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Holographic hydrodynamics

Encoded by higher-dimensional 
(gravitational) dual description.

✦ dubbed Fluid/Gravity correspondence...

Expectation: low-energy effective 
description of interacting QFT 
= fluid dynamics (“hydrodynamics”)

✦ crucial role played by black holes
✦ rooted in AdS/CFT (gauge/gravity) correspondence



Invitation: fluids and GR

The idea of black holes resembling fluids is not new.

The Fluid/Gravity correspondence is none of these...

✴ Black hole thermodynamics 
stationary black hole horizons have temperature and entropy   

[Hawking, Bekenstein, ...]

✴ Analog models of black holes
fluids can have sonic horizons

[Unruh]
Gregory-Laflamme instability is mimicked by Rayleigh-Plateau instability

[Cardoso & Dias]

✴ The black hole Membrane Paradigm
black holes behave as a fluid membrane with viscosity, conductivity, etc.
with dynamics given by Navier-Stokes eqns, Ohm’s law, etc.

[Thorne, Price, Macdonald]



The Fluid/Gravity correspondence is a relation 
between fluid dynamics in (3+1) dimensions
and gravity (with negative cosmological const.) in (4+1) dimensions.

Developed within the context of gauge/gravity duality 
in 2008 by [Bhattacharyya, VH, Minwalla, Rangamani] building on earlier work by [Policastro, 
Son, Starinets; Janik, Peschanski; Bhattacharyya, Lahiri, Loganayagam, Minwalla; ...] and subsequently 
generalized and utilized by many groups.

For arbitrary fluid flow satisfying the (generalized) 
Navier-Stokes equations, we construct a solution to 
Einstein’s equations describing a dynamical black hole 
in asymptotically Anti de Sitter spacetime, with regular 
horizon whose evolution mimics that of the fluid.

Preview: Fluid/Gravity correspondence



Motivation:
The fluid/gravity correspondence has applications to:

✴ Black hole physics 
Fluid specifies a generic (evolving, non-uniform) black hole solution, 
to arbitrary accuracy in long-wavelength regime.

✴ Strongly coupled field theories
Gravity determines properties of the gauge theory plasma, 
such as transport coefficients of the conformal fluid.
This mimics physics of the quark-gluon plasma currently observed at RHIC,
as well as certain condensed matter systems.

✴ Fluid dynamics
Low-energy effective description of gauge theory is fluid dynamics.
We can ‘geometrize’ long-standing fluid dynamical puzzles, such as 
understanding turbulence.



Outline:
✴ Background

highlights from gauge/gravity duality

✴ Solution for global equilibrium
Planar Schwarzschild-AdS black hole
Ideal fluid

✴ Deformations away from global equilibrium
Form of dissipative fluid stress tensor
Geometry at conceptual level: patching black holes
Geometry at technical level: expansion of Einstein’s eqns

✴ General solution
Event horizon in the bulk geometry
Transport coefficients in the boundary fluid

✴ Further consequences of the correspondence



The gauge/gravity duality relates strongly coupled 
non-abelian (SYM) gauge theory in d dimensions 
to string theory, which in certain regime reduces to 
classical gravity, on (d+1)-dimensional asymptotically 
Anti de Sitter spacetime.

Background: gauge/gravity duality

✴ Gravitational theory maps to non-gravitational one!
✴ Holographic:  
    gauge theory ‘lives on boundary of AdS’.
✴ Strong/weak coupling duality.

Key aspects:



Background: gauge/gravity duality
Specific points:
✴ Distinct asymptotically AdS (bulk) geometries 

correspond to distinct states in (boundary) gauge theory.
✴ AdS bulk geometry (=maximally symmetric, negatively curved ST)

     corresponds to vacuum state of the gauge theory.
✴ Planar Schwarzschild-AdS black hole 

     corresponds to thermal state of the gauge theory.
✴ Note: supersymmetry is not needed for this correspondence.

✴ Bulk geometry induces boundary stress tensor, 
    which captures the essential physics of the gauge theory state
      (eg. local energy density, pressure, temperature, entropy current, etc.)



Background: gauge/gravity duality
Specific points:

boundary fluid specified by

bulk geometry specified by

boundary

bulk

black hole

ds2 = gab dX
a dXb Xa = {r, xµ}

xµ

1/r

gab(r, x
µ)

Tµν(x
µ)

✴ Bulk dynamics is specified by Einstein’s equations.

✴ Boundary dynamics is specified by stress tensor conservation.

Eab ≡ Rab −
1

2
Rgab + Λ gab = 0

∇µT
µν = 0



Global equilibrium:

Planar Schwarzschild-AdS5 black hole metric:

BH temperature of the horizon:

Causal structure:
✴ spacelike curvature singularity at r=0
✴ regular event horizon at r=r+

✴ timelike AdS boundary at r=∞

ds2 = r2
�
−f(r) dt2 +

�

i

(dxi)2
�

+
dr2

r2 f(r)
f(r) = 1−

r4+
r4

T = r+/π

with



Global equilibrium:
Planar Schwarzschild-AdS5 black hole in more 
convenient coordinates (regular on horizon, boundary-covariant):

Induced boundary stress tensor:

= 4-parameter family of stationary black hole solutions, parameterized by 
BH temperature     and horizon velocity     .

Tµν = π4 T 4 (ηµν + 4uµ uν)

ds2 = −2uµ dx
µdr + r2

�
ηµν +

π4T 4

r4
uµ uν

�
dxµdxν

T uµ

= Perfect fluid at temperature     moving with velocity       
 (such that                  ).

T uµ

uµ uµ = −1

Note: this describes a conformal fluid (            ) with no dissipation.Tµ
µ = 0



Fluids with dissipation

Long wavelength regime:

In order for the stress tensor to capture dissipation,  
it must allow for variations of    and    .T uµ

In order to have a meaningful fluid description, the 
scale of variation    of the fluid variables    and    
must be large compared to the microscopic scale      . 

uµT
1/T

L

This automatically gives us a small parameter: LT ≡ 1

�
� 1

Terms of order                        will be suppressed by    . �n(∂µuν)
n, . . . , ∂n

µuν

This naturally allows us to expand       in ‘boundary derivatives‘    (...)Tµν ∂µ



Fluids with dissipation

The form of the stress tensor is determined by 
symmetries, leaving finite number of ‘transport’ 
coefficients at each order.

Expand stress tensor as:

Tµν = π4 T 4 (ηµν + 4uµ uν) +Πµν
(1) +Πµν

(2) + . . .

dissipative terms composed of ∂µuν

2nd order dissipative terms

The conservation equations                are the 
generalized Navier-Stokes equations.

∇µT
µν = 0



Fluids with dissipation

Tµν = P (γµν + d uµ uν)

−2 η σµν

+2 η
�
τ1 uλDλσµν − τ∈ (ωµ

λ σλν + ων
λ σλµ)

�

+ξσ[σµ
λσλν − Pµν

d−1σ
αβσαβ ] + ξC Cµανβ uα uβ

+ξω [ωµ
λ ωλν + Pµν

d−1ω
αβ ωαβ ]

+ . . .

0th order

1st order

2nd order

Using Weyl-covariant formalism, the form of d-dimensional 
dissipative stress tensor (on background      ) to 2nd order is:γµν

where

higher order

are quantities build out 
of the velocity      and 
background metric

uµ

γµν

= shear      (    = shear viscosity)
= vorticity
= spatial projector
= Weyl-covariant derivative
= Weyl tensor for background γµν

σµν

ωµν

Pµν

Cµανβ

Dµ

η

[Loganayagam]



Fluids with dissipation

The transport coefficients depend on the microscopic 
structure of the fluid; they could be in principle 
measured, or calculated from first principles.

However, both of these approaches are prohibitively 
difficult, since the gauge theory is strongly coupled.

We will see that bulk gravity in fact determines the 
transport coefficients uniquely.
Transport coefficients can already be extracted from quasinormal modes, 
i.e. small fluctuations about black holes.



Small deviations from equilibrium:

✴ Black hole quasinormal modes encode the field 
theory’s return to thermal equilibrium        [Horowitz, VH]

✴ Linear fluctuations of AdS black holes display modes 
with hydrodynamic dispersion relations [Policastro, Son, Starinets]

     propagating sound mode with linear dispersion and shear mode with damped quadratic dispersion

✴ Using linear response theory, transport coefficients 
can be computed           [Buchel, Herzog, Kovtun, Policastro, Son, Starinets, ...]

✴ This led to the famous bound on shear viscosity to 
entropy density ratio:                       [Kovtun, Son, Starinets]

     saturated by black holes;
     cold atoms at unitarity and quark-qluon plasma both come close to saturating the bound.

η

s
≥ 1

4π



The sound of AdS black holes
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Figure 7: Dispersion relations for the dominant scalar QNM (the hydrodynamic mode) of the
plane-symmetric AdS black hole in d = 4, 5, 6 dimensions, as indicated.

information only on the dominant (lowest-wI ) mode, but as apparent in Fig. 8 we were

able to obtain the dispersion relations of the fundamental and the first excited modes in

the region 4 ! q ! 5. The results shown in such figure indicate the existence of a critical

wavenumber value from which on the first non-hydrodynamic QNM is the dominant mode

of the scalar perturbations. Such a result appears in the form of a gap in the real part

of the frequencies (left panel in Fig. 8) and as a crossing of two curves wI(q) in the

right panel of Fig. 8. This behavior of the scalar QNM in higher-dimensional spacetimes

(d > 6) is completely different from what happens in d = 4, 5 and 6 dimensions, where the

hydrodynamic scalar QNM dominates all of the spectrum.
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Figure 8: Dispersion relations for the dominant scalar QNM in d = 7, 8, 9 and 10 dimensions,
as indicated. Exceptionally in the region 4 ! q ! 5, we present both the fundamental and the
first excited modes obtained from the time-evolution method. Notice that the hydrodynamic QNM
dominates in the regime of small q, while the first non-hydrodynamic mode is the dominant mode
in the high-q regime.

A few samples of the time-domain evolution profile of the scalar perturbations are

shown in Fig. 9. The oscillatory decay, which is characteristic of a QNM with wR != 0,

dominates the intermediate- and late-time behavior of the wave function ΦS. Again we do
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ω =
1√
d− 1

k − iΓs k
2

 [Morgan, Cardoso, Miranda, Molino, Zanchin]



Shear modes of AdS black holes

d = 5 d = 6

n wR wI wR wI

0 0 1.19612 0 0.87233

1 3.51823 2.58319 4.51460 2.57492

2 5.46616 4.66081 6.88034 4.37633

3 7.43187 6.69069 9.24255 6.13420

4 9.40729 8.70698 11.6070 7.87837

5 11.3889 10.7175 13.9739 9.61647

Table 2: Some data for the frequencies of the vectorial gravitational QNM of five and six dimensions
for q = 2.

region. This is clearly seen in the left panel of Fig. 4, where the dispersion relation curves

for the first non-hydrodynamic mode at small values of q and d = 8, 9, 10 are missing.

As a matter of fact, the curves for d = 7 were obtained by joining the results from both

of the numerical methods used here. We see that the dispersion relations for d = 5, 6, 7

have all the same behavior. A slight difference is observed in the curve wR × q for d = 4

(see the lowest curve of the left panel in Fig. 4) in which it is seen a “knee” around q " 2.

This local minimum in the real part of the frequency is present in all of the gravitational

vectorial modes of the four-dimensional black brane [47]. As seen from Fig. 4, such a local

minimum disappears in higher dimensions.
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Figure 4: Dispersion relations for the first non-hydrodynamic vectorial QNM of the AdS black
brane in several dimensions, d = 4, 5, ..., 10. The curves for the hydrodynamic modes are also
shown in the right panel for 0 ≤ q ! 4.

Typical time-domain evolution profiles of the vectorial QNM are presented in Fig. 5.

The transition from the hydrodynamic shear-mode regime of perturbations to the ordinary-

QNM regime appears in the time evolution of ΦV as a transition from non-oscillatory (for

small q) to oscillatory (large q) late-time decay. The left panel of Fig. 5 exploits exactly

this feature of the vectorial gravitational QNM in d = 6: non-oscillatory time-evolution

for q = 2 and oscillatory time-evolution for q = 5, 8. This transition is important to the

CFT side of the AdS/CFT correspondence, since it is interpreted as the hydrodynamic-

to-collisionless crossover which is expected to arise in generic systems [45, 81]. The right
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ω = −iD k2

D =
η

dP

η

s
=

1

4π
 [Morgan, Cardoso, Miranda, Molino, Zanchin]



Outline:
✴ Background

highlights from gauge/gravity duality

✴ Solution for global equilibrium
Planar Schwarzschild-AdS black hole
Ideal fluid

✴ Nonlinear deformations away from global equilibrium
Form of dissipative fluid stress tensor
Geometry at conceptual level: patching black holes
Geometry at technical level: expansion of Einstein’s eqns

✴ General solution
Event horizon in the bulk geometry
Transport coefficients in the boundary fluid

✴ Further consequences of the correspondence



Black holes with variation

Conceptual motivation:
Suppose that the ‘parameters’ of black hole    and 
varied slowly in    . xµ

uµT

xΜ

r

xΜ

r

Then at each    , the geometry should look approximately like a 
black hole with temperature         and velocity         :T (x0) uµ(x0)

xµ
0



Black holes with variation

Mathematically, instead of specifying 4 parameters in

ds2 = −2uµ dx
µdr + r2

�
ηµν +

π4T 4

r4
uµ uν

�
dxµdxν

ds2 = −2uµ(x) dx
µdr + r2

�
ηµν +

π4T (x)4

r4
uµ(x)uν(x)

�
dxµdxν

This metric is still regular (for regular       and      ), 
but does not solve Einstein’s equations unless          
and       are constant.

uµ(x)

uµ(x)

T (x)

T (x)

suppose we specified the metric by 4 functions of    : xµ



Iterative construction

However, we can use this as a starting point for an 
iterative construction:

gab =
∞�

k=0

�k g(k)ab , T =
∞�

k=0

�k T (k) , uµ =
∞�

k=0

�k u(k)
µ

Assuming slow variations

we can expand

and solve Einstein’s equations order by order in   .�

∂µ log T

T
∼ O (�) ,

∂µu

T
∼ O (�)



Iterative construction

Einstein’s equations

separate into two sets:

Eab ≡ Rab −
1

2
Rgab + Λ gab = 0

✴ Constraint equations:

    these implement stress tensor conservation 
  (at one lower order)

✴ Dynamical equations:            and 
  these allow us to solve for the metric correction
  (at the given order)

Erµ = 0

Eµν = 0 Err = 0

⇐⇒ ∇µT
µν = 0



Iterative construction

Structure of dynamical equations:

At order         , having solved for all      with       ,    
the dynamical equations which determine             
take a miraculously simple form.   Schematically: 

O(�k) g(n)ab

g(k)ab

n < k

H

�
g(0)(u(0)

µ , T (0))
�
g(k) = sk

✴ Here     is a second order differential operator in 
the variable    alone  (i.e. it contains no derivatives in     ).

✴ The RHS contains regular source terms      built 
out of the previously obtained       with        .n < kg(n)ab

H

r
sk

xµ



Iterative construction

Solution to the dynamical equations

H

�
g(0)(u(0)

µ , T (0))
�
g(k) = sk

(subject to regularity in the bulk and asymptotically AdS boundary conditions)

and exists provided the constraint equations are solved.

takes the form
g(k) = particular(sk) + homogeneous(H)

captures higher order non-linearities

same at all orders, ultra-local



Key points of the construction

✴ The iterative construction can in principle be 
systematically implemented to arbitrary order in     
(which obtains correspondingly accurate solution).

✴ The resulting black hole spacetimes form a 
continuously-infinite set of (approximate) solutions: 
instead of specifying 4 parameters, we specify 4 functions of 4 variables.

✴ However, these solutions are given implicitly in 
terms of functions         and          which must 
solve the generalized Navier-Stokes equations.

✴ Any regular fluid dynamical solution corresponds to 
a bulk black hole with regular horizon.

uν(xµ)T (xµ)

�



Outline:
✴ Background

highlights from gauge/gravity duality

✴ Solution for global equilibrium
Planar Schwarzschild-AdS black hole
Ideal fluid

✴ Deformations away from global equilibrium
Form of dissipative fluid stress tensor
Geometry at conceptual level: patching black holes
Geometry at technical level: expansion of Einstein’s eqns

✴ General solution
Event horizon in the bulk geometry
Transport coefficients in the boundary fluid

✴ Further consequences of the correspondence



Bulk geometry

At 1st order we find the black hole solution

ds2 = −2uµ dxµdr + r2
�
ηµν + π4 T 4

r4 uµ uν

�
dxµdxν

+2r
�

r
πT F (r/πT )σµν + 1

3 uµuν ∂λuλ − 1
2 u

λ∂λ (uνuµ)
�
dxµdxν

where

F (r) =

� ∞

r
dx

x2 + x+ 1

x(x+ 1) (x2 + 1)
=

1

4

�
ln

�
(1 + r)2(1 + r2)

r4

�
− 2 arctan(r) + π

�

At 2nd order the solution is page-long, but explicit.  
We can explicitly find the event horizon and 
confirm regularity, horizon area growth, etc.



Bulk geometry

The causal structure is 
preserved, the horizon is 
regular but non-uniform 
and dynamically evolving.

Locally at each    , i.e. along a radial ingoing null 
geodesic, the geometry approximates a uniformly 
boosted planar Schwarzschild-AdS black hole, with 
corrections suppressed by the ‘speed’ of variation,  .  

xµ

�



Bulk geometry event horizon:

Assuming the dissipation causes our configuration to 
settle down to a stationary state at late times,     
we can find the event horizon as the unique null 
hypersurface with the correct late-time behavior.

r+(x) = π T (x) +
1

π T (x)
(#σµν σ

µν(x) + #ωµν ω
µν(x)) + . . .

The event horizon is determined locally at a given    !xµ

This can be solved algebraically, order-by-order in  .�

(Though unusual, this is possible due to the long wavelength 
regime, i.e. horizon position varies sufficiently slowly.)

[Bhattacharyya, VH, Loganayagam, Mandal, Minwalla, Morita, Rangamani, Reall]



Cartoon of the event horizon:

BH

boundary

✴ Initially non-uniform 
horizon evolves.

✴ The horizon area grows.
✴ At late times, the horizon 

settles down to stationary 
configuration.

✴ The pull-back of the area form on the 
horizon provides a natural entropy 
current in the dual fluid.

✴ Such entropy current automatically 
satisfies the 2nd Law of thermodynamics.



Boundary stress tensor at 1st order

The 1st order solution induces on the AdS boundary 
the stress tensor of the expected form:

Tµν = π4 T 4 (4uµuν + ηµν)− 2π3 T 3 σµν

From this we can read off the shear viscosity of the 
fluid; in terms of shear viscosity to entropy density 
ratio (calculated previously [Policastro, Son, Starinets]),

η

s
=

1

4π

This saturates the famous lower bound conjectured 
by [Kovtun, Son, Starinets].



Boundary stress tensor at 2nd order

Transport coefficients in 2nd order stress tensor 
in d dimensions:

P =
1

16πGAdS

�
4π T

d

�d

η =
s

4π
=

1

16πGAdS

�
4π T

d

�d−1

τ1 =
d

4π T

�
1−

� ∞

1
dy

yd−2 − 1

y(yd − 1)

�

τ� =
d

4π T

� ∞

1
dy

yd−2 − 1

y(yd − 1)

ξσ = ξC=
d

2π T
η

ξω = 0

✴ concurrently derived in d=4 by [Baier, Romatschke, Son, Starinets, Stephanov]

✴ higher dimensions: [Haack, Yarom; Bhattacharyya, Loganayagam, Mandal, Minwalla, Sharma]



Outline:
✴ Background

highlights from gauge/gravity duality

✴ Solution for global equilibrium
Planar Schwarzschild-AdS black hole
Ideal fluid

✴ Deformations away from global equilibrium
Form of dissipative fluid stress tensor
Geometry at conceptual level: patching black holes
Geometry at technical level: expansion of Einstein’s eqns

✴ General solution
Event horizon in the bulk geometry
Transport coefficients in the boundary fluid

✴ Generalizations and further consequences



Generalizations

✴ Different number of dimensions
Closed form expressions for 2nd order solution exist [Bhattacharyya et.al., Haack et.al.]
Intriguing observation [van Raamsdonk]: For incompressible fluids, 2+1 dimensional 
dynamics is qualitatively different from 3+1 dimensional dynamics (eg. inverse 
energy cascade).  What are the implications for gravity in 4 vs. 5 dimensions?

✴ Fluids on curved background                [Bhattacharyya et.al.]

✴ Adding other bulk matter fields  [Bhattacharyya et.al., Erdmenger et.al.]

e.g. Einstein-Maxwell, Einstein-Dilaton, etc.   
     holographic superfluid (charged scalar)                         [Sonner & Withers]
These introduce richer physics, at expense of universality.
Adding bulk gauge fields gives new local conserved charge.
Adding bulk dilaton induces forcing of the fluid.

✴ Zero-temperature fluids   [Hansen et.al., Erdmenger et.al., Banerjee et.al., Oh]

✴ Non-conformal fluid dynamics         [Kanitscheider et.al., David et.al]

✴ Non-relativistic fluid dynamics    [Bhattacharyya et.al., Rangamani et.al.]



Implications for GR & fluid dynamics 

✴ Improvement on Israel-Stewart formalism
At first order, relativistic viscous fluid is described by parabolic system, which 
leads to apparent causality violations.  Israel-Stewart formalism renders the 
system hyperbolic by adding some 2nd order terms, but not all.  Fluid/gravity 
construction prescribes the correct completion to render the system causal.

✴ New contribution to charge current
For Maxwell-Chern-Simons charged fluid, we find a surprise at 1st order:  
in addition to standard dissipative terms, a new (parity-violating but CP 
preserving) term appears in charge current:  

[Erdmenger et.al., Banerjee et.al., Son et.al.]
This term has been ignored by Landau&Lifshitz, but it may have potentially 
observable effects.

✴ Blackfold approach to constructing higher-dim BHs                                        
[Emparan et.al.]

✴ Convenient rewriting of rotating AdS black holes in 
terms of fluid variables                    [Bhattacharyya et.al.]

�µ = � µ
αβγ uα ∇βuγ



Implications for condensed matter physics

What types of fluids do have gravitational dual?
Conjecture: [Heemskerk, Penedones, Polchinski, Sully]

Any CFT that has a planar expansion, and in which all single-trace operators 
of spin greater than two have parametrically large dimensions, has a local 
bulk dual.

Bad news: fluid/gravity is not going to solve your 
favorite CM system:
Fluids one encounters in every-day experience do 
not have a dual in terms of a classical gravitational 
system (typically not enough DoFs).



Implications for condensed matter physics

Good news: fluid/gravity can suggest what sorts of 
processes might be possible & when to expect them.
It simultaneously provides a new (geometrical) 
perspective on many familiar hydrodynamic 
phenomena.

Fluid/gravity correspondence is most useful for 
elucidating general guiding principles and universal 
features.
(BH captures universal dynamics of stress tensor of any CFT with grav. dual)

Fluid/gravity moreover provides a handle on 
nonlinear departures from equilibrium.



Summary:
✴ Fluid/gravity correspondence maps asymptotically AdS 

black hole dynamics to lower-dimensional dynamics of 
fluids.

✴ Fluid/gravity correspondence is a rapidly-expanding 
area, and provides a useful tool for
✴ studying behavior of generic black hole horizon
✴ geometrizing fluid dynamics
✴ gaining insight into behavior of strongly coupled 

field theories, which exhibit similar features to 
certain real-world systems.


