ideas I would like now to stress:

(1) space has ten or eleven dimensions—according to which we deal with superstring
theory or supergravity—rather than four, an assumption made more plausible
by internal mathematical reasons as well as experimental physical evidence;

(2) the structure of spacetime at the quantum level is not that of a differentiable
manifold C∞, but apparently the equivalent of an arbitrary topological space
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constructed from a complex (infinite-dimensional) Riemann surface and on which
some fundamental mathematical objects are defined.

The latter hypothesis implies particularly that the global topological properties of the
(Lorentzian or Riemannian) manifold M play a major role in quantum field theory and
that, consequently, several (physical) quantum effects arise from the nonlocal metrical
and topological structure of M . It seems reasonable to think that general relativity and
quantum theory are intrinsically incompatible and that, rather than merely developing
technique, what is required is some fundamental breakthrough in our understanding
of the relationship between spacetime structure and quantum process.

Concerning the first idea, one may add that, in fact, eleven-dimensional spacetime
recommends itself as the habitat of the maximal supergravity theory. Remarkably, there
is also a phenomenological argument for eleven as the minimal number of spacetime
dimensions, which was pointed out by Witten. If the familiar SU(3)color × (SU(2)×
U(1))electroweak gauge symmetry in four dimensions is to originate in isometries of a
compact manifold in N “hidden” dimensions, then these extra dimensions must be at
least seven in number. This follows from the observation that no manifold of dimension
three or smaller can have more than six isometries, and thus the eight-parameter group
SU(3) can most economically appear as the isometry group of the four-dimensional
manifold CP(2). Similarly an SU(2)×U(1) gauge symmetry in four dimensions is most
economically obtained from the isometries of the three-dimensional manifold S2×S1.
Thus the gauge group of low energy physics is obtainable from the isometries of the
seven-dimensional manifold CP(2)×S2×S1. This is not an Einstein manifold, however,
and as such, it is not relevant as the compactification of eleven-dimensional supergrav-
ity. Fortunately coset spaces of type SU(3)×SU(2)×(U(1)/SU(2))×U(1)×U(1) other
than CP(2)×S2×S1 exist (S7 for instance) and some of these are Einstein’s manifolds.
Alas, because there is no supersymmetric Yang-Mills theory in eleven dimensions, the
fermion spectrum is necessarily nonchiral.

One of the most remarkable discoveries in the last decades is that bosons and
fermions can be placed in the same multiplet of a “supergroup” whose infinitesimal pa-
rameters contain anticommuting elements [59]. Such a theory predicts a boson-fermion
mass degeneracy that is not observed in nature and thus the supersymmetry must be
broken. The Goldstone fermions associated with spontaneous breaking have the wrong
property to be neutrinos and hence the symmetry needs to be implemented as a local
gauge invariance with the Higgs-Kibble mechanism in action. On the other hand, the
construction of a successful quantum theory of gravity seems to depend largely on our
capacity to give an answer to the following questions: is there some profound break-
down of spacetime continuum and quantum concepts at the Planck length (10−33 cm)?
Some of the current geometrical and physical works have this idea. In particular, the
superstring theories lead to the guess that the usual structure of spacetime (to which
we have been used since the general relativity) at the Planck length must be dropped
out from physical thought.

The main issue can be put in the following terms. How much of the mathematical and
conceptual structure of classical general relativity do we expect to retain? In particular,
one thinks of the underlying smooth C∞ manifold, the metric tensor, the local field
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equationsGµν−∆gµν = Tµν , the global topological properties of the manifold and global
metric features such as lightcone structure and the existence of event horizons. It is
very difficult to judge how many of these classical concepts should be present, in some
form or another, in a quantized theory. On the other hand, how much of the technical
and conceptual structure of conventional quantum field theory do we expect to retain?
For example, does the usual idea of a local quantum field φ(x) make any sense at all
or should we decide from the outset that, at a Planck scale, spacetime structure is not
that of a smooth manifold and therefore the local properties of fields become very
unconventional? Similarly, what remains of the local commutativity of quantum fields
in a theory where the lightcone is determined by the metric tensor, which is itself a
dynamical variable? To sum up all that precedes, two questions then naturally arise.

(i) Which kind of mathematical framework could underly the quantum field theory?
If it is a topological space, then the latter is not a smooth manifold.

(ii) If “something peculiar” happens to spacetime topology at Planck distances, the
possibility arises that spaces should be considered not to be in any sense dif-
ferentiable manifolds.

Attempts to solve the above problems have given rise to a fertile program of ge-
ometrization which in turn has increasingly influenced theoretical physics, especially
quantum field theory, gauge theory, and string theory, as well as branches of mathemat-
ics, notably differential and algebraic geometry and topology. This idea of geometriza-
tion, which is already present in Riemann’s work on abstract manifolds (endowed with
metrics) and “Riemannian surfaces,” and in Poincaré’s work on the topology of differ-
entiable manifolds and the geometrical theory of differential equations, has in our time
taken on new directions and greater importance. However, in some fundamental work
appeared in 1918–1930, E. Cartan and H. Weyl introduced some concepts and theo-
ries which subsequently gave rise to many recent and important contributions to the
comprehension of the relation between geometry and theoretical physics. These ideas
included projective, affine, and conformal connections and fibre spaces. The global
theory of connections over a differentiable fibre space was created by Ch. Ehresmann
around 1940–1950. (On this subject, see [8]).

In this perspective, one may recall that in 1923 Cartan proposed to modify the Ein-
stein theory of gravitation by allowing spacetime to have torsion and relating it to the
density of intrinsic angular momentum of a continuous medium (see [26, 53]). The
idea of connecting torsion to spin has known new developments around 1960, mainly
thanks to the work of D. W. Sciama and T. W. B. Kibble. There was considerable interest
in this problem from 1966 to 1976. All available evidence from experiments in macro-
physics attests to the validity of Einstein’s general theory of relativity as a description
of this interaction. The need to propose alternative or more general gravitational theo-
ries stems from a dichotomy in theoretical physics. Strong, electromagnetic, and weak
interactions find their successful description within the framework of relativistic quan-
tum field theory in flat Minkowski spacetime. These quantum fields reside in spacetime
but are separate from it. Gravitation, according to Einstein, deforms Minkowski space
and inheres in the dynamic Riemannian geometry of spacetime. One branch of fun-
damental physics is highly successful in a flat and rigid spacetime, but gravitation
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requires a nonflat and dynamic spacetime. This state of affairs seems, at least from a
theoretical point of view, to be unsatisfactory. Stated differently, there is no “logical” or
experimental compelling need to modify Einstein’s theory, but one can advance good
heuristic arguments in favor of the Cartan idea.

(i) The geometrical independence of the metric g and linear connection Γ leads to the
idea of treating these quantities as independent variables in the sense of a principle of
least action. If g and Γ are assumed to be compatible, then the freedom in the choice
of Γ reduces to that of the torsion tensor Q.

(ii) According to relativistic quantum theory, the Poincaré group—or the inhomoge-
neous Lorentz group—is physically more significant than the Lorentz group itself. The
Poincaré group has two fundamental invariants: mass and spin. The first of them is
related to translations and to energy momentum. In Einstein’s theory, the density of
energy momentum is source of curvature whereas spin has no such direct dynamical
significance. In a sense, Einstein-Cartan theory restores—to some extent—the symme-
try between mass and spin. It introduces also an unexpected “duality”: via Noether’s
theorem, energy momentum is generated by translations whereas Einstein’s equation
relates it to curvature, which is responsible for rotations of vectors undergoing parallel
transport. Conversely, spin is generated by rotations, but torsion induces translations
in the tangent space to a manifold (“Cartan displacement”). This duality can be traced
to the fact that the Einstein-Cartan Lagrangian is linear in curvature.

(iii) There is an interesting analogy between the description of magnetic moments
in electrodynamics and spin in the theory of gravitation. In a phenomenological de-
scription of electromagnetism, the external magnetic field produced by a ferromagnet
may be obtained in at least three ways: by considering a surface current equivalent to
the actual distribution of microscopic currents and magnetic moments, by replacing
the latter by a volume distribution of “Ampère currents,” or, finally, by introducing a
smooth field of the magnetization vector. In the Einstein theory, there are analogues
for the first two descriptions, whereas the Einstein-Cartan theory provides the third.

The Einstein-Cartan theory assumes, as a model of spacetime, a four-dimensional
manifold with a linear connection Γ compatible with a metric tensor g. The gravitational
part of the Lagrangian,

√
−gR, is formed from the curvature tensor of Γ . The left-hand

sides of the field equations are obtained by varying this Lagrangian with respect tog and
Q. Variation with respect to g may be replaced by that relative to the field of frames.
The sources of gravitational field are described by expressions resulting either from
phenomenology or by varying an action integral obtained by applying the principle of
minimal gravitational coupling to a special-relativistic Lagrangian. The Einstein-Cartan
equations are

Rµν−
1
2
gµνR =

8πG
c4Tµν

, (2.1)

Qθµν−δθµQσσν−δθνQσµσ =
8πG
c3sθµν

. (2.2)

The Cartan equation (2.1) is trivial in the sense that if the spin density vanishes, sθµν =
0, then so does torsion, Qθµν = 0. Quite independently of this, torsion is topologically
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trivial: any linear connection can be deformed into a connection without torsion. The
Einstein-Cartan theory may be physically relevant only when the density of energy is
of the same order of magnitude as the spin density squared. For matter consisting of
particles of mass m and spin h/2, this will occur at densities of order m2c4/Gh2.

3. Introduction to Kaluza-Klein theories. In another direction, there have been in
the 1920s very interesting attempts by Theodor Kaluza then by Oskar Klein to unify
the relativistic theory of gravitation with Maxwell’s theory by introducing a new geo-
metrical framework within which electromagnetism could be coupled with gravity (at
least theoretically). The Kaluza-Klein theories are purely geometrical in character and
have been worked out in order to encompass two apparently inconsistent physical the-
ories into a unitary theoretical explanation. Actually, even before Einstein’s general
relativity, the physicist Gunnar Nordström in 1914 proceeded to unify his theory of
gravitation (in which gravity was described by a scalar field coupled with the trace of
the energy momentum tensor) with Maxwell’s theory in a most imaginative way. In-
spired by Minkowski’s four-dimensional spacetime continuum, Nordström added yet
another space dimension, thus obtaining a flat five-dimensional world. There he intro-
duced an Abelian five-vector gauge field for which he wrote down the Maxwell equations
including a conserved five-current. He then identified the fifth component of the five-
vector potential with scalar gravity, whereas he identified the first four components of
the five-vector potential with the Maxwell four-potential. With these interpretations he
then noticed that in the cylindrical case (when all dynamical variables become inde-
pendent of the fifth coordinate) the equations of his five-dimensional Maxwell theory
reduced to those of the four-dimensional Maxwell-Nordström electromagnetic gravi-
tational theory. It is then fair to say that higher-dimensional unification starts with
Nordström, who assumed scalar gravity in our four-dimensional world to be a remnant
of an Abelian gauge theory in a five-dimensional flat spacetime.

The next step was taken by the mathematician Theodor Kaluza in 1919 in the wake of
Einstein’s general relativity. Kaluza proposed that one pass to an Einstein-type theory of
gravity in five dimensions, from which ordinary four-dimensional Einstein gravity and
Maxwell electromagnetism are to be obtained upon imposing a cylindrical constraint.
More precisely, what this amounts to is starting with a five-dimensional manifold M
which is the product of M4×S1 of a four-dimensional spacetime M4 with a circle S1.
The metric γmn(x,y) on the five-manifold M (m,n = 0,1,2,3,5) is a function of both
the coordinates xµ (µ = 0,1,2,3) on M4 and y ≡ x5, the coordinate of the circle S1.
It is convenient to replace the fifteen field variables γmn(= γnm) by fifteen new field
variables gµν = gνµ,Aµ,φ according to the field redefinitions

γµν = gµν+e2κ2φAµAν ,

γµ5 = γ5µ = eκφAµ,

γ55 =φ.

(3.1)

All field quantities, old and new, are periodic functions of the coordinate y on the
circle. If y = ρθ, where θ is the usual angular coordinate and ρ the radius of the circle,
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then the period is 2πρ. Thus any field quantity F(x,y) (F being any of the gµν ’s, Aµ ’s,
φ’s, or γmn’s) admits a Fourier expansion

F(x,y)=
+∞∑

n=−∞
F(n)(x)einy/ρ. (3.2)

Kaluza assumed the five-dimensional dynamics to be governed by a gravitational
Einstein-Hilbert action

I5 =−
1

16πG5

∫ √∣∣γ5
∣∣R5d5x, (3.3)

with γ5 = det(γmn), R5 the five-dimensional curvature scalar, andG5 a five-dimensional
counterpart of the gravitational constant. Using the Fourier expansions, the y-
dependence becomes explicit so that the y-integration can be carried out. A four-
dimensional action involving an infinity of fields—the Fourier componentsA(n)µ ,g(n)µν (x),
φ(n)—then emerges. At this point Kaluza imposed a “cylindricity” condition: he trun-
cated the action by dropping all harmonics with n≠ 0, retaining only the zero modes:

gµν(x,y)= g(0)µν (x), Aµ(x,y)=A(0)µ (x), φ(x,y)=φ(0)(x). (3.4)

The five-dimensional line element then takes the form

ds2
5 ≡ γmndxmdxn = ds2

4+φ(0)(x)
(
dx5+eκA(0)µ (x)dxµ

)2, (3.5)

where

ds2
4 ≡ g(0)µν (x)dxµdxν (3.6)

is the four-dimensional line element corresponding to the metric g(0)µν (x). The line ele-
ment (3.6) is invariant under the transformations

xµ5 "→ x
µ
5 ,

x "→ x+eκα
(
xρ
)
,

A(0)µ "→A(0)µ −∂µα
(
xρ
)
,

φ(0) "→φ(0),
g(0)µν "→ g(0)µν ,

(3.7)

which we recognize as Abelian gauge transformations à la Weyl (see Section 5). Here
these transformations assume a geometrical meaning as shifts in the fifth coordinate
by an amount α(xρ), which depends on ordinary four-spacetime. The Abelian gauge
symmetry in four dimensions originates in the isometries of the small circle in the fifth
dimension.

When the y integration is carried out with the cylindric truncation enforced, the ac-
tion (3.3), invariant under five-dimensional general coordinate transformation, reduces
to a four-dimensional action invariant under both four-dimensional general coordinate
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transformations and Abelian gauge transformations. This four-dimensional action is,
up to a surface term,

I4 =
∫ √∣∣g(0)4

∣∣
√∣∣φ(0)

∣∣
[(
− 1

16πG

)
R(0)4 +

( e2κ2

16πG

)
φ(0)g(0)µρg(0)νσF(0)µν F(0)ρσ

]
(3.8)

with

G = G5

2πρ
, g(0)4 = det

(
g(0)µν

)
, F(0)µν = ∂µA(0)ν −∂νA(0)µ , (3.9)

and R(0)4 = scalar curvature calculated from the four-metric g(0)µν ; (our metric convention
calls for a minus (plus) sign for a time (spacelike) dimension).

This action involves a graviton (g(0)µν ), an Abelian gauge boson (A(0)µ ), and a scalar
field φ(0). Kaluza arbitrarily set φ(0) = constant, in which case I4 turns into the four-
dimensional Einstein-Maxwell action. To be sure, one has to have φ(0) > 0 in order
to have the proper relative sign of the Einstein and Maxwell terms, so that energy is
positive. This in turn means that the fifth dimension must be spacelike; in fact, the
extra dimensions must all be spacelike. In addition to the invariances under general
coordinate transformations and gauge transformations, the action (3.8) also exhibits
an invariance under global scale transformations:

g(0)µν "→ λ−1g(0)µν ,

A(0)µ "→ λ−3/2A(0)µ ,

φ(0) "→ λ2φ(0).

(3.10)

The field equations of the original five-dimensional theory have a solution in which the
five-dimensional spacetime is the direct product of a circle with flat four-dimensional
Minkowski spacetime. Then

gµν = ηµν , Aµ = 0, φ= 1 (3.11)

(ηµν is the four-dimensional Minkowski metric (−1,+1,+1,+1)). This solution serves as
a natural vacuum, and it spontaneously breaks the scale invariance (3.9). The massless
φ(0)-field is the Nambu-Goldstone boson associated with this spontaneous symmetry
breaking. So the zero-mode spectrum includes spin 2 and spin 1 gauge fields and a spin
0 Nambu-Goldstone boson. In the full quantum theory the spin 0 boson is expected to
acquire a mass. Of course, the full classical theory contains not only the zero modes,
but also the n ≠ 0 harmonics (equation (3.2)). The action (3.3) determines their spins,
masses, and couplings. They all have spin less than or equal to 2, and they are all
massive. The nth harmonics have mass

mn =
|n|
ρ
, (3.12)

where ρ, as before, is the radius of the small circle in the fifth dimension. The couplings
of these harmonics with the gauge field A(0)µ are determined from the action (3.3), and
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these harmonics do carry electric charge

gn =
n(4

√
πG)
ρ

. (3.13)

Remarkably, electric charge is quantized because the fifth dimension is compact. We
see that the elementary charge is

e : 4

√
πG
ρ

(3.14)

and the corresponding fine-structure constant is

α= 4G
ρ2
. (3.15)

If α is to correspond to the U(1) subgroup of grand-unification group, then α∼ 1/100
so that the circumference of the small circle l ≡ 2πρ ∼ 100

√
G ∼ 10−17GeV−1. The

circle must be very small indeed; a size about 100 Planck lengths could hardly have
been detected as yet. Nevertheless, this is large enough to call into question grand-
unification in four-dimension: the scales at which the grand-unification group is to
reveal itself unbroken are close to the scales at which the extra dimensions would
become manifest. To make all this applicable in a world with strong and electroweak
interactions, one of course has to introduce more than one extra dimension.

Kaluza’s work has been unknown until when Oskar Klein, in 1926, rediscovered
Kaluza’s theory. (Einstein delayed the publication of Kaluza’s paper for two years.) Klein
noted the quantization of the electric charge and hoped Kaluza theory would under-
lie quantum mechanics (see Section 9). The relativistic generalization of Schrödinger’s
equation was carried out independently by many authors: Schrödinger, Klein, Gordon,
Fock, and others. This equation, now commonly known as the Klein-Gordon equation,
was arrived at by both Klein and Fock starting from Kaluza’s theory: a zero-mass wave
equation in five dimensions yields four-dimensional Klein-Gordon equations for the in-
dividual harmonics. It must be noted that this early work is viewed as a mathematical
trick devoid of any physical significance. Nevertheless, this mathematical idea will prove
very fruitful for the further developments of the theory, especially in supergravity and
string theories. Oskar Klein comes closest to the modern point of view: he discusses
the higher harmonics and the size of the small circle. Later Einstein and Bergman also
adopted such a point of view. A purely mathematical approach (a projective interpreta-
tion of the fifth coordinate) was developed by Veblen, Pauli, Jordan, and others. Jordan
appears to have been the first to realize the importance of including the scalar field
φ(0) into the new five-dimensional theory.

Remarkably, the most recent work on superstrings incorporates both the ideas of
Nordström and the subsequent ideas of Kaluza and Klein (see Section 11). However,
there was no real reason to extend the Kaluza-Klein idea beyond the five dimensions
until the emergence of non-Abelian gauge field theories invented by Yang and Mills in
1954 (see Section 5). In 1963, DeWitt suggested that a unification of Yang-Mills the-
ories and gravitation could be achieved in a higher-dimensional Kaluza-Klein frame-
work. Trautman was independently aware of this possibility as were others. A detailed
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discussion of the Kaluza-Klein unification of gravity and Yang-Mills theories, includ-
ing the correct form of the (4+N)-dimensional metric, first appeared in the work of
Kerner. The first complete derivation of the four-dimensional gravitational plus Yang-
Mills plus scalar theory from a (4+N)-dimensional Einstein-Hilbert action was finally
given by Cho and Freund in 1975. The weakness of this higher-dimensional work was
the absence of any good reason as to why any dimension would compactify, let alone
the right number, so as to leave the ordinary four-dimensional “large” world. While the
five-dimensional theory at least admitted the compactified fifth dimension along with
Minkowski space as a solution to the five-dimensional equations of motion, even this
was not true of the higher-dimensional theories. The essential reason for this is that the
higher-dimensional manifolds that give rise to Yang-Mills theories have curvature. If a
(4+N)-dimensional Einstein theory is to compactify into the direct product of four-
dimensional spacetime M4 and a compact internal space with isometries, the metric
γmn(x,y) can be written as follows in the zero-mode approximation:

γmn(x,y)=
⎡
⎣gµν(x)+γmn(y)ζ

m
α (y)ζnβ (y)Aαµ (x)A

β
ν(x) γmn(y)ζmα (y)Aαµ (x)

γmn(y)ζnβ (y)A
β
ν(x) γmn(y)

⎤
⎦ .

(3.16)

The metric γmn(y) is that of the corresponding N-dimensional symmetric space and
the Killing vectors ζnα(y) have upper indices running over the dimension of the sym-
metry group. If four-space is to be flat (and, actually, it cannot be flat!), the Ricci tensor
Rmn = 0 for the spacetime indices, and therefore R+Λ = 0. But then Rmn must van-
ish for the internal indices as well, and this cannot be the case if the internal space is
curved.

Cremer and Scherk began to address this problem by pointing out that inclusion of
additional Yang-Mills and scalar matter fields in the higher-dimensional theory would
allow classical solutions in which spacetime is the direct product of Minkowski space
and a compact internal space of constant curvature. This “spontaneous compactifica-
tion” was achieved, however, by going beyond the pure Kaluza-Klein framework and
including extra fields in just such a way as to induce the desired compactification. The
program of seeking solutions to the combined Einstein-Yang-Mills equations in 4+D
dimensions was generalized to a larger class of internal spaces by Luciani, Salam, Duff,
and others. All this work on classical, higher-dimensional Kaluza-Klein theories pro-
vided a springboard for the study of both Kaluza-Klein supergravity and the quantum
dynamics of Kaluza-Klein theories.

Roughly, supergravity is an attempt to unify matter and force as different compo-
nents of the same agency. This is a kind of supersymmetric theory in which, because
of the fact that the numbers of Bose and Fermi degrees of freedom have to be equal in
supersymmetric theory, Bose fields beyond gravity appear in eleven dimensions. In fact
supersymmetry dictates that the missing Bose degrees of freedom be supplied in the
form of a massless antisymmetric tensor field with three indices Amnp which indeed
have (11−2/3) = 84 = 128−44 degrees of freedom. Moreover, in eleven dimensions,
there exist no matter and no Yang-Mills supermultiplets, so that besides gravity one
only has its supersymmetric partner Amnp and gravitino fields as “matter.” The source
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of gravity is thus fixed by supersymmetry. Furthermore, it is supersymmetry that de-
termines the dimension of spacetime in eleven-dimensional supergravity. Force and
matter uniquely determine each other; they are but different components of the same
supermultiplet. In ten dimensions a similar argument can be made, but there we en-
counter Yang-Mills supermultiplets whose gauge group is fixed, though not uniquely,
by the requirement of anomaly cancellation. For superstring theories similar consider-
ations apply. To find the possible vacuum of the eleven-dimensional theory, we look for
a solution of the classical equations in which the eleven-dimensional world manifold
M11 is of the form M11 =Md×M11−d, where Md is the spacetime and M11−d the small
compact manifold. In the vacuum we require the spacetime Md to be maximally sym-
metric. This then fixes the metric of Md(M11−d). The antisymmetric tensor potential
Amnp has its own gauge invariance under

Amnp(x,y) "→Amnp(x,y)+∂mαnp(x,y)+∂nαpm(x,y)+∂pαmn(x,y) (3.17)

withαmn =−αnm. The corresponding gauge-invariant quantities are the field strengths
Fmnpr given by the curl of Amnp :

Fmnpr = ∂mAnpr +∂nAprm+∂pArmn+∂rAmnp. (3.18)

If F or its dual F∗ is to have a nonvanishing vacuum expectation value on d-dimensional
spacetime without destroying the maximal symmetry, then eitherd or 11−dmust equal
the number of indices of F , that is, d= 4 or d= 7. In the case d= 4, once one has fixed
the maximally symmetric form of F , the simplest solutions are obtained by setting
h(y) = 1 and Fmnpq = 0. Then the field equations and Bianchi identities of eleven-
dimensional supergravity require F(x,y) = F = constant, and the energy momentum
tensor of the A-field is equivalent to two cosmological terms, one on M4 and one on
M7, with cosmological constants of opposite signs. Provided M4 contains the time di-
mension, the cosmological constant on M7 will have the sign appropriate to a compact
manifold so that spontaneous compactification really does occur. M4 is the maximally
symmetric noncompact anti-de Sitter space andM7 a compact Einstein space. The scale
is set by the expectation value F of the field strengths. The rest of four-dimensional
physics is determined by the shape of the small seven-dimensional manifold M7. If,
for instance, M7 is the seven-sphere S7, then the gauge group in four dimensions is
SO(8)—the isometry group of S7—and one finds eight supersymmetries. Just as gauge
symmetries in four dimensions are related to the Killing vectors of the small manifold,
so the supersymmetries are related to the Killing spinors. All the solutions with one
or more surviving supersymmetries are stable with respect to classical perturbations.
Some of the solutions without any surviving supersymmetry are stable, and others
are unstable. Several problems stand in the way of producing a realistic theory. First
of all, the four-dimensional anti-de Sitter space has a too large cosmological constant
that has to be eliminated somehow. Of course Higgs mechanisms in four dimensions
further affect the cosmological constant and it is the endproduct that has to be very
small or zero. Another serious problem is the lack of chiral fermions at least as long
as bound states and solitons are ignored. It seems that these problems can be solved
in the context of higher-dimensional superstring theory, which recently demonstrated
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the possibility of a finite quantum theory of gravity, whereas the eleven-dimensional
supergravity theory, while trivially finite at one loop, is questionable in this regard.

4. The role of topological concepts in physics. We return to the geometrization of
mathematics and theoretical physics. It must be stressed that the geometrization move-
ment appears today to be more influenced by this century’s concepts and methods,
than by those of ordinary geometry and even the new non-Euclidean geometries devel-
oped in the 19th century. A new family of geometrical and topological invariants (Betti
numbers, Euler-Poincaré characteristic, Whitney-Stiefel characteristic classes, Pontrja-
gin and Chern characteristic forms) is at the heart of twentieth-century mathematical
progress, as well as at the foundation of recent physical theories, especially non-Abelian
gauge theories. The introduction of these concepts and the development of a host of
new notions and techniques in geometry and algebraic and differential topology in the
1940s—homology, cohomology, and homotopy (Whitney, Lefschetz, Hopf), fibre space,
and characteristic classes (Ehresmann, Pontrjagin, Steenrod, Thom, Chern, Milnor), cat-
egories (Eilenberg, MacLane)—mark the passage from the local to the global study of
mathematical objects.

One of the great mathematical advances of this century was the introduction of char-
acteristic classes by Whitney and Stiefel in 1935, and characteristic forms by Pontrjagin
(over a real fibre space) and Simons and Chern (complex). Intuitively, these objects are
geometrical and topological invariants that can be classified in different families even
though they are all mutually related. Thus we say that we can topologically transform
a surface (or a manifold) into another if they have the same characteristic invariants
(and if the dimension of the space is compatible with the type of transformation). Two
manifolds satisfying these conditions are said to be topologically equivalent. These
invariants and their corresponding algebraic structures can be technically very compli-
cated. The two invariants mentioned above globally characterize the two mathematical
objects of fibre spaces and connections, which in turn imply several basic algebraic
and geometric notions such as homology (homology group, intrinsic homology, singu-
lar homology, algebraic homology, functors, etc.), cohomology classes, homotopy, and
so forth. Two examples of homology and cohomology that are very important in con-
temporary physics are bordism and cobordism as developed by R. Thom, and ordinary
homologyH(X). In fact, several notions of classical field theory can be expressed by co-
homology. The more recent quantum field theories, reinterpreted in the mathematical
framework of gauge theory, show a remarkable presence of cohomological ideas, seen in
some cases as a generalization of characteristic classes such as those of Euler-Poincaré.
A very interesting example in our time is that of a non-Abelian cohomology space of
Riemannian surfaces with boundary.

We first give some basic notions and definitions on principal bundles, connection,
curvature, and characteristic classes (we follow closely Steenrod [48] and Husemoller
[27]). Among other things, a principal bundle has a structure group G, which is a Lie
group, and a base B, which is a topological space. Notice that on the product B×G there
is a natural right action of G by right multiplication on the second factor. This is a free
action, and the quotient is defined with B.
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Definition 4.1. A (right) principal G-bundle consists of a triple (P,B,π), where
π : P → B is a map and a continuous, free right action P×G→ P with respect to which
π is invariant and so that π induces a homeomorphism between the quotient space of
this action and B. Furthermore, there is an open covering {Uα} of B over which all the
above data are isomorphic to the product data. That is to say, for each α, there exists
a commutative diagram

π−1
(
Uα
)

π

ϕα Uα×G

p1

Uα
≈ Uα,

(4.1)

where ϕα is a homeomorphism which is equivariant with respect to the right G-action
and p1 is the projection onto the first factor.

The space P is called the total space of the principal bundle,π is called the projection,
and B is called the base. The maps ϕα are called local trivializations. Lastly, G is called
the structure group of the bundle. If P and B are smooth manifolds, if the action of G
on P is a smooth action, and if π is a smooth submersion, then the principal bundle is
said to be a smooth principal bundle. In this case it follows automatically that one can
choose the local trivializations so that theϕα are diffeomorphisms. An isomorphism of
G-bundles with the same base is a homeomorphism between their total spaces, which is
G-equivariant and which commutes with the projections to the base. A map between G-
bundles over possibly different bases is a G-equivariant map between the total spaces.
Such a map must be an isomorphism on each fibre and it induces a map between the
base spaces. In order to consider a general example of principal bundle, let M be a
smooth manifold. Let E be the frame space for the tangent bundle of M . A point of
E consists of a point p ∈ M and a basis {v1, . . . ,vn} for the tangent space TMp to M
at p. The topology, and indeed the smooth structure, of E is induced in the obvious
projection of E to M and an obvious action of GL(n,R) on E. The action of A= (aij)∈
GL(n,R) on the point (x,{v1, . . . ,vn}) gives the point (x,{w1, . . . ,wn}), where

wj =
n∑

i=1

aijvi. (4.2)

That is to say, the matrix A acts on the basis to produce a new basis for the same space;
the expression for the new basis in terms of the old basis is given by the columns of
the matrix A. This defines a right action of GL(n,R) on E.

Let π : P → B be a smooth principal G-bundle over an n-dimensional manifold. A
connection for this bundle is an infinitesimal version of an equivariant family of cross
sections. It is an n-dimensional distribution ! (i.e., smooth family of n-dimensional
linear subspaces of the tangent bundle TP of P ) which is horizontal in the sense that
the restriction of Dπ to each plane in the distribution is an isomorphism onto the
corresponding tangent plane to B and which is invariant under the G-action. This dis-
tribution induces an isomorphism TPp ≡ TPvp

⊕
TBπ(p). Suppose that Γ is a connection

for P → B. Let γ : [0,1]→ B be a smooth path and e∈π−1(γ(0)). Then there is a unique



1790 LUCIANO BOI

path γ : [0,1] → P such that γ(0) = e, π ◦γ = γ, and γ̃′(t) is contained in the hori-
zontal space !γ̃(t). Given a smooth curve in the base γ : [0,1] → B from b0 to b1, a
connection determines an isomorphism between the fibers π−1(b0)→π1(b1), which is
equivariant with respect to the G-actions on these fibers. Therefore a connection gives
a manner to connect distinct fibers, albeit one needs a path in the base between the
image points in the base. Let " be the Lie algebra for G. Then there is a unique one-form
ωMC ∈ Ω1(G;") which is invariant under left multiplication by G and whose value at
the identity element of G is the identity linear map from TGe → ". This form is called
the Maurer-Cartan form. It is often denoted by g−1dg. Its value on a tangent vector
τ ∈ TGg is equal to g−1 ·τ ∈ TGe = ".

Lemma 4.2. A connection on a smooth principal bundle π : P → B is equivalent to a
differential one-form ω∈Ω1(P ;") with the following properties.

(i) Under right multiplication by G, the formω transforms via the adjoint represen-
tation of G on "; that is,

ωpg(τ ·g)= g−1ωp(τ)·g (4.3)

for any p ∈ P , any τ ∈ TPp , and any g ∈G.
(ii) For any p ∈ P , consider the embedding Rp : G→ P given by Rp(g) = p ·g. Then

the pullback R∗p (ω)=ωMC .

Suppose that A is a connection on a principal bundle π : P → B, and suppose that
W → B is a vector bundle associating to this principal bundle and a linear action of G on
a vector space V . We can use the connection to differentiate sections of W , producing
one-forms with values in W . This covariant differentiation is a linear operator

∇A :Ω0(B;W) "→Ω1(B;W). (4.4)

The curvature arises as the obstruction to integrating the horizontal distribution of
a connection over two-dimensional submanifolds of the base. Let P → B be a smooth
principal G-bundle and let adP be the vector bundle associated to P and the adjoint
action of G on its Lie algebra ". Suppose that A is a connection on P , and ! ⊂ TP .
We can integrate ! along paths in B to give a lifting of paths from B to P . If we try to
perform the same construction over higher-dimensional subspaces of B, then it is not
always possible to lift—there is an obstruction which is the curvature of the connection.
We fix a point b ∈ B and two linearly independent tangent vectors τ1, τ2 at b. Consider
a local coordinate system (x1, . . . ,xk) centered at a point b ∈ B with the property that
(∂/∂xi)|0 = τi for i= 1,2. We consider a rectangle [0,ε]×[0,ε] in the (x1,x2)-subspace.
We lift the four sides of this rectangle in counterclockwise fashion beginning with the
side on the x1-axis. We do this so that the initial point lifts to a point p ∈ P and so that
each side begins where the previous side ends. There is no guarantee that the end of the
last side will be equal to p, but it will be of the form p·g for some unique g = g(ε)∈G.
If ε is sufficiently close to zero, then g(ε) will be close to the identity in G, and hence
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we can form log(g(ε))∈ ". We consider the element

KA(ε)=−
log

(
g(ε)

)

ε2
. (4.5)

Lemma 4.3. The element in g given by

KA
(
p,τ1,τ2

)
= lim
ε→0

KA(ε) (4.6)

depends only on p, τ1, τ2. Furthermore, the point

[
p,KA

(
e,τ1,τ2

)]
∈ adP (4.7)

depends only on τ1, τ2, and is bilinear and skew-symmetric in these variables. It is given
by evaluating a two-form on B with values in adP , denoted by FA, on (τ1,τ2). This two-
form FA is called the curvature of A.

We can use the curvature to define cohomology classes in B which measures the
nontriviality of the bundle. These are called characteristic classes. The first result we
need in order to define characteristic classes from the curvature is the so-called Bianchi
identity.

Lemma 4.4 (Bianchi identity). ∇AFA = 0.

Suppose that

ϕ : "⊗···⊗"︸ ︷︷ ︸
k times

"→R (4.8)

is a linear map which is symmetric and invariant under the simultaneous adjoint action
of G on "; that is,

ϕ
(
F1, . . . ,Fk

)
=ϕ

(
g−1F1g,. . . ,g−1Fkg

)
. (4.9)

Then we can form

ϕ
(
FA, . . . ,FA

)
∈Ω2k(B;R). (4.10)

Lemma 4.5. The formϕ(FA, . . . ,FA) is closed. If another connection A′ for P is chosen,
then the difference

ϕ
(
FA, . . . ,FA′

)
−ϕ

(
FA, . . . ,FA

)
(4.11)

is exact.

For the special orthogonal group SO(n), a basis for the invariant polynomials on the
Lie algebra is given by the even coefficients of the characteristic polynomial together
with the Pfaffian ifn is even. Thus, we get one characteristic class in each degree 4i, and
if n = 2k, we also get one characteristic class in degree 2k. If we normalize properly,
then these classes are, respectively, the ith Pontrjagin class and the Euler class. There is
a similar result for complex-valued symmetric, multilinear functions on the Lie algebra.
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Applying this to the unitary group, we see that a basis for the complex-valued invariant
polynomials is given by the coefficients of the characteristic polynomials. Thus, in this
case, we have one characteristic class in each degree 2i. Correctly normalized, these
are the Chern classes.

We further recall some fundamental geometric-differential facts regarding the no-
tions of bordism and cobordism. For each topological space X, the commutative group
Ω(X) can be defined as follows (Thom [51]). Continuous mappings f : Y →X from ori-
ented and compact manifolds with boundary Y in X are called chains. The sum and
difference of chains are defined by disjoint union and change of orientation, respec-
tively. The boundary of f is its restriction to the boundary of Y . It is well known (thanks
to a fundamental theorem of algebraic geometry) that the boundary of a boundary is
empty: ∂ ◦ ∂ = 0. A cycle is a chain whose source has no boundary. The equivalence
classes of cycles form the group Ω(X). The Thom ring is the bordism of a point. With
the product Y×X, one can see thatΩ(X) is a module overΩ, so thatΩ acts onΩ(X). To
every continuous mapping X1 →X2 is associated a linear transformation of Ω(X1) into
Ω(X2); we then have a functor. The cobordism cohomologyΩ∗(X) is obtained by taking
the homotopy classes of continuous mappings of X into a given space, in fact, a nested
sequence of topological spaces, the Thom spectrum. The cohomology (the theory Ω∗) is
richer than the homology (Ω), dealing with rings having all sorts of operations. Cobor-
dism is an equivalence relation on the set of submanifolds, say N and N′ of M , which
means that the cobordism Z transforms N into N′. M designates a compact oriented
manifold with H1(M) = 0. We say then that two submanifolds N, N′ are cobordant in
M if there is a compact Z =M×[0,1] so that ∂Z =N×{0}⊆N′ ×{1} (see [35]).

Even these short considerations suffice to highlight some basic characteristics of co-
homology that make it a good basis for building a richer and more sophisticated theory
of the spatial continuum and of spacetime, with enormous theoretical implications for
physics. Some of these characteristics are listed below (Bennequin [6]).

(1) Homology is constructed by quotienting a part of the data (cut and gluing). It
stabilizes forms.

(2) It shows the close relationship that can exist between figures and numbers, es-
pecially coefficients. We can reconstruct a new ring Ω from combinations of chains
with rational (Q) or complex coefficients (C). This lets us “localize” and “complete,”
respectively.

(3) The most remarkable property is probably the universality. There are many co-
homologies that all give the same results. More exactly, different definitions lead to
isomorphic (or related, at the very least) theories. This means that axiomatic construc-
tions are permitted (Atiyah (1968)).

(4) Cohomology realizes forms; in a certain sense, it defines forms. In any case, it
ensures certain stability and genericity. Several notions from classical field theory can
be expressed cohomologically. Furthermore, the more recent quantum field theories,
reinterpreted in the common mathematical framework of gauge theory, highlight the
basic role played by cohomology and characteristic classes (see the work of Atiyah and
Bott [4], Manin [34], Uhlenbeck [54], and Taubes [50]). These concepts are also used in
the attempts to give a consistent mathematical formulation and an intelligible physical
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interpretation of other quantum gauge theories such as the quantum electrodynamics
of Dirac, Feynman, and Schwinger.

5. The birth and development of gauge theory. A review of the origin and develop-
ment of gauge theory is in order (for more details, see [37, 67]). Two major geometrical
advances of Weyl must be mentioned. In 1918–1919 he outlined what he called a “purely
infinitesimal geometry” (for the history of this theory, see [44, 49, 57]), which should
know a transfer principle for length measurements between infinitely close points only,
and which should admit a conformal structure. The allusion is of course to Levi-Civita
parallel displacement principle in a Riemannian manifold embedded in a sufficiently
high-dimensional Euclidean space, locally given by

ξ′i = ξi−Γ ijkξjdxk (5.1)

with thedxi to be interpreted as the coordinate representation of a displacement vector
between two infinitesimally close points so that the direction vector ξi is transferred to
ξ′i. According to Weyl, one has to separate logically the concept of parallel displacement
from metrics and to introduce what he called an affine connection Γ on a (differentiable)
manifold as a linear torsion-free connection. Thus, Weyl proposes a generalization of
Riemannian geometry which seemed to be the most natural mathematical framework
for the construction of a unified theory of gravitational and electromagnetic forces.
This generalized Riemannian metric; a Weylian metric on a differentiable manifold M
is given by

(i) a conformal structure on M , that is, a class of (semi-) Riemannian metrics [g]
in local coordinates given by gij(x) or gij(x) = λ(x)gij(x), with multiplica-
tion by λ(x) > 0 (real-valued) representing what Weyl considered to be gauge
transformation of the representative of [g],

(ii) a length connection on M , that is, a class of differential forms ϕ in local coor-
dinates represented byϕidxi,ϕidxi−d logλ (representing the gauge transfor-
mation of the representative of j).

This new infinitesimal geometry enfolds in fact the first formulation of a gauge the-
ory. The idea of gauge was introduced by Weyl in a very influential paper of 1918 [60]
(See also the interesting paper on the same subject published thereafter by Pauli [38].)
The background of this thinking at that time can be retraced through the preface of
the various editions of his landmark book Raum, Zeit, Materie (first edition, 1918) (Her-
mann Weyl has evidently been inspired by the work of Einstein on gravity (1915–1916),
but also by the work of Felix Klein, who introduced the general mathematical concept
of group of transformations in his famous Erlangen Program in 1872, by D. Hilbert,
and mostly by Levi-Civita and Elie Cartan, who introduced, respectively, the concepts
of parallel-transport and of connection, which turned out to play a more and more
important role in the mutual relations of mathematics and physics. He was also influ-
enced by the German physicist Gustav Mie who tried—in a series of articles published in
1912–1913—to explain the basic phenomena of matter on a purely electromagnetic ba-
sis, in particular the existence, mass, and stability of electrons. Besides, Mie attempted
to formulate a theory of the electron that does not involve divergent field quantities
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inside of the electron). Weyl showed that while Einstein’s gravity theory depended on
a quadratic differential form

ds2 =
∑

ik
gikdxidxk, (5.2)

electromagnetism depended on a linear differential form

φ=
∑

i
φidxi, 1≤ i,k≤ 4, (5.3)

(which in today’s notation is
∑
Aµdxµ) defined up to the gauge transformation

ds2 "→ λds2, φ "→φ+d logλ. (5.4)

Thus the idea of a nonintegrable scalar factor

e
∫Q
p dφ (5.5)

was born. Weyl argued that the addition of a gradient d(logλ) to dφ=
∑
φµdxµ does

not change the physical content of the theory, thus concluding that

Fµν =
∂φµ
∂xν

− ∂φν
∂xµ

(5.6)

has “invariant significance.” He naturally then identified Fµν with the electromagnetic
field and put

φµ = (constant)Aµ, (5.7)

where Aµ is the electromagnetic potential. Thus electromagnetism is conceptually in-
corporated into Weyl’s theory and, in particular, into the geometric idea of a noninte-
grable scalar factor (see [9]).

Here, an important aspect of the relationship between Einstein’s general relativity
and Weyl’s gauge theory is worth noting. In general relativity, one uses a kind of math-
ematical relationships, known as a “connection,” which specifies that if the spacetime
orientation of a frame at x is given, then the relative orientation of a frame at x+dx
can be calculated. Since the frames are in a gravitational field, the connection itself is
determined by the strength of the field. In fact, the connection can replace the grav-
itational field entirely so that all motion can be described in terms of the connection
alone. This replacement of the field by a mathematical connection leads to the well-
known geometrical picture of general relativity. The familiar “curvature” of spacetime
can be calculated directly from the connection. Now Weyl went a step beyond general
relativity and asked the following question: if the effects of a gravitational field can be
described by a connection which gives the relative orientation between local frames in
spacetime, can other forces of nature such as electromagnetism also be associated with
similar connections? Generalizing the concept that all physical magnitudes are relative,
Weyl proposed that the absolute magnitude or norm of a physical vector also should
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not be an absolute quantity but should depend on its location in spacetime. A new con-
nection would then be necessary in order to relate the lengths of vectors at different
positions. This connection is associated with the idea of scale or “gauge” invariance.
It is important to note that the true significance of Weyl’s proposal lies in the “local”
property of gauge symmetry and not in the particular choice of the norm or “gauge” as
a physical variable. Actually, the assumption of locality is an enormously powerful con-
dition that determines not only the general structure but many of the specific features
of gauge theory.

Thus, after Einstein has developed his theory of general relativity, in which a dy-
namical role was given to geometry, Weyl conjectured that perhaps the scale length,
indeed the scale of all dimensional quantities, would vary from point to point in space
and in time. His motivation was to unify gravity and electromagnetism to find a geo-
metrical origin for electrodynamics (see the good presentations of Moriyasu [36] and
Gross [25]). He assumed that a translation in spacetime dxµ would be accompanied
by a change of scale or gauge, 1 → 1+ Sµ(x)dxµ . The gauge function Sµ(x) would
determine the relative scale of lengths so that a certain function would transform as
f(x)→ f(x)+[∂µ+Sµ(x)]f(x)dxµ . The hope was to identify the connection Sµ with
the vector potential of electrodynamics, thus unifying this theory with gravity. This
did not work but only temporally! In fact, in 1927, after the development of quantum
mechanics, Fock and London noticed that the pµ − eAµ , when pµ is replaced with ∂µ
by ∂µ − (ie/hc)Aµ , looked very much like Weyl’s change of scale, but with a complex
coefficient for the connection. Two years later Weyl completed the discussion, showing
how electrodynamics was invariant under the gauge transformation of the gauge field
and of the wave function Ψ of a charged particle,

Aµ "→Aµ+∂µα, Ψ "→ eieα/hcΨ . (5.8)

The concept of gauge invariance, and therefore the principle of local gauge symmetry,
was born. Accompanying the translation of charged particle, there is a phase change.
The fact that the physics, at least at Planck scale, remain unchanged with respect to a
gauge transformation lies at the heart of different forms of matter.

The most remarkable thing mathematically is that all the objections to the Weyl’s
theory disappear if we interpret it, as will be done later, as based on the geometry of
a circle bundle over a Lorentzian manifold. Then the form φ above (see (5.3)), subject
to the gauge transformation, can be interpreted as defining a connection in the circle
bundle and thus the metric remains unaltered. More generally, the characteristic fea-
tures of gauge theories can be described in terms of the topological and geometrical
differential concept of fibre bundles and the connections in them. The connection is
an intrinsic local structure that can be imposed on the bundle; it gives an elementary
but fundamental example of a gauge field. Since gauge fields, including in particular
the electromagnetic field, are fibre bundles, all gauge fields are thus based on topology
and geometry. Starting in the 1970s, 20 years after the discovery by Yang and Mills of
a non-Abelian gauge theory for strong force (nuclear interactions) in which the local
gauge group was the SU(3) isotopic-spin group, the physicists were able to express the
concept of a gauge field in such a way that it could be recognized as an instance of more
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abstract structures known to mathematicians as connections in fibre bundles. The dis-
covery of this equivalence has made it possible to understand why and how powerful
mathematical concepts and structures are necessary and suitable for the description
and explanation of physical reality.

In a very important paper, Wu and Yang introduced the fundamental concept of
nonintegrable—that is, path-dependent—phase factor as the basis of a description of
electromagnetism [66]. Further this concept is made to correspond to the definition of
a gauge field; to extend it to global problems, they analyzed, in relation with the original
Dirac’s result, the field produced by a magnetic monopole. The monopole discussion
leads to the recognition that in general the phase factor (and indeed the vector potential
Aµ) can only be properly defined in each of many overlapping regions of spacetime. In
the overlap of any two regions, there exists a gauge transformation relating the phase
factors defined for the two regions. The concept of monopole leads to the definition of
global gauges and global gauge transformations. A surprising result is that the mono-
pole types are quite different for SU2 and SO3 gauge fields and for electromagnetism.
The mathematics of these results is the fiber bundle theory. Furthermore gauge fields,
including in particular the electromagnetic field, are fiber bundles, and all gauge fields
are thus based on geometry. So maybe all of the fundamental interactions of the phys-
ical worlds could be based on these geometrical and topological objects.

The exact formulation of the concept of a nonintegrable phase factor depends on
the definition of global gauge transformations, that is, on the choice of the overlapping
regions of R (where R is a region of spacetime, precisely, all spacetime minus the origin
r = 0) and of the potentialAµ in this region. Through a certain kind of operations, called
distorsion, one arrives at a large number of possibilities, each with a particular choice
of overlapping regions and with a particular choice of gauge transformation from the
original (Aµ)a or (Aµ)b to the new Aµ in each region. Each of such possibilities will
be called a gauge (or global gauge). This definition is a natural generalization of the
usual concept, extended to deal with the intricacies of the field of a magnetic monopole.
Notice that the gauge transformation factor in the overlap between Ra and Rb does not
refer to any specific Aµ . (The gauge transformation in the overlap of the two regions is
S = Sab = exp(−iα)= exp(2ige/hc)φ.) Thus two different gauges may share the same
characterizations (a) and (b). In the case of the monopole field, one can attach to the
gauge any (Aµ)a and (Aµ)b provided they are gauge-transformed into each other in the
region of overlap. Thus a gauge is a concept not tied to any specific vector potential. Wu
and Yang called the process of distorsion leading from one gauge to another a global
gauge transformation. It is also a concept not tied to any specific vector potential. The
collection of gauges that can be globally gauge-transformed into each other will be
said to belong to the same gauge type. The phase factor exp(ie/hc

∫
Aµdxµ) (which is

nonintegrable, i.e., path-dependent) around a loop starts and ends at the same point in
the same region. Thus it does not change under any global transformation, so that we
have the following theorem for Abelian gauge fields.

Theorem 5.1. The phase factor around any loop is invariant under a global gauge
transformation.

The next two theorems follow trivially from this by taking an infinitesimal loop.
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Theorem 5.2. The field strength fµν is invariant under a global gauge transforma-
tion.

Theorem 5.3. Between two gauge fields defined on the same gauge there exists a
continuous interpolating gauge field defined on the same gauge.

Theorem 5.4. Consider gauge "D and define any gauge field on it. The total magnetic
flux through a sphere around the origin r = 0 is independent of the gauge field and
depends on the gauge only:

∫∫
fµνdxµdxν =−

ihc
e

∫
∂
∂xµ

(
lnSab

)
dxµ, (5.9)

where S is the gauge transformation defined by (5.8) for the gauge "D in question, and
the integral is taken around any loop around the origin r = 0 in the overlap between Ra
and Rb, such as the equation on a sphere r = 1.

As in the case of electromagnetism, in the non-Abelian gauge fields both the concept
of a gauge and the concept of a global gauge transformation are not tied to any specific
gauge potentials. The nonintegrable phase factor for a given path is now an element of
the gauge group (see [41]). Since these phase factors do not in general commute with
each other, Theorems 5.1 and 5.2 for the Abelian case need to be modified as follows.

Theorem 5.5. Under a global gauge transformation, the phase factor around any
loop remains in the same class. The class does not depend on which point is taken as the
starting point around the loop.

Theorem 5.6. The field strength fkµν is covariant under a global gauge transforma-
tion.

Theorem 5.5 defines the class of a loop. This concept is a generalization of the phase
factor for electromagnetism around a loop with the magnetic flux as the exponent. It
is a gauge-invariant concept.

Rigorously the mathematical structure of gauge theory is that of a vector bundle
E with structure group G over a compact Riemannian manifold M . We assume that
G ∈ O(m) and E carries an inner product compatible with G. Let E be the space of
G-connections on E, and let " be the space of G-automorphisms of E. Then " acts on
E as before, and we have a quotient space B ≡ E/". To each connection ∇∈ E there is
associated a curvature 2-form R∇, and at each point x, we can take its norm

∥∥R∇
∥∥2
x ≡

∑

i<j

∥∥R∇ei,ej
∥∥2
x, (5.10)

where {e1, . . . ,en} is an orthonormal basis of TxM and the norm of R∇ei,ej is the usual one

on Hom(E,E)—namely, ⟨A,B⟩ ≡ trace(At ◦B). Given any g ∈ ", we recall that Rg(∇) =
g◦R∇◦g−1, so

∥∥Rg(∇)
∥∥≡

∥∥R∇
∥∥ on M. (5.11)

This says that the pointwise norm of the curvature is gauge-invariant.
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Definition 5.7. The Yang-Mills functional is the mapping YM : E→R+ given by

YM(∇)≡ 1
2

∫

M

∥∥R∇
∥∥2. (5.12)

(Note that, by gauge invariance of the density (5.11), this functional descends to a func-
tional YM : B→R+.)

An important verified fact is that if M is four-dimensional, then YM is conformally
invariant ; that is, if we replace the metric ds2 on M by a new metric ds2 = f 2ds2, for
some positive function f on M , then the Yang-Mills functional is unchanged. We think
of YM as an “action integral” and seek its stationary points.

Definition 5.8. A connection ∇∈ E is called a Yang-Mills connection, and its cur-
vature R∇ is called a Yang-Mills field if grad∇(YM)= 0.

Lemma 5.9. The following are equivalent:
(1) ∇ is Yang-Mills,
(2) δ∇R∇ = 0,
(3) ∆(R∇)= 0, where ∆≡ d∇δ∇+δ∇d∇.

The equations δ∇R∇ = 0 are called the Yang-Mills equations. The equivalent condition
(3) states that the curvature R∇ is harmonic (with respect to its own Laplacian). It is
naturally appealing to a geometer to study connections with harmonic curvature. The
subject has even more allure when one learns that the “classical fields” corresponding
to basic forces of nature (the electromagnetic, weak, and strong interactions) can, and
should, be formulated in these terms. A basic case is electromagnetic, whereG =U1 and
E is a complex line bundle over a four-dimensional Lorentzian manifold. In relativistic
terms, the six components of the curvature 2-form Ω of a connection on E represent
the six components of the electromagnetic tensor. The equations

dΩ = 0, δΩ = 0 (5.13)

are exactly Maxwell’s field equations.

6. The geometric nature of gauge invariance: gauge theory and quantum mechan-
ics. General relativity was discovered around 1916 by Einstein. Its complete mathe-
matical formulation was due to his friend the mathematician Marcel Grassmann. Soon
after, this theory was recognized a major scientific event. Hermann Weyl of course
agreed with that. However he was still looking for a more complete formulation of
Einstein’s theory. Thus, under the influence of general relativity, he aimed to a search
for a unification of gravitation and electromagnetism. In other words, he asked him-
self whether one could not find an extended geometry which would likewise allow to
accommodate the only other force field known at the time, the electromagnetic field
Fij = ∂iAj−∂jAi with its potential Ai, into the geometrical structure of spacetime. His
main idea was that of a local gauge invariance, which I will try to explain.

Let me start with a historical note. In a letter to Einstein, 1 March 1916, Weyl wrote:
“These days, I believe to have succeeded in deriving electricity and gravitation from a
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common source. One obtains a wholly determined principle of action which within the
electricity-free field leads to your expression for gravitation. On the other hand, within
a gravitation-free field, one gets an expression which, at first sight, is in agreement with
Maxwell’s theory.” The response of Einstein came soon: “I received your paper. It is a
stroke of genius (Genie-Streich) of the highest rank. Besides, I was not able so far to set-
tle my objection concerning the measure standard . . . . (We translated both quotations
from German).

The importance of the gauge invariance (Eichinvarianz) can be measured by what the
theoretical physicist Abdus Salam wrote in Nobel conference of 1975: “One of the most
revolutionary events in the history of science of the last century is the idea of gauge
unification of the electromagnetic force with the weak nuclear forces” (Salam [42]); or by
what the outstanding theoretical physicist T. W. B. Kibble wrote in 1982: “Revolutions
are hard to recognize till they are past. This is surely true of the changes that have
occurred in elementary particle physics over the last two decades. The development of
gauge theories may well come to be seen as constituting one of the most fundamental
revolutions of this century, rivaling the development of quantum mechanics itself. Yet
so far its significance is not widely understood outside the ranks of specialists” (Kibble
[28]).

Now we have to return back to Weyl. We said that the Weyl’s work was aimed at
extending the physical significance of general relativity and consequently to propose a
generalization of Riemannian geometry. According to Weyl, these generalizations may
be possible by introducing the main idea that length of vectors, and not only direction,
must depend on the path. In other words, length ceases to be an action-at-distance
concept. Mathematically, the idea of local gauge invariance amounts to introducing a
nonintegrable scale factor or a function, which should supply the fact that in Riemann-
ian geometry the invariance of the length of each two vectors gets lost. So Weyl proposes
a procedure for recalibrating the displacement of a vector at each point of spacetime,
in order to leave the length as well as the direction of this vector locally unchanged.
Furthermore, Weyl had the ingenious idea of associating the metric tensor with the
strength of the electromagnetic field, and the scale vector with the electromagnetic
potential.

The idea of Weyl runs as follows. The parallel transport of the two vectors V′ and W′

fromx′ tox′+dx′ and, consequently, around a closed contour is generalized. The angle
between the two vectors is still kept fixed under parallel transport, but the assumption
of the invariance of the length of both vectors is dropped. The length of a vector—in
contrast to the angle between two of them—ceases to be an action-at-distance concept.
How should one change the expression

δ∥Vk =−
{k
ij

}
Vjdxi (6.1)

(which expresses the change of the components of a vector Vj(x), if displaced or trans-
ported parallely on a Riemannian manifold Mr of r dimensions from the point with
coordinates xi to the one with coordinates xi +dxi)? One would like to uphold the
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bilinearity of δ∥Vk in Vj and dxi, thereby arriving at

δ∥Vk =−Γ kijVjdxi (6.2)

with the so far unknown connection coefficients Γ kij . On the basis of the last expression,
we can define once more a covariant differentiation, which we still denote by ∇i. Then
the change of a vector around the contour turns out to be

∇Vl =−
(

1
2
∇AijFlijk

)
Vk, (6.3)

this time involving the curvature tensor, and we get

Flijk = 2∂iΓ ljk+2Γ limΓ
m
jk =−Fljik. (6.4)

We thus see that in [61] Weyl enlarged the Riemannian spacetime of general relativity
by an independent vector field of geometric origin—in modern terms, a one-form. This
additional geometric object is intimately linked with the geometrical structure of space-
time. In addition, the Weyl vector is the compensating potential for allowing invariance
with respect to local recalibration of lengths, that is, with respect to conformal changes
of the metric. One can furthermore generalize the Weyl geometry to the metric-affine
geometry, which is based on a (symmetric) metric and an independent (nonsymmetric)
linear connection. In Weyl geometry, one geometrical object, the metric tensor, stands
for the gravitational potential, as in general relativity, whereas the other one, the lin-
ear connection, was surmised to represent the electromagnetic potential known from
Maxwell’s theory. Together with a suitable (gravitational and electromagnetic) field La-
grangian, which turns out to be quadratic in the curvature of the underlying Weyl space-
time, this builds up Weyl’s unified theory of 1918. The idea of gauge invariance, or the
so-called principle of recalibration, which applies first to length of vectors in spacetime,
transmuted to the concept of local gauge invariance of the phase of a wave function in
1929, and represents, in the last form, one of the underlying principles of all modern
gauge theories, such as the Weinberg-Salam theory of electroweak interactions.

The other fundamental contribution of Weyl is related to his gauge theory but con-
cerns quantum mechanics. In an article in 1927 [62], then in his book Gruppentheorie
und Quantenmechanik (1928), Weyl proposes developing the mathematical foundations
of this newly discovered physical theory by showing its close relationship to group
representation theory. (For a very illuminating overview of Weyl’s contribution to the
theory of Lie groups, see [10].) In Weyl’s new mathematical approach, the basic ques-
tion at that time was to explain the properties of particles (protons and electrons) by
the properties of the quantum laws: do these laws satisfy the basic symmetries known
at that time (right/left, past/future, positive/negative electric charge)? Mathematically,
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that was equivalent to knowing the structure of certain classes of (continuous) groups
and their algebras. These three kinds of symmetry were introduced (under other names)
into quantum physics in the 1930s by Weyl himself and by E. Wigner, but no one thought
then of unifying the three kinds. In 1930, Dirac had detected the existence of a particle
(positron) with a charge opposite to that of an electron, and Weyl then generalized to
a universal essential equivalence between positive and negative electricity. This idea
was reformulated in 1937 as the conjugate invariance of electrical charge. However,
in 1957, Lee and Yang found that left-right symmetry (or conservation of parity P ),
which physicists had always found useful to accept, was not entirely satisfied by the
laws of nature, particularly in weak interactions, which are responsible for radioac-
tive (beta) disintegration. Since it could be verified theoretically and experimentally
that this radioactivity gave a correct description of the neutrino, the conclusion was
that the existence of the Weyl-Pauli theory (of the neutrino) violated left-right symme-
try. This asymmetry seemed to be a consequence of duplication: massless particles
(neutrinos) emitted in a beta disintegration existed in only one form (left), while the
corresponding antiparticles (antineutrinos) could then only exist in the opposite form.
Mathematically, this duplication could appear as the existence of two valid solutions
for an equation. Some theoretical physicists interpret this phenomenon to speculate
that the world did not have to be symmetrical with respect to every operation which
left the laws of nature invariant: the loss of symmetry could be ascribed to the asym-
metry of the whole universe. Such an explanation raises several questions. It is just
as reasonable to believe that the loss of symmetry, as a characteristic of a transitory
phase in which the laws of nature apply, could be explained by a richer, more general
mathematical symmetry. Recent research in this field seems to be oriented toward this
second outlook.

7. Quantum electrodynamics, gauge theory, and the concept of symmetry. It is
now important to emphasize some facts about the quantum electrodynamics, that is,
the theory that results from combining electron matter fields with electromagnetic
fields—formulation begun in the 1930s by P. Dirac and was essentially completed in
about 1949 by S. Tomonaga, J. Schwinger, R. P. Feynman, and F. J. Dyson. (The original
papers have been republished in [46]). We recall firstly that it is based on a local gauge
symmetry. Another theory, Einstein’s general theory of relativity, is based on a local
gauge symmetry, which pertains not to a field distributed through space and time but
to the structure of spacetime itself. Indeed every point in spacetime can be labeled by
four numbers, which give its position in the three spatial dimensions and its sequence
in the one time dimension. These numbers are the coordinates of the event, and the
procedure for assigning such numbers to each point in spacetime is a coordinate sys-
tem. The choice of such a coordinate system is clearly a matter of convention. The
freedom to move the origin of a coordinate system constitutes a symmetry of nature.
Actually there are three relate symmetries: all laws of nature remain invariant when the
coordinate system is transformed by translation, by rotation, or by mirror reflection. It
is important to note, however, that the symmetries are only global ones. Each symmetry
transformation can be defined as a formula for finding the new coordinates of a point
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from the old coordinate. Those formulas must be applied simultaneously in the same
way to all the points.

In quantum electrodynamics, the symmetry operation consists of a local phase
change in the electron field, each such phase shift being accompanied by an inter-
action with the electromagnetic field. Imagine an electron undergoing two consecutive
phase shifts: the emission of a photon and then the absorption of one. If the sequence
of the phase shifts was reversed, the final result would be the same. It follows that an
unlimited series of phase shifts can be made, and the final result will simply be their
algebraic sum, no matter what their sequence is. On the contrary, in the Yang-Mills
theory, where the symmetry operation is a local rotation of the isotopic-spin arrow,
the result of multiple transformations may be rather different. Suppose a hadron un-
dergoing a gauge transformation A followed by a second transformation B may have
an isospin arrow in the orientation of a proton. The same hadron undergoes B; at the
end of this sequence the isotopic-spin arrow is found in the orientation that corre-
sponds to a proton. Now suppose the same transformation was applied to the same
hadron but in the reverse sequence: B followed by A. In general the final state will not
be the same; the particle may be a neutron instead of a proton. Therefore, the net effect
of the two transformations depends explicitly on the sequence in which they are ap-
plied. Because of this distinction, quantum electrodynamics is called an Abelian theory
and the Yang-Mills theory is called a non-Abelian one. Abelian groups are made up of
transformations that, when applied one after another, have the commutative property;
non-Abelian groups are not commutative (see [16]). (The terms are borrowed from the
mathematical theory of groups created by the Norwegian mathematician N. H. Abel.)
Like the Yang-Mills theory, the general theory of relativity is non-Abelian. Even the elec-
tromagnetic interaction has been incorporated into a larger theory that is non-Abelian.
For now, at least, it seems all the forces of nature are governed by non-Abelian gauge
theories.

This important and surprising result (i.e., the asymmetry of certain fundamental
laws of physics) spurred a vast new investigation, still active today, into spontaneous
symmetry breaking. The central question now seems to be the connection between the
symmetry breaking occurring in the behavior of certain elementary particles at a certain
level of size and temperature, and the geometrical structure of space at that same
level. More precisely, it has been hypothesized that a symmetry breaking occurs when
there is a change (or degeneration) in the space structure, or, mathematically speaking,
a jump from a group to a “poorer” group of the field or the interaction concerned.
However, nothing prevents us from believing that if there is a richer group containing
the two others as subgroups, the difficulty may be removed (see below for further
considerations on this point).

Mathematically the phenomenon of symmetry breaking can be formulated as fol-
lows. Let V be a vector bundle with structure group G; it might happen that under
some conditions the structure group of V can be reduced to a subgroup G0. This phe-
nomenon of gauge symmetry breaking plays a central role in particle physics—more
precisely, in the Weinberg-Salam-Glashow model of weak interactions. Suppose that at
some low mass scalem, the gauge groupG is effectively reduced to a subgroupG0. Even
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if the representations R and R̄ are inequivalent as representations of G, they may be
equivalent as representations of G0. In this case, the fermions that were kept massless
by the inequivalence of R and R̄ will be able to gain masses of orderm. This is precisely
what seems to happen in nature. At a mass scale of order 10−17MPl, the gauge group
SU(3)× SU(2)×U(1) is reduced to SU(3)×U(1). At this point, some of the gauge
fields become massive. At the same time, the representations R and R̄ are isomorphic
as representations of SU(3)×U(1), so the light fermions can and do gain mass. Many
facts of this symmetry-breaking process are not yet understood, for example, why the
mass scale associated with symmetry breaking is so tiny compared to the natural mass
scale Mpl. It is, however, pretty clear that the idealization in which the masses of the
particles are all zero is the situation in which the gauge group SU(3)×SU(2)×U(1) is
not broken to a subgroup.

Consider further the basic decomposition S = S+⊗S− of the spinor representation S
into spinors S± of positive and negative chirality; the distinction between S+ and S− is
a matter of convention. Under a change of the orientation of spacetime, called a parity
transformation by physicists, S+ and S− are exchanged. The representations R and R̄
are therefore exchanged by parity. If we assume that the laws of nature are invariant
under parity, then R and R̄ must be isomorphic. The explanation of the lightness of
the fermions therefore rests on parity violation. However, in the 1950s it was discov-
ered that the weak interactions violate parity. On the other hand, parity is conserved
by strong and electromagnetic interactions; this is the statement that R and R̄ are iso-
morphic as representations of SU(3)×U(1). In order to overcome this contradiction,
one has lately contemplated the possibility of extending the observed gauge group G
to a larger group Ḡ, as SU(5) which contains SU(3)× SU(2)×U(1), SO(10), or the
exceptional group E6.

In physical terms, however, the problem can be put in a quite different manner. It
is well known that one of the serious difficulties of the Yang-Mills theory is that when
isotopic-spin symmetry becomes exact, the result is that protons and neutrons are
indistinguishable; this situation is obviously contradictory. Even more troubling is the
prediction of electrically charged photons. The photon is necessarily massless because
it must have an infinity range. Imposing a mass on the quanta of the charged fields does
not make the fields disappear, but it does confine them to a finite range. If the mass is
large enough, the range can be made as small as wished. As the long-range effects are
removed, the existence of the fields can be reconciled with experimental observations.
The modified Yang-Mills theory was easier to understand, but the theory still had to be
given a quantum-mechanical interpretation.

The problem of infinities turned out to be severer than it had been in quantum elec-
trodynamics, and the standard recipe for renormalization would not solve it. In this
respect, the fundamental idea of the Higgs mechanism was to include in the modified
Yang-Mills gauge theory an extra field, one having the peculiar property that it does
not vanish in the vacuum. One usually thinks of a vacuum as a space with nothing in
it, but in physics that vacuum is defined more precisely as the state in which all fields
have their lowest possible energy. For most fields the energy is minimized when the
value of the field is zero everywhere, or in other words when the field is “turned off.”
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An electron field, for example, has its minimum energy when there are no electrons.
The effect of the Higgs field is to provide a frame of reference in which the orientation
of the isotopic-spin arrow can be determined. The Higgs field can be represented as an
arrow superposed on the other isotopic-spin indicators in the imaginary internal space
of a hadron. What distinguishes the arrow of the Higgs field is that it has a fixed length,
established by the vacuum value of the field. The orientation of the other isotopic-spin
arrows can then be measured with respect to the axis defined by the Higgs field. In this
way a proton can be distinguished from a neutron. It might seem that the introduction
of the Higgs field would spoil the gauge symmetry of the theory and thereby lead again
to insoluble infinities. In fact, however, the gauge symmetry is not destroyed but merely
cancelled. The symmetry specifies that all the laws of physics must remain invariant
when the isotopic-spin arrow is rotated in an arbitrary way from place to place. This
implies that the absolute orientation of the arrow cannot be determined since any exper-
iment for measuring the orientation would have to detect some variation in a physical
quantity when the arrow was rotated. With the inclusion of the Higgs field, the absolute
orientation of the arrow still cannot be determined because the arrow representing the
Higgs field also rotates during a gauge transformation. All what can be measured is
the angle between the arrow of the Higgs field and the other isotopic-spin arrows, or
in other words their relative orientation. The Higgs mechanism is an example of the
process called spontaneous symmetry breaking, which was already well established in
other areas of physics.

The concept was first put forward by W. Heisenberg in his description of ferromag-
netic materials (in 1971). Heisenberg pointed out that the theory describing a ferro-
magnet has perfect geometric symmetry in that it gives nonspecial distinction to any
one direction in space. When the material becomes magnetized, however, there is one
axis—the direction of magnetization—that can be distinguished from all other axes. The
theory is symmetrical but the object it describes is not. Similarly, the Yang-Mills theory
retains its gauge symmetry with respect to rotations of the isotopic-spin arrow, but the
objects described—protons and neutrons—do not express the symmetry. Philosophi-
cally, this fact leads to making the distinction between the “ontological” or “objectal”
level and the “operational” or “theoretical” level of physical entities; moreover, the first
level cannot be reduced to the latter one.

Despite all these difficulties, the Yang-Mills theory had begun as a model of the strong
interactions, but by the time it had been renormalized, interest in it centered on ap-
plications to weak interactions. In 1967, S. Weibeng, A. Salam, and C. Ward proposed a
model of the weak interactions based on a version of the Yang-Mills theory in which the
gauge quanta take on mass through the Higgs mechanism. The Weinberg-Salam-Ward
model actually embraces both the weak force and electromagnetism (Salam [43]). The
conjecture on which the model is ultimately founded is a postulate of local invariance
with respect to isotopic spin; in order to preserve that invariance, four photonlike fields
are introduced, rather than the three of the original Yang-Mills theory. The fourth pho-
ton could be identified with some primordial form of electromagnetism. It corresponds
to a separate force, which had to be added to the theory without explanation. For this
reason the model should not be called a unified field theory.
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If one were to search for a nonlinear generalization of Maxwell’s equation to explain
elementary particles, there are various symmetry properties one would require (see
[15]):

(i) external symmetries under the Lorentz and Poincaré groups and under the con-
formal group if one is taking the rest-mass to be zero,

(ii) internal symmetries under groups like SU(2) or SU(3) to account for the known
features of elementary particles,

(iii) covariance or the ability to be coupled with gravitation by working on a curved
spacetime.

Gauge theories satisfy these basic requirements because they are geometric in char-
acter. In fact, on the mathematical side, gauge theory is a well-established branch of dif-
ferential geometry, known as the theory of fibre bundles with connection. (On this topic,
see [14, 18, 48].) It has much in common with Riemannian geometry which provided
Einstein with the basis for his theory of general relativity. If the current expectations
of Yang-Mills theory are eventually fulfilled, it will in some measure justify Einstein’s
point of view that the basic laws of physics should all be in geometrical form (Atiyah
[3] and Wheeler [63]).

8. Topological aspects of gauge theory, and invariants of four-manifold topology
and quantum field theory. We need once more to emphasize this fundamental fact.
The mathematical basis of gauge field theory lies in vector bundles and the connections
in them. In fact, one of the most striking developments in mathematical physics over
the past quarter century has been the discovery of the fundamental role played by
bundles, connections, and curvature in expressing and eventually explaining the basic
laws of nature. (See [11, 12, 32].) The so-called Yang-Mills theory does reflect in the
deeper way the intimate relationship between geometrical concepts and physical ideas.
The key feature of Yang-Mills theory is the invariance of the physical properties of
particles under a group, but in this case an infinite-dimensional group (whereas the
Maxwell’s equations in vacuum for the electromagnetic field are invariant under the
finite-dimensional Lorentz group of linear isometries of R3,1). Consider the classical
electromagnetic field in terms of an exterior 2-formω on R3,1. Notice that since dω= 0,
we may express ω as

ω= dα, (8.1)

where α is a 1-form on R4 called electromagnetic potential. The form α is defined only
up to an exact form, that is, we may replaceα byα+df , where f is any smooth function
on R4. Such a replacement is called a change of gauge or a gauge transformation. So, the
invariance of physical laws of particles interactions with respect to the group of gauge
transformations lies at the heart of matter. It is called the “principle of local invariance.”
In an attempt to describe strong interactions at the classical level, C. N. Yang and R. Mills
proposed in 1954 that the Lagrangian of the interaction should involve a potential with
values in the Lie algebra of the non-Abelian group SU(2), which describes the degrees
of freedom of isotopic spin, the first quantum number to be understood in relation
to strong interactions. Moreover, this Lagrangian should be invariant under the group
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of local internal symmetries, again called gauge transformations. One of the striking
features of the Yang-Mills proposal was that the potential A (an SU(2)-valued 1-form)
was required to transform like a connection. Specifically, a gauge transformation is here
defined as a map ρ : R3,1 → SU(2), and the transformed potential is given by

Aρ = ρAρ−1+ρdρ−1. (8.2)

Furthermore, the proposed (Lagrangian) density was just ∥Ω∥2, where Ω = dA+
1/2[A,A] was the curvature of the connection A. This connection lives on the trivi-
alized principal SU(2)-bundle over R3,1. The gauge transformation ρ simply amounts
to a principal bundle automorphism.

There is at present no doubt that some mathematical concepts of fibre bundle the-
ory have become an established part of mathematical physics because fibre bundles
provide a natural and very deep framework for discussing the concepts of relativity
and invariance, describing gravitation and other gauge fields, and giving a geometrical
interpretation to quantization and the canonical formalism of particles and fields. Fibre
bundles provide the language which is needed for dealing with local problems of dif-
ferential geometry and field theory. They are necessary to understand and solve global,
topological problems, such as those arising in connection with magnetic monopoles
and instantons. For example, in an attempt to understand the properties of Donaldson
invariants of four manifolds, E. Witten presented a new approach to using physics to
illuminate Donaldson theory (Witten [64] and Donaldson [19]). (For a very illuminating
survey of the Seiberg-Witten equations and their relation to topological invariants of
four-manifolds, see [19]. Donaldson has stressed the importance of these equations by
the following words: “Since 1982 the use of gauge theory, in the shape of the Yang-
Mills instanton equations, has permeated research in 4-manifold topology. (. . .) A body
of techniques has built up through the efforts of many mathematicians, producing re-
sults which have uncovered some of the mysteries of 4-manifold theory, and leading to
substantial internal conundrums within the field itself. In the last three months of 1994
a remarkable thing happened: this research was turned on its head by the introduction
of a new kind of differential-geometric equations by Seiberg and Witten: in the space
of a few weeks, long-standing problems were solved, new and unexpected results were
found, along with simpler new proofs of existing ones, and new vistas for research
opened up” [19, page 45].) He suggested that, instead of computing the Donaldson in-
variants by counting SU(2) instanton solutions, one can obtain the same invariants
by cutting the solutions of the dual equations, which involve U(1) gauge fields and
monopoles. From a physical point of view, the dual description via monopoles and
Abelian gauge fields should be simpler than the microscopic SU(2) description since
in the renormalization group sense it arises by “integrating out the irrelevant degrees
of freedom.”

The new monopole equations and the topological invariants of four-manifolds intro-
duced by Witten involve two entities, a U(1) connection and a “spinor” field. Thus a
main prerequisite for their study is a knowledge of spinors on four-manifolds. More
precisely, the most relevant notion is that of Spinc structure. Recall that if X is an ori-
ented, closed Riemannian four-manifold, a spin structure on X is a lift of the structure
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group of the tangent bundle from SO(4) to its double cover Spin(4). The exceptional
isomorphism Spin(4) = SU(2)×SU(2) means that this can be given a more concrete
description in terms of vector bundles. Giving a spin structure is the same as giv-
ing a pair of complex 2-plane bundles S+, S− → X, each with structure group SU(2)
and related to the tangent bundle by a structure map c : TX → Hom(S+,S−). Now the
map e∧f → c(e)∗c(f)−c(f)∗c(e) induces a map ρ from the self-dual 2-forms Λ+ to
Hom(S+,S−), which corresponds to the standard isomorphism between the Lie algebras
of SU(2) and SO(3).

The map c is the symbol of the Dirac operatorD : Γ(S+)→ Γ(S−), and one of the most
fruitful calculations in differential geometry leads to the Lichnerowicz-Weitzenbock
formula for the Dirac operator:

D∗Dψ=∇∗∇ψ+ 1
4
Rψ. (8.3)

Here, ∇ is the covariant derivative on spinors, induced by Levi-Civita connection, and
R is the scalar curvature, which acts in (12.1) by scalar multiplication at each point. If
we have an additional auxiliary bundle E→X, with a Hermitian metric and connection,
we may consider spinors with values in E—sections of S±⊗E. The Dirac operator on
these coupled spinors satisfies

D∗Dψ=∇∗∇ψ+ 1
4
Rψ−F+E (ψ), (8.4)

where F+E is the self-dual part 1/2(FE+∗FE) of the curvature E. Here, the self-dual forms
act on spinors in the way described above. Now a spin structure may not exist globally—
the Stiefel-Whitney class w2(X)∈H2(X;Z/2) is the obstruction—but a variant, a Spinc

structure, always does. A Spinc structure is given by a pair of vector bundles W± over
X with an isomorphism, say Λ2W+ =Λ2W− = L, such that locallyW± = S±⊗L1/2, where
L1/2 is a local square root of L : L1/2⊗L1/2 = L. An old result of Hirzebruch and Hopf
assures the existence of Spinc structures on any oriented, closed four-manifold; up to
an action of the finite group H1(X;Z/2), they are classified by the lifts of w2(X) to
H2(X;Z), the first Chern class of the line bundle L. A connection on L gives a Dirac
operator D : Γ(W+) → Γ(W−), which is locally just the same as the Dirac operator on
L1/2-valued spinors. In particular we get the Lichnerowicz formula

D∗Dψ=∇∗∇ψ+ 1
4
Rψ− 1

2
F+L (ψ), (8.5)

where the factor of 1/2 comes from the square root of L. Note that Hom(W+,W+) ∼
Hom(S+,S+).

Now, the Seiberg-Witten equations for a four-manifold X with Spinc structureW± are
equations for a pair (A,ψ), where

(1) A is a unitary connection on L=Λ2W±,
(2) ψ is a section of W+.

If ξ and η are inW+, we write ξη∗ for the endomorphism θ→ ⟨θ,η⟩ξ ofW+. The trace-
free part of this endomorphism lies in the image of the map ρ, and we write τ(ξ,η) for
the corresponding element of Λ+⊗C. So, τ is a sesquilinear map τ : W+×W+ → ⊗C.
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The Seiberg-Witten equations are

DAψ= 0, F+A =−τ(ψ,ψ). (8.6)

The sign of the quadratic form τ(ψ,ψ) is crucial and underpins the whole theory.
Witten showed that (Witten [64], Seiberg and Witten (1999)), in general, the number

of solutions of a system of equations weighted by the sign of the determinant of the
operator analogous to T (an elliptic operator T : Λ1⊗ (S+⊗L) → Λ0⊗Λ2,+⊗ (S− ⊗L)
is defined by T = s∗ ⊗ t) is always a topological invariant if a suitable compactness
holds. If one has a gauge-invariant system of equations, and one wishes to count gauge
orbits of solutions up to gauge transformations, then one requires (i) compactness, (ii)
free action of the gauge group on the space of solutions. By contrast with Donaldson
theory, according to which for SU(2) instantons, compactness fails precisely because
an instanton can shrink to zero size, the monopole equations are scale-invariant but
they have no nonconstant L2 solutions on flat R4.

The general problem behind the above result is that of finding topological invariant
defined by solutions of partial differential equations. In differential topology one is
familiar with many contexts in which the solutions of an equation f(x)=y are, at the
level of homology, unchanged by continuous variations of parameters. For example,
f might be a map f : P → Q between oriented manifolds, then the homology class in
H∗(P) of f−1(y), for generic y in Q, is a homotopy invariant of f—just the Poincaré
dual of the pullback of the fundamental cohomology class ofQ. Or f might be a section
of an oriented vector bundle V → P , and y = 0, so the solutions are the zero set of the
section which, assuming transversality, gives a submanifold representing the Poincaré
dual of the Euler class of V . Now if we have a family of partial differential equations,
depending on continuous parameters, we may hope to find similar invariants from the
homology class of the solution space. This can be developed abstractly in the framework
of differential topology in certain manifolds. The key points one needs to establish in
order to find invariants analogous to the finite-dimensional case are the following.

(1) The maps involved should be Fredholm maps, which in practice means that the
linearization of the equations about a solution should be represented by linear ellip-
tic differential equations, say over a compact manifold. The index of the linearized
equation gives the “expected dimension” of the solutions space.

(2) One needs to establish the compactness of the space of solutions, or some weaker
analog of this.

(3) One needs to establish orientability, analogous to the finite-dimensional case;
otherwise one only gets invariants modulo 2. This can be set up in terms of the index
theory of families of operators. In the cases arising from gauge theory, the equations
are invariant under the action of the gauge group of bundle automorphisms, and one
studies spaces of solutions modulo this action.

(4) One must not encounter reducible solutions in generic one-parameter families of
equations.

Now one can show that the essential features of Seiberg-Witten equations listed above
define differential-topological invariants of the underlying four-manifold. Indeed, the
theory is significantly simpler than for the Donaldson instanton equations (Donaldson
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and Kronheimer [20]). To check the Fredholm property we can ignore the quadratic term
τ(ψ,ψ) since this does not affect the symbol (leading term) of the linearization. At the
level of the symbol, the linearization is given by the sum of the linearization of the
U(1) instanton equation, which modulo gauge is represented by the operator d∗+d+
acting on ordinary forms, and the Dirac operator DA. Regarding compactness, unlike
the instanton case, the Seiberg-Witten moduli spaces are compact, without qualification.
This follows from a priori estimates on the solutions. These can be obtained from energy
estimates using integration by parts as in the previous section, or, more directly, by
the maximum principle applied to second-order equations. The remaining issues are
reducibles and orientations. If a nontrivial gauge transformation g ∈Aut(L) fixes a pair
(A,ψ), then ψ must be zero and g ∈ U(1) a constant scalar. Thus, the only reducible
Seiberg-Witten solutions are the self-dual U(1) connections, and these do not occur in
generic r -dimensional families of metrics on X, so long as b+(X) > r . Thus if b+ > 1,
reducibles do not interfere with the definition of invariants. Considering orientations,
an orientation of the moduli space is furnished by an orientation of the “determinant
line” of the relevant index bundle over the space C∗ of all irreducible pairs (A,ψ)
modulo gauge transformation.

The most straightforward application of the Seiberg-Witten invariants is to distin-
guish differentiable four-manifolds within the same homeomorphism type. Myriads of
examples could be given, the simplest being to show that connected sums Xp,q, say,

of p copies of CP2 and q copies of CP
2
, q > 1, for which the Seiberg-Witten invari-

ants vanish, are not diffeomorphic to Kähler surfaces (or any other manifolds with
nonzero Seiberg-Witten invariants). The Seiberg-Witten equations have led to astound-
ing advances in four-manifold theory (see, e.g., [33]). To some extent they may well
have brought the study of the gauge theory invariants to a fairly complete form, resolv-
ing many of the main problems that drove research in this area in the last ten years.
Perhaps the most exciting challenge is to come to grips with the quantum field theory
ideas which led to these new advances—in parallel with other important developments
such as mirror symmetry, three-manifold invariants, conformal field theory—and to
understand in a rigorous way the intricate structures discovered by Seiberg and Wit-
ten. At the same time there are notable questions which are left open at present. One
is the question of whether all simply connected manifolds are of simple type. A more
wide-ranging problem is to understand the structure of the invariants of families of
four-manifolds, and the relation between the instanton and Seiberg-Witten theories,
for manifolds with b+ = 1. By considering an r -dimensional family of equations of ei-
ther kind, one should get invariants which are, roughly speaking, cohomology classes
in Hr(BDiff(X)), where BDiff(X) is the classifying space of the diffeomorphism group
of a four-manifold X. Then the same issues which complicate the story for ordinary
invariants when b+ = 1 should arise, for any X, once r ≥ b+−1. In another direction
one may consider four-manifolds which are not smooth. The instanton theory can be
extended to the class of quasiconformal four-manifolds (where the coordinate change
maps are only quasiconformal, not necessarily smooth).

In order to see the relation of these results to quantum field theory, one must recall
the analysis of N = 2 supersymmetric Yang-Mills theory. To begin, we work on flat
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R4. It has long been known that this theory has a family of quantum vacuum states
parametrized by a complex variableu, which corresponds to the four-dimensional class
in Donaldson theory. For u→∞, the gauge group is spontaneously broken down to the
maximal torus, the effective coupling is small, and everything can be computed using
asymptotic freedom. For small u, the effective coupling is strong. Classically, at u= 0,
the full SU(2) gauge symmetry is restored. But the classical approximation is not valid
near u = 0. Quantum mechanically, the u plane turns out to parametrize a family of
elliptic curves, in fact, the modular curve of the group Γ(2). The family can be described
by the equation

y2 =
(
x2−Λ4)(x−u), (8.7)

where Λ is the analog of a parameter that often goes by the same name in the theory of
strong interactions. (The fact that Λ≠ 0 means that the quantum theory does not have
the conformal invariance of the classical theory.) The curve (12.5) is smooth for generic
u, but degenerates to a rational curve foru=Λ2,−Λ2, or∞. Near each degeneration, the
theory becomes weakly coupled, and everything is calculable, if the right variables are
used. At u =∞, the weak coupling is (by asymptotic freedom) in terms of the original
field variables. Nearu=±Λ2, a magnetic monopole becomes massless; the light degrees
of freedom are the monopole, dyon and a dual photon, or U(1) gauge boson. In terms of
the dyon and dual photon, the theory is weakly coupled and controllable near u=±Λ2.

LeBrun [33] obtained some very important results concerning Einstein metrics on
a generalized hyperbolic 4-space H4 = SO(4,1)/SO(4) or complex-hyperbolic 2-space
CH2 = SU(2,1)/U(2). He showed the following.

Theorem 8.1. Let M4 be a smooth compact quotient of complex hyperbolic 2-space
CH2 = SU(2,1)/U(2), and let g0 be its standard complex-hyperbolic metric. Then every
Einstein metric g on M is of the form g = λϕ∗g0, where ϕ :M →M is a diffeomorphism
and λ> 0 is a constant.

This theorem is proved by estimating the scalar curvature of Riemannian metrics by
means of the Seiberg-Witten invariants of smooth four-manifolds.

Theorem 8.2. Infinitely many compact smooth simply connected four-manifolds with
2χ > 3|τ| do not admit Einstein metrics.

In fact, it is possible to describe a sequence of smooth manifolds homeomorphic to
kCP2 ≠ lCP2, where l : k is roughly 4 : 1, which do not admit Einstein metrics.

Regarding the Seiberg-Witten techniques, one needs first to recall the following facts.
If (X4,J) is a compact complex surface—that is, a complex manifold of real dimension
four—then there is a process called blowing up which produces a new complex surface
by replacing some given point x ∈ X with a complex projective line CP1. The result-
ing surface is diffeomorphic to a connected sum X#CP2, where CP2 is the complex
projective plane with the nonstandard orientation. This process can then be iterated,
and in particular one may blow up any given collection of k distinct points of X so as
to produce new complex surfaces diffeomorphic to X#kCP2 for any positive integer
k. Conversely, any compact complex surface (M,J) can be expressed as X#kCP2 with
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k≥ 0, an iterated blowup of some complex surface X which is not itself the blowup of
anything else. One says that X is a minimal model for M . A compact complex surface
(M,J) is said to be of general type if its minimal model X satisfies

(2χ+3τ)(X) > 0 (8.8)

andX is neitherCP2-nor aCP1-bundle over a complex curve. For example, the degree-m
hypersurface

{
[u : v :w : z]∈ CP3 |um+vm+wm+zm = 0

}
(8.9)

in complex projective three-space is of general type if m > 4; these examples are all
simply connected and are their own minimal models. Now, starting from these facts,
we have the following result.

Theorem 8.3. Let (M,J) be a compact complex surface of general type, and let X be
its minimal model. Then any Riemannian metric g on M satisfies

∫

M
s2
gdµg ≥ (2χ+3τ)(X) (8.10)

with equality if and only if M =X and g is Kähler-Einstein with respect to some complex
structure on M .

Proof. The complex structure J is a priori completely unrelated to the metric g
under discussion, but its deformation class is enough to allow one to define twisted
spinor bundles V± = S±⊗L1/2, where L is a Hermitian line bundle with c1(L)= c1(M,J).
Now assume for simplicity that b+(M) > 1. For any g, it then turns out that the Seiberg-
Witten equations

DθΦ = 0, Fθ+ = iσ(Φ) (8.11)

must be satisfied by some smooth connection θ on L and some smooth section Φ of V+.
Here, Dθ is the Dirac operator coupled with θ, the purely imaginary 2-form Fθ+ is the
self-dual part of the curvature of θ, and the real-quadratic map σ : V+ → Λ2

+ induced
by the isomorphism Λ+⊗C = Λ2S+ satisfies |σ(Φ)|2 = |Φ|4/8. This can be made more
explicit by choosing some Hermitian local trivialization of L, so that the connection θ
is represented by a purely imaginary 1-form ϑ; in Penrose’s spinorial abstract-index
notation, the Seiberg-Witten equations then become

(
∇AA′+

1
2
ϑAA′

)
ΦA = 0, ∇A′(AϑB)A′ =

1
2
Φ
(
AΦB

)
(8.12)

with the convention that |Φ|2 = ΦAΦA. The number of solutions, modulo gauge equiva-
lence and counted with appropriate multiplicities, can be shown to be independent of
g; and because the equations can be solved explicitly when the metric happens to be
Kähler, it is not difficult to show that this invariant is 1. It follows that there must be
at least one solution for every metric g on M .
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One sees thus that Seiberg-Witten theory gives us differential-topological invariants
which allow one to estimate the scalar curvature of a metric in relation to its vol-
ume. The entropy method instead allows one to deduce Ricci-curvature estimates from
homotopy-theoretic assumptions.

9. The structure of fibre bundles and the topological significance of physical theo-
ries. We now return to the concept of fibre bundles or fibre spaces. That notion, being
global in character, arose in topology. At first it was an attempt to find new examples
of manifolds. Fiber spaces are locally, but not globally, product spaces. The presence of
such a distinction is a sophisticated mathematical fact. The development of fibre spaces
has to wait until invariants are found to distinguish the fiberings or even to show that
globally there are nontrivial ones. The first such invariants are the characteristic classes
introduced by H. Whitney and by E. Stiefel in 1935. Topology, however, forgets the al-
gebraic structure, and in applications vector bundles, with the linear structure intact,
are more useful.

A vector bundle π : E→M over a manifoldM is, roughly speaking, a family of vector
spaces parametrized by M such that it is locally a product. The vector space Ex =
π−1(x) corresponding to x ∈M is called the fiber atx. Examples are the tangent bundle
M and all tensor bundles associated to it. A more trivial bundle is the product bundle
M ×V , where V is a fixed vector space and (x,V), x ∈ M , is the fiber at x. A vector
bundle is called real or complex according to whether the fiber is a real or complex
vector space. Its dimension is the dimension of the fibers. It is important that the linear
structure on the fibers has a meaning so that the general linear group GL(n,R) plays a
fundamental role in matching the fibers; it is called the structure group. A real (resp.,
complex) vector bundle is called Riemannian (resp., Hermitian) if the fibers are provided
with inner products. In this case the structure group is reduced to O(n) (resp., U(n)),
with n being the dimension of the fibers; the bundle is then called an O(n)-bundle
(resp., U(n)-bundle). Similarly, we have the notion of an SU(n)-bundle. A section of the
bundle E is an attachment, in a continuous and smooth manner, to every point x ∈M ,
a point of the fiber Ex . In other words, it is a continuous mapping σ : M → E such
that the composition π ◦σ is the identity. This notion is a natural generalization of a
vector-valued function and of a tangent vector field. In order to differentiate σ , we need
a so-called connection in E. The latter allows the definition of the covariant derivative
DXσ (X being a vector field inM), which is a new section of E. Covariant differentiation
is generally not commutative; that is, DX ◦DY ≠DY ◦DX for two vector fields X, Y inM .
The measure of the noncommutativity gives the curvature of the connection; this is an
analytic version of the geometric concept of nonholonomy introduced by Elie Cartan.
According to him, it is important to regard the curvature as a matrix-valued exterior
quadratic differential form. Its trace is a closed 2-form. More generally, the sum of all its
principal minors of order k is a closed 2k-form. It is called a characteristic class. By the
de Rham theory the characteristic form of degree 2k determines a cohomology class
of dimension 2k, to be called a characteristic class. Whereas the characteristic forms
depend on the connection, the characteristic class depends only on the bundle. They are
the simplest invariants of the bundle. It must be an act of nature that the nontriviality of
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a vector bundle is recognized through the need for a covariant differentiation and that
its noncommutativity accounts for the first global invariants. This introduction of the
characteristic classes gives emphasis on its local character, and the characteristic forms
contain more information than the classes. When M is a compact oriented manifold, a
characteristic class of the top dimension (i.e., of dimension equal to that of M) gives
by integration a characteristic number. When it is an integer, it is called a topological
quantum number.

These differential-geometric notions have been found to be the likely mathematical
basis of a unified field theory. Weyl’s gauge theory deals with a circle bundle or a U(1)-
bundle, that is, a complex Hermitian bundle of dimension one. In studying the isotopic
spin, Yang and Mills used what is essentially a connection in an SU(2)-bundle. It is
the first instance of a non-Abelian gauge theory. From the connection the “action” can
be defined. A connection in an SU(2)-bundle at which the action takes the minimum
is called an instanton. (On this new theory, see [20, 24].) Its curvature has a simple
expression and is called self-dual. An instanton is thus a self-dual solution of the Yang-
Mills equation. When the space R4 is compactified into the four-dimensional sphere
S4, the SU(2)-bundles are determined up to an isomorphism by a topological quantum
number k, which is an integer. It has been proved that over S4 the moduli (or parameter)
space for the set of connections with self-dual curvature on the SU(2)-bundle with given
k > 0 is a smooth manifold of dimension 8k−3 (Atiyah et al. [5]). In physical terms this
is the dimension of the space of instantons with topological quantum number k > 0.
Instantons can claim a relation to Einstein through the following result. The group
SO(4) is locally isomorphic to SU(2)×SU(2), so that a Riemannian metric on a four-
dimensional manifold M gives rise through projection to connections in the SU(2)-
bundles. M is an Einstein manifold if and only if these connections are self-dual or
antidual.

The notion of fibre bundle generalizes that of a Cartesian product on a manifold. Two
examples from physics and geometry will clarify the need for such a generalization (for
a more detailed presentation, see [21, 39].

(i) In Aristotelian physics both space and time are absolute, every event being defined
by an instant of time and a location in space. This is equivalent to saying that spacetime
E is a Cartesian product T ×S, where T is the time axis and S is the three-dimensional
space.

(ii) In Galilean physics time remains absolute, but space is relative. This can be de-
scribed by saying that there is a projection π : E → T , that is, a surjective (onto) map
π that associates to any event p ∈ E the corresponding instant of time t = π(p) ∈ T .
The set (line) T is called the base space and the set π−1(t) of all events simultane-
ous with p is called the fiber over t. Each fiber is isomorphic to the Euclidean three-
dimensional space R3, which is therefore called the typical fiber. The total space E of
this bundle may be trivialized, that is, represented as the Cartesian product T ×R3.
Any such trivialization (map) h : E → T ×R3 is of the form h(p) = (π(p),r(p)), where
r(p) = (x(p),y(p),z(p)) are the space coordinates of the event p relative to an iner-
tial observer. One can say that Galilean spacetime E is the total space of a fibre bundle
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Table 9.1

Electromagnetism Gravitation

A′µ =Aµ+∂µχ Γ ′µνρ = Γαβγ(∂x′µ/∂xα)(∂xβ/∂x′ν)(∂xγ/∂x′ρ)
+(∂x′µ/∂xα)(∂2xα/∂x′ν∂x′ρ)

∂µ−iAµ ∇µ
Fµν Rαβµν
F(µν,ρ) = 0 Rαβ(µν,ρ) = 0

which is trivial, that is, isomorphic to the product bundle T ×R3, without a natural
isomorphism between these bundles.

(iii) Consider now the two-dimensional sphere S2 with a preferred orientation. Define
a “dyad” as a pair of unit orthogonal vectors tangent to S2 at a point. Let P be the set of
all dyads whose orientation agrees with that of S2. One can make P into the total space
of a bundle in such a way that π : P → S2 is the map sending a dyad into the point at
which its vectors are attached to S2. If e = (e1,e2) is a dyad at x ∈ S2, then so is the
pair (e′1,e′2), where

e′1 = e1 cosϕ+e2 sinϕ, e′2 =−e1 sinϕ+e2 cosϕ, (9.1)

and all dyads at x may be obtained in this manner from (e1,e2). Therefore, SO(2) is the
typical fiber of the bundle π : P → S2. Equation (9.1) defines an action of the (structure)
group SO(2) on P . The bundle π : P → S2 is a simple example of a principal bundle.
Moreover, this bundle is nontrivial in the following sense: there is no diffeomorphism
k : S2×SO(2)→ P such that π ◦k(x,a)= x. Indeed, if such a k existed, then s : S2 → P ,
defined by s(x) = k(x,a0), would determine a smooth field of unit vectors on S2. By
the “no combing of S2n” theorem of Brouwer, such a field σ does not exist. In general,
if π : E →M is a bundle and N is an open subset of M , then a smooth map σ : N → P ,
such that π ◦σ = idN , is called a (local) section of π . If N =M , then σ is a global section.
For a principal bundle, the existence of a global section is equivalent to its triviality.
Incidentally, the bundle of dyads occurs in the description of a magnetic pole of unit
strength. The nontrivial nature of the bundle π : P → S2 shows up in the occurrence of
a “string singularity” in the expression for the vector potential of the magnetic pole.

The last remark leads to what is probably the most important domain of applications
of fibre bundles in theoretical physics: infinitesimal connections on principal bundles
provide good geometrical models of classical gauge fields. This has been known among
mathematicians and physicists for some time but, for the sake of completeness, we
recall some of the arguments in favor of this view. In a notation that is standard in
physics, one can consider the analogies between electromagnetism and gravitation (see
Table 9.1).

The issue raised in the discussion on the significance of the electromagnetic poten-
tials becomes clear when electromagnetism is interpreted as an (infinitesimal) connec-
tion in the space of phases. Namely, the experiments proposed by Aharonov and Bohm
[1] have a very simple analog in elementary differential geometry: the surface of a cone
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is locally flat, but a vector undergoing parallel transport along a loop enclosing the
vertex does not return to its original position. Similarly, the phase of a wave function
of a charged particle undergoes parallel transport determined by the potential. The re-
gion with the magnetic field is analogous to the vertex of the cone. Electromagnetism
potentials should not be slighted, but considered for what they are: the coefficients of
a connection.

A heuristic approach to the notion of a connection on a principal bundle shows
how this concept is related to the physicist’s view of gauge potentials (see [52]). Let
π : P →M be a principal bundle with structure group G. The result of action of a ∈ G
on p ∈ P is another point pa ∈ P , lying in the same fiber as p,π(pa) = π(p). A local
section s :N → P defines a diffeomorphism k :N×G→π−1(N) by k(x,a)= s(x)a= p.
With the section s fixed for the moment, we may identify s(x) with (x,ε) and s(x)a
with (x,a)= (x,ε)a, where ε is the unit element of G. An infinitesimal connection on P
defines parallel displacement of elements of P . If dx = (dxµ) is a small displacement at
x = π(p) ∈N, then the parallel transport of (x,ε) along dx results in (x+dx,ε−A),
where A = Aµdxµ is a 1-form on N, with values in the Lie algebra " of G. Parallel
transport should commute with the action of G such that (x,a) displaced along dx
becomes (x +dx,a−Aa). If s′ : N′ → P is another section, then there is a map U :
N∩N′ →G such that

s′(x)= s(x)U(x) (9.2)

for x ∈ N ∩N′. The section s′ leads to the diffeomorphism k′ : N′ ×G → π−1(N′),
k′(x,a)= s′(x)a= s(x)U(x)a, and

k′(x,a)= k(x,Ua),
k′(x+dx,a)= k

(
x+dx,(U+dU)a

)
.

(9.3)

Relative to k′, parallel transport is described by a 1-form A′ =A′µdxµ . By parallel trans-
port, the point k′(x,ε) becomes k′(x+dx,ε−A′), which is the same as k(x+dx,(U+
dU)(ε−A′)). On the other hand, k′(x,ε) = k(x,U) is parallel to k(x+dx,U −AU).
Since parallel displacement in P should not depend on the choice of section (gauge),
(U+dU)(ε−A′)=U−AU . This leads to the transformation law

A′ =U−1(dU+AU) (9.4)

of the potential under gauge transformations of the second kind. It follows from (9.4)
that the G-valued 1-form

ω= a−1(da+Aa) (9.5)

is independent of the section. The form ω has a simple geometric interpretation:
ε+ω is the element of G that moves the point (x,a) into the point (x,a)(ε+ω) =
(x,a+da+Aa) parallel to (x+dx,a+da). The section-independent 1-formω on P is
called the connection form; it is the gauge-independent counterpart of the potential A.
Relation (9.4) contains, as special cases, the transformation laws of the coefficients of
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a linear connection (Christoffel symbols, Ricci rotation coefficients) of the electromag-
netic potentials and of non-Abelian gauge potentials of Yang-Mills type. The advantage
of the connection formω, defined on P , over the potential A, defined on N ∈M , results
from the following considerations: the connection formω is defined independently of
any section, whereas A refers to a (local) section of the bundle. As a consequence, for a
nontrivial bundle, the potentials are defined only locally, whereas the connection form
ω is defined globally, all over P .

An interesting application of the bundle approach to gauge fields is the construction
of Riemannian geometries of Kaluza-Klein type. If there is a connection form ω on P ,
g = gµνdxµdxν is a metric tensor on M , and h is a bi-invariant metric on G, then one
can define a metric tensor γ on P by the formula

γ(u,v)= g
(
Tπ(u),Tπ(v)

)
+consth

(
ω(u),ω(v)

)
, (9.6)

where u and v are vectors tangent to P , and Tπ : TP → TM is the projection of such
vectors on M , induced by π . The metric γ is invariant under the action of G on P .
For G = SO(2), it coincides with the metric considered in five-dimensional, “unified”
theories of gravitation and electromagnetism.

Relativistic theories of gravitation—such as Einstein’s theory of general relativity—
may also be considered as gauge theories. The bundle P consists in this case of or-
thonormal linear frames (tetrads, vierbein) of the spacetime manifold M and G is the
Lorentz group. Alternatively, one can take P to be the bundle of orthonormal affine
frames, in which case G is the inhomogeneous Lorentz group. There are, however,
important differences between Einstein’s theory and gauge theories such as electro-
dynamics or the Yang-Mills theory. First of all, the bundle of frames is soldered to
the base M , whereas in other gauge theories the bundle is rather loosely connected
to M . The soldering results in the appearance, in theories of gravitation, of torsion, in
addition to curvature, which occurs in gauge theory. (Torsion is zero in Riemannian
geometry, but being zero is different from not existing at all.) Moreover, the form of
Einstein’s equations of gravitation is different from the “generic” form of the field equa-
tions assumed in gauge theories. The latter are derived from Lagrangians quadratic in
curvature, whereas the former are based on a linear Lagrangian. The possibility of con-
structing such a linear Lagrangian is also related to the existence of the soldering form
on P .

In the past, there were much research and discussion on whether and in what sense
gravitation is a gauge theory. Recently, this problem has been considered in connection
with the program of constructing a “supersymmetric” theory of gravitation. In classi-
cal relativity, the following questions have been raised and given diverse answers by
different authors.

(1) What is the gauge group of gravitation?
(2) What are the corresponding gauge potentials; what is the status of the metric

tensor?
(3) Can the form of the field equations be derived from arguments of gauge invari-

ance?
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Utiyama [55] was the first to say that gravitation may be looked upon as a gauge the-
ory; he identified its potentials with the coefficients of the Riemannian connection on
spacetime. Using gauge arguments, Sciama argued in favor of an asymmetric connec-
tion as the basis of gravitation and showed that spin may be the source of torsion.
Independently, on the ground of heuristic considerations invoking a gauge group with
translations (in addition to Lorentz transformations), Kibble derived the full set of field
equations of gravitation with spin and torsion; the Sciama-Kibble theory was later rec-
ognized as being essentially equivalent to Cartan’s theory of 1923 (see [13]). Chen Ning
Yang pointed out that Einstein’s theory is different from other gauge theories in being
based on a Lagrangian that is linear, rather than quadratic, in curvature. He proposed
considering a theory of gravitation based on Riemannian geometry and a Lagrangian
of the form

∗Ωµν∧Ωνµ (9.7)

(the dual ∗Ωµν of the curvature form Ωµν (where Ωµν = dωµ
ν +ωµ

ρ∧ωρν ) and the confor-
mally invariant Lagrangian density). The source-free equations of this theory, ∇µRνρ =
∇νRµρ , appear to be too weak; for example, they admit as a solution the de Sitter uni-
verse with an arbitrary radius of curvature. There is a modification of Yang’s theory
based on a metric connection with torsion and two sets of field equations, as in the
Einstein-Cartan theory. It is clear, from the diversity of results and views, that there is
no unique “gauge theory of gravitation.” This is due to the fact that gravitation is a “rich”
theory from the geometrical point of view: it contains several invariants which may be
used to build the kinetic part of the gravitational Lagrangian. The correspondence prin-
ciple of relativistic gravity to the Newtonian theory suggests—but probably does not
require—a Lagrangian linear in curvature, whereas the analogy with electrodynamics
leads to the idea of a quadratic Lagrangian.

According to Regge [40], there is no difficulty in writing the modern (gauge) form of
electromagnetism (with the compact group SO(1) or U(1)) on a Riemannian manifold
and it is possible to write, à la Cartan, general relativity as an SO(3,1) gauge theory.
Besides, it may be useful to recall that Cartan was largely responsible for the introduc-
tion of the concept of torsion in Physics. Torsion remains a very interesting idea. We
need to use it, even by just declaring it to vanish, if we want to write general relativity
as a gauge theory in which all fields, and not only the spin connection, appear as gauge
potentials. The interesting feature of general relativity is that the associate curvature of
the vierbein, that is, torsion, vanishes as a consequence of the variational principle of
Hilbert, Einstein, and Cartan. And in fact the Lagrangian density is not invariant under
all gauge transformations of the Poincaré group but only under those of the Lorentz
subgroup. Although nature has prepared the gauge potentials for the full group, it
ends up by requiring invariance under a subgroup only. A world with torsion would
appear inescapable if we have around enough density of high-spin particles which act
as sources, but this density seems at the moment well below the limit of observability.
Regarding the kind of space in which torsion is supposed to appear, one can remark
that it would not be any more a Riemannian manifold or, rather, none of the Riemannian
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structures existing on the manifold would be directly related to Physics and the theory
would not be a geometrical theory in the sense envisaged by Einstein. One could yet
consider general relativity as GL(4,R) theory with the Christoffel connection playing
the role of a Yang-Mills potential. If the torsion vanishes, it follows that the Christoffel
symbol is symmetrical into the two lower indices whose role is however quite different.
The first index is a GL(4,R) gauge index; the second labels instead the differentials on
spacetime. We may relate them because of the accidental and marvelous fact that the
Jacobian group of derivatives on a differentiable manifold is isomorphic to GL(4,R)
and that we use the same indexing for differentials and vectors in GL(4,R). Once the
symmetry is established, the theory becomes almost by definition geometrical. If there
is no symmetry but we can control torsion by introducing suitable norms and bounds,
then we may still speak of an almost-geometrical theory whose exact mathematical
definition is still lacking. (About the work of Christoffel, see [22].)

A gauge theory is any physical theory of a dynamical variable which, at the classical
level, may be identified with a connection on a principal bundle. The structure group
G of the bundle P is the group of gauge transformations of the first kind; the group "
of gauge transformations of the second kind may be identified with a subgroup of the
group AutP of all automorphisms of P . In this sense, gravitation is a gauge theory: the
basic gauge field is a linear connection ω. In addition to ω, there is a metric tensor g
which plays the role of a Higgs field. The most important difference between gravitation
and other gauge theories is due to the soldering of the bundle of the frames LM to the
base manifold M . The bundle LM is constructed in a natural and unique way from
M , whereas a noncontractible M may be the base of inequivalent bundles with the
same structure group. For example, LS2 reduced to SO(2) is isomorphic to SO(3),
but there is a denumerable set of inequivalent SO(2) bundles over S2, corresponding
to the different elements of π1(SO(2)) = Z. The soldering form θ leads to torsion
which has no analog in nongravitational theories. Moreover, it affects the group ",
which now consists of the automorphisms of LM preserving θ. This group contains no
vertical automorphism other than the identity; it is isomorphic to the group DiffM of all
diffeomorphisms ofM . In a gauge theory of Yang-Mills type over Minkowski spacetime,
the group " is isomorphic to the semidirect product of the Poincaré group by the group
"0 of vertical automorphisms of P . In other words, in the theory of gravitation, the
group "0 of “pure gauge” transformations reduces to the identity; all elements of "
correspond to diffeomorphisms ofM . What is the structure groupG of the gravitational
principal bundle? Since spacetimeM is four-dimensional, if P = LM , then G =GL(4,R).
But one can equally well take for P the bundle AM of affine frames; in this case, G is the
affine group. There is a simple correspondence between affine and linear connections,
which makes it really immaterial whether one works with LM or AM . If one assumes—
as one usually does—that ω and g are compatible, then the structure group of LM
or AM can be restricted to the Lorentz or the Poincaré group, respectively. It is also
possible to take, as the underlying bundle for a theory of gravitation, another bundle
attached in a natural manner to spacetime, such as the bundle of projective frames or
the first extension of LM . The corresponding structure groups are natural extensions
of GL(4,R), O(1,3), or the Poincaré group.
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Table 10.1

Gauge field terminology Bundle terminology

Gauge (or global gauge) Principal fibre bundle

Gauge type Principal fibre bundle

Gauge potential bkµ Connection on a principal fibre bundle

Sba Transition function

Phase factor ΦQP Parallel displacement

Field strength fkµv Curvature

Source Jkµ —

Electromagnetism Connection in a U1(1) bundle

Isotopic spin gauge field Connection in an SU2 bundle

Dirac’s monopole quantization Classification of U1(1) Bundle

according to first Chern class

Electromagnetism without monopole Connection on a trivial U1(1) bundle

Electromagnetism with monopole Connection to a nontrivial U1(1) bundle

The importance of gauge theories in modern theoretical physics is well known. Yang
and Mill’s new gauge theory should especially serve as a model for the study of strong
interactions, including the quantum effects on them. The main feature of this gauge
theory is the use of a non-Abelian Lie group, the simplest of the noncommutative con-
tinuous groups, as its invariance group. This mathematical property of the symmetry
group gives a very rich structure to the theory, whose field equations are more general
than Maxwell’s. This already illustrates the fundamental role of both geometrical and
internal symmetries in physical problems which can be handled by gauge theories. In
Weyl’s theory, in addition to the position variables of spacetime, there is already an
internal space parameter on which the phase group acts. The field identified with the
particle’s wave function can therefore be seen as associating to each point of spacetime
a point of the internal space, or an angle (of rotation) in the case of electromagnetism.
A gauge requires that the coordinates of spacetime be combined with the parameters
of the internal space. Weyl’s theory satisfies the “principle of local invariance”: that is,
the field equations are invariant under a gauge shift.

10. Some open mathematical problems in gauge theory. In the last thirty years,
elementary particle physics turned to modern mathematics. To emphasize the de-
velopments of the past decades, we reproduce the Wu and Yang dictionary [66] (see
Table 10.1).

So, theoretical physics is more and more concerned with the following topics: Rie-
mannian surfaces and their moduli spaces, the topology of compact Lie groups, Calabi-
Yau spaces (Ricci flat Kähler manifolds), representation theory of affine algebra, knot
theory, and so forth. If one looks carefully to some of the basic problems in theoreti-
cal physics, which heavily involve mathematics, one is reinforced in the idea that the
quantization of gauge theories and the string theory require analysis and geometry of
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special infinite-dimensional manifolds. Many problems can be formulated as the miss-
ing infinite-dimensional analogues of finite-dimensional results.

Some examples of infinite-dimensional geometries. (i) For gauge theories,
the geometric object is a/". Here, a is the set of connections of a principal G-bundle P
over a compact Riemannian three-manifoldM . " is the group of gauge transformations,
the automorphism of the G-bundle; it acts on a. G is the compact Lie group. a/" is the
orbit space. Since the tangent space T(a,") of a at A is the space of equivariant 1-
forms on P with values in the Lie algebra of G, there is a natural inner product on
T(a,A) invariant under ". Therefore, a/" has a Riemannian structure.

(ii) For the so-called σ -model, the natural geometric object is L(M), the set of free
loops on M , that is, the smooth maps of S1 into M , M a Riemannian manifold, usually
compact. However, M might be Rd or Minkowski space Rd−1,1. The tangent space of
L(M) at γ, T(L(M),γ), is the set of smooth vector fields along γ (sections of γ∗(T(M))).
This tangent space has an inner product

〈
V1,V2

〉
=
∫ 〈
V1
(
γ(t)

)
,V2
(
γ(t)

)〉
dt (10.1)

for V1,V2 ∈ T(L(M),γ). Note that the inner product is not invariant under the action of
DiffS1, the diffeomorphisms of S1, on L(M). Here, DiffS1×L(M)→ L(M) with (φ,γ)→
φ·γ, where (φ·γ)(t)= γ(φ−1(t)).

(iii) In quantum mechanics, one studies the Schrödinger operator ∆/2+V on L2(M),
where∆ is the Laplacian andV is multiplication by a potential function. In quantum field
theory, the operators should act on L2 of certain function spaces or mapping spaces: a
in (i) and L(M) in (ii). One can emphasize that an alternate to the canonical formalism,
studying ∆/2+V directly, is to use the Feynman-Kac formula, which expresses the heat
kernel KT(x,y) of e−T(∆/2+V) as a path integral over paths from x to y :

KT(x,y)=
∫

paths γ
γ(0)=x
γ(T)=y

e−
∫T
0 V(γ(t))dte−γ2/2Dt. (10.2)

Here, e−γ2/2Dt means the Wiener measure of this path space. The path integral ap-
proach for operators on L2(L(M)) requires paths in L(M), that is, maps X : S1×[0,T ]→
M . So the measure space analogous to the space of paths is

χ =
[
X : S1×[0,T ] "→M ; X(θ,0)= γ0(θ), X(θ,T )= γ1(θ)

]
. (10.3)

(iv) For gauge theories, the situation is a little more complicated. Note that a path
t→ ft(x) of functions on M is a function f(t,x) on [0,T ]×M . A connection A= (Aµ)
on [0,T ]×M can be transformed by a gauge transformation on [0,T ]×M so that
A0 = A(d/dt) is 0 (the temporal gauge; integrate the differential equation dA0/dt =
U(t,x)A0(t,x)). Connections on [0,T ] × M become paths of connections on M .
Although there are some technical complications, one is led very quickly for path inte-
gral purposes to a/" based on a four-dimensional manifold, usuallyM×R (interpreted
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as paths on a/" based on M). The last geometric objects we consider are homoge-
neous spaces of Diff0S1, the orientation-preserving diffeomorphisms of S1. DiffS1 en-
ters string theory because the theory, involving as it does maps of S1, should be in-
variant under reparameterizations of S1. It is supposed to play a role similar to gauge
transformations in gauge theories and Diff(M) for metrics on M , gravity.

(v) The space Diff0S1/S1 can be made into a Kähler manifold: the Lie algebra of
Diff0S1 is Vect(S1). The tangent space of Diff0S1/S1 at the identity coset is the set of
vector fields whose 0th Fourier coefficient is 0. Thus

J = (d/dθ)|d/dθ| (10.4)

makes Diff0S1/S1 into an invariant almost complex structure. It is easy to see that J
is integrable and one assumes the Nirenberg-Newlander theorem will hold. There is
a family of Kähler metrics given by the cocycles (of the Lie algebra of vector fields
on S1 after complexification) with either a = 0, b ≠ 0 or a ≠ 0, −b/a ≠ n2. Other
interesting homogeneous spaces are Diff0S1/Kn, where Kn is the subgroup with Lie
algebra generated by L0, Ln, and L−n. The case n = 0 is (v) above and the case n = 1
gives Kn = Sl(2,R) ⊆ Diff0(S1). (For good introductions to the theory of Kählerian
manifolds, see [30, 58].)

Mathematical note on almost complex structures
and Kähler manifolds

Definition 10.1. Let M be a Hausdorff space. Let {Uα}α∈A be an open cover of M
and suppose that for each Uα there is a homeomorphismψα from Uα onto an open set
Dα of Cn satisfying the following property: if Uα∩Uβ ≠∅, then the map fβα =ψβ◦ψ−1

α
from the open setψα(Uα∩Uβ) of Cn onto the open setψβ(Uα∩Uβ) of Cn and the map
fαβ =ψα◦ψ−1

β from ψβ(Uα∩Uβ) onto ψα(Uα∩Uβ) are both holomorphic. If M has an
open cover {Uα}α∈A and a set of maps {ψα}α∈A with this property, then M is called a
complex manifold of complex dimension n, and {(Uα,ψα)}α∈A is called a holomorphic
coordinate neighborhood system of M .

If we identifyCn withR2n, then a holomorphic map of an open set ofCn to an open set
of Cn, considered as a map between open sets in R2n, is analytic (because the real part
and imaginary part of holomorphic function are analytic). Hence, of course, a complex
manifold of complex dimensionn is a 2n-dimensional (real) analytic manifold. LetM be
a complex manifold of complex dimension n and let {(Uα,ψα)}α∈A be a holomorphic
coordinate neighborhood system. Let U be an open set of M , ψ a homeomorphism
from U onto an open set D of Cn, and suppose they satisfy the following property: if
U∩Uα ≠∅ (α ∈ A), then the maps ψα ◦ψ−1

α from ψα(U∩Uα) to ψ(U∩Uα) are both
holomorphic. If this is the case, (U,ψ) is called a holomorphic coordinate neighborhood
ofM . For q ∈U , setψ(q)= (z1(q), . . . ,zn(q)). Then zk (k= 1, . . . ,n) is a complex-valued
function defined on U , and we call (z1, . . . ,zn) the complex local coordinate system on
(U,ψ).

Let f be a complex-valued function defined on an open set E of a complex mani-
fold M . For each point p of E, we can choose a holomorphic coordinate neighborhood
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(U,ψ) such that p ∈ E. If the function f ◦ψ−1 defined on the open set ψ(U) of Cn is
holomorphic, then f is said to be holomorphic in a neighborhood of p. This definition
does not depend on the choice of the holomorphic coordinate neighborhood (U,ψ).
Let f be holomorphic at all points of E, and let a complex local coordinate system in
a neighborhood of p be (z1, . . . ,zn). Then we can write f(q)= f(z1(q), . . . ,zn(q)), and
the right-hand member is a holomorphic function of n variables.

An n-dimensional complex manifoldM is a 2n-dimensional manifold, so that at each
pointp ofM , the tangent space Tp(M) and its dual T∗p (M) are defined. Let (z1, . . . ,zn) be
a complex local coordinate system, and let xk and yk be the real and imaginary parts of
zk, respectively. Then {(∂/∂x1)p,(∂/∂y1)p, . . . ,(∂/∂xn)p,(∂/∂yn)p} is a basis of Tp(M)
and {(dx1)p,(dy1)p, . . . ,(dxn)p,(dyn)p} is a basis of T∗p (M) dual to the former. Let
M andM′ be complex manifolds of complex dimensions n andm, respectively, and let
φ be a continuous map from M to M′. If for each point p of M and each holomorphic
function f on M′ defined on a neighborhood of φ(p), φ∗f is also holomorphic in a
neighborhood of p, then φ is called a holomorphic map from M to M′. Holomorphic
maps are naturally differentiable. If φ is a one-to-one holomorphic map from M to M′

and if the inverse map φ−1 is also a holomorphic map from M′ to M , then φ is called
a holomorphic isomorphism (or holomorphism) from M to M′.

Let (z1, . . . ,zn) be a complex local coordinate system on a neighborhood U of a point
p of M . Define a linear transformation Jp of Tp(M) by

Jp
( ∂
∂xk

)

p
=
( ∂
∂yk

)

p
, Jp

( ∂
∂yk

)

p
=−

( ∂
∂xk

)

p
(k= 1, . . . ,n). (10.5)

We prove that the definition of Jp does not depend on the choice of the complex local
coordinate system (z1, . . . ,zn). To see this, extend Jp to a linear transformation of the
complex vector space TCp (M) set Jp(u+ iv) = Jpu+ iJpv (u,v ∈ Tp(M)). Then, by
(10.5) we have

Jp
( ∂
∂zk

)

p
= i
( ∂
∂zk

)

p
, Jp

( ∂
∂zk

)

p
=−i

( ∂
∂zk

)

p
(k= 1, . . . ,n). (10.6)

Hence, if an element a of TCp (M) is a linear combination of (∂/∂zk)p (k= 1, . . . ,n) only,
then we have Jpa= ia, and if a is a linear combination of (∂/∂zk)p (k= 1, . . . ,n) only,
then we have Jpa=−ia. Now, if (w1, . . . ,wn) is also a complex local coordinate system
on the neighborhood U of p and if wk = uk + ivk, then we can define a new linear
transformation Ip of Tp(M) in the same manner as above. Hence Jp and Ip coincide,
and this shows that the definition of Jp does not depend on the choice of the complex
local coordinate system in the neighborhood ofp. From (10.5), it is clear that Jp satisfies

J2
p =−1, (10.7)

where 1 denotes the identity transformation of Tp(M). The correspondence J, which
assigns to each point p ofM the linear transformation Jp of Tp(M), is called the almost
complex structure attached to M , which is defined more abstractly as follows.
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Definition 10.2. An almost complex structure on a real differentiable manifold M
is a tensor field J which is, at every point p of M , an endomorphism of the tangent
space Tp(M) such that J2 =−1.

Now, let M and M′ be almost complex manifolds with almost complex structures J
and J′, respectively. A mapping f :M →M′ is said to be almost complex if J′◦f∗ = f∗◦J.
In this case, f is differentiable and holomorphic.

Definition 10.3. A Hermitian metric on an almost complex manifold M is a Rie-
mannian metric g invariant by the almost complex structure J, that is, g(JX,JY) =
g(X,Y) for any vector fields X and Y .

A Hermitian metric thus defines a Hermitian inner product on each tangent space
Tp(M) with respect to the complex structure defined by J. An almost complex mani-
fold (resp., a complex manifold) with a Hermitian metric is called an almost Hermitian
manifold (resp., a Hermitian manifold).

Proposition 10.4. Let M be an almost Hermitian manifold with almost complex
structure J and metric g. Let Φ be the fundamental 2-form, N the torsion of J, and ∇
the covariant differentiation of the Riemannian connection defined by g. Then, for any
vector fields X, Y , and Z on M ,

4g
((
∇XJ

)
Y ,Z

)
= 6dΦ(X,JY ,JY)−6dΦ(X,Y ,Z)+g

(
N(Y ,Z),JX

)
. (10.8)

We now state an important theorem.

Theorem 10.5. For an almost Hermitian manifold M with almost complex structure
J and metric g, the following conditions are equivalent:

(i) the Riemannian connection defined by g is almost complex;
(ii) the almost complex structure has no torsion and the fundamental 2-form Φ is

closed.

A Hermitian metric on an almost complex manifold is called a Kähler metric if the
fundamental 2-form is closed. An almost complex manifold (resp., a complex manifold)
with a Kähler metric is called an almost Kähler manifold (resp., a Kähler manifold).
An almost Hermitian manifold with dΦ = 0 and N = 0 used to be called a pseudo-
Kähler manifold. Since an almost complex manifold with N = 0 is a complex manifold,
a pseudo-Kähler manifold is necessarily a Kähler manifold.

Proposition 10.6. The curvature R and the Ricci tensor S of a Kähler manifold
possess the following properties:

(i) R(X,Y)◦J = J ◦R(X,Y) and R(JX,JY)= R(X,Y) for all vector fields X and Y ;
(ii) S(JX,JY)= S(X,Y) and S(X,Y)= 1/2{trace of J◦R(X,JY)} for all vector fields

X and Y .

Theorem 10.7. For a Kähler manifoldM of complex dimensionn, the restricted linear
holonomy group is contained in SU(n) if and only if the Ricci tensor vanishes identically.
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Lemma 10.8. For an almost complex linear connection Γ with curvature tensor R on
a two-dimensional almost complex manifold M , the restricted linear holonomy group is
contained in (the real representation of) SL(n;C) if and only if

traceR(X,Y)= 0, traceJ ◦R(X,Y)= 0 (10.9)

for all vector fields X and Y , where J denotes the almost complex structure.

Theorem 10.9. An almost Hermitian manifold M is a Kähler manifold if and only if
the bundle U(M) of unitary frames admits a torsion-free connection (which is necessarily
unique).

On each almost complex manifoldM , one can construct the bundle C(M) of complex
linear frames and study connections in C(M) and their torsion. Let M be an almost
complex manifold of dimension 2n with almost complex structure J and let J0 be the
canonical complex structure over the vector space R2n. Then a complex linear frame at
a point x ofM is a nonsingular linear mapping u :R2n→ Tx(M) such that u◦J0 = J◦u.
One easily shows that J defines the structure of a complex vector space in Tx(M),
and u : R2n → Tx(M) is a complex linear frame at x if and only if it is a nonsingular
complex linear mapping of Cn = R2n onto Tx(M). The set of complex linear frames
forms a principal fibre bundle over M with group GL(n;C); it is called the bundle of
complex linear frames and is denoted by C(M). Since a bundle C(M) is a subbundle
of the bundle L(M) of linear frames, each almost complex structure gives rise to a
reduction of the structure group GL(2n,R) of L(M) to GL(n;C). Then one gets the
following results.

Proposition 10.10. Given a 2n-dimensional manifold M , there is a natural one-to-
one correspondence between the almost complex structures and the reductions of the
structure group of L(M) to GL(n;C).

Proposition 10.11. Given a 2n-dimensional manifold M , there is a natural one-to-
one correspondence between the almost complex structures of M and the cross-sections
of the associated bundle L(M)/GL(n;C) over M .

We know that, given a Riemannian manifoldM with metric tensor g, a linear connec-
tion Γ of M is a metric connection, that is, Γ comes from a connection in the bundle
O(M) of orthonormal frames if and only if g is parallel with respect to G.

Proposition 10.12. For a linear connection Γ on an almost complex manifoldM , the
following conditions are equivalent:

(i) Γ is a connection in the bundle C(M) of complex linear frames;
(ii) the almost complex structure J is parallel with respect to Γ .

Theorem 10.13. Every almost complex manifoldM admits an almost complex affine
connection such that its torsion T is given byN = 8T , whereN is the torsion of the almost
complex structure J of M .

Corollary 10.14. An almost complex manifoldM admits a torsion-free almost com-
plex affine connection if and only if the almost complex structure has no torsion.
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11. A new era in the relationship between geometry and physics: topology as a
guiding principle. Mathematical and conceptual issues. Beginning in the 1970s, it was
recognized that, mathematically, gauge theory is essentially one branch of differential
geometry that uses the new concept of “fibre spaces” with “connections.” This notion is
absolutely central in the understanding of the relation between mathematical structures
and physical theories, and it directly links geometry and physics to the point that it can
be said that the two are coextensive.

Consider the mathematical concept of a space with a connection and its curvature.
Let f : M → N be a map between spaces M , N, where M , say, represents a model of
spacetime, and at each point p ofM , there is localized a physical system with the space
of internal states f−1(p). A connection on a geometrical object is a rule permitting
the transport of the system along the curves in M . In other words, if we know part
of the world lines and the initial internal state of a system in M , then, thanks to the
corresponding displacement determined by the connection, we can know the future
states of the system. According to recent physical theories, a gravitational field is a
connection in the space of internal degrees of freedom of a gyroscope; the connection
allows us to follow the evolution of the gyroscope in spacetime. An electromagnetic
field is also a connection in the space of internal degrees of freedom of a quantum
electron; the connection allows us to follow the evolution of the electron in spacetime.
A Yang-Mills field is yet a connection in the space of internal degrees of freedom of a
quark.

This geometrical image seems now to be the most universal mathematical model
of an ideal universe with a small number of basic interactions. The state of matter in
spacetime, at each point and each moment, is described by a section of an appropriate
fibre space N →M . A field is described by a connection on this fibre space. Matter acts
on the connection by imposing restrictions on its curvature, and the connection acts
on matter by forcing it to propagate by “parallel displacement” along world lines. The
famous equations of Einstein, Maxwell and Dirac, and Yang and Mills are exactly the
embodiment of this idea. The geometrical concept of connection has thus become an
essential element of physics.

One can see that to each physical entity corresponds a geometrical or global dif-
ferential concept. For example, field strength is identified with the curvature of the
connection; the action integral is but a global measure of curvature. Certain topolog-
ical and algebraic invariants in the theory of characteristic classes have been seen to
be most appropriate to describe the charge of the particle in the sense of Yang and
Mills. More generally, we can establish a direct correspondence from the concepts of
gauge field theory to those of the differential geometry—and topology of fibre spaces.
But how can we understand precisely the nature of such a correspondence? Inspired
by an idea already proposed by Weyl in another manner [61], we support the thesis
that, essentially, physics is but geometry in act. This implies not only that geometry
yields mathematical abstract concepts like manifolds, groups, curvature, connections,
and bundles, but also that it is, in a way, ontologically (or, if you wish, physically) rooted
in reality, because it is an integral part of the properties of physical entities and the
features of phenomena.
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One could go so far as to postulate that there must be a geometrical structure, con-
tinuous or discrete according to the theory and the class of phenomena considered,
underlying any given physical family of phenomena, or maybe a topological structure
which would encompass at the same time the continuous and discrete characters of
space and of nature into a more general mathematical scheme. To convince oneself of
this, it suffices to remember that some principles of geometrical symmetry (or, equiv-
alently, some groups) can be transformed into dynamical principles that are in turn
responsible for changes in the phenomena. Should we then affirm “in the beginning
was the symmetry or the group . . .?” However, this concept is not just abstract, and
mathematical properties related to it have simultaneously an explanatory power and a
capacity to generate a world of forces, interactions, and energy . . ., so that the math-
ematical understanding of this world cannot be separate from the understanding of
reality itself. Indeed, at a deeper level, one is increasingly led to believe that symmetry
may, in a hidden sense, determine almost everything. Moreover, in view of all this, it
is not unreasonable to look on topology, like symmetry, as some kind of underlying or
unifying principle which helps us to understand natural phenomena at the microscopic
as well as the macroscopic levels.

In this regard, we note here that a connection, which is a well-defined geometrical
object, is more primitive than the curvature. Therefore, we should consider the gauge
potential to be more primitive than the gauge field. In fact, in electromagnetism we
can show experimentally that the field can be identically zero but physical effects can
still be detected; this is because the parallel transport need not be trivial if the region
of space is not simply connected. The vanishing of curvature only gives information
about the parallel transport around very small closed paths. Physically, the parallel
transport is generally described in terms of a nonintegrable phase factor. The property
of nonintegrability refers locally to the existence of a nonvanishing field, whereas large-
scale nonintegrability is of a topological nature and may arise even if the field is zero.
Classically, the concept of potential was introduced as a mathematical device to simplify
the field equations, and the arbitrary nature of the gauge characteristic in the choice
of potential indicated that the potential did not really have a physical meaning. But,
geometrically, one can in fact show that such an interpretation is not satisfactory. The
connection is a geometrical object and so the potential should be considered as having a
physical nature. It is the choice of gauge describing the potential which has no physical
meaning, and this corresponds to the fact that the geometrical fibre space where the
connection sits has no (natural) horizontal sections.

A more general problem concerns the relation between purely mathematical geom-
etry and physical geometry. According to an idea going back to Riemann and Clifford
and next developed by T. Levi-Civita, E. Cartan, H. Weyl, and A. Einstein, physical con-
cepts cannot be dissociated from geometrical ones, and inversely. Some remarks about
the general relativity theory can help to understand what we mean by that. In this the-
ory, the gravitational field is seen as the effect of a geometric distortion, a curvature
or warping of spacetime. In this theory, as is well known, freely falling bodies are not
treated as subject to gravitational forces, but are instead regarded as following the
straightest possible path (a geodesic) in an underlying curved spacetime. In Newton’s
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theory of gravitation, the earth’s orbit curves around the sun because the sun’s gravity
forces it to depart from its natural straight line motion. In Einstein’s theory, there are
nongravitational forces as such. The sun produces a warping of spacetime in its vicin-
ity and the earth travels freely along a geodesic in this curved spacetime. Gravity is
treated as a geometrical effect precisely because it is universal; it affects all test objects
in the same way. Thus, even light will follow a curved path in a gravitational field. On
a large scale, the distribution of galaxies throughout the universe will depend on the
geometry of space. The fact that there might be a systematic curvature of space on a
cosmological scale raises the interesting question of the topology of the universe. So
long as space is considered to be flat, it must be either infinite in extent or else pos-
sess some sort of boundary. But if space is curved, there are other possibilities. Think
of the situation with a two-dimensional sheet. A curved sheet could be closed into a
sphere, for example, or a torus. It is possible to envisage a three-dimensional version
of a closed spherical surface, called a hypersphere. If the universe had the topology
of a hypersphere, it would posses a finite volume, but there would be no boundary or
edge to space. It is not known what topology space actually possesses, but the issue is
crucial to the superstring theory. (On this very interesting subject, see [23, 31].)

One of the basic assumptions in modern cosmology, the cosmological principle, is
that on large-scale average, our universe is spatially homogeneous and isotropic. The
apparent isotropy on large scales is normally explained as a consequence of spatial
homogeneity, which in turn is understood as a natural result of an “inflationary” period
of the early universe. An alternative approach to explaining the apparent homogeneity
is to assume an expanding universe with small and finite space sections with a nontrivial
topology, the “small universe” model. From the theoretical point of view, it is possible
to have quantum creation of the universe with a multiply connected topology. From
the observational side, this model has been used to explain the “observed” periodicity
in the distribution of quasars and galaxies.

It is also worthwhile noting that to the generation of new space dimensions and struc-
tures corresponds changes in the physical state of phenomena. For example, we know
that the qualitative properties of a certain physical (dynamical) system are sensitive to
the dimension of the space, and that the geometrical and topological structure of the
space puts constraints on the evolution of the system (see [7, 47]). We mention only
one outstanding example. In 1984, the British physicist Michael Berry showed that the
adiabatic evolution of energy eigenfunctions, with respect to a time-dependent quan-
tum Hamiltonian H(t), contains a phase of deeply geometrical origin in addition to the
familiar dynamical phase

exp− 1
h

∫
E(t)dt. (11.1)

The additional phase approaches a finite, nonzero limit as the Hamiltonian is taken
more and more slowly around a closed path in its parameter space. The geometric
phase γ(C) (where C is a closed circuit on a sphere) measures the anholonomy of a
physical (classical or quantum) system. Anholonomy is a geometrical phenomenon in
which nonintegrability causes some variables to fail to return to their original values
when others, which drive them, are altered around a cycle. The simplest anholonomy
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is in the parallel transport of vectors, two examples being the change in the direction
of swing of a Foucault pendulum after one rotation of the earth, and the change in
the direction of linear polarization of light along a twisting ray or coiled optical fibre
whose direction is altered in a cycle. Adiabaticity is slow change and therefore denotes
phenomena at the border between dynamics and statics. Adiabatic change provides
the simplest way to make quantum parallel transport happen. The variables which are
cycled are parameters in the Hamiltonian of a system. If the cycling is slow, the adiabatic
theorem guarantees that the system returns to its original state. But it usually acquires
a nontrivial phase, a manifestation of anholonomy.

Moreover, some mathematical ideas can provide a deep and powerful connection be-
tween, on the one hand, the geometrical symmetries of space, and on the other, the
dynamical behavior of material bodies. In fact, forbidding the absence of spontaneous
changes in motion amounts to a statement of the laws of conservation of momentum
and regular momentum. The translation symmetry of space leads directly to momen-
tum conservation for particles, whereas the rotational symmetry implies angular mo-
mentum conservation. In addition to this, the conservation of energy can be shown to
follow from the translation symmetry of time. Thus, the most fundamental and compre-
hensive laws of physics are seen to follow from the basic fact that empty space and time
are featureless. It illustrates well the power of symmetry in ordering the natural world.
An interesting question now arises. Do all the forces of nature necessarily respect the
geometrical symmetries of space and time? Certainly, Maxwell’s electromagnetic the-
ory, as well as Einstein’s general relativity theory, incorporates all the symmetries we
have just mentioned. What about the discrete (quantic) geometrical symmetries? How
can the laws of physics be tested for them?

A last remark about the possibility of discovering a deeper, yet unknown level of
theory and experience is where the discrete and the continuous characters of the laws
of physics are but special cases according to each other in the framework of a new uni-
tary mathematical theory. The theory of supergravity, developed mathematically in the
1970s, which generalizes a theory of gravitation conceived by Weyl in 1923 and another
by Kaluza and Klein about the same time, as well as the more recent superstring theory,
gives some hope (only in theory, actually) of unifying the laws of physics (see [56]). In
fact, at the base of this last theory, there is a new symmetry called supersymmetry that
acts even on a global level. It links the two large classes of elementary particles, the
fermions (such as the electron, the proton, and the neutron) and the bosons (such as
the photon), which, as is well-known, have very different properties. Since supersym-
metry extends from the global to the local level, it leads to a theory which includes
gravity and which suggests the possibility of unifying it with the other forces. In this
new perspective, it would be very interesting to study particularly the relation between
the topological structure of certain (local and global) groups acting on a certain family
of nonsmooth (quasiconformal or symplectic) manifolds and the corresponding kinds
of physical symmetries and symmetries breaking. In fact, the study of the gauge theory
invariants seems intimately related to the problem of constructing diffeomorphisms
between four-manifolds, or finding embedded surfaces of a given genus, which would
complement the obstructions and invariants which have been found.
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12. Further remarks on the Kaluza-Klein program. Probably the best geometrical
and physical—but hardly unified—theory resting on some global, topological ideas is
the one due to Kaluza and Klein. Its underlying geometry is that of a five-dimensional
Riemannian space with a one-parameter group of isometries. It turns out that the
Kaluza-Klein space is the total space of a circle bundle and that the electromagnetic
potentials play a double role: they define a connection form over the bundle and, to-
gether with the metric of spacetime, determine the five-dimensional Riemannian ge-
ometry. Gauge theories such as those based on SU(n) group have a similar geometry.
Since the recent views of the role of gauge field in strong and weak interactions are
more and more confirmed, one is reinforced in the guess that the theory of fibre bun-
dles with connection should provide the framework for a geometrical understanding
of all fundamental physical forces. This unification seems to be considerably different
from Einstein’s own attempt but may be close in spirit to his program of geometrizing
physics.

More specifically, in the 1920s, Kaluza and Klein proposed to further unify the con-
cepts of internal and spacetime symmetries by reducing the former to the latter through
the introduction of some extra dimension of space. The main point can be reviewed as
follows. Assume that spacetime contains a fifth (spacelike) dimension, which has the
topology of a circle, that is, we write

xA =
(
xµ,x5) (12.1)

and make the identification

x5 ≡ x5+2πR. (12.2)

Any sensible wave function will have to be periodic in x5 and thus of the form

∑

p5=n/R
eip5x5ψp5

(
xµ
)
. (12.3)

Consider now the particular coordinate transformation

x5 "→ x5+lPα
(
xµ
)
, (12.4)

where, for dimensional reasons, we have introduced a length lP . Using (12.3), this will
imply

ψp5

(
xµ
)
"→ eilPp5α(x)ψp5

(
xµ
)

(12.5)

which looks like the gauge transformation

ψ(x) "→ eiqα(x)ψ(x), Aµ "→Aµ−∂µα (12.6)

for a field carrying charge

q = lPp5 =
nlP
R
. (12.7)



1830 LUCIANO BOI

Furthermore, Kaluza and Klein showed that the µ5 components of the five-dimensional
metric transform like the gauge field in (12.6) and that the five-dimensional gravitational
action generates the four-dimensional gravity-plus-gauge action

Sgravity =
1

16πGN

∫
d4x

√
−gR(g)+··· ,

Sgauge =−
1
4

∫
d4xF2

µν+··· ,
(12.8)

provided lP is identified with the so-called Planck length,
√
GN#∼ 10−33 cm. Besides its

conceptual beauty, Kaluza-Klein theory has two interesting consequences:
(i) electric charge is automatically quantized, thanks to quantization of momentum

on a circle,
(ii) electromagnetic and gravitational interactions get unified at energies Mc = 1/R

since, using (12.7) for n= 1, GNM2
c = l2P/R2 = q2.

Later on, the Kaluza-Klein idea was widely generalized, for example, to generate
larger (non-Abelian) gauge groups from even higher-dimensional spaces endowed with
suitable isometries. Kaluza-Klein theory leads to a unified classical theory but is based,
in an essential way, on quantum mechanics: the quantization of momentum gives the
quantization of electric charge. This means that there is no way to ignore quantum
mechanics within the Kaluza-Klein theory. But are the two consistent with each other?
Unfortunately, when we go from the semiclassical approximation to full-fledged quan-
tum field theory, the problem of ultraviolet infinities immediately shows up. How do we
handle that? InD = 4, gauge theories can be dealt with through the process of renormal-
ization; however, no such recipe is known for gravity. As we move to D > 4, both gauge
and gravity become nonrenormalizable. In Kaluza-Klein theory, in particular, both di-
verge in a similar way in the ultraviolet, another expected consequence of Kaluza-Klein
unification. We thus face a kind of paradoxical situation. On the one hand, quantum
mechanics is essential to the success of the Kaluza-Klein idea. At the same time, quan-
tum field theory gives meaningless infinities and spoils the nice semiclassical results.
If the beautiful Kaluza-Klein idea is to be saved, we need a better quantum theory than
quantum field theory. Now such theory already exists; it is called superstring theory.

13. Superstring theory, physics, and spacetime. It seems more and more justified
to believe that superstring achieves remarkable progress in the search for a theory of all
fundamental interactions in nature, going all the way from gravity, which is responsible
for keeping the planets in orbit around the Sun, through electromagnetism which keeps
electrons in orbit around nuclei, through the strong interactions of the nuclear forces
which are responsible for many forms of radioactive decay. (See [17, 45] and especially
[65] which we follow here closely.)

One of the most important features of string theories is the unification of gauge cou-
plings. There are in particular two reasons why this is a particularly compelling feature
to study. On the one hand, the unification of gauge coupling—like the appearance of
gravity or of gauge symmetry in the first place—is a feature intrinsic to string theory. On
the other hand, viewing the situation from an experimental perspective, the unification
of gauge couplings is arguably the highest-energy phenomenon that any extrapolation
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from low-energy data can uncover; in this sense, it sits at what is believed to be the
frontier between our low-energy SU(3)×SU(2)×U(1) world and whatever may lie be-
yond. Thus, the unification of gauge couplings provides a fertile meeting ground where
string theory can be tested against the results of low-energy experimentation.

Superstring theory relies crucially on the two ideas of supersymmetry and a spacetime
structure of eleven dimensions. Supersymmetry requires that for each known particle
having integer spin—0, 1, 2, and so on, measured in quantum units—there is a particle
with the same mass but half-integer spin (1/2,3/2,5/2, and so on), and vice versa.
Supersymmetry transforms the coordinate of space and time such that the laws of
physics are the same for all observers. Einstein’s general theory of relativity derives
from this condition, and so supersymmetry implies gravity. In fact, supersymmetry
predicts “supergravity,” in which a particle with a spin of 2—the graviton—transmits
gravitational interactions and has as a partner a graviton, with a spin of 3/2.

Superstring theory is based on the very fundamental notion of T -duality, which re-
lates two kinds of particles that arise when a string loops around a compact dimension.
One kind (call them “vibrating particles”) is analogous to those predicated by Kaluza
and Klein and comes from vibrations of the loop of the string (see [2, 29]). Such par-
ticles are more energetic if the circle is small. In addition, the string can wind many
times around the circle, like a rubber band on a wrist; its energy becomes higher the
more times it wraps around and the larger the circle. Moreover, each energy level repre-
sents a new particle (call them “winding particles”). T -duality states that the “winding
particles” for a circle of radius R are the same as the “vibration particles” for a circle
of radius 1/R, and vice versa. So, to a physicist, the two sets of particles are indistin-
guishable: a fat, compact dimension may yield apparently the same particles as a thin
one.

This duality has a profound implication. For decades, physicists have been strug-
gling to understand nature at the extremely small scales near Planck length of 10−33

centimeters. We have always supposed that laws of nature, as we know them, break
down at smaller distances. What T -duality suggests, however, is that at these scales,
the universe looks just the same as it does at large scales. One may even imagine that
if the universe were to shrink to less than the Planck length, it would transform into a
dual universe that grows bigger as the original one collapses.

Supersymmetry is a conjectured symmetry between fermions and bosons. It is an in-
herently quantum mechanical symmetry since the very concept of fermions is quantum
mechanical. Bosonic quantities can be described by ordinary (commuting) numbers or
by operators obeying commutation relations. Fermionic quantities involve anticommut-
ing numbers or operators. Supersymmetry is an updating of special relativity to include
fermionic as well as bosonic symmetries of spacetime. In developing relativity, Einstein
assumed that the spacetime coordinates were bosonic; fermions had not yet been dis-
covered. In supersymmetry the structure of spacetime is enriched by the presence of
fermionic as well as bosonic coordinates. If this is true, supersymmetry explains why
fermions exist in nature. Supersymmetry demands their existence. From experiments,
we have some hints that nature may be supersymmetric. In string theory, elementary
particles are understood as vibrating strings, and the structure of spacetime is coded in
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the laws by which the strings propagate. A vibrating string is described by an auxiliary
two-dimensional field theory, whose Lagrangian is roughly

I = 1
2

∫
dτdσ

((∂X
∂τ

)2

+
(∂X
∂σ

)2)
. (13.1)

Here, X(τ,σ) is the position of the string at proper time τ , at a coordinate σ along
the string. In string theory the auxiliary two-dimensional field theory plays a more
fundamental role than spacetime, and spacetime exists only to the extent that it can
be reconstructed from the two-dimensional field theory. String theory also leads in a
strikingly elegant way to models of particle physics with the qualitative properties of
the real world (such as the existence of quarks with electric charge and the structure of
weak interactions). String theory, if correct, entails a radical change in our concepts of
spacetime. That is what one would expect of a theory that reconciles general relativity
with quantum mechanics.

The answer involved duality again. Duality supersymmetries of the two-dimensional
field theory put a basic restriction on the validity of classical notions of spacetime. The
basic duality is

∂X
∂τ

⇐⇒ ∂X
∂σ

(13.2)

and is just analogous to the more familiar electromagnetic duality E$ B. In each case
the duality exchanges a regime where familiar ideas in physics are adequate with one
where they are not. In the case of electric-magnetic duality, the “easy” region is weak-
coupling and the “hard” region is strong-coupling. In the case of the two-dimensional
string theory dualities, the “easy” situation is that of large distances and the “hard”
region is that in which some distances become very small.

There are at least five consistent relativistic string theories. These theories involve
ten spacetime dimensions, some of which can be “compactified” or rolled up into un-
observably small manifolds. Each theory consequently has various classical solutions
and quantum states, and thus might be manifested in nature in different ways. This can
be related notably with the fact that the strong-coupling behavior of supersymmetric
string theories and field theories is governed by a web of dualities relating different
theories. When one description breaks down because a coupling parameter becomes
large, another description takes over. For instance, in uncompactified ten-dimensional
Minkowski space, the strong-coupling limit of the type I superstring is the weakly cou-
pled heterotic SO(32) superstring; the strong-coupling limit of the type IIA superstring
is related to eleven-dimensional supergravity; the strong-coupling limit of the type IIB
superstring theory is equivalent to the same theory at weak coupling; and the strong
coupling limit of the E8×E8 heterotic string involves eleven-dimensional supergravity
again. Thus, after we compactify some dimensions, we learn that the different theo-
ries are all one. That is, they are different manifestations of one underlying and still
mysterious theory.

The duality symmetry mentioned above also has a number of nonlinear analogs, such
as “mirror symmetry,” which is a relationship between two spacetimes that would be
quite distinct in ordinary physics but turn out to be equivalent in string theory. The
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equivalence is possible because in string theory one does not really have a classical
spacetime, but only the corresponding two-dimensional field theory. Two apparently
different spacetimes X and Y might correspond to equivalent two-dimensional field
theories. The mirror symmetry can be related to the phenomenon of topology change.
Here, one considers how space changes as a parameter—which might be the time—
is varied. One starts with a spatial manifold X so large that string theory effects are
unimportant. As time goes on, X shrinks and strings effects become large; the classical
idea of spacetime breaks down. At still later times, the distances are large again and
classical ideas are again valid, but one is on an entirely different spatial manifold Y .
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