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Abstract7

Phase-field approaches to fracture based on energy minimization principles have been rapidly gaining popularity in

recent years, and are particularly well-suited for simulating crack initiation and growth in complex fracture networks. In

the phase-field framework, the surface energy associated with crack formation is calculated by evaluating a functional

defined in terms of a scalar order parameter and its gradients. These in turn describe the fractures in a diffuse sense

following a prescribed regularization length scale. Imposing stationarity of the total energy leads to a coupled system

of partial differential equations that enforce stress equilibrium and govern phase-field evolution. These equations are

coupled through an energy degradation function that models the loss of stiffness in the bulk material as it undergoes

damage. In the present work, we introduce a new parametric family of degradation functions aimed at increasing the

accuracy of phase-field models in predicting critical loads associated with crack nucleation as well as the propagation

of existing fractures. An additional goal is the preservation of linear elastic response in the bulk material prior to

fracture. Through the analysis of several numerical examples, we demonstrate the superiority of the proposed family

of functions to the classical quadratic degradation function that is used most often in the literature.
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1. Introduction9

The accurate simulation of fracture evolution in solids is a major challenge for computational algorithms, in large10

part due to crack paths that are generally unknown a priori. In this regard, phase-field approaches have shown great11

potential with their ability to automatically determine the direction of crack propagation through minimization of an12

energy functional. The phase-field framework naturally handles the emergence of phenomena such as crack nucleation13

and branching without the need to introduce additional criteria. In particular, formulations derived from the variational14

theory of Francfort and Marigo (1998) have received a lot of attention from the applied mechanics community due to15

the latter’s strong ties to Griffith’s theory for brittle fracture. Phase-field models belong to the category of continuum16

approaches for fracture propagation, utilizing a diffuse representation of cracks in place of actual discontinuities. The17

amount of crack regularization is controlled via a prescribed length scale ` that constitutes an additional parameter of18

the model.19

The aim of the present work is to address two long standing issues associated with the phase-field formulation that20

arise in conjunction with use of the now-classical quadratic degradation function. The first has to do with premature21

stiffness degradation stemming from the evolution of damage around regions of stress concentration. The second and22

more serious issue deals with the observed dependence of simulated failure loads on the phase-field regularization23

parameter, a phenomenon that has largely gone unexplored in the literature until very recently. The problem is most24

noticeable in cases of crack growth emanating from an explicitly meshed initial fracture and undermines the usefulness25
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of phase-field approaches in solving problems that involve crack initiation at a priori unknown locations (Klinsmann26

et al., 2015). The parameter ` was initially introduced by Bourdin et al. (2000) as a purely mathematical construct that27

allows for the Griffith energy corresponding to a discrete crack to be recovered in the limit as ` goes to zero, in the28

sense of Γ-convergence (Braides, 2006). Of the two aforementioned issues, the first may be remedied by making use of29

alternative formulations as discussed in Pham et al. (2011). On the other hand, the dependency of mechanical response30

on ` is not yet fully understood. It has been suggested recently that the latter should be viewed as a material parameter31

that is closely connected to the crack nucleation stress (Bourdin et al., 2014; Mesgarnejad et al., 2015; Nguyen et al.,32

2016). While we consider the two points raised above as distinct issues, we nonetheless recognize that they are also33

closely inter-related, in particular because the first often exacerbates the second.34

Our contribution in the following work is twofold. First, we provide a conceptual explanation of how the choice of35

length scale can result to either delay or acceleration of failure under quasi-static conditions. Secondly, we introduce36

a new family of degradation functions that allows for correctly reproducing the onset of failure for reasonably chosen37

arbitrary values of the regularization parameter. The latter point is important since the problem of regularization-38

dependent material response is not solved in the alternative formulations previously mentioned, and furthermore is39

not only confined to brittle fracture as demonstrated in the numerical results of Areias et al. (2016) on cracking in40

elastoplastic materials. Enthusiasm in the relatively new phase-field paradigm has led to its application in a number of41

diverse problems, which include cracking in piezoelectric solids (Miehe et al., 2010b), fluid-driven fracture propagation42

(Mikelić et al., 2015; Miehe et al., 2015b), thermal shock-induced cracks (Bourdin et al., 2014) and fragmentation of43

battery electrode particles (Miehe et al., 2015a). This underscores the need for quantitative accuracy with regard to44

the fracture model, particularly in the case of crack nucleation which is often the critical failure mechanism for many45

such applications.46

The remainder of this paper is structured as follows: We begin in Section 2 with a discussion of important fun-47

damental concepts underlying the phase-field approach as well as our motivation for pursuing the current research48

direction. Specifics regarding the formulation used in the present work are given in Section 3 which also includes im-49

portant details with regard to numerics. In particular for the case where the phase-field evolution equation is nonlinear,50

we outline a linearization scheme based on a truncated Taylor series approximation that avoids the implementation of51

nested loops in the solution scheme. The following two sections contain the main novelties of the current work: sec-52

tion 4 begins with a numerical example demonstrating the apparent contradiction that is often seen between simulation53

results and what is expected from the Γ-convergence property of the fracture phase-field model. This is followed by a54

discussion which aims to explain why the latter alone is not sufficient to ensure the proper behavior of the model. In55

Section 5, we propose a new parametric family of degradation functions that aims to increase the accuracy of phase-56

field simulations by addressing key issues discussed in the previous section. Superiority of the resulting formulation57

over the classical model employing quadratic degradation is demonstrated via several numerical examples in Section58

6. Finally, concluding remarks and outlook are given in Section 7.59

2. Theoretical aspects of phase-field modelling60

The phase-field framework was first introduced by Fix (1983) and Langer (1986) for modeling phase transitions61

in materials, and later extended to free discontinuity problems by Ambrosio and Tortorelli (1990) who worked on62

image segmentation. Its specific application to crack propagation in solids is much more recent, and is the result of63

independent work by researchers coming from the fields of physics (Aranson et al., 2000; Karma et al., 2001) and64

applied mechanics (Bourdin et al., 2000). We adapt the latter perspective in this study, and furthermore note that while65

the original formulation introduced by Bourdin et al. has remained virtually unchanged in current usage, the argument66

on what constitutes proper solutions to the resulting equations as well as the meaning of key quantities is far from67

resolved. In view of this, we begin with a short review of theory pertaining to the phase-field formulation for brittle68

fracture along with a discussion of significant developments in the field in order to provide context for the present work.69

2.1. Brittle fracture: from Griffith to Francfort-Marigo70

Griffith (1921) can be credited as being the first to formally state the thermodynamic principles governing the71

propagation of fractures in brittle materials that has become the foundation of modern linear elastic fracture mechanics.72

According to Griffith’s theory, an existing crack will propagate when the rate of energy release G associated with crack73
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extension exceeds a critical value equal to the material fracture toughness, Gc . This can be expressed via the following74

set of Kuhn-Tucker conditions (Negri and Ortner, 2008):75

G � Gc  0 (1a)

ȧ � 0 (1b)

(G � Gc ) ȧ = 0 (1c)

where ȧ denotes the rate of crack length increase. The first inequality precludes the case of unstable cracking where76

G > Gc , while the second is an irreversibility constraint that prevents unphysical healing of fractures. Finally, condition77

(1c) implies that G must be equal to Gc when the crack is growing, and conversely that a crack cannot extend when78

G < Gc . An important shortcoming of Griffith’s theory is its inability to accommodate crack nucleation or predict79

the branching of fractures. In an effort to overcome this limitation, an extension of the framework was developed by80

Francfort and Marigo (1998) in the form of a variational theory of fracture, which is based on an energy minimization81

paradigm. It stipulates that the total potential energy corresponding to a linear elastic body Ω containing a set of crack82

points Γ can be written as a sum of bulk and surface terms:83

Ψ (u,Γ) =

⌅
Ω\Γ

1

2
ε (u) : Ce : ε (u) dΩ + GcH

n�1 (Γ) (2)

where ε (u) = 1
2

[r ⌦ u + u ⌦ r] is the symmetric small-strain tensor, Ce is the standard linear isotropic elasticity84

tensor, and Hn�1 is the (n � 1)-dimensional Hausdorff measure giving the surface area associated with Γ. Equation85

(2) is referred to as the Griffith functional, and it is assumed that for some given boundary conditions onΩ, the unknown86

displacements u as well as the crack set Γ can be obtained via a global minimization of said functional subject to the87

irreversibility condition88

Γt+∆t ◆ Γt (3)

that is comparable to (1b). In contrast, Griffith requires only stationarity of (2). Furthermore in the variational theory,89

Γ is not restricted to consist of a single crack, and hence a body that is initially without flaw (Γ = ;) may nucleate a90

crack if the resulting configuration has lower total energy compared to one where no crack forms. Similarly, a crack91

is allowed to branch if this leads to a lower potential energy than simple extension. The directions of advance are92

naturally obtained as those leading to minimum increase in (2), so that in theory the energy minimization framework93

is able to handle crack initiation and branching without the need to introduce additional criteria.94

2.2. Phase-field and gradient damage models95

The main difficulty in performing a direct minimization of the Griffith functional is that u is generally discontinuous96

across Γ, so that (2) contains a locus of jump sets whose locations are a priori unknown and which generally do not97

align with the predefined domain discretization used for numerical calculations. To render the problem tractable,98

Bourdin et al. (2000) adopted a strategy wherein the minimization is instead performed on an approximation of the99

Griffith functional having regularized jump sets so that u is continuous over the entire domain. This was inspired by the100

earlier work of Ambrosio and Tortorelli (1990, 1992) who solved a similar problem in image segmentation involving101

the functional of Mumford and Shah (1989). A scalar order parameter known as the crack phase-field is introduced102

to interpolate between fractured and intact regions, with a characteristic length parameter ` controlling the amount103

of regularization. The validity of such as strategy rests on whether the regularized approximation tends towards the104

original functional as ` goes to zero, in the sense of Γ-convergence (Braides, 2006). Although an additional equation105

governing the phase-field evolution must now be solved along with the linear momentum equation, the main advantage106

of this approach is that numerical solutions may be obtained via classical finite element algorithms as both u and the107

phase-field are continuous. Bourdin et al. (2000)’s regularization of (2) has the form108

Ψ (u,�) =

⌅
Ω

1

2

h

(1 � �)2 + 
i

ε (u) : Ce : ε (u) dΩ + Gc

⌅
Ω

 

1

2`
�2 +

`

2
kr�k2

!

dΩ (4)

where � is the phase-field that takes on values between 0 and 1, corresponding respectively to fully intact and broken109

states. On the other hand,  is a small positive constant meant to ensure positivity of the bulk energy as �! 1. The two110
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important features of the above expression are (a) the replacement of Hn�1 (Γ) by an elliptic functional that calculates111

the combined length of all the cracks, and (b) the coefficient (1 � �)2 +  known as the energy degradation function112

that penalizes the material stiffness according to the value of �. Equation (4) is essentially a direct adaptation of the113

earlier functional of Ambrosio and Tortorelli (1992), for which a proof of Γ-convergence was subsequently given by114

Chambolle (2004).115

2.2.1. Alternative variational problems116

It was later suggested by Miehe et al. (2010c) that development of elliptic approximations toHn�1 (Γ) could also be117

motivated from a more physical standpoint by considering the 1-dimensional case of an infinitely long bar of uniform118

cross section. Assuming that the bar is aligned with the x-axis and that a single crack fully cuts the bar at x = a, the119

phase-field profile corresponding to this sharp crack is none other than the discontinuous scalar function120

� (x) =

8

><
>:

1, x = a

0, otherwise.
(5)

A regularized approximation of the above can then be made via a function � 2 Φ, where121

Φ =

8

>><
>>:
� 2 H1 (R; [0,1])

�������

� (a) = 1

� (x) is monotonically decreasing away from a

� (x) ! 0 as x ! ±1

9

>>=
>>;
. (6)

Some candidate functions are122

� (x) = exp

 

� |x � a |

`

!

(7)

� (x) =

8

>>><
>>>:

 

1 � |x � a |
p

2`

!2

, x 2
h

a �
p

2`,a +
p

2`
i

0 otherwise

(8)

� (x) =

 

1 +
|x � a |

`

!

exp

 

� |x � a |

`

!

. (9)

We note that the function (7) utilized by Miehe et al. (2010c) is in fact the solution obtained by minimizing the functional123

of Bourdin et al. (2000) in one dimension. On the other hand, (8) is a compactly supported function that leads to a124

variational inequality problem (Pham et al., 2011), while (9) is obtained by solving a 4th order governing equation and125

was introduced by Borden et al. (2012) with the aim of loosening the mesh size requirements with respect to ` at the126

same time taking advantage of numerical methods that can adequately model C1-continuous solutions. Figure 1 shows127

a comparison of the three functions mentioned above. It can be observed that for a given value of `, the amount of128

crack diffusion is additionally dependent on the specific form of � (x).129

Higher order phase-field formulations for fracture have so far not achieved the same popularity as their lower order130

counterparts. This is mainly due to the higher order of continuity that they require in conjunction with numerical131

solutions, which is expensive to obtain with traditional frameworks such as finite elements. In addition, Γ-convergence132

is yet to be proven for these formulations. On the other hand, Li et al. (2015) point out that the incorporation of general133

anisotropic effects related to the surface energy requires a formulation that is at least 4th order.134

2.2.2. Damage135

The connection between phase-field approaches and nonlocal damage models was explored by Pham et al. (2011),136

who noted that elliptic functionals approximating (2) can be seen as specific cases of the integral of a general state137

function pertaining to a gradient damage model:138

W` (ε (u) ,�,r�) =
1

2
ε : C (�) : ε + w (�) +

1

2
w1`

2r� · r� (10)

where w (�) is a monotonically increasing function in the interval [0,1] with w (0) = 0 and w (1) = w1. They suggest139

using the linear form w (�) = w1� which leads to models having a real elastic phase with no premature decrease in140
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Figure 1: Phase-field regularizations of a sharp crack at x = a using various candidate functions.

material stiffness, at the cost of solving a variational inequality problem for the damage evolution. In contrast, the141

quadratic form of w (�) employed in (4) leads to material behavior having no real elastic phase, with damage already142

occurring at the onset of loading (Amor et al., 2009). Bulk energy release resulting from evolution of the phase-field143

is facilitated through a damage-dependent elasticity tensor C (�) as seen in (10). The simplest form which leads to144

isotropic behavior consists of the multiplicative ansatz145

C (�) = g (�) Ce , (11)

in which g (�) is the energy degradation function mentioned previously that is non-negative in the interval [0,1] with146

g (0) = 1 and g (1) = g
0 (1) = 0. Such form however has limited applicability, since it allows for unphysical compres-147

sive cracking based on Gc . Lancioni and Royer-Carfagni (2009) adopted the above model to shear cracking by having148

g (�) act only on the deviatoric portion of the strain. This was subsequently improved upon by Amor et al. (2009) who149

proposed that crack growth be driven also by the spherical part of the energy when the volumetric strain is positive.150

This results in more realistic anisotropic behavior where the material is allowed to crack in volumetric expansion and151

shear, but not in volumetric compression. An alternative formulation was introduced by Miehe et al. (2010a,c) in which152

degradation occurs only on tensile components of the principal strain tensor, leading to pure mode-I cracks.153

2.3. Going back to Griffith154

The functional Ψ (u,�) in (4) is neither linear nor convex, which makes the task of finding global minimizers155

non-trivial. Bourdin et al. (2000) proposed an alternate minimization algorithm that takes advantage of the convexity156

of Ψ with respect to either u or � when the other is held constant. Nonetheless, solution schemes based on descent157

algorithms only converge to local minimizers or saddle points and are by themselves inadequate for obtaining global158

minimizers. It was found that naive application of the alternate minimization often resulted in solutions that exhibited159

unphysical dips in the total energy, particularly when crack growth is brutal. In an attempt to remedy this behavior, a160

heuristic backtracking scheme was developed by Bourdin et al. (2008) (with subsequent improvements by Mesgarnejad161

et al. (2015)) based on an additional optimality condition that enforces monotonic evolution of the total energy when162

the load is also monotonically increasing. From a phenomenological standpoint however, the main objection to using163

global energy minimization is that it allows for evolutions where the current configuration jumps over arbitrarily large164

energy barriers in order to reach the new configuration corresponding to the global minimizer (Negri and Ortner, 2008).165

While this enables the strict preservation of energy conservation, it may also result in unphysical response where cracks166

propagate at lower energy release rates than Gc which violates Griffith’s criterion. Recently, Larsen (2010) introduced167

the notion of "-stability as a stepping stone towards formulations that can predict crack paths based on local minimality,168

which is in turn closer to Griffith’s original idea. As with Griffith’s model, such solutions will also exhibit dissipation169

in the total energy in cases where crack propogation occurs in a brutal manner. However as pointed out by Negri and170

Ortner (2008), brutal cracking is primarily a dynamic phenomenon which explains why the total energy cannot be171

completely accounted for in a quasi-static framework.172
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2.4. On the treatment of `173

If we settle for invoking local versus global minimality, then classical solution schemes that were previously deemed174

inadequate are now robust without the need to perform backtracking. We are left with the non-convexity of Griffith’s175

functional, but this is easily dealt with via alternate minimization as earlier mentioned. On the other hand, we end up176

again with Griffith’s original conundrum concerning crack initiation. It turns out that the saving grace is none other than177

the regularization of the functional, which as will be discussed in the later sections actually allows for crack initiation178

in the absence of stress singularities provided that the characteristic length ` associated with the regularization is finite.179

This also brings us more in line with nonlocal damage theory, in which the thickness of the localization zone is usually180

a constant parameter associated with some physical internal length.181

The notion of an intrinsic length scale relating Gc to the material strength �c was originally introduced by Irwin182

(1958) based on the assumption that a plastic zone develops in front of a propagating crack. An estimate of the length183

of this zone ahead of the crack tip is given by184

lc =
EGc

�2
c

(12)

However Bažant and Pijaudier-Cabot (1989) point out that the above quantity is distinct from the characteristic length185

` of the nonlocal continuum; the latter is defined as186

` = ↵
EGc

�2
c

(13)

and describes the width of the softening zone analogous to the minimum spacing of cracks in a discrete-crack model,187

with ↵ being a constant that depends on the particular nonlocal formulation. The crucial difference is that while lc can188

be rightly viewed as a material property, ` is in contrast a model parameter due to ↵. Nevertheless within the context189

of a specific model, the value of ↵ is already predetermined so that ` again acts as a material parameter dependent on190

E, Gc and �c . On the other hand it has been observed (e.g. Klinsmann et al., 2015) that for cracks modeled as explicit191

boundaries in the mesh, numerically predicted critical energy release rates exhibit a dependence on ` when the latter192

is not sufficiently small. It can thus happen for certain situations that �c and Gc impose conflicting requirements on `.193

Furthermore the assumption of material-dependent regularization parameters means that in heterogeneous media, the194

characteristic length takes on a different value for each medium so that the diffuse crack becomes thicker or thinner as195

it passes from one material to the next.196

Let us now consider a nonlocal formulation that is dependent on an additional set of parameters represented by197

some vector η so that ↵ = ↵
�

η
�

. If we assume that the function is invertible, then we can rewrite (13) as198

η = ↵�1

 

`�2
c

EGc

!

(14)

implying that ` can now be chosen independently of E, Gc and �c , provided that η exists. From (10) and (11) we can199

see that the most straightforward way to introduce such parameters into the model is through the degradation function,200

and it is in fact this realization that has motivated the present work.201

3. Governing equations and numerical implementation202

For the remainder of this study, we have chosen to adopt the functional of Bourdin et al. (2000) by reason of its203

simplicity. Incorporating the work done by external forces, the regularized total potential energy for a given body Ω204

subject to boundary conditions is given by205

Π = Ψ �W =

⌅
Ω

"

g (�)  (ε) + Gc

 

1

2`
�2 +

`

2
r� · r�

!#

dΩ �
⌅
Ω

b · u dΩ �
⌅
@Ωt

t · u dS (15)

where  (ε) = 1
2
ε : Ce : ε is the Helmholtz free energy density and @Ωt denotes the part of the boundary for which206

Neumann (i.e. traction) conditions are prescribed. The quantity b represents the body force, while t is the vector of207
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prescribed tractions acting on the Neumann boundary. By imposing the stationarity of Π we obtain the variational208

equation209

�Π =

⌅
Ω

g (�)
@ 

@ε
: �ε dΩ �

⌅
Ω

b · �u dΩ �
⌅
@Ωt

t · �u dS

+

⌅
Ω

g
0 (�)  (ε) �� dΩ + Gc

⌅
Ω

 

1

`
� �� + `r� · �r�

!

dΩ = 0. (16)

The above equality must hold for arbitrary values of �u and ��, implying that210

⌅
Ω

g (�)
@ 

@ε
: �ε dΩ =

⌅
Ω

b · �u dΩ +

⌅
@Ωt

t · �u dS (17a)

⌅
Ω

g
0 (�)  (ε) �� dΩ + Gc

⌅
Ω

 

1

`
��� + `r� · r��

!

dΩ = 0. (17b)

These constitute the weak form of the governing equations. Noting that σ = @ /@ε, the equivalent strong formulation211

may be obtained by applying Gauss’ divergence theorem yielding the following coupled system:212

r · ⇥g (�)σ
⇤

+ b = 0 on Ω (18a)

g (�)σ · n = t on @Ωt (18b)

u = ū on @Ωu (18c)

Gc`r2� � Gc

`
� = g

0 (�)  (ε) on Ω (18d)

r� · n = 0 on @Ω. (18e)

Equations (18a) to (18c) comprise the linear momentum equation and its corresponding boundary conditions, while213

(18d) is the phase-field evolution equation with the associated boundary condition given by (18e). As mentioned earlier,214

� should go to zero away from the crack. Thus it is tacitly assumed that the domain is of sufficient size to provide215

adequate separation between the regularized crack and the boundary, allowing the phase-field to decay to values that216

are small enough to approximate this condition.217

Extension of the irreversibility condition (3) to the regularized case is not immediately obvious, since the interme-218

diate states 0 < � < 1 do not have a straightforward physical interpretation. The natural course from the perspective219

of damage mechanics is to enforce the condition220

� (x)t+∆t � � (x)t 8x 2 Ω. (19)

This can be imposed via an additional penalty term in the phase-field evolution equation (Miehe et al., 2010c), or221

alternatively through a history variable H that replaces the quantity  (ε) in (18d), defined as (Miehe et al., 2010a)222

H (x, t) = max
s2[0, t]

 (ε (x, s)) (20)

A closer look at the phase-field localization process however reveals that (19) may not be the best extension of (3).223

For example in the 1-dimensional case, Kuhn et al. (2015) demonstrate that damage localization corresponding to a224

diffuse crack involves not only the growth of � near the crack tip but also a decrease in adjacent regions which enables225

the phase-field to correctly settle to the exponential profile given by (7). Based on this observed behavior, a strict226

imposition of (19) may lead to an overestimate of the crack length. Consequently, one can use a modified version of227

(20) in which irreversibility is imposed only when � exceeds a certain threshold, i.e.228

H (x, t) =

8

>>><
>>>:

max
s2[0, t]

 (ε (x, s)) if � > �c

 (ε (x, t)) otherwise.

(21)

The parameter �c represents the maximum value of damage that is allowed to heal during unloading. For a material229

point undergoing damage �  �c , the resulting stress-strain curves will be nonlinear, with the amount of departure230
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from linearity dependent on the specific form of the degradation function. Nonetheless having �c > 0 allows the stress231

paths for subsequent unloading and reloading to coincide with the initial loading curve, which cannot be achieved232

otherwise. For the present work, we have chosen to set �c = 0.5 in all of our simulations.233

The coupled system described in (18) is implemented in a classical finite element framework, with the primary234

unknowns being the displacement u and phase-field �. In a 2-dimensional setting, these are expressed in terms of the235

corresponding nodal degrees of freedom as236

u =

m
X

I=1

N
u

I uI and � =

m
X

I=1

NI�I (22)

wherein237

NI =

26664

NI 0

0 NI

37775
(23)

with NI = NI (x) denoting the shape function associated with node I, and uI and �I the respective displacement and238

phase-field degrees of freedom. The strain and phase-field gradient are given by239

ε =

m
X

I=1

B
u

I uI and r� =
m

X

I=1

B
�

I
�I (24)

in which240

B
u

I =

26666664

NI,x 0

0 NI,y

NI,y NI,x

37777775

and B
�

I
=

26664

NI,x

NI,y

37775
. (25)

The former is the symmetrized gradient matrix associated with the Voigt form of the strain tensor. The test functions241

and their corresponding derivatives can be obtained from the above expressions by replacing uI and �I with �uI and242

��I respectively. Noting that the latter two quantities must be arbitrary, numerical approximation of the weak form in243

(17) yields the following nonlinear system of equations at each node:244

r
u

I =

⌅
Ω

g (�) BuT
I σ dΩ �

⌅
Ω

N
uT
I b dΩ �

⌅
@Ω

N
uT
I t dS = 0 (26a)

r
�

I
=

⌅
Ω

"

Gc` B
�T

I
r� +

Gc

`
NI�

#

dΩ +

⌅
Ω

NIg
0 (�) H dΩ = 0 (26b)

Due to the non-convexity of (15), we solve the above coupled system by means of the alternate minimization algorithm245

outlined in Bourdin et al. (2000). This involves cycling between (26a) and (26b): the linear momentum equation is246

solved first using values of � from the previous iteration, after which the updated values of u are used to determine the247

current history field according to (21). The phase-field evolution equation is then solved utilizing the updated values248

of H. The iterations are carried out repeatedly until the prescribed criteria on the size of residuals and inter-iteration249

corrections on the unknowns are met.250

For degradation functions in which the derivative g
0 (�) is nonlinear, the subsystem represented by (26b) is also251

nonlinear resulting in the need to perform nested iterations: an outer loop that cycles between subsystems, and an inner252

loop implementing the Newton-Raphson method for the nonlinear subsystem. In contrast, a naive implementation of253

the alternate minimization algorithm wherein the linearized phase-field equation is solved only once before going back254

to linear momentum is generally unstable and leads to incorrect results. That is, in the subsystem255

{�}m+1
i = {�}mi �

h

K
��

⇣

�mi

⌘i

�1 n

r�
om

i
(27)

corresponding to the (m + 1)th iteration within the ith time step, use of the exact Jacobian given by256

K
��

I J

⇣

�mi

⌘

=

⌅
Ω

"

Gc` B
�T

I
B
�

J
+

 

Gc

`
+ Hg

00

⇣

�mi

⌘

!

NI NJ

#

dΩ (28)
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often produces an incorrect evolution of the phase-field and eventual blow-up. However, we have found that such an257

approach can be made to work by replacing g
00

⇣

�m
i

⌘

with an approximate expression derived from low order terms in258

a Taylor expansion. Assuming that the degradation function is smooth, g0 (�1) can be obtained as an infinite sum of259

terms involving higher order derivatives of g evaluated at �2 2 [0,1]:260

g
0 (�1) = g

0 (�2) + g
00 (�2) (�1 � �2) +

g
000 (�2)

2
(�1 � �2)2 + . . . (29)

Now let �1 = 1 so that g0 (�1) = 0. Dropping higher order terms as well as the subscript on �2, we obtain261

0 ⇡ g
0 (�) + g

00 (�) (1 � �) (30)

which then gives us our approximation for the 2nd derivative of g:262

g
00

app (�) = �g
0 (�)

1 � � . (31)

The above technique allows for the straightforward implementation of the numerical model within more rigidly struc-263

tured software frameworks (e.g. commercial programs) that might not have the capability to implement a full Newton264

scheme separately on each subsystem.265

4. A curious case of crack nucleation266

Pre-existing cracks may be accounted for in two ways: (a) through initialization of the phase-field itself, and (b) by267

modeling the crack faces directly as internal boundaries in the discretized geometry. Sicsic and Marigo (2013) provide268

analytical results showing that the growth of fully developed fractures described via the phase-field obeys Griffith’s269

law as the regularization parameter goes to zero. On the other hand it has been shown in numerical experiments that270

the same is not generally true for the extension of cracks built into the mesh. Recent studies (e.g Klinsmann et al.,271

2015; Nguyen et al., 2016) have observed that the simulated critical energy release rate (or analogously, the peak272

load) overshoots the correct value for sufficiently small `. This inconsistency becomes more understandable upon273

the realization that propagation of mesh-described cracks has more to do with nucleation rather than extension in the274

context of phase-field approaches. Similar behavior can be observed in the case of crack nucleation at a notch or275

reentrant corner; the extension of mesh-modeled cracks can be seen as a limiting case of the former when the notch276

angle goes to zero. One can argue that there are three distinct types of simulated material response in connection277

with the phase-field model for brittle fracture: (a) propagation of phase-field-described cracks which is relatively well-278

understood, (b) crack nucleation in the absence of stress singularities which will be discussed in Section 5.4, and (c)279

crack nucleation in the presence of singularities. The last category can be understood to include both weak stress280

singularities which arise in connection with V-notches, and strong singularities that are associated with sharp cracks.281

4.1. Preliminary numerical example282

To illustrate the dependence of the material response on the phase-field length scale, we simulate fracture prop-283

agation in a homogeneous specimen containing a center crack and subjected to tensile loading as shown in Fig. 2a.284

Assuming that H is taken large enough such that the tensile stresses at the boundary are acceptably uniform, the mode-I285

stress intensity factor can be computed for finite values of the ratio a/b as286

KI = �
p
⇡a F (a/b) (32)

where F (a/b) is a shape factor given by287

F (a/b) =

"

1 � 0.025

✓

a

b

◆2

+ 0.06

✓

a

b

◆4
#
r

sec
⇡a

2b
. (33)
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Figure 2: Problem of a center-cracked specimen subjected to uniform tension at the far-field, showing (a) the full specimen geometry, (b) computa-

tional domain and boundary conditions, and (c) load-displacement curves for different values of ` and mesh refinement.

The above formula has a reported accuracy of 0.1% or better for any a/b (Tada et al., 2000). We note that the case288

where a/b = 0 and H = 1 corresponds to the original fracture problem of Griffith (1921), for which F (0) = 1. For289

the plane strain case, the critical stress intensity factor and strain energy release rate are related by290

Gc = K2
I c

 

1 � ⌫2

E

!

. (34)

Combining the above with (32), we obtain the following expression for the critical failure load:291

Pc =
b

F (a/b)

"

EGc
�

1 � ⌫2
�

⇡a

#1/2

. (35)

The actual computational domain is shown in Fig. 2b along with the relevant boundary conditions; due to symmetry,292

only half the geometry needs to be considered. The initial crack Γ of length a in the computational domain is modeled as293

part of the geometry, and no initialization of the phase-field is performed to account for its presence. Actual dimensions294

used are a = 10mm, b = 2a and H = 10a. Thus a/b = 0.5 leading to F (a/b) = 1.1862. The material constants are295

E = 70,000 MPa, ⌫ = 0.22 and Gc = 0.007 N/mm. From the preceding equation, we obtain the critical failure load296

as Pc = 68.26 N. The simulation is carried out using monotonic displacement control with the specimen gradually297

stretched in increments of ∆U = 2.5 ⇥ 10�4 mm until failure occurs in the form of brutal cracking. In order to obtain298

a precise determination of the failure load, ∆U is reduced to 2.5 ⇥ 10�5 mm as failure is approached. Figure 2c shows299

the dependence of simulation results on the phase-field characteristic length as well as the relative mesh refinement,300

`/he . It can be seen that larger values of ` lead to an increase in deviation from linear behavior, whereas a smaller `301

drives the peak load upwards. More importantly, the results show that the peak load does not converge to the analytical302

value as the regularization parameter is decreased, but rather overshoots the true solution for as ` is reduced past a303

certain threshold. As can be observed, the severity of this phenomenon is also influenced by the mesh refinement, and304

in particular is greater for coarser meshes relative to `. We have found that different sets of material parameters give305

qualitatively the same behavior as what we have shown.306

Decreasing the value ` even further (up to two orders of magnitude) for the above problem does not appear to307

improve accuracy with respect to Pc . As shown in Fig. 3, the error in the simulated failure load remains above 10% for308

the smallest value of ` (= 0.0025 mm) used. However the need to properly resolve the reduced length scale in the mesh309
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Figure 3: Dependence of peak load on ` for the center-cracked specimen, obtained using quadratic degradation and a mesh refinement ratio of

`/h = 8. For comparison, the semi-analytical peak load is Pc = 68.26 N. Also shown are the typical speeds of crack advance during the critical

time step. Note that the left axis uses a standard linear scale for the peak load, while the bottom and right axes have logarithmic scaling. A linear

relation between the regularization parameter and the crack advance speed corresponds to a best-fit line to the blue plot having a slope of 1:1. For

the above plots, ` 2 {0.0025, 0.005, 0.01, 0.02, 0.04, 0.08, 0.16}.

means that the computational size of the problem increases substantially for very small values of `. We have found310

that for the quasi-static case as employed in the present work, the average crack advance between iterations within the311

critical time step has more or less a linear relation with `. In the case where ` = 0.0025 mm for example, the crack312

tip moves an average distance of around 0.0003 mm per iteration so that one would need around the order of 33,000313

iterations for the crack to fully extend through the specimen. Using a mesh refinement ratio of `/h = 8, the resulting314

discretization contained a total number of ⇡ 5.97 million DOFs, and a single iteration of the alternate minimization315

algorithm took around 35 seconds to complete on a workstation equipped with a quad-core processor running at 2.8316

GHz with hyper-threading, and using a sparse direct solver with both equation assembly and solution fully parallelized.1317

This implies a running time of more than 13 days for the critical time step. To save time in generating the data for Fig. 3,318

we terminated the simulations when it was clear from inter-iteration output that the crack had started to propagate.319

4.2. Exploring the overshoot phenomenon320

The apparent lack of convergence in the material response with respect to ` in the above numerical example seems321

to contradict the Γ-convergence property of (4), however this can be explained by the fact that Griffith’s criterion does322

not actually involve the energy functional directly but rather its gradients (Fréchet derivatives). This nuance has no323

corresponding counterpart in image segmentation, and makes phase-field simulation of brittle fracture a fundamentally324

different problem from the former, despite the similarity of the Griffith energy to the Mumford-Shah functional. Thus325

while Γ-convergence of the regularized approximation to the sharp-boundary functional is by itself sufficient to produce326

physically meaningful results in an imaging context, this is no longer the case for brittle fracture.327

At present, our understanding of the above phenomenon relies on numerical evidence obtained from analyzing328

problems such as the one presented in Section 4.1. To elucidate further, recall that for a material which fractures329

according to Griffith’s theory as summarized in (1), the following inequality applies with regard to energy increments:330

331

��Ψe
b  Gc�Γ. (36)

1We exploit the fact that sparsity profiles for the global tangent matrices do not change in the absence of adaptive mesh refinement, so that the

symbolic factorization step can be done once in the beginning and then skipped in subsequent iterations. Without such optimization, the running

time for each iteration increases to around 70 seconds.
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for some arbitrary small crack extension �Γ > 0, where Ψe
b

denotes the exact elastic bulk energy corresponding to the332

presence of a discrete crack Γ. Now ��Ψe
b
= G�Γ where G is the energy release rate at the crack tip, so the strict333

inequality ��Ψe
b
< Gc�Γ means that the crack must be stationary due to (1c). If ��Ψe

b
= Gc�Γ, then a positive �Γ is334

admissible and the crack can propagate stably. On the other hand, the reverse inequality ��Ψe
b
> Gc�Γ is generally335

understood as corresponding to brutal cracking. In a quasi-static framework where dynamic effects are disregarded,336

fracture propagation simply continues until a state is reached wherein the condition �Ψe
b
< Gc�Γ is once again satisfied,337

resulting in arrest of the crack. It can be shown that in many cases, such a condition cannot be satisfied for any length338

of crack advance which results in the fracture cutting through the entire width of the domain.339

Similar behavior is manifested by the evolution of � in the diffuse-crack model during brutal crack propagation,340

and can observed by scrutinizing successive iterations within the relevant time step. In contrast to the original the-341

ory however, the phase-field model contains only the equality part of Griffith’s criterion in the phase-field evolution342

equation. That is, (17b) can be written as343

��Ψapp

b
= Gc�Γ (37)

wherein344

�Ψ
app

b
=

⌅
Ω

g
0 (�)  (ε) �� dΩ (38)

�Γ =

⌅
Ω

 

1

`
� �� + `r� · r��

!

dΩ (39)

for some positive �Γ that arises from an arbitrary incremental evolution of the phase-field, denoted by ��. The implica-345

tions of this are immediately obvious when one looks at the strong form of the phase-field equation in (18d): assuming346

that g0 (�) < 0 everywhere except at � = 1 (and this is in fact necessary for damage to evolve at all), then it is clear that347

� must begin moving away from its initial value of 0 from the moment that nonzero stress is induced in the material.348

Furthermore, let ⌘b denote the error arising from using Ψ
app

b
in place of Ψe

b
, i.e.349

⌘b = Ψ
app

b
� Ψe

b . (40)

Plugging the above into (37) and writing �Ψe
b

in terms of G, we obtain the following relation:350

�⌘b = (G � Gc ) �Γ. (41)

From the previous numerical example, we can infer that at some critical loading Us brutal propagation of the crack will351

occur, presumably because now �Ψapp

b
> Gc�Γ for any ��. The equivalent condition in terms of ⌘b and G is given by352

�⌘b < (G � Gc ) �Γ (42)

The different curves in Fig. 2c demonstrate how the actual value of Us depends on `. The key idea is that both �Γ and353

�⌘b are influenced by `, but in varying degrees from one another. In particular, it is no longer just the quantity G � Gc354

that determines the onset of brutal cracking; as can be observed from Fig. 2c, both undershoot and overshoot of the355

correct failure load are possible. The challenge is to have (42) occur at the precise moment that G exceeds Gc , so that356

brutal fracture occurs at the correct magnitude of loading.357

For the numerical example in Section 4.1, the above scenario can be achieved via a proper selection of the regu-358

larization parameter. However, the need to specify ` (and obviously ` > 0) brings into question the benefit of having359

regularized approximations Γ-converge to the Griffith energy at all as ` goes to zero. One can argue that the removal360

of such a requirement is not a disadvantage since it lends more flexibility to the phase-field framework and likewise361

opens the door to other interesting and more exotic approximations of (2), such as the higher order formulations by362

Borden et al. (2014) and Li et al. (2015) that have so far not been proven to be Γ-convergent to Griffith’s energy. More363

importantly, the main problem with relying on calibrating ` in order to obtain the correct instance of failure is that such364

a strategy is not guaranteed to succeed in all possible cases, in particular when the setup is very different from the one365

analyzed above. This is demonstrated in Section 6, where we study a problem for which the aforementioned technique366

does not work at all, at least within practical limitations.367
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4.3. Preserving linearity in the material response368

An important consequence of (41) is that the material response of the regularized model inevitably drifts from linear369

elastic behavior prior to fracture, since growth of G as a result of increasing U must be matched by a corresponding370

increase in the incremental error term �⌘b . Since ⌘b represents the discrepancy between approximate and the exact371

bulk energies, an ever-increasing increment in the error term means that the simulated material behavior deviates372

further and further from linear elasticity with increasing U as evident in Fig. 2c. Some control on �⌘b can be exercised373

through the factor �Γ, i.e. we keep �⌘b small by keeping �Γ small as well. However since �� is arbitrary, we can374

accomplish this only by careful construction of either the degradation function (which affects the bulk energy), the375

crack length functional, or possibly both.376

5. A new family of degradation functions377

The ideas presented in Sections 4.2 and 4.3 can be combined to give a set of properties for what we would consider378

an accurate phase-field model with regard to the extension of mesh-described cracks:379

(a) The simulated critical displacement should preferably be close to the correct value, and380

(b) the accumulated error ⌘b should be kept small prior to the occurrence of brutal fracture.381

Item (b) is quite straightforward, and is achieved by having brutal fracture occur at low values of the phase-field. Such382

behavior is readily observed with the alternatives to quadratic degradation that have appeared in the literature, such as383

the quartic function384

g4 (�) = 4 (1 � �)3 � 3 (1 � �)4 (43)

utilized by Karma et al. (2001) in conjunction with their own phase-field theory, and the cubic function385

g3 (�) = s
h

(1 � �)3 � (1 � �)2
i

+ 3 (1 � �)2 � 2 (1 � �)3 (44)

analyzed by Borden (2012), in which the quantity s controls the slope of the degradation function at the unbroken state.386

Kuhn et al. (2015) have shown that all three functions have similar post-failure behavior in stable crack growth, i.e.387

their differences lie primarily in the prediction of the level of strain or stress at which crack propagation occurs, and388

also in the amount of stiffness reduction observed prior to the onset of cracking.389

Item (a) is more difficult to satisfy, in particular since quantities pertaining to the bulk energy are also dependent on390

material properties. The degradation function must then be parametric, in order to have the means of compensating for391

different values of these properties. We can see that none of the different functions mentioned above possess the latter392

property, so that one is instead forced to rely on tweaking ` as is done with the quadratic degradation function. From a393

conceptual standpoint this is not entirely satisfactory, since ` as a parameter belongs to the crack functional term and394

not the bulk energy. Furthermore a change in the regularization parameter leads to corresponding changes in both the395

bulk and surface terms. On the other hand, introducing additional parameters directly into the degradation function396

enables one to alter the behavior of �⌘b independently of �Γ such that the interpretation of ` as a de facto material397

parameter is no longer forced. In order to accomplish this, such parameters must be strategically placed within g (�).398

For instance, Wilson et al. (2013) developed the single-parameter degradation function399

gw (�; s) = s
26664
1 �

 

s � 1

s

!�237775
(45)

for modeling brittle fracture in piezoelectric ceramics, with the goal of overcoming unphysical anti-damaging effects400

that arise in the model when standard quadratic degradation is used. The parameter s 2 (1,1) is effective in suppress-401

ing nonlinearity in the material response prior to fracture. However as it also influences the peak stress, the length402

scale ` must then also be jointly adjusted to reproduce the correct critical load for different material parameters.403
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5.1. Exponential-type degradation404

Consider now the family of degradation functions defined by the 3-parameter function405

ge (�; k,n,w) = (1 � w)
1 � e�k (1��)n

1 � e�k
+ w fc (�) (46)

where k, n and w are real numbers such that k > 0, n � 2 and w 2 [0,1]. The function fc is a corrector term whose406

role shall be explored in the later discussions. For now let us assume that w = 0 so that (46) has effectively only 2 free407

parameters. The resulting expression has the following properties:408

a) ge (�) is monotonically decreasing,409

b) ge (0) = 1, ge (1) = 0,410

c) g
0

e (0) < 0, g0e (1) = 0.411

The first property ensures that there is no unphysical recovery of material stiffness as the phase-field increases, while the412

second follows from the convention that � = 0 and � = 1 must correspond to fully intact and broken states respectively.413

Furthermore, g0 (0) < 0 is required in order to allow the phase-field to evolve in cases where � is initially set to zero414

everywhere, while g
0 (1) = 0 is necessary for the convergence of � to 1 (i.e. no overshooting) when the material415

becomes fully broken. In choosing the form of (46) we have aimed for a minimal but sufficient number of parameters416

that allows us to have some control in the overall shape of the function in order to restore proper balance between417

bulk and surface energy increments, as well as suppress unphysical stiffness reduction prior to fracture. Note that one418

obtains the function (1 � �)n in the limit as k approaches 0, as shown in Fig. 4. On the other hand, increasing n has419

the effect of flattening ge (�) as � goes to 1, shown in Fig. 5. The parameters k and n must be chosen such that crack420

propagation occurs at the right energy release rate for some given E, Gc and `. Premature stiffness reduction observed421

prior to fracture is connected to the behavior of g0 (�) near � = 0. We want to keep g
0 (�) small in this vicinity, which422

is achieved by setting k large. However, choosing an excessively high value for k also results in undesirable stress-423

strain behavior. In the following analysis, we show that it is possible to eliminate one parameter in (46) by selecting424

the largest values of k (given some n) for which the resulting stress-strain relationships are considered acceptable.425

5.2. Analytic model behavior in 1D426

In order to study the effect the parameters k and n in our proposed family of functions, we take a look at the427

1-dimensional case of a materially homogeneous bar with uniform cross section and length equal to 2L. The bar is428

subjected to the boundary conditions u (±L) = ±u0 and �0 (±L) = 0 as shown in Fig. 6. Assuming zero body forces,429
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Figure 6: Domain and boundary conditions for 1-dimensional homogeneous bar subjected to tension.

the governing equations in (18) reduce to430

d

dx

⇥

g (�) � (")
⇤

= 0 (47a)

Gc`0

d2�

dx2
� Gc

`0

� = g
0 (�)  (") (47b)

in which " = du/dx, � = E" and  = 1
2
�". We focus on spatially homogeneous solutions for the phase-field,431

� (x) ⌘ �0 which implies that the stress is also spatially uniform, i.e. � ⌘ �0 = E"0. As � is no longer a function of432

x, (47b) simplifies to433

�Gc

`0

� =
1

2
g
0 (�) E"2. (48)

While it is physically more correct to express � as a function of " (since crack formation is driven by the mechanical434

response), for complicated forms of g (�) it becomes more convenient to adopt the opposite order of dependence.435

Hence we obtain436

" (�) =

"

�2Gc�

`0Eg0 (�)

#
1
2

(49)

with the corresponding derivative given by437

d"

d�
= � Gc

`0E

"

�2Gc�

`0Eg0 (�)

#

�
1
2

8

><
>:
g
0 (�) � �g00 (�)

⇥

g0 (�)
⇤2

9

>=
>; . (50)

Consequently the derivative of the damaged-reduced stress can be obtained with respect to the phase-field as438

d

d�

⇥

g (�) �
⇤

= g
0 (�) E" (�) + g (�) E

d"

d�
. (51)

The effective stress-strain curve accounting for damage due to the phase-field can then be defined as439

d

d"

⇥

g (�) �
⇤

=

d

d�

⇥

g (�) �
⇤ d�

d"
= g

0 (�) E" (�)
d�

d"
+ g (�) E

=

"

g
0 (�) " (�)

d�

d"
+ g (�)

#

E. (52)

Combining the last equation above with (49) and (50), we obtain after further manipulation the expression440

d

d"

⇥

g (�) �
⇤

=

2�
⇥

g
0 (�)

⇤2
+ g (�)

⇥

g
0 (�) � �g00 (�)

⇤

g0 (�) � �g00 (�)
E. (53)

Now g
0 (�) < 0 by construction for � < 1, and if g (�) has monotonically increasing slope (i.e. g

00 (�) � 0) then441

the above expression is well defined for � 2 [0,1]. However for degradation functions of the form given by (46), the442
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existence of an inflection point means that the denominator in (53) may become zero at some point, implying a vertical443

tangent in the �–" curve and possibly also snap-back behavior. This phenomenon is more pronounced for larger values444

of k, as illustrated in Fig. 7. However it can be seen that a high value of k also acts to suppress the undesired deviation445

from linear elastic behavior. Hence we want to choose this parameter as large as possible in order to minimize the said446

effect, but still small enough so as not to generate snap-back. This implies that k = k (n), and the specific relationship447

is found by considering the limiting case where the denominator in (53) goes to zero. This yields the expression448

k (n) =
(n � 2) �? + 1

n�? (1 � �?)n
(54)

where449

�? =

8

>>>>>><
>>>>>>:

1

3
if n = 2

� (n + 1) +
p

5n2 � 6n + 1

2
�

n2 � 2n
� otherwise

(55)

with the relevant calculations given in Appendix A. Plugging the above results into (46) gives the reduced-parameter450

degradation function451

gs (�; n,w) = (1 � w)
1 � e�k (n)(1��)n

1 � e�k (n)
+ w fc (�) (56)

where again for the meantime we take w = 0. The profile of gs (�) and its derivative are shown in Fig. 8 for several n.452

Due to the fact that g0s (0) < 0, growth of the phase-field takes place naturally in the presence of local stress gradients.453

This is in contrast to degradation functions where g
0 (0) = 0, for which special solution procedures are required to454

trigger the evolution of � away from an undamaged state. Furthermore it has been shown (e.g. Kuhn et al., 2015) that for455

certain configurations of polynomial degradation functions, Eq. (49) may predict inadmissible values of the phase-field456

(e.g. � < [0,1]) at low strains implying a bifurcation-type behavior with � remaining at the undamaged state until the457

point of bifurcation. However said point does not generally coincide with the onset of fracture, so that some stiffness458
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Figure 8: Effect of parameter n on (a) the single-parameter degradation function gs (�), and (b) its derivative.

reduction still occurs prior to the realization of peak loads. On the other hand, the family of degradation functions459

represented by Eq. (56) give rise to smooth "-� and �-� relationships as shown in Fig. 9. It follows that for these type460

of functions, the material stress-strain behavior will exhibit elastic stiffness reduction, albeit in much more reduced461

magnitudes compared to the quadratic degradation function (see Fig. 10). Likewise an important result is that for a462

completely determined degradation function (i.e. all function parameters are specified), the resulting normalized �-"463

curve is unique so that the actual failure stress and strain are dependent on ` as well as the material parameters. This464

implies that there is no single degradation function that works for the entire range of values of E, G and `. Otherwise,465

the regularization parameter ` cannot be freely chosen but rather must be determined from the other material parameters466

in order to give the correct failure stress.467

Note that for n = 2 and w = 0, ge (�; k,n,w) behaves very similar to the degradation function of Wilson et al.468

(2013), with the parameter s in that model having the same effect as 1/k in (46). The main advantage of our model is469

that for some freely chosen `, reproduction of the correct peak stress is nonetheless attainable via calibration of n.470

5.3. Role of w and fc (�)471

Unfortunately, the simplified form of (56) with w = 0 is not entirely adequate due to the fact that for higher values472

of n, the flattened shape of gs (�) means that near-total annihilation of the material stiffness occurs prematurely at473

values of � significantly less than 1. As a consequence, the phase-field stagnates below unity even though the material474

is fully damaged. As a result, calculation of crack lengths via evaluation of Γ (�) will yield incorrect results. The475

above shortcoming can be remedied through fc (�), which acts as a correction term influencing how g (�) goes to476

zero as � ! 1. Its purpose is to impart a residual gradient to gs (�) that is independent of n, so that g0s (�) is always477

sufficiently below zero for � < 1. A suitable expression satisfying the properties enumerated in Section 5.1 is478

fc (�) = a2 (1 � �)2 + a3 (1 � �)3 . (57)

In order to fully determine the constants a2 and a3, we impose two conditions. The first is that f 0c
�

�?
���? f 00c

�

�?
�

= 0479

in order to retain validity of expressions obtained based on �? in Appendix A. The second is that fc (0) = 1. This480

yields the following expressions for the constants:481

a2 =
3

�

�?
�2 � 3

3 (�?)2 � 1
, a3 =

2

3 (�?)2 � 1
. (58)

We note that fc (�) itself is in general not a degradation function since for sufficiently large �? it may be that fc (�) > 1482

at certain values of �. Thus w should be kept small, otherwise the correction term dominates. We have found that483
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Figure 9: Dependence of (a) strain and (b) stress on the phase-field arising from the adoption of gs (�) in modeling fracture of a 1-dimensional

homogeneous bar subjected to tension.
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Figure 11: Plots of the single-parameter degradation function gs (�) and its derivative for different values of n, showing the influence of the

correction term fc (�). The solid plots are obtained by setting w = 0.1, while the dashed plots have w = 0 yielding the original uncorrected

functions.

setting w = 0.1 imparts a sufficient residual in the gradient of gs (�) while still satisfying that requirements given in484

Section 5.1. The resulting plots for g (�) and g
0 (�) are shown in Fig. 11. An additional benefit of having the correction485

term in the form of (57) is that for small values of w the material response prior to fracture is closer to linear.486

5.4. Fracture initiation based on tensile strength487

The ability to initiate cracks in the absence of stress singularities requires the notion of strength in the form of a488

critical tensile stress �c that is absent in the original theory of Griffith. Following the approach of Pham et al. (2011)489

and Bourdin et al. (2014), let us assume that this coincides with the peak stress in the stress-strain curve associated490

with the 1-d homogeneous-stress model described above. For the case of the quadratic degradation function, the peak491

stress is reached at a phase-field value of 0.25, leading to the relation (Nguyen et al., 2016)492

` =
27EGc

256�2
c

. (59)

For the family of degradation functions defined by (56), the above expression is further dependent on n as evident from493

Fig. 9b. An explicit expression relating n to the material parameters including ` is not easily obtained owing to the494

complicated form of (56). Instead we can utilize an approximate expression made by fitting a function to numerical495

evaluations of the peak stress for different values of n as shown in Fig. 12. This function is expressed in terms of the496

dimensionless quantity �nd = �c

p
`/EGc and is of the form497

n (�nd ) = c0 + c1�
�1
nd + c2�

�2
nd + c3�

�3
nd . (60)

With the weighting factor w set to 0.1, the resulting values of the coefficients c0 to c3 are as follows:498

c0 = �1.96837 16827

c1 = +3.07254 12764

c2 = �0.10199 57566

c3 = +0.00719 48119

(61)

It should be emphasized however that (60) much like (59) is valid only for the case where there are no stress gradients,499

and therefore has very limited applicability to cases where fracture nucleates from a stress concentration. Furthermore,500

19



0.4 0.5 0.6 0.7
2

3

4

5

6

�c

p

`/EGc

n

Numerical results

Fitted curve

Figure 12: Relationship between normalized peak stress and parameter n for the 1-dimensional tension test assuming uniform stress and damage.

these two equations do not account for the dependence that n or ` must have on the mesh refinement when stresses are501

no longer uniform. On the other hand when stress concentrations are finite, it is straightforward to check via inspection502

of numerical results whether critical stresses have been exceeded, and thus model calibration in such a case is much503

easier compared to one where the fracture emanates from a stress singularity.504

6. Numerical Examples505

In this section we examine the performance of the proposed single-parameter degradation function relative to the506

conventional quadratic model through several examples. Our particular interest is in examining its ability to accurately507

capture the onset of fracture in the case of (a) a phase-field crack initiating at a location of stress singularity, and (b) one508

where a crack nucleates due to a nonsingular stress concentration reaching the prescribed material strength. The first509

numerical example is a recalculation of the problem presented in Section 4.1 using the new degradation function. It510

demonstrates how to determine the proper value of the parameter n and also explores the effect of mesh refinement. The511

second example provides numerical evidence that the parameter tuning for n becomes increasingly robust as the phase512

field parameter ` is reduced. The third example deals with a problem featuring strength-based crack initiation and also513

subsequent branching in a bi-material specimen. It highlights the need to carefully scrutinize numerical results and514

also the danger in blindly utilizing ready-made formulas for determining ` or n which do not account for the specific515

local stress distributions in the problem at hand. In the final example, we investigate the new degradation function’s516

potential to accurately model the stable propagation of an initial crack that is explicitly modeled in the geometry.517

Numerical computations are carried out within a finite element framework, implemented in C++11/OpenMP code518

developed by the authors. For all problems, the relevant domains are discretized into 3-node triangles using the open519

source software Gmsh (Geuzaine and Remacle, 2009). Subsequent calculations make use of linear shape functions520

for modeling both the displacement and phase-field, with the former under plane strain conditions. Solution of the521

linearized system of equations is obtained by means of the direct sparse solver PARDISO (Petra et al., 2014). Our code522

allows the combination of elements having a different number of primary unknowns, and this feature is utilized in some523

of the examples below. In such cases, additional boundary conditions have to be implemented at element interfaces in524

order to have proper closure of the governing equations. In using (56), we have set w = 0.1 leaving n as the sole free525
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Figure 13: Mesh refinement along projected fracture propagation path

for center-cracked specimen.

Figure 14: Influence of degradation parameter n on the failure load

for the center-cracked specimen.

parameter subject to calibration/tuning. The coupled system of equations is solved using the alternate minimization526

algorithm, where we apply the linear approximation described at the end of Section 3 for the portion of the Jacobian527

matrix pertaining to the phase-field equations. With the aforementioned technique, very little difference is observed in528

computation times (e.g. number of iterations per step) between the simulations which utilize the quadratic degradation529

function and those which make use of our proposed alternative that is significantly more nonlinear.530

6.1. Brutal crack propagation in center-cracked specimen531

We revisit the brutal cracking problem of Section 4.1 involving a center-cracked specimen loaded in tension. As the532

analytical failure load is known for such a setup, it is useful not only for comparing the effect of our proposed single-533

parameter degradation function on the model behavior versus the original quadratic, but also as a means of calibrating534

the former by determining the proper value of n. Using the same specimen dimensions and material properties as before535

along with a characteristic length of ` = 0.5 mm and critical mesh refinement ratio of `/he
= 2 (see Fig. 13 for detail of536

meshing in the crack vicinity), we resolve the problem utilizing the proposed degradation function in (56) with w = 0.1537

as earlier recommended. Initially, the prescribed upward displacement at the top boundary (see Fig. 2b) is increased538

using constant increments of ∆ucoarse = 2.5 ⇥ 10�4 mm to determine the approximate displacement ucrit at which539

failure occurs, after which the simulation is rerun with displacement increments refined to 2.5 ⇥ 10�5 mm between540

ucrit +∆ucoarse in order to achieve higher precision in the simulated failure load. Fig. 14 shows the results obtained from541

using different values of n between 4.5 and 6. The proper value of the degradation function parameter corresponding542

to the desired critical load of Pc = 68.26 N is obtained via polynomial curve fitting, which yields a value of n = 5.314.543

Incorporating this into the simulation produces a failure load of 68.38 N, representing an error of 0.18% with respect to544

the benchmark solution. While accuracy of the calculated load may be further improved by employing smaller ∆ufine545

in addition to adjusting the value of n, the curve fitting procedure employed above nonetheless serves as a simple546

and straightforward means of achieving a reasonably accurate calibration of our proposed degradation function. An547

important property of (56) evident from Fig. 14 is that a higher value of n always leads to lower simulated failure load.548
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Plots of the load-displacement curves for different n are shown in Fig. 15. We observe that the results are reasonably549

robust in terms of the exponent n in that all choices of n lead to an accurate representation of the linear regime prior550

to onset of fracture, in contrast to the classical quadratic degradation function. Furthermore, for the specific value of `551

employed in the simulations, even an inaccurate calibration of n having around 10% deviation from the optimal value552

still leads to a more accurate failure load than predicted by the quadratic model.553

We also investigate the influence of the mesh refinement on the numerical results, as it is well known that the554

discretization of the domain close to the cracks must satisfy certain requirements on element sizes with respect to `555

in order to properly resolve the exponential character of the phase-field. Specifically, h < �` where h is the length of556

element edges at the fracture vicinity and � is a factor typically set to 1/2 in the literature based on results from Miehe557

et al. (2010c). However this estimate was based on a setup where the crack is aligned with element edges, allowing558

for the natural reproduction of the gradient discontinuity that occurs at � = 1. In practice, the peak of the phase-field559

profile must occur at element Gauss points in order to effect a full degradation of the material stiffness. This implies560

that for constant gradient elements, this peak actually exists as a plateau of width h, which is an additional source of561

error when calculating the functional Γ (�). Hence it may be necessary to choose a smaller value of �. Keeping the562

value of ` = 0.5 mm constant for the above problem, we determine n for different values of the effective element size at563

the critical zone. The resulting plot is shown in Fig. 16. It can be observed that the change in n becomes significantly564

smaller for h  `/10, indicating that we see numerical convergence with respect to the ratio `/h. Unfortunately, a565

full convergence study of n with respect to mesh refinement is limited by the accuracy of the approximate analytical566

solution in equation (33).567

6.2. Four-point bending test568

In the second example, we simulate fracture propagation in a beam having an initial crack of length a and subjected569

to four-point bending as shown in Fig. 17. The aim is to investigate robustness of the degradation function parameter570

n with respect to the stress distribution around the crack tip by solving auxiliary problems that involve loading con-571

figurations fundamentally different from the one used in the main problem. To this end, we use the same values for572

the material parameters as given in Section 4.1. Likewise, we treat Example 6.1 as a prior calibration step. The idea573

is to tune the parameters such that the relative error between numerical and analytical solutions is not greater than a574

certain threshold. The obtained value of the parameters are then applied to a different problem, with the hope that the575

resulting relative errors also fall below the original threshold.576

The particular loading configuration investigated in this section produces a uniform internal moment between the577

inner applied loads, and by setting a = 10 mm, b = 2a and L1 = 10a for the specimen dimensions we end up with578

what is essentially the same computational domain as the previous example, albeit subjected to pure bending in the579
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Figure 17: Beam with initial crack under four-point bending.

central beam portion of length 2L1. The internal bending moment at this region has a magnitude of (L2 � L1) P, and580

for the current example L2 � L1 = 50 mm. Since the loading consists of concentrated loads and support reactions,581

the beam portions containing the application points of these forces are modeled as non-fracturing in order to avoid582

spurious damage evolution at these locations. The regions colored white in Fig. 17 indicate portions of the domain583

that are modeled as linear elastic with only the displacement field u as the primary unknown, whereas the gray region584

has both u and �. Thus a boundary condition for the phase-field must be specified at the interface between fracturing585

and non-fracturing regions. For the current example, this is the Neumann condition r� · n = 0, with n denoting the586

unit normal vector to the interface.587

A semi-analytical solution for the critical moment corresponding to an energy release rate of Gc at the crack tip588

can be computed as589

Mc =
b2

6F (a/b)

"

EGc
�

1 � ⌫2
�

⇡a

#1/2

, (62)

where for pure bending the shape factor F (a/b) has the form590

F (a/b) = 1.122 � 1.40 (a/b) + 7.33 (a/b)2 � 13.08 (a/b)3 + 14.0 (a/b)4 (63)

with a reported accuracy of 0.2% in the stress intensity factor KI for a/b  0.6 (Tada et al., 2000). For the current591

specimen, a/b = 0.5 and the above formula gives F (a/b) = 1.4945. Plugging this into (62) yields a critical bending592

moment of 180.60 N-mm, which we designate as the benchmark solution for the problem.593

Four simulation runs are carried out for comparison with the benchmark solution given above. In the first run, the594

standard quadratic degradation function is employed with ` calibrated to a value of 0.94 by matching the simulated595

critical load to the benchmark solution for the center-cracked specimen (see Section 4.1). The second run makes use596

of the proposed degradation function, where we have set ` = 0.94 in order to compare results of different degradation597

functions given the same regularization length scale. The corresponding value of n for this case is found to be 5.26598

based on calibration runs using the CC-specimen. Next, we set ` = 0.5 which allows us to directly use the result of599

Section 6.1. The fourth simulation uses ` = 0.3, for which the obligatory calibration step yields n = 5.325. In all four600

cases, the loading is applied in the form of prescribed downward displacements, first at increments of ∆U = �0.0025601

mm per step and then later refined to �0.0001 mm per step near the onset of crack propagation.602

A summary of results for the four simulations is given in Table 1, where the relative error of a quantity Q with603

respect to the benchmark solution is computed as604

RE =
�����
Qsimulated � Qbenchmark

Qbenchmark

�����
⇥ 100%. (64)

The corresponding load-displacement curves are shown in Fig. 18. We can see that for the two runs with a coarse length605

scale of ` = 0.94, the relative errors for Mc differ significantly from those for Pc in the calibration step. However in the606
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Table 1: Simulated critical internal bending moments for the four-point bending specimen. The first five columns pertain to the preliminary cali-

bration step using a center-cracked specimen loaded in tension, while the last three columns show the critical displacement and bending moments

for the 4-point beam corresponding to the values of n and ` given in columns 2 and 3. RE denotes relative error.

Simulation Description ` `/h REPcalib
c

Uc Mc REMc

run (mm) (%) (mm) (N-mm) (%)

1 quadratic 0.94 2.0 0.09 �0.0321 187.80 3.99

2 n = 5.26 0.94 2.0 0.21 �0.0298 192.75 6.72

3 n = 5.314 0.5 2.0 0.18 �0.0285 183.75 1.74

4 n = 5.325 0.3 2.0 0.16 �0.0280 180.25 0.194
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Figure 18: Load-displacement curves for the four-point bending specimen. The vertical axis gives the magnitude of the downward force P at each

of the two loading points shown in Fig. 17; the horizontal axis gives the magnitude of vertical displacement at these locations.
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Figure 19: (a) Geometry and applied loading for the bi-material specimen, and (b) finite element discretization.

the last three simulations utilizing the proposed degradation function, the relative errors for Pc and Mc become more607

comparable as ` is decreased. Unfortunately such a strategy cannot be used with the quadratic degradation function,608

due to the fact that the error in Pc does not decrease for the latter case as ` is further reduced, as demonstrated in609

Section 4.1. While the relative errors may also converge to a stable value as ` goes to zero, the goal of calibration610

is to have the numerical results lie within some given tolerance with respect to the analytical solution. In the current611

example this is set to 0.2% corresponding to the relative accuracy of the semi-analytical solution for Mc .612

Comparison between relative errors during calibration and those for the main setup show that parameter values613

are not generally transferable from one problem to another. On the other hand, the last three simulations seem to614

indicate that for the proposed degradation function, transferability of n values improves as ` is decreased. Without615

drawing too broad conclusions from a single example, it appears that the new degradation function proposed here is616

more amenable to calibration than the traditional degradation function. Nonetheless it is clear from this exercise that617

one must be careful in designing calibration procedures for any kind of degradation function, particularly when ` is618

not sufficiently small with respect to the domain.619

6.3. Crack initiation and branching620

Our third example involves a bi-material specimen that is loaded in tension as shown in Fig. 19a. The material621

properties corresponding to the regions designated as A and B in the figure are given in Table 2, where it can be seen622

that material B is stiffer than the other and is also non-fracturing. We thus adopt the approach employed in the previous623

example: region B is modeled as a linear elastic material with only displacement degrees of freedom, while in region A624

we incorporate additional unknowns pertaining to the phase-field. In contrast to Section 6.2 however, here we impose625

the homogeneous Dirichlet condition � = 0 on the interface separating between the two regions. This is done to ensure626

that the resulting phase-field profile is meaningful with respect to crack length calculations. Prescribed uniform vertical627

displacements of magnitude U = 0.05 mm are applied at the top and bottom boundaries in increments of ∆U = 0.001628

mm. We compare simulation results obtained from using our proposed new degradation function to that of the classical629

model employing quadratic energy degradation for two values of the phase-field regularization parameter, namely630

` = 1.25 mm and ` = 5 mm. All four cases utilize the same discretization of the problem domain shown in Fig. 19b,631

where the effective size of element edges along the anticipated path of crack propagation have been set to h = 0.4mm.632
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Table 2: Material properties for the bi-material specimen.

Region A B

E 100 GPa 200 GPa

⌫ 0.2 0.2

Gc 0.1 N/mm �
�c 70 MPa �
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Figure 20: Total force on top boundary versus magnitude of applied displacement for the bi-material problem.

In addition a fifth simulation run was carried out with ` set to 0.31 mm on a finer discretization having h = 0.15 mm; this633

corresponds to the case where failure occurs at the specified value fo �c in connection with a quadratic degradation634

model. Force-displacement curves for the five cases are displayed in Fig. 20, while values of specific quantities of635

interest at crack initiation are listed in Table 3. Due to the fact that boundary displacements are applied in constant636

increments without refinement near the instance of fracture initiation as done in the previous example, it is not possible637

to reproduce exactly the specified critical stress of 70 MPa during crack nucleation. Simulations 1 to 3 were carried out638

using the classical quadratic degradation function, while 4 and 5 utilize the new single-parameter degradation function639

given in (56). For the former, an estimate for the required magnitude of ` corresponding to �c = 70 MPa may be640

obtained from (59). This yields ` = 0.215, however as observed from Fig. 20, the correct value of the regularization641

length for the quadratic case is nearer to 0.31. We also note that simulations 4 and 5 produce virtually identical642

results with respect to the peak load, demonstrating the ability of the proposed new degradation function to properly643

compensate for different magnitudes of crack regularization. It can be observed that past the initial crack formation644

which is represented by the sudden drop in the force-displacement curve, all simulations display essentially the same645

behavior. This is not surprising, since for all cases the initial crack traverses the entire width of region A so that the646

subsequent residual force comes mainly from the resultant stresses in the non-fracturing part of the specimen as shown647

in Fig. 21. Meanwhile, the final crack trajectories corresponding to U = 0.05 mm obtained from simulations 2 to 4 are648

shown in Fig. 22. We point the reader to a particular nuance of the current numerical example, namely that it is not649
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Table 3: Details of simulation results pertaining to the bi-material problem: magnitude of applied displacement at crack initiation (Uc ), total vertical

force at top boundary (Fc ), maximum tensile stress (�max), and phase-field value in the critical element (�c ).

Simulation Description ` (mm) Uc (mm) Fc (N) �max (MPa) �c

1 quadratic 0.31 0.034 5142 71.02 0.4430

2 quadratic 1.25 0.023 3415 48.06 0.4611

3 quadratic 5.0 0.019 2682 39.71 0.4135

4 n = 4.4 1.25 0.023 3562 69.71 0.1103

5 n = 2.95 5.0 0.023 3553 70.17 0.1235

(a) U = 0.023 mm (b) U = 0.024 mm (c) U = 0.04 mm (d) U = 0.05 mm

Figure 21: Element-wise values of the phase-field and boundary nodal forces pertaining to simulation 4 (n = 4.4, ` = 1.25 mm).
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(a) Quadratic degradation, ` = 1.25 mm (b) Quadratic degradation, ` = 5.0 mm

(c) n = 4.4, ` = 1.25 mm (d) n = 2.9, ` = 5.0 mm

Figure 22: Phase-field profile corresponding to an applied displacement magnitude of U = 0.05 mm.
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(a) Uc = 0.034 from simulation 1 (b) Uc = 0.023 from simulation 4

Figure 23: Plots of the phase-field profile at critical displacements based on nodal values (see Table 3 for references to simulation numbers). Note

that color maps are scaled based on the respective maximum values of the phase-field occurring in each case.

immediately obvious simply from looking at the combined force-displacement plots in Fig. 20 which curve represents650

the correct specimen behavior under the given loading conditions.651

An important insight can be found by examining the value of � in the critical element at which the stress is max-652

imum. From Table 3 we see that for simulation 1 this is equal to 0.443, which corresponds to a degradation factor of653

g2 (0.443) = 0.310. This means that just prior to fracture, the critical element has a stiffness of only slightly more654

than a third of its original value. This leads to a severe under-calculation of the critical stress, with the simulation655

reporting a value of � = 71.02 MPa at the critical element whereas a separate simulation assuming linear elastic656

behavior of the whole domain produces a stress of 106.1 MPa at the same location. This amounts to an overshoot of657

more than 50% of the true tensile strength. However since the damaged region comprises only a small fraction of the658

specimen’s total area (see Fig. 23), the linear elastic behavior exhibited by the undamaged region dominates the spec-659

imen response leading to deceptively small deviations in the force-displacement curves. In contrast, simulation 4 has660

� = 0.1103 at the critical element prior to failure. Coupled with the form of (56) that minimizes stress degradation for661

small values of the phase-field, we obtain gs (0.1103) = 0.938 for n = 4.4 and w = 0.1 which gives rise to much less662

distortion of the stress compared to the classical quadratic degradation function. Indeed at a displacement magnitude663

of Uc = 0.023 mm, the phase-field model predicts a tensile stress of 69.71 MPa which is much closer to the value of664

71.75 MPa obtained from assuming purely elastic material behavior. Additionally, we note that the values of ` and n665

which lead to what may be considered as the “correct” model response in the case of using respectively the quadratic666

and exponential degradation functions are significantly different from the estimates obtained by using the formulas667

given in Section 5.4. This is due to the incompatibility between actual stress states at the crack initiation region for668

the current example (which are already localized prior to crack initiation) and the assumption of homogeneous stress669

pertaining to the 1-d case that was used in deriving the expressions in the aforementioned section.670

6.4. Stable crack growth in a homogeneous medium671

The problem of a rectangular specimen subjected to so-called surfing boundary conditions was initially used by672

Hossain et al. (2014) for studying the effective toughness of heterogeneous media and later adopted by Kuhn and Müller673

(2016) in the context of configurational forces. Details of the specimen geometry together with the initial crack are674

given in Fig. 24. In both of the works mentioned, the phase-field profile is initialized such that � = 1 at all points675

in the crack locus, decaying with the proper gradients towards zero away from the crack. In contrast for the current676

example, no such initialization is carried out in order to simulate the transition from crack initiation at a location of677

stress singularity towards propagation of a fracture that is fully described by the phase-field. The Dirichlet boundary678

conditions are derived from a KI -controlled displacement field corresponding to a crack under mode-I loading, given679
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Ω

10mm

100mm

25mm

25mm

Figure 24: Specimen geometry and dimensions for the surfing problem. Displacements are prescribed on @Ω indicated by the bold lines, but not

on the faces of the initial crack.
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in terms of polar coordinates r and ✓, with the crack extending infinitely along the line ✓ = ⇡ from a tip located at681

r = 0. The quantity  is Kolosov’s constant which is equal to 3 � 4⌫ in the case of plane strain. Crack propagation682

is achieved by translation of the above coordinate system with respect to the original configuration of the specimen683

resulting in the horizontal motion of the crack tip. Letting xKI
(t) = ct and yKI

(t) = 0 be the Cartesian coordinates684

of the crack tip for some fictitious time t and positive constant c, we obtain685

r (t) =

q

(x � ct)2 + y2

✓ (t) = arctan

✓

y

x � ct

◆

, ✓ 2 [�⇡,⇡]

(66)

For simplicity, we have chosen to let c = 1. The material properties used for the specimen are E = 210 GPa, ⌫ = 0.3686

and Gc = 2.7 N/mm. Finally, we set KI to a constant value of
p

EGc and run the simulation from t = 5 up to t = 30687

in increments of ∆t = 0.5. The analytical response of the specimen can be understood as follows: for t 2 [5,10),688

the initial crack already extends further into the specimen than what is implied by the boundary conditions. Thus the689

energy release rate at the crack tip is smaller than Gc and no crack growth occurs. At t = 10, the energy release rate690

reaches Gc and the conditions for crack propagation are met. Henceforth for t > 10, the crack tip moves to the K-field691

center denoted by xKI
(t).692

To gain insight on the numerical behavior of the fracturing specimen, we conduct a preliminary simulation assum-693

ing plain linear elastic response without fracturing, the results for which are shown in Fig. 25a. The energy release rate694

at the crack tip is obtained by calculating the J-integral over the contour defined by the specimen boundary, @Ω. One695

can see that this is underestimated in the numerical solution, i.e. the J-integral is less than Gc at t = 10. Consequently,696

location of the crack tip predicted by the numerical simulation lags behind the analytical location as illustrated by the697

black and gray dashed lines in Fig. 25a.698

We now examine phase-field model behavior in connection with the quadratic degradation function for different699

values of the regularization parameter, specifically ` = 5.0, 3.0, 1.0 and 0.2 mm with `/h = 10. As before, we look at700

two quantities of interest: the energy release rate at the crack tip represented by the J-integral, and the length of crack701

extension described by the phase-field that is obtained by evaluating the functional Γ (�) =
⇤
Ω

⇣

1
2`
�2 + `

2
r� · r�

⌘

dΩ.702

The results for different values of ` are summarized in Fig. 25b and exhibit similar behavior. We first observe a zone of703

premature crack growth where the crack length is seen to increase at rates less than v. This preliminary growth is not704

related to any physical extension of the crack but is in fact due to the evolution of the phase-field profile representing705

the diffuse crack tip, illustrated in Fig. 26. This is followed by brutal cracking represented by a sudden increase in706

the crack length (see Fig. 27), after which the fracture grows stably at a rate more or less equal to v. As expected, the707
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(a) Constructed solution based on linear elasticity.
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(b) Results for different ` obtained using quadratic degradation.

Figure 25: Evolution of J -integral and crack length. The solid gray line represents the specified fracture toughness of the material (Gc ), while the

dashed gray line represents the analytical length of crack extension.

(a) ` = 1 mm (b) ` = 3 mm (c) ` = 5 mm

Figure 26: Phase-field profile at the crack tip prior to the occurrence of brutal cracking in the surfing problem utilizing quadratic degradation.

(a) t = 16.5 (b) t = 17

Figure 27: Phase-field profiles before and after the crack length jump in the surfing problem utilizing quadratic degradation (` = 1 mm).
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Figure 28: Evolution of J -integral and crack length. The solid gray line represents the specified fracture toughness of the material (Gc ), while the

dashed gray line represents the analytical length of crack extension.

numerical location of the crack tip trails the K-field center associated with the applied boundary condition. In addition,708

the critical energy release rate is overestimated in the region of stable crack growth, i.e. Gnum
c > Gc . This phenomenon709

has been previously reported in the literature by Hossain et al. (2014) and Kuhn and Müller (2016), and earlier still710

by Bourdin et al. (2008) who described it within the context of Γ-convergence. Nonetheless our main concern is the711

overshoot that occurs in the J-integral prior to the onset of fracture, which results in even further delay of the actual712

crack extension. Such behavior is obviously unphysical, and more so does not occur when the initial crack is described713

by the phase-field as demonstrated in various numerical examples from the aforementioned literature. It is our belief714

that this artifact is heavily dependent on the specific form of the degradation function. More importantly in this case,715

the overshoot does not decrease with smaller `. The results shown in Fig. 25b provide evidence that one cannot in716

general rely on the strategy of calibrating ` in order to obtain correct model behavior, and furthermore cast doubt on717

the notion that ` should be viewed as a material parameter, particularly in connection with the reproduction of Gc .718

As previously mentioned, the overshoot of the critical energy release rate results in a delay of actual crack extension719

such that by the time it occurs, there is an excess in bulk energy that must be dissipated. Upon the onset of fracture,720

instantaneous catch-up growth occurs resulting in a finite increase of the crack length as shown in Fig. 27.721

On the other hand, simulations utilizing the proposed single-parameter degradation show behavior that more closely722

reflects the physics as shown in Fig. 28. As with the previous results pertaining to quadratic degradation, we can observe723

that for the same value of the degradation parameter n, varying the magnitude of ` has little effect on the amount of724

spurious overshoot in the energy release rate prior to crack extension. Rather, the parameter n itself is effective in725

controlling this feature, and thus can be calibrated such that crack extension occurs when the J-integral reaches a value726

of Gnum
c . Additionally the phase-field remains at very low values before the onset of fracture, resulting in negligible727

increase of the crack length prior to the actual onset of crack growth as seen in Fig. 29. Nonetheless, we can observe728

from Fig. 28 that setting n too low also results in an overshoot behavior similar to the case of quadratic degradation,729

while for sufficiently high values of n a dip occurs in the J-integral following onset of crack extension. The latter is730

also a numerical artifact, with an underlying mechanism that is converse to what occurs for overshooting. That is, �731

experiences a jump in value at the crack tip around which an exponentially decaying profile is enforced by the evolution732

equation for the phase-field. This leads to the crack extension being too big, so that now the numerical crack tip may733

be understood to have jumped ahead of xKI
. The result is a virtual unloading at the crack tip vicinity evidenced by734

the decrease in maximum tensile stress shown in Fig. 30. However since the crack tip diffusion is controlled by the735

phase-field length scale, the aforementioned dip may be reduced by simply decreasing the magnitude of `. This can736

be observed in Fig. 31, wherein for ` = 0.2 the spurious dip is almost unnoticeable.737
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(a) t = 11.5 (b) t = 12

Figure 29: Evolution of phase-field at the crack tip for the surfing problem, using the proposed single-parameter degradation function with n = 5.0

and ` = 1 mm.

(a) t = 11.5 (b) t = 12

Figure 30: Plots of �yy at the crack tip vicinity immediately before and after the start of crack growth in the surfing problem, using the proposed

single-parameter degradation function with n = 5.0 and ` = 1 mm. The phase-field profile is indicated by the superimposed contours.
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Figure 31: Evolution of J -integral and crack length for the surfing problem obtained using the proposed degradation function with n = 5.0, showing

how the spurious dip in the energy release rate associated with a finite extension of the crack can be overcome by using smaller values of `.
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7. Concluding remarks738

In this paper, we have introduced a novel family of energy degradation functions aimed at overcoming major739

drawbacks of the standard phase-field model in simulating fracture nucleation in brittle materials. A key feature of740

these functions is their dependence on a set of parameters, permitting us to effect minute changes to their shape.741

This allows for a more detailed study on how the form of the degradation function influences the phase-field model742

response independent of the regularization parameter `. Of particular interest is the discovery that use of the standard743

quadratic degradation function leads to a delay in the onset of crack propagation, leading to an overshoot in predicted744

critical loads which in some cases cannot be ameliorated by adjusting the value of `. This finding is remarkable, since745

such a strategy was previously thought to be adequate for recovering correct failure loads based on prior numerical746

examples found in the literature. On the other hand with the proposed family of degradation functions, it is possible747

to obtain significantly more accurate simulations provided that proper calibration of the function parameters is carried748

out. The computational overhead resulting from the consequent nonlinearity of the phase-field evolution equation can749

virtually be eliminated by employing suitable linear approximations for the tangent matrices, which then allows for750

straightforward application of the alternate minimization algorithm.751

An important consideration for the proposed family of degradation functions is the actual number of independent752

parameters that must be specified, since this directly affects the difficulty or ease of calibration. In this paper we have753

chosen to work with a function that has only one parameter to be calibrated out of an initial four, in the belief that754

more would render the model unappealing for use in an industry setting. Consequently, we do not take full advantage755

of the flexibility of our model. Furthermore the elimination of extra, unwanted parameters was done based on a756

rationale that prioritized the preservation of linear elastic response prior to fracture. Looking at results of the numerical757

examples we can see that this objective has been sufficiently accomplished, however the price to pay is a spurious dip758

in the bulk energy after the initial crack nucleation which occurs even with proper calibration as seen in the surfing759

problem. In the current model, this can only be alleviated by reducing the phase-field regularization which in turn760

increases computational expense due to meshing requirements along the crack trajectories. As an alternative, one can761

allow damage to occur gradually in the vicinity of the crack nucleation point prior to failure, however this requires a762

degradation of the bulk energy to preserve energy balance and runs counter to the rationale mentioned above. It is thus763

outside the scope of the present paper, and will be explored in future work.764
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Appendix A. Derivation of k (n)769

Let g (�) be defined according to Eq. (46). The corresponding first and second derivatives are given by770

g
0 (�) =

�kn

1 � e�k
(1 � �)n�1 e�k (1��)n � 2q (1 � �) (A.1)

g
00 (�) =

�kn

1 � e�k
(1 � �)n�2 ⇥

kn (1 � �)n � n + 1
⇤

e�k (1��)n + 2q. (A.2)

We are interested in the limiting scenario where Eq. (53) becomes infinite, i.e.771

g
0 (�) � �g00 (�) = 0. (A.3)

Additionally, we will consider only the case where � < 1, since setting � = 1 results in a zero numerator in Eq. (53).772

Plugging Eqs. (A.1) and (A.2) into the above expression gives773

0 =
�kn

1 � e�k
(1 � �)n�1 e�k (1��)n � �kn

1 � e�k
� (1 � �)n�2 ⇥

kn (1 � �)n � n + 1
⇤

e�k (1��)n � 2q

=

�kne�k (1��)n

1 � e�k
(1 � �)n�2 �

1 � � � � ⇥

kn (1 � �)n � n + 1
⇤  � 2q
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Figure A.32: Behavior of k (�, n).

which simplifies to774

1 � � � � ⇥

kn (1 � �)n � n + 1
⇤

= 0. (A.4)

Solving for k in the above equation, we obtain775

k (�,n) =
(n � 2) � + 1

n� (1 � �)n
. (A.5)

The behavior of k (�,n) is shown in Figure A.32 for several values of n. We are interested in the minimum possible776

value of k for each given n, hence the relevant condition to consider is777

@k

@�
=

⇣

n2 � 2n
⌘

�2 + (n + 1) � � 1

n�2 (1 � �)n+1
= 0. (A.6)

Assuming that the denominator does not equal zero, the above equation reduces to778

⇣

n2 � 2n
⌘

�2 + (n + 1) � � 1 = 0 (A.7)

whereupon we obtain the positive root779

�? =
�n � 1 +

p
5n2 � 6n + 1

2
�

n2 � 2n
� (A.8)

via the quadratic formula. The above result is applicable for n , 2. For the case where n = 2, Eq. (A.5) becomes780

k (�,2) =
1

2� (1 � �)2
. (A.9)

Proceeding similarly to the previous case, we have781

@k

@�
= 0 = �2 (1 � �)2 � 4� (1 � �)

4�2 (1 � �)4
= � 1 � 3�

2�2 (1 � �)3
(A.10)

so that the solution is782

�? =
1

3
. (A.11)
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