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ABSTRACT
In this work, we study the interaction of the electromagnetic wave (EW) from a distant quasar
with the gravitational wave (GW) sourced by the binary stars. While in the regime of geomet-
ric optics, the light bending due to this interaction is negligible, we show that the phase shift-
ing on the wavefront of an EW can produce the diffraction pattern on the observer plane. The
diffraction of the light (with the wavelength of λe) by the gravitational wave playing the role
of gravitational grating (with the wavelength of λg) has the diffraction angle of ∆β ∼ λe/λg .
The relative motion of the observer, the source of gravitational wave and the quasar results in
a relative motion of the observer through the interference pattern on the observer plane. The
consequence of this fringe crossing is the modulation in the light curve of a quasar with the
period of few hours in the microwave wavelength. The optical depth for the observation of
this phenomenon for a Quasar with the multiple images strongly lensed by a galaxy where the
light trajectory of some of the images crosses the lensing galaxy is τ ' 0.2. By shifting the
time-delay of the light curves of the multiple images in a strong lensed quasar and removing
the intrinsic variations of a quasar, our desired signals, as a new method for detection of GWs
can be detected.
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1 INTRODUCTION

The first direct detection of gravitational wave is done by the Ad-
vanced LIGO experiment where they could detect the merging
of the two blackholes in a binary system (Abbott et al. 2016).
While the gravitational wave has already been detected indirectly
by studying the orbital period of neutron stars (Hulse & Taylor
1975), direct detections of gravitational waves opened a new win-
dow in the astronomy besides the two windows of the electromag-
netic and the high energy cosmic ray particles. The observation of
gravitational wave by LIGO and VIRGO experiments (The LIGO
Scientific Collaboration & The Virgo Collaboration 2017) is based
on the phase shifting due to the passage of a gravitational wave
from the two laser beams at perpendicular directions. The other ef-
fort for detection of gravitational wave is the method of measuring
the pulsar timing where using the pulsar timing array (PTAs), it
would be possible to detect gravitational waves in the frequency
range of 10−9 < f/Hz < 10−7 (Moore et al. 2015). The astrom-
etry of stars inside the Milky Way by GAIA also is suggested as
another method that can measure gravitational waves by perturbing
metric around the Earth (Moore et al. 2017).

Here in this work, we use the idea of phase-shifting effect by
the interaction of a gravitational wave (GW) with an electromag-
netic wave (EW). The concept is similar to what is used in the inter-
ferometry experiments; however, in our study, this interaction hap-
pens in the astronomical scales. Let us assume a light ray is emitted
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from a source toward the Earth and a gravitational wave close to the
line of sight crosses part of the light ray. This will change the met-
ric of space-time along the trajectory of the light ray. One of the
features of this effect would be the frequency perturbation of the
source star (Kaufmann 1970; Mashhoon & Grishchuk 1980). The
idea of phase shifting of the electromagnetic wave from a distant
coherent source through the interaction with a gravitational wave is
proposed by Braginsky et al. (1990). Following this idea, Faraoni
(1992) and Bisnovatyi-Kogan & Tsupko (2008) used the gravita-
tional lensing concept to calculate the light deflection due to the
passage of a light ray through the gravitational wave. However, they
have shown that the observational feature of this interaction in the
geometric optics is small and that is not detectable with the present
instruments.

We take into account the wave optics’ features of the electro-
magnetic radiation from a distant source and calculate the phase
distortion as a result of the interaction with the gravitational wave.
While the gravitational wave in the cosmological distances is weak,
a phase shift of the order of one wavelength in the EW can pro-
duce a measurable effect for an observer. We are familiar with the
phase shifting effect both in the wave-optics physics in the labo-
ratory scales (Born & Wolf 1999) and in the astronomical scales
(Schneider et al. 1992; Mehrabi & Rahvar 2013). In this work, we
investigate the interaction of the EW with the GW where the grav-
itational wave is sourced from the astrophysical binary stars. Then
we calculate the observational features of this interaction as well as
the probability of detection of this phenomenon through the obser-
vation of quasars with the multiple images from the strong lensing.
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2 Sohrab Rahvar

In Section (2) we introduce the EW equation in a perturbed
metric around the Minkowski and the FRW spaces. From the
Helmholtz equation for the propagation of the EW, we show that
the amplitude of the wave at any point from the Kirchhoff integral
is similar to the standard optics where the effective refraction index
is replaced with the characteristics of the space-time. The result for
the amplitude of EW at any point in the FRW and the Minkowski
spaces are similar to each other by replacing the comoving time
in the Minkowski space with the conformal time in FRW space.
In Section (3) we use the Fermat Principle to calculate the ampli-
tude of the EW on the observer position both from the geometric
optics and the wave optics. We derive the phase shifting from the
scattering of the EW from the GW sourced by a binary star as well
as the amplitude of EW on the observer plane. In Section (4), we
investigate the characteristics of the observable parameters of this
phenomenon as well as the feasibility of observations in the strong
lensed quasars. Conclusions are given in Section (5).

2 ELECTROMAGNETIC WAVE PROPAGATION IN
CURVE SPACE

In this section, we study the EW equation and the solution of this
equation in the perturbed spaces with the background of (i) the
Minkowski metric and (ii) the FRW metric. We will use the result
of this section for the studying the interaction of EW from a distant
quasar with the GWs from the astrophysical sources.

2.1 EW propagation in the Minkowski space perturbed by
the GWs

Let us take the perturbation of metric around the Minkowski space
by gµν = ηµν+hµν with the signature of metric (−,+,+,+) (and
setting c = 1) where gµν = ηµν − hµν . The propagation of EW
in the covariant form is given by Fµν ;ν = 0 where this equation is
rewritin in terms of four-vectors of electromagnetic field (i.e. Aµ)
(Landau & Lifshitz 1975; Misner et al. 1977) as follows:

Aµ;
ν
ν −Aν ;ν

µ −RµνAν = 0. (1)

Using the Lorentz gauge of Aν ;ν = 0 and the propagation of light
in an empty space (i.e. Rµν = 0) , the wave equation reduces to

gανAµ;αν = 0. (2)

We obtain the EW equation coupled to the generic perturbation of
the metric as follows:

�Aµ − hναAµ,να + (hαµ,σ + hσ
µα
, − hασ,µ)Aσ,α

+
1

2
(�hσ

µ − hσν,νµ +
1

2
hµν,σν)Aσ

− (hασ,α +
1

2
hαα,

σ)Aµ,σ = 0. (3)

For the case that the perturbation of metric results from the grav-
itational wave, in the transverse-traceless (TT) gauge of hµµ = 0
and hµν,ν = 0 which satisfies the gravitational wave equation of
�hµν = 0, equation (3) simplifies to

�Aµ − hναAµ,να + (hαµ,σ + hσ
µα
, − hασ,µ)Aσ,α = 0, (4)

which is identical to the results of Braginsky et al. (1990). We can
further simplify this equation for the case that the GW wavelength,
λg , is larger than EW wavelength, λe (i.e. λg � λe). In this case

we neglect the derivatives with respect to the perturbations of met-
ric compare to the derivatives with respect to the four-vector of
electromagnetic field. Then equation (4) simplifies to

�Aµ − hναAµ,να = 0. (5)

We note that the � operator is defined in the Minkowski space and
the second term is the perturbation term of this differential equa-
tion.

Let us take Aµ0 = A0e
µeiψe as the equation for the prop-

agation of EW in the Minkowski space where A0 is the maxi-
mum amplitude of wave at each point, ψe is the phase of EW,
and eµ is a unit vector along Aµ. The Lorentz gauge results in
eµ∂µψe = eµk

(e)
µ = 0. For the gravitational wave also, the

solution of wave equation in the background of the Minkowski
space-time is hµν = hεµνeiψg where h is the maximum ampli-
tude of GW at a given point and εµν is the polarization of wave.
From the Lorentz gauge condition, εµν∂νψg = εµνk

(g)
ν = 0 and

εµµ = 0. On the other hand, since hµν satisfies �hµν = 0 , in
terms of the polarization tensor and wavenumber can be written as
εµνk

(g)
µ k

(g)
ν = 0. We substitute the background solution of EW

equation in the perturbed term of equation (5). The overall wave
equation simplifies to the Helmholtz equation,

∇2Aµ + (ω2
e + hεijk

(e)
i k

(e)
j eiψg )Aµ = 0, (6)

where ωe represents the frequency of EW in the Minkowski space
and the latin indices represent the spatial coordinates of the po-
larization tensor of the GW. Now, we define an effective angular
frequency for EW in the Helmholtz equation by

Ω2 = ω2
e + hεijk

(e)
i k

(e)
j eiψg , (7)

where the second term at the right hand side of this equation is
smaller than the first term. We simplify the effective frequency of
EW to

Ω = ωe(1 +
1

2
hijn

(e)
i n

(e)
j ), (8)

where n(e)
i = k

(e)
i /ωe is the unit vector along the trajectory of the

EW propagation. The solution of Helmholtz equation of ∇2Aµ +
Ω2Aµ = 0 with the effective frequency in equation (8) is give by
the Kirchhoff integral,

Aµ(r) =
1

4π

∫
S

[
Aµ

∂

∂n̂
(
eiΩs

s
)− eiΩs

s

∂Aµ

∂n̂

]
dS, (9)

where the integration is done over the boundary condition, where
EW interacts with the GW and for a long distance from the bound-
ary we can simplify this integral to Huygens-Fresnel integral. We
note that the effective frequency in equation (9) may change along
the trajectory of the light. We define the overall phase along the
trajectory of light as∫

Ωds = ωe

∫
(1 +

1

2
hijn

(e)
i n

(e)
j )d`, (10)

where ` follows the trajectory of EW from the source to the ob-
server and the interaction of the GW with EW results in a phase
shift on the light paths from the boundary to the observer. The inte-
gral of equation (10) is also called the Fermat potential and we will
use this function to calculate the observable features both in the
wave optics limit and the geometric optics limit (when the wave-
length of the EW is small, λe → 0).
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Gravitational Grating 3

2.2 EW propagation in the FRW space perturbed by the
GWs

In this part, we repeat calculation for the FRW space similar to the
Minkowski space. For simplicity, we take a flat spatial curvature
for FRW metric (i.e. k = 0) and conformal with the Minkowski
metric (Mukhanov 2005) as gµν = a2(ηµν + hµν) where ”a” is
the scalefactor and gµν = a−2(ηµν − hµν) . The electromagnetic
equation from equation (1) with the Lorentz gauge and non-empty
Universe is given by

Aµ;
ν
ν −RµνAν = 0, (11)

where at low-redshift Universe and for the case that the wavelength
of the GW as well as the wavelength of the EW is smaller than the
horizon size (i.e. kg/H � 1 and ke/H � 1), we can ignore the
second term in equation (11). Moreover, we assume that the GW
wavelength is much larger than the EW wavelength (i.e. ke � kg).
Then equation (11) simplifies to

�Aµ − 2
a′

a
A′
µ − hναAµ,να = 0, (12)

where ′ ≡ d
dη

represents the derivative with respect to the con-
formal time (dη = dt/a). Similar to the wave equation in the
Minkowski space, the third term at the left hand side of equation
(12) results from the perturbation of metric. In order to solve this
equation, first we write the EW equation in the background of FRW
metric,

�Aµ0 − 2
a′

a
A′0

µ
= 0, (13)

where Aµ0 represents electromagnetic field in the background of
FRW metric. This equation can be solved by defining the new field
of Bµ0 = aAµ0 . Then equation (13) simplifies to

B′′µ0 + (k2
e −

a′′

a
)Bµ0 = 0, (14)

where taking into account that ke/H � 1, the four-vector of
EW has the background solution of Aµ0 = A0e

µa−1eiφe . Also
the gravitational wave has a similar differential equation as (13)
(Mukhanov 2005) with the following solution:

hij = hεija−1eiψg . (15)

Substituting the gravitational wave solution in equation (12) and
using the new field of Bµ = aAµ, equation (12) simples to

∇2Bµ + Ω2Bµ = 0. (16)

where the effective frequency is

Ω = ωe(1 +
1

2
ha−1εijninje

iψg +
1

2ωe2

a′′

a
), (17)

here the second term in the parenthesis is of the order of amplitude
of gravitational wave and the third term is of the order of (λeH)2

where for an EW in the order of one meter wavelength this term
is about 10−51. We can ignore this term compare to the first or-
der perturbation term (second term). The solution of equation (16),
substituting the four-vector of electromagnetic field, is

Aµ(r) =
1

4π(1 + zg)

∫
S

[
Aµ

∂

∂n̂
(
ieφ̃(s)

s
)− ieφ̃(s)

s

∂Aµ

∂n̂

]
dS,

(18)

where zg is the redshift of screen at the position of the GW source,
and φ̃ is the overall phase of wave that is sourced from the GW-EW

interaction on the screen, and Aµ(r) is the amplitude of the EW at
the position of the observer. Again, we define the overall phase of
a trajectory of light ray in FRW metric as

φ̃ = ωe

∫
(1 +

1

2
ha−1εijninje

iψg )dη. (19)

Comparing this equation with the phase in equation (10), the co-
moving time in the Minkowski space is replaced with the confor-
mal time for the FRW metric. Also the amplitude of the gravita-
tional wave is scaled with 1/a with the expansion of the Universe.
Here also we define φ̃ as the Fermat potential. In the next section,
we will investigate the Fermat potential in details and calculate this
integral for the interaction of EW with GW, sourced by the binary
systems.

3 FERMAT POTENTIAL AND PHASE SHIFTING BY
THE GRAVITATIONAL WAVES

We start with studying the interaction of GW with a patch of trajec-
tory of light ray from a source to the observer while it is traveling
on a null geodesics. Let us assume a quasar at the distance of Ds
from the Earth and an astrophysical source of GW such as a binary
star produces GW and interacts with the light ray traveling from
the quasar to the observer. Fig. (1) is the schematic configuration
from the quasar, observer and the source of gravitational wave. The
generic form of the perturbation of metric around the Minkowski
space is written as

ds2 = (−1 + h00)dt2 + 2h0idtdx
i + (hij + δij)dx

idxj . (20)

For the flat FRW metric the formalism is similar to that of
Minkowski space, except replacing the comoving time with the
conformal time. For the propagation of light (ds2 = 0), the du-
ration that light ray travels between the source and the observer in
terms of overall distance is given by

t = `+
1

2

∫
(h00 + hijn

inj + 2h0in
i)d`, (21)

where ni = dxi/d` is the component of the unit vector along the
direction of the propagation of light.

We can decompose metric perturbation into the scalar, vector
and tensor elements (Carroll 2004). For the condition of the energy-
momentum tensor of δT i0 = 0, perturbation of metric satisfies
h00 = hii. For non-scalar part of metric perturbation, we choose
the transverse-traceless gauge of hi0 = 0, also ĥii = 0 where the
tensor part of perturbation is assigned with a hat sign. Then, the
integral for the overall time that light reaches from the source to
the observer simplifies to

t = `+

∫
(h00 +

1

2
ĥijn

inj)d`, (22)

We note that ` represents the propagation of the light in non-
perturbed metric; however it bends locally when their is a local
gravity source or gravitational wave crossing the light ray. Here t
is proportional to the overall phase of the light traveling from the
source to the observer as we discussed in equations (10) and (19).

If we subtract the time duration from that of trajectory of a
straight line in the absence of any gravitational field (i.e. t0 = `0),
the result of this subtraction (i.e. Φ = t−t0) is so-called the Fermat
potential (Schneider et al. 1992) and is given by

Φ =
1

2
D|θ − β|2 +

∫
(h00 +

1

2
ĥijn

inj)d`, (23)
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4 Sohrab Rahvar

Figure 1. Schematic location of a Quasar as the source of electromagnetic
wave, observer, and the source of gravitational wave that crosses the light
ray along the line of sight of obsever.

where h00 represents the presence of a conventional lens and ĥij is
the contribution of the gravitational wave in phase shifting. Here,
D = DdDs/Dds, where Dds is the distance of deflector to the
source of EW and Dd is the distance of observer to the deflector,
β represents the angular position of the source compare to the lens
and θ is the angular position of the images compare to the lens.
In general, we may have both a point like lens and a gravitational
wave. The conventional lens might be a galaxy or an isolated star.
The contribution of a point-like lens is h00 = 2φ where the poten-
tial satisfies the Poisson equation ∇2φ = 4πGρ and the result of
integration for the h00 term in the Fermat potential is∫
h00d` =

1

π

∫
κ(θ′) ln |θ − θ′|dθ′2, (24)

where κ(θ) = Σ(θ)/Σcrit, Σ(θ) is the column density and Σcrit
is defined as (Schneider et al. 1992)

Σcrit =
c2

4π

Ds
DdsDd

.

We note that in order to write equations in the FRW metric, we
should replace the physical distances in the Minkowski metric with
the angular diameter distances in FRW metric.

For calculating the contribution of the gravitational wave in
the Fermat potential, we assume the propagation of light in the
direction of x1 as depicted in Fig. (2), where the spatial coor-
dinates are given by (x1, x2, x3) and due to the lensing, the di-
rection of light can slightly deviate with respect to x1 axis. Let
us take the unit vector along the trajectory of the light by n =
(cos θ, sin θ cosϕ, sin θ sinϕ) where θ and φ angles are defined in
the spherical coordinate and the centre of coordinate is located at
the position of the observer. In the absence of gravitational field (in
the Minkowski space), the unit vector is n = (1, 0, 0).

Now we assume a binary system (composed of stars or black-
holes) as the source of gravitational wave located on (x2, x3) plane.
In other word, the orbital plane of the binary is on the face-on posi-
tion with respect to the observer. Substituting ĥij metric in equation
(23) and assuming a lens with the mass of M ′ = M1 +M2 as the
total mass of the binary system (i.e. M1 and M2 are the mass of
binary components) and the source of GW, the Fermat potential is

Figure 2. Electromagnetic wave propagation in the direction of x1 and the
binary system as a source of GW is located on (x2, x3) plane, where the
orbital plane is at the face-on position with respect to the observer.

written as

Φ =
1

2
D(θ−β)2−4GM ′ ln θ+

1

2

∫ [
ĥ11(1− 2θ2) + 2ĥ12θ

]
dx1.

(25)

From the principle of the least action (i.e. δΦ/δθ = 0), the lensing
equation is given by

θ2

(
1− 2H2

D

)
− θ

(
β − H1

D

)
− θ2

E = 0, (26)

whereH1 =
∫
h12dx

1 ' h12∆L andH2 =
∫
h11dx

1 ' h11∆L.
Here, ∆L is the length of the light ray that interacts with the GW
and that might be larger than the wavelength of GW (i.e ∆L �
λg). In the next section, the numerically calculation confirm our
assumption on estimation of H1 and H2.

Equation (26) is the modified conventional lensing equation
with single lens where the modification is due to the presence of
the GW terms. We can take the GW terms as the perturbation to the
standard lens equation. The ratio of the perturbation terms to the
conventional lensing equation is given by

H

θED
' 10−16

(
nλg
1 ly

)(
Rs
3km

)−1/2(
D

1Gpc

)−1/2
(

ĥ11

10−21

)
,

(27)

where Rs is the Schwarzschild radius of the lens. For the case that
the gravity wave results from a binary system with solar mass stars
and one astronomical unit separation, the wavelength of GW would
be about one light year. Assuming that light ray passing at the dis-
tance of 1pc away form the binary system (as the source of GW),
the amplitude of GW is ĥ11 ' 10−21, so the perturbation effect
of the gravitational wave is negligible in the lensing equation. This
means that the astrometric or the light magnification of a source
due to the gravitational wave in the lens equation is very small.
For the case of the absence of a point mass lens, we set θE = 0
and from equation (26), the position of image and source relates
as θ = β −H1/D. The result is one-dimensional displacement of
the position of the source with the amount of |∆θ| = H1/D with
no magnification effect (i.e. µ = 1) which is in agreement with
Bisnovatyi-Kogan & Tsupko (2008).

MNRAS 000, 000–000 (0000)



Gravitational Grating 5

In what follows, we perform calculations in the wave-optics
regime, where unlike to the geometric optics the gravitational lens-
ing features for the small distortions of wave front is observable.
We know this property of wave optics from the interferometry ex-
periments. Here, we use the Fermat potential up to the first-order
perturbation of the metric and ignore the higher order terms. Also
we ignore the presence of another point mass lens along the line of
sight of quasar (i.e. h00 = 0) as it can be taken as the background
field at larger distances from the binary star. Then the Fermat po-
tential simplifies to the following expression:

Φ(θ, β) =
1

2
D|θ − β|2 +

1

2

∫
ĥijn

injd`, (28)

where the phase-shifting term along a light ray due to the GW is
given by

δ =
π

λe

∫
ĥijn

injd`, (29)

here λe as the wavelength of EW in denominator is for phase calcu-
lation. In what follows, we calculate the amplitude of EW sourced
by a binary system.

3.1 GW produced by the astrophysical binary stars

Let us assume a binary system with equal masses of M and with
the semi-major axis of a, located at face-on position with respect to
the observer on (x2, x3) plane, orbiting around their joint centre of
mass with the angular velocity of ωg . The Einstein equation for the
gravitational wave with the energy-momentum tensor as the source
of GW in TT-gauge of hµν,ν = 0 and hµ0 = 0 is given by

�hµν = −16πGTµν . (30)

Using the Green function, the tensor components of metric at long
enough distance from the source of GW have the following solu-
tion:

hij =
2G

r
∂2
t q
ij (31)

where

qij =

∫
T 00(x, t− r/c)xixjdx3, (32)

is the quadruple moment tensor for the source of GW and for a
binary system located at face-on position on (x2, x3) plane, that is
given by

qij =

0 0 0
0 q22 q23

0 q23 −q22

 ,
where q22 = Ma2 cos(2ωgtr), q23 = Ma2 sin(2ωgtr). tr = t−r
is the retarded time and r =

√
(x1)2 + b2 is the distance of bi-

nary star from the point where the gravitational wave is determined.
Here, the impact parameter of EW with the GW is defined by ”b”
on (x2, x3) plane as the closest distance of EW from the source of
GW.

As we noted before, the TT-gauge, (i.e. hij ,i = 0) implies that
k

(g)
i hij = 0. So, the polarization tensor of GW (i.e. hij) should

be orthogonal to the direction of the propagation of GW. In order
to impose this condition, we define the projection tensor of P ij =
δij−k̂i(g)k̂j(g) where k̂i(g) is the unit vector along the propagation
of GW and k̂(g) = (cos θ′, sin θ′ cosφ′, sin θ′ sinφ′). The angles
are defined from the position of the source of GW, where θ′ is the
polar angle with respect to the x1 axis and changes in the range of

Figure 3. The integrand of equation (36) as a function `′ = 2ωgx1. Here
the normalized impact parameter parameter is set to b′ = 2 and φ′ = π/3.

θ′ ∈ [0, π] and φ′ is the azimuthal angle on (x2, x3) plane within
the range of φ′ ∈ [0, 2π]. Also, θ′ in terms of the impact parameter
is given by tan θ′ = b/x1. Let us define the transverse-traceless
operator (Maggiore 2007) using the projection tensor as

Pjkmn = PjmPkn −
1

2
PjkPmn, (33)

which guarantees TT-gauge condition of the quadrupole moment as
q

(TT )
jk = Pjkmnq

mn. Using the projection tensor and the direction
of propagation of GW (along x1 axis), the non-zero component of
q

(TT )
jk that enters in the phase shift calculation in equation (29) is

q
(TT )
11 =

1

4
sin 2θ′(q22 cos 2φ′ + q23 sin 2φ′). (34)

Now we take ni = (1, 0, 0) and use ĥ(TT )
ij to calculate the

phase shift of the EW resulting from the perturbation of the metric
due to interaction with the GW. The phase shift is given by

δ(b, t, φ′) =
π

λe

∫ +∞

−∞
ĥ

(TT )
11 (b, t, φ′, x1)dx1. (35)

We note that t is the moment of the interaction of the GW with the
EW. We may change this time to the local time measured at the
position of the observer by t0 = t+DL − x1. Then using q22 and
q23 terms in equation (34), equation (35) can be written as

δ(b′, t′0, φ
′) = f(M,a, λe)×

∫ +D′
L

−D′
LS

4b′2`′2

(b′2 + `′2)5/2

× cos(t′0 + `′ −D′L −
√
b′2 + `′2 + 2φ′)d`′, (36)

where f(M,a, λe) = 2πR2
s/(λea), Rs is the Schwarzschild ra-

dius of stars in the binary system with the mass of M and `′ =
2ωgx

1, t′0 = 2ωgt0, b′ = 2ωgb, D′ = 2ωgD are the new param-
eters normalized to the 1/(2ωg). Also, the numerical value of f is
given by

f(M,a, λe) = 2π(
M

M�
)2(

a

0.02a.u.
)−1(

λe
0.6cm

)−1. (37)

Before performing the numerical calculation of the phase
shifting in equation (36), we investigate the mathematical be-
haviour of the integrand in this equation as plotted in Fig. (3) (for
the parameters of b′ = 2 and φ′ = π/3). The physical interpreta-
tion of this integrand is that as the EW approaches from the infinity
to the source of GW, it interacts with the ripples of the GW with

MNRAS 000, 000–000 (0000)



6 Sohrab Rahvar

Figure 4. Quadruple phase shifting of the EW wave front on (x′2, x′3)

plane, noting that in this space all the physical scales are normalized to
1/(2ωg). This phase-shifting results from the integration of equation (36).
Here we adapt the following parameters of t′0 = 1.5, M = 1M�, a =

0.02 a.u., λe = 1 cm which results in f = 3.7 and κ = 0.2 for generating
this phase-shifting pattern.

a higher frequency compare to the half of the way when it leaves
away from the source of the gravitational wave. So for the domain
of `′ > 0 the integrand has more contribution in the integral of
equation (36) compare to the domain of `′ < 0. Moreover, for the
larger distances (i.e. |`′| � 1) the integrand approaches to zero,
means that the phase shifting is a local effect within a few wave-
lengths of GW around the source of GW. We also note that the inte-
grand of equation (36) is a function of normalized observer time, t′0
that can change the pattern of the integrand within the time scale of
the period of the binary system (i.e. ∆t′0 > 1). This means that the
phase shifting would be a time dependent pattern within the period
of a binary system and for a binary system with the period in the
order of year, the observer in a shorter duration of observation will
see a static pattern of the phase shifting.

Fig. (4) represents the phase shift on the wave front of EW, re-
sulting from the numerical integration of equation (36) which has
a quadruple structure and we call it as a gravitational grating. In
what follows, we investigate the diffraction pattern from a quadru-
ple gravitational grating on the observer plane. We note that the
phase difference on the wave front of EW has to be less than 2π;
otherwise, the temporal coherency of the electromagnetic wave for
a point-like source will breakdown. From Fig. (4), we provide a
rough estimation on the diffraction patterns on the observer plane.
Taking into account that the spatial size of the phase shifting on
the gravitational grating is of the order of λg , the scattering angle
between the fringes on the observer plane would be in the order of
λe/λg .

In what follows, we investigate the observational effect of
the phase shifting of the wave front on the light curve of a dis-
tant source, such as a quasar. For a large distance of the observer
from the source of GW, the Kirchhoff’s diffraction formula in equa-
tion (9) reduces to the Huygens-Fresnel principle (Schneider et al.
1992) and the magnification of the light on the position of observer

Figure 5. Results from the numerical integration of equation (39) which
represents the interference pattern from a distant quasar on the observer
plane. The phase-shifting term in equation (39) is adapted from figure (4)
with the corresponding parameters.

can be written as

µ =
|
∫
eikeΦ(x2,x3)dx2dx3|2

|
∫
eikeΦ0(x2,x3)dx2dx3|2

, (38)

where the phase of electromagnetic wave (i.e. Φ(x2, x3)) for an
arbitrary trajectory of light is given by equation (28) and Φ0 =
1
2
D|θ − β|2 is the geometrical contribution of the Fermat poten-

tial without taking into account the time delay due to the grav-
itational potential. For simplicity in the integration, we define a
characteristic angle for the gravitational wave at distance of Dd as
θg = ω−1

g /2Dd and replace θ and β with θ̃ = θ/θg and β̃ = β/θg .
Then, equation (38) simplifies to

µ(β̃x, β̃y) =
κ2

π2
|
∫ +∞

−∞

∫ +∞

−∞
eiκ|θ̃−β̃|

2

eiδ(θ̃x,θ̃y)dθ̃xdθ̃y|2, (39)

where |θ̃ − β̃|2 = (θ̃x − β̃x)2 + (θ̃y − β̃y)2 and κ = 1
2
keDθ

2
g is

a dimensionless parameter. The numerical value of θg in terms of
physical parameters is given by

θg = 10 nas

(
M

M�

)−1/2 ( a

0.02 a.u.

)3/2
(

Dd
1 Gpc

)−1

. (40)

and κ is given by

κ =
1− x

3x

(
M

M�

)−1 ( a

0.02 a.u.

)3
(

λe
0.6cm

)−1(
Ds

1Gpc

)−1

,

(41)

where x = Dd/Ds.
Fig. (5) represents the result of this integration with the phase

shifting pattern from the Fig. (4). We can also write equation (39)
in the polar coordinate system as follows

µ(β̃) = 4κ2|
∫ ∞

0

ei(κθ̃
2+δ(θ̃))J0(2κβ̃θ̃)θ̃dθ̃|2, (42)

where the Bessel function in equation (42) has the wavenumber of
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2κθ̃ and since θ̃ is of the order of unity, the wavelength of ripples
in β̃ space would be in the order of β̃ ' 1/κ. Now, we use the
definition of β̃ and κ, the angular separation between the fringes of
diffraction pattern on the observer plane would be

∆β ∼ λe
λg

Dd
D
,

and sinceDd ∼ D, we can simplify the angular separation between
the fringes by ∆β ∼ λe/λg .

4 OBSERVATIONAL FEATURES AND PROBABILITY
OF EVENT DETECTION

In the first part of this section we discuss about the observational
features of the GW-EW interaction.

4.1 Observational features

From the observational point of view, we would expect to have an
interference pattern on the observer plane as shown in Fig. (5). Here
the EW is sourced from a distant quasar where on the observer
plane, the angular separation between the fringes is of the order of
∆β ∼ λe/λg . Noting that β represents the angular position of a
quasar with respect to the source of GW, we take into account a
dynamics for β, which represents a relative motion of quasar with
respect to the source of GW and the source of EW as follows:

β(t) =

√
β2

0 + (t− t0)2|vdo
Dd
− vso
Ds
|2, (43)

where β0 is the minimum impact parameter, t0 is the time of the
closes approach of the line of sight to the source of gravity wave,
and vdo and vso (according to the convention in the gravitational
lensing) are the relative velocities of the source of GW and source
of EW with respect to the observer, respectively. Now we define a
time-scale that observer crosses the fringes on the observer plane
by

∆tf = ∆β

(
vdo
Dd
− vso
Ds

)−1

. (44)

By replacing ∆β = λe/λg , we can relate the wavelength of GW
to the wavelength of EW, transit time-scale of fringe crossing, and
the relative velocities as follows:

λg = 1.6× 10−2pc
(

λe
0.6cm

)(
∆tf
1h

)−1

×
(

vdo
1000km/s

Gpc

Dd
− vso

1000km/s

Gpc

Ds

)−1

. (45)

Replacing λg = π/ωg , where ωg is the angular velocity of the
binary system as

ωg =
2π

1 yr

( a

1a.u.

)−3/2
(
M

M�

)1/2

, (46)

and substituting in equation (44) results in transit time as follows

∆tf = 5.9h

(
λe

0.6cm

)(
M

M�

)1/2 ( a

0.02 a.u.

)−3/2

×
(

vdo
1000km/s

Gpc

Dd
− vso

1000km/s

Gpc

Ds

)−1

. (47)

For a set of typical parameters that we used until now (i.e.
λe = 0.6 cm and λg ∼ 2×1013m) the angular separation between

Figure 6. The variance of the magnification in logarithmic scale (i.e.
log(∆µ)) in terms of the semi-major axis of binary system (i.e. a) and
the mass of binary system (i.e. M ) where the coloured area represents the
coherency condition of the light receiving from the plane of the Gravita-
tional Grating is satisfied. We adapt the following parameter of λe = 6cm,
Ds = 1Gpc and Dd = 0.5 Gpc.

the fringes is about ∆β ∼ 10−16 rad, and using the transverse
velocity of the observer, the binary system, and the quasar from
their peculiar velocities, the relative angular velocity is of the order
of vdo/Dd−vso/Ds ' 1000 km s−1Gpc−1. We use the numerical
values for this set of parameters in equation (47) and obtain the
modulation in the light curve of quasar in the order of ∆tf ' 6 hr.

From the observational point of view there is a limit on de-
tection of time variations of the light curve in which the cadence
between the data points should not be smaller than the typical vari-
ations of the light curve. Here, we assume the cadence between the
data points to be larger than 10 min (i.e. ∆tf > 10 min). This con-
dition implies a maximum wavelength for detection of the GWs.
For instance, using λe = 0.6 cm, from equation (45), and the ca-
dence > 10 min, results in the condition of λg < 1.6× 10−2pc.

We can also investigate the coherency condition for produc-
ing the interference pattern from equation (39) in which the phase
shifting of Φ = κ|θ̃− β̃|2 + δ(θ̃x, θ̃y) on the plane of gravitational
grating has to be less than 2π. In order to investigate the coherency
condition in terms of the parameter space of the binary system, we
adapt λe = 6 cm for the wavelength of the observation and assume
a and M in the binary system as the free parameters. We also as-
sume the distance of quasar atDs = 1Gpc and the source of GW at
Dd = 0.5 Gpc. Fig. (6) represents the variance of the magnification
in logarithmic scale (i.e. log(∆µ)), in terms of (a,M) parameter
space where the coherency condition of EW wave-front is satisfied
in the coloured area of this space. The qualitative result from this
figure is that, detection of Gravitational Grating is in favour of the
massive binary systems with the larger semi-major axis.

In practice, for the observation of the light curve modulation
of a distant quasar from the GW-EW interaction, we propose long-
term photometry of the strong-lensed quasars. In the strong-lensing
systems with the multiple images from a quasar, by time shifting
the light curves of images with the amount of time delay, we can
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remove the intrinsic variations of a quasar to extract our desired
foreground signals. This method has been used for detection of the
microlensing signals (Giannini et al. 2017) as well as the weak-
lensing effect by the dark micro-halos (Rahvar et al. 2014) in the
quasars light curve. Since the time-scale of microlensing and dark
micro-halo transits are longer than the transit time-scale of diffrac-
tion fringes from the GW, in principle we can filter out these two
backgrounds.

4.2 Probability of detection of GW-EW interaction for a
given quasar at Gpc distance

We have seen that the diffraction angle of the electromagnetic
waves from the gravitational waves is of the order of ∆β ' λe/λg .
Comparing this diffraction angle with that in the double slit Young
experiment, with the separation of ”d” between the slits indicates
that the wavelength of gravitational wave (i.e. λg) plays the role of
the silts (i.e. d) in the Young experiment. That is why we called
this phenomenon as the gravitational grating. The minimum size
of the grating plane is of the order of λg and the cross-section asso-
ciated to this interaction is given by σ ' πλ2

g . Now, similar to the
gravitational microlensing (Paczynski 1986; Rahvar 2015), we de-
fine the optical depth as the probability of crossing the line of sight
with the cross section of the gravitational grating. The main differ-
ence between the definition of the optical depth in the microlensing
with that of gravitational grating is that the optical depth for the
microlensing is independent of the mass of the lenses and it de-
pends only to the average mass density of lenses, however in our
case, the optical depth depends on the wavelength of the GWs. Let
us assume f(λg) as the distribution function of the binary systems
that produces GW with the wavelength of λg . We define the optical
depth as follows:

τ(λe) =

∫ Ds

0

∫ λmax
g

λmin
g

σ(λg)nbs(x
1)f(λg)dλgdx

1∫ λmax
g,0

λmin
g,0

f(λg)dλg
, (48)

where nbs(x1) is the number density of binary stars along the line
of sight at the position of x1 that produces GW. Also, λming and
λmaxg are the minimum and maximum wavelengths of the GW
where interaction with the EW results in the wave optics features of
the EW. The range for λg depends on the EW wavelength that we
are using for the observation. Also λming,0 and λmaxg,0 are the generic
possible range of the wavelengths for the GW that binary stars can
produce. We note that λg for a binary star is a function of the mass
and the semi-major axis of the companions.

In order to apply f(λg) in equation (48), we simplify our cal-
culation by assuming that the two companions of the binary sys-
tems have equal masses (i.e. M1/M2 = 1) and zero orbital ec-
centricity. The distribution function for the semi-major axis of the
binary stars (i.e. a) is given by the Öpiks law (Öpik 1924) as fol-
lows

f(a) ∝ aγ where amin < a < amax. (49)

We can rewrite this equation in terms of the mass of companions
and the orbital period of the binary system as

f(P,M) ∝M (γ+1)/3P (2γ−1)/3. (50)

Here we adapt the conventional value of γ = −1 (Kouwenhoven
et al. 2007), which results in a mass-independent distribution func-
tion for the orbital period of binary stars as f(P ) ∝ P−1 or in
terms of the GW wavelength f(λg) ∝ λ−1

g . Substituting this dis-
tribution function in equation (48) and using a none-zero value for

the number density of binary systems in the strong lensing galaxy,
the optical depth obtain as follows:

τ(λe) =
πn0w

2

(λmaxg )2 − (λming )2

log(λmaxg,0 /λming,0 )
, (51)

where ω is the size of strong lensing galaxy that the trajectory of
light of one of the images crosses it and n0 is the average number
density of binary stars in a typical galaxy. We adapt the possible
range for the period of the binary stars (Kouwenhoven et al. 2007)
from P 0

min = 0.5 d to P 0
max = 0.15Myr. Substituting the numer-

ical range of GW wavelength both for λg and λg,0, for the EW
wavelength of λe = 0.6 cm, equation (51) results in

τ ' 0.2

(
n0

1pc−3

)(
w

10kpc

)
. (52)

Taking n0 ' 1pc−3, as the typical number density of stars inside
a galaxy where more than half of them are binaries, the result of
optical depth calculation means that having a quasar with the mul-
tiple images due to the strong lensing by a galaxy with the size of
10 kpc , the probability for the detection of GW-EW interaction is
about 20 percent.

5 CONCLUSION

In this work, we proposed an indirect observational method for de-
tection of the gravitational waves (produced by a binary star) via
the interaction with the electromagnetic wave from a distant source
such as a quasar. We have investigated the propagation of the elec-
tromagnetic waves in the perturbed Minkowski and FRW spaces
and derived a generic differential equation where for the specific
conditions, we recovered the results from the previous studies. The
formalism in these two spaces are similar, expect that we replaced
the comoving time in the Minkowski space with the conformal time
in the FRW space. Also the amplitude of fields decay with the ex-
pansion of the Universe.

We have shown that the solution of the differential equation
for the electromagnetic field is a Kirchhoff integral where the phase
of the field can be replaced with the concept of the Fermat potential.
For the case that the source of electromagnetic wave and the source
of gravitational wave are located at large enough distances from the
observer, the integral simplifies to the Huygens-Fresnel principle.
The formalism is similar to the standard optics expect replacing the
refraction index in the optics with the perturbations of the metric
in our study. Here in the work, we introduced the concept of grav-
itational grating, where similar to the optical grating can produce
phase-shifting and the diffraction pattern on the observer plane.

For the limit of λe → 0, we can recover the results of the
geometric optics and unlike to the wave optics effect, the geometric
optics effects is too small to be observed. Our results in this part
was consistent with the previous studies. Taking into account the
wave optics effects, the distortion of the wavefront, in the order
of one wavelength of the electromagnetic radiation can produce the
diffraction pattern with the angular separation in the order of λe/λg
between the fringes. We emphasized that while this phase-shifting
is essential for detection of the interference pattern, however we
should be careful about the temporal coherency where for larger
phase-shifting the wave optics effects faded out.

Taking into account a relative motion of the observer-the
source of gravitational wave and a quasar results in that the ob-
server moves through the diffraction pattern on the observer plane.
We have shown that the observations in the milli-meter wavelength
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results in a modulation of the light curve in the order of few hours.
The practical procedure for the observation of this phenomenon is
the long term monitoring of the multiple images of the quasars in
the strong lensing systems, where some of images cross the lensing
galaxy. The advantage of this method is that (i) we can remove the
intrinsic variations of the quasars by time-delay shifting and (ii) for
those images cross the strong lensing galaxy, the optical depth of
the electromagnetic wave-gravitational wave interaction is around
0.2. This method can open a new window for indirect detection of
gravitational waves.

I would like to thank Marc Moniez, Shant Baghram, Hes-
samaddin Arfaei, Viktor Toth and Bahram Mashhoon for their use-
ful comments. Also I would like to thank anonymous referee for
his/her useful comments. This work was supported by Sharif Uni-
versity of Technology’s Office of Vice President for Research under
Grant No. G950214.
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