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We propose an architecture to implement multi-input one-output Boolean functions using chaos
computing in hybrid digital-analog systems consisting of a digital block of conventional AND gates and a
nonlinear circuit. This architecture efficiently utilizes the superstable initial conditions of a nonlinear circuit
and enables us to implement all possible 22" Boolean functions of m data inputs in just  iterations of the
nonlinear circuit, resulting in better operating speed and noise tolerance. In an ideal nonlinear map, this
architecture eliminates the need for a decoder, as the outputs are mapped to maxima and minima of the map
and can be fed directly to the next stage, enabling multilayer concatenation. We demonstrate the utility of

this architecture in a three-transistor circuit.
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I. INTRODUCTION

The impending failure of Moore’s law has led to the
development of novel approaches such as nonlinear or
chaos computing (CC) [1-4] to get more computation out
of a limited number of transistors. It was shown recently
that a simple nonlinear circuit can theoretically implement
an infinite number of functions [5], which in practice are
limited by the amplification of ambient noise with each
iteration. Researchers have described an integrated circuit
implementation of CC with a nonlinear circuit [6] as well as
other transistor-based implementations of chaotic circuits
[7,8]. CC allows us to get different multi-input one-output
functions using the same hardware giving us a reconfig-
urable logic block. We can change the functionality of the
logic block by changing the control signals and get any
function that we need. Moreover, this hardware is fully
compatible with conventional digital systems and can be
fabricated on integrated circuits using the same semicon-
ductor fabrication technologies.

Manufacturing nonidealities and ambient noise limit the
number of functions that we can obtain from these non-
linear circuits in practice. The ambient noise is amplified
exponentially when the circuits are operating in the chaotic
regime, thereby limiting the number of iterations for which
we can use the nonlinear circuit. The number of imple-
mentable functions increases exponentially with the num-
ber of iterations [5], so it is crucial that we can maximize
the iterations for which output can be obtained successfully.
One method to achieve this objective is to suppress the
noise evolution through coupled redundant nonlinear cir-
cuits as the local noise in different circuits averages out and
the overall deviation in the output is reduced [9-11].
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In this article, we propose an alternate method which
exponentially decreases the number of iterations required to
implement all Boolean functions. This method utilizes a
hybrid digital-analog system consisting of conventional
digital circuits and an analog nonlinear circuit and distrib-
utes the computation between the digital and nonlinear
circuit. The increase in hardware complexity due to digital
block is compensated to a large extent by a corresponding
reduction in the complexity of the encoder. Hybrid digital-
analog systems have been proposed as emerging technol-
ogies for transmission [12,13], wireless video coding [14],
control systems [15], and chaotic circuits [16].

II. THEORETICAL FRAMEWORK

Let us assume that both data, as well as control signals, are
Boolean variables and we want to implement all Boolean
functions f: B™ — B, where B = {0, 1} of m data inputs.
The m Boolean data inputs, dy, d», ..., d,, resultin 2" distinct
input combinations as each input can take two values,
namely, O and 1. The output corresponding to these input
combinations can be 0 or 1 and, consequently, the number of
all possible multi-input one-output Boolean functions for m
data inputs is 22", For example, two data inputs d; and d,
result in 22 different input combinations 00, 01, 10, and 11

and 22" = 16 distinct functions corresponding to an output of
0 or 1 for these four input combinations. For a CC element to
yield all possible Boolean functions, we need 16 different
control signals to select a specific function to be imple-
mented. These control signals can be provided by four
control inputs ¢y, ¢,, ¢3, and c4. In other words, we need
control signals ¢, ¢;, ..., co» to implement all m-input one-
output functions.

CC is a paradigm to utilize the nonlinearity of physical
systems to obtain Boolean functions [4,17]. The primary
advantage of CC elements is their reconfigurability, which
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FIG. 1. Schematic diagram of conventional nonlinear or chaos
computing.

allows the extraction of different Boolean functions from
the same hardware. Control signals are used to select a
specific Boolean function to be implemented. In the
conventional CC approach, an encoder takes the digital
data inputs and control signals as input and generates an
analog output that is transformed to an initial condition of a
nonlinear circuit. The nonlinear circuit initialized with this
value is iterated for a fixed number of iterations and the
output is then fed to a decoder which transforms it to a
digital output, as shown in Fig. 1.

One can employ different encoding schemes to convert
data inputs and control signals to an analog value. A simple
example is the digital-to-analog converter (DAC), for
which the encoding can be expressed as

anl 4+t 2n—m—1dm + 211—mcl 4.
e = 2n+1

where 7 is equal to the sum of the number of data inputs
and control signals. Every possible combination of data
inputs and control signals is mapped to a distinct analog
value yielding a total of distinct 2" analog values. The
nonlinear circuit is initialized with an initial condition x;
given by

xXo = g(xe), (2)

where g(x) is typically a scaling function and depends on
the characteristics of the nonlinear circuit. For example, if
the nonlinear circuit consists of transistors with input
voltages in [0 V, 5 V], then xo = g(x,) = 5x,. Similarly,
the decoder is typically a thresholding circuit such that the
output y of the decoder can be given as
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where 7 is threshold and 7 is the number of iterations of the
nonlinear circuit.

The number of functions that can be obtained depends on
the computing exponent [5] of the nonlinear circuit, and the
maximum number of functions can be obtained in the
chaotic region. The actual number of functions that we
obtain is less than 22", as some of the control functions
yield the same function even in the chaotic region [5] and

all possible functions can be obtained only if n > 2™.
Moreover, a large number of iterations are needed to obtain
these functions. For example, for four input bits and 16
control signals, we get about 16 distinct functions after six
iterations and 56 functions after ten iterations [5]. This
number saturates at about 22 000 after 30 iterations, which
are about one-third of all possible functions (65 536).
Ambient noise and finite resolution of experimental devices
severely restricts the maximum number of iterations. For
example, the reliability of a recently fabricated nonlinear
circuit [6] starts decreasing from the sixth iteration
onwards. Thus, it is imperative to devise an approach that
can fully utilize the potential of the nonlinear circuit
and yield maximum functions in a minimum number of
iterations.

We propose the hybrid architecture shown in Fig. 2. It
optimally utilizes the potential of chaos computing, as it
can theoretically implement all Boolean functions with a
minimum number of control signals. In this architecture,
the data inputs and control signals are first passed through a
digital block to generate all possible combinations of data
inputs, and then each combination is associated with a
control signal (see Appendix). The number of combina-
tions of data inputs can be found using the binomial
coefficients C7', which denote the possible number of
combinations of m data inputs considered k at a time.
From the properties of binomial coefficients we know that
> 0o Cr=2", and hence the number of control signals
that we need agrees with the number we had found
previously.

The underlying principle behind this architecture is that
various Boolean functions can be expressed as logical
functions of combinations of data inputs and the control
signals determine whether or not a specific combination
contributes to the output of a function. The analog circuit
including the nonlinear circuit determines whether the
selected combinations should be mapped to O or 1. In this
architecture, the encoder is an averaging circuit which is
much simpler than a DAC as needed in the conventional
architecture and compensates for the increased hardware
necessity of the digital block. The encoded analog value x,
of the encoder can be given as

2"1 . /\ X
X, = —,:126”2 3 4)

For example, for two data inputs, we have
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FIG. 2. Schematic diagram of chaos computing in hybrid
digital-analog systems.
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CI+C2/\d1+C3/\d2+C4/\d1/\d2
Xe = 22 . (5)

Note that the encoder in this scheme produces only
2™ 4+ 1 encoded values as opposed to 22" encoded values
needed in Eq. (1). In other words, the number of initial
conditions that are to be resolved decreases exponentially
in this hybrid architecture. The number of distinct functions
to which an encoded value contributes is simply the
binomial coefficient corresponding to that encoded value,
ie., C7" for 0 < k < 2™ The sum of these coefficients will
be 22", which is equal to the maximum number of Boolean
functions for m data inputs.

In this architecture, each encoded value x, is mapped to a
superstable initial condition of the nonlinear circuit and the
functional form of g(x) depends on the nonlinear circuit.
For a generic map, x; = f(x;_;), the superstable initial
conditions for iteration i are the initial conditions x,, for
which (d/dx)f%(xy) = 0 or f(x,) is a maxima or minima
of f7(x). Using Taylor’s expansion for an initial condition
(xo + &) representing a small perturbation &, of the initial
condition x,, we can approximate the ith iteration for
X0+ 6 by fi(xg) + 6(d/dx)[f(xy)] after neglecting the
second and higher-order terms. If (d/dx)[f(xo)] = 0, then
the second term will be zero and the difference between
fi(xy) and fi(xo + &) is proportional to higher-order terms
which are very close to zero if § is small. So, the superstable
initial conditions of the nonlinear circuit are robust against
perturbations [11] and map to maxima and minima of the
response function of the nonlinear circuit.

If the nonlinear circuit is piecewise linear with the same
domain and codomain like a tent map, then g(x) is simply a
scaling function as in Eq. (2). For higher-order nonlinearity,
g(x) is a nonlinear function as the superstable initial
conditions are nonuniformly distributed. The nonlinear
circuit maps the neighboring superstable initial conditions
to different output values. If the domain and codomain of
the response function of the nonlinear circuit are same,
then, the maxima and minima correspond to 0 and 1,
respectively, and a decoder is not needed. If the domain and
codomain are different, then a decoder is needed, which
can be the same as the conventional CC decoder given
in Eq. (3).

A comparison of conventional and hybrid architectures
for chaos computing is shown in Table. I. The digital block
in the hybrid digital-analog architecture adds to the com-
plexity of the circuit, but the overall complexity of this
approach is lower or comparable to the conventional
approach. In the conventional approach, the encoder
is a (m +2™)-bit digital-to-analog converter, whereas a
(2™ 4 1) bit averaging circuit is used as an encoder in the
hybrid approach. The VLSI implementation of the hybrid
CC encoder is simpler and occupies less space and
compensates for the additional digital-block hardware.
The elimination of the decoder further reduces the space

TABLE 1. Comparison of conventional and hybrid digital-
analog chaos computing.

Conventional Hybrid digital-analog

Feature chaos computing chaos computing
Digital block Not needed AND gates
Encoder DAC Averaging circuit
Minimum iterations m m
Decoder Threshold detector Not needed
Noise tolerance Less More

complexity of the hybrid approach. The hybrid approach is
better in terms of time complexity also as the time
complexity of the nonlinear circuit is much lower and
compensates for the increased time complexity due to the
digital block.

III. EXPLICIT EXAMPLE

Now we illustrate the hybrid architecture through the
two-data-input example. Let us assume that the nonlinear
circuit is the tent map given by

1

2
/l(l —x,-) for ESx,»,

HX; for x; <

Xip1 = fulx;) = {

which is chaotic for y = 2 and maps an initial condition
xo € [0,1] to x;,; € [0, 1]. The superstable initial condi-
tions for the first iteration are x, = 0, 0.5, 1, which map to
0,1,0, respectively. At the next iteration, the maxima at 0.5
changes to minima and two new maxima appear at 0.25 and
0.75, as shown in Fig. 3. One can find superstable initial
conditions at any iteration i by finding the roots of the
equation (d/dx)[f?(x)] = 0. At any iteration i, there will be
2i=1 copies of the tent, and the superstable initial conditions
corresponding to maxima and minima will be 0, 1/2/,
2/21,3/2, ..., (21 = 1)/2!, 1. There are 2'~! maxima and
2= + 1 minima for a total of 2/ 4 1 superstable points.
This gives us a one-to-one correspondence between the
number of data inputs m and the iterations i required to
obtain all possible functions for those data inputs.

3/4 . 3/4

1 1/2 T2 1/2

1/4 1/4

0 1/4 1/2 3/4 1 0 1/4 1/2 3/4 1
Zo Zo

FIG. 3. Output of the tent map after one iteration (x;) and two
iterations (x,). Mapping of superstable initial conditions x; to x,
is shown by arrows.
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FIG. 4. TIterations of two nearby initial conditions of the tent
map in the presence of ambient Gaussian noise of zero mean and
standard deviation ¢ = 103, One hundred trajectories are shown
for each initial condition. xy = 0.8125 is a superstable initial
condition for i = 4 and, consequently, the trajectories stay close
to each other in comparison to a nonsuperstable initial condition
xo = 0.78125. The standard deviation ¢, of deviation A of 10*
noisy trajectories from a noiseless trajectory for initial conditions
€ [0, 1] after four iterations of the tent map is shown in the bottom
panel. The initial conditions used in the top panel are marked by
arrows.

To study the noise robustness of different initial con-
ditions, we add noise terms to x, as well as at every
subsequent iterate x; for 1 < j <7 such that the noisy map
can be written as x; = f(x;,_; + &,_;), where &;_; is the
instantaneous noise term with zero mean and standard
deviation . One hundred trajectories of the tent map for
two different initial conditions are shown in Fig. 4, and we
observe that divergence of the superstable initial condition
Xxo = 0.8125 is much lower compared with divergence of
trajectories starting with xo = 0.78125. We calculate the
deviation A as the deviation of the noisy trajectory from the
noiseless trajectory and plot the standard deviation o, of
these deviations in Fig. 4. We observe that the o, of
superstable initial conditions is significantly less compared
to o, of nearby initial conditions.

The data inputs and control signals are encoded and
mapped to initial conditions according to Egs. (5) and (2)
such that g(x) = x. The encoded values or the correspond-
ing initial conditions of the tent map are shared by different
combinations of data inputs and control signals as sixteen
possible combinations have been mapped to just five

TABLE II. Truth tables and instruction sets.

Control bits [did,] Function
[c1cac3ey] [00] [01] [10] [11]

0000 0 0 0 0 0
0001 0 0 0 1 1
0010 0 1 0 1 2
0011 0 1 0 0 3
0100 0 0 1 1 4
0101 0 0 1 0 5
0110 0 1 1 0 6
0111 0 1 1 1 7
1000 1 1 1 1 8
1001 1 1 1 0 9
1010 1 0 1 0 10
1011 1 0 1 1 11
1100 1 1 0 0 12
1101 1 1 0 1 13
1110 1 0 0 1 14
1111 1 0 0 0 15

distinct initial conditions. The output of the tent map after
two iterations for x, € [0, 1] is shown in Fig. 3. Note that
we do not need a decoder in this case and the outputs
corresponding to different control and data bits are given in
Table II. In summary, we observe that all of the sixteen
different functions for two data inputs can be implemented
by using four control signals and five initial conditions of
the tent map which are resolved in just two iterations.

IV. PRACTICAL APPLICATION

In this section, we demonstrate the implementation of
multi-input one-output functions using a three-transistor
nonlinear circuit shown in Fig. 5(a). This nonlinear circuit
is implemented in a Cadence Spectre simulator using the
ON C5, 0.5-um process models provided by the vendor.
The output from the Cadence simulator is fed back as its
input to generate further iterations. For practical consid-
erations, we limit the accuracy in the feedback process to
10 uV. Further implementation details are available in
Refs. [5,6]. This simple circuit exhibits different behaviors

(@)

WIL = 40/0.6

FIG. 5. (a) A three-transistor nonlinear circuit. (b) Nonlinear
response curve of the circuit for different V. = 0, 0.6, 1.0, 2.3,
2.6 V.
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FIG. 6. Fourth iteration of the map for V., = 0.5V (thick
black line) and the standard deviation o, of the deviations of a
noisy map from that of a noiseless (thin blue line). The noise is
assumed to be Gaussian with zero mean and 0.001 standard
deviation.

depending on the bias voltage V. which acts as a bifurca-
tion parameter (see Fig. 8). The response y, of the circuit for
various input voltages x, at different bifurcation voltages
V., is shown in Fig. 5(b).

Conventional CC can be implemented in this circuit by
using a DAC as an encoder which encodes the data inputs
and control signals to an analog value according to Eq. (1)
and then scaling these values to [0 V, 5 V]. If we consider
the case of two data inputs and four control signals and use
a six-bit DAC as the encoder, we get 64 analog values. For
each control signal, there are four different analog values
and each analog value corresponds to a unique combination
of data inputs and control signals. Let us suppose that we
iterate the map four times. The fourth iterate of the map for
V.= 0.5 V is shown in Fig. 6. The function implemented
by a control signal can be found out by finding the output
for all four analog values corresponding to that control
signal. For example, the control signal 0000 results in four
analog values 0, 1.25, 2.5, 3.75 V which are mapped to
3.94, 4.04, 2.51, 3.76 V or a decoded output of 1111 that
corresponds to the function number 8 as per Table II.
Similarly, the control signal 0001 will implement function
8. We find that even after four iterations, nearby initial
conditions are not resolved by the map and we can
implement few functions only [5].

To implement CC using the hybrid architecture, we pass
the digital data inputs and control signals to a digital
simulator and the output of the digital block is then passed
through an encoder which encodes them according to
Eq. (4). From Fig. 5, we observe that this nonlinear circuit
maps the input values in [0 V, 5 V] to a smaller range that
depends on the bias voltage V. or, in other words, the
domain and codomain for this nonlinear circuit are differ-
ent. We can either limit the input range to keep the domain

and codomain the same or perform a nonlinear trans-
formation of the encoded value to map x, to superstable
initial conditions of the nonlinear circuit. We follow this
second approach of nonlinear transformation and calculate
the number of functions that can be implemented with m
data inputs after m iterations at different bias values.
The initial conditions where the map in Fig. 6 takes a
minimum or maximum value are marked by vertical lines
and one can observe that the standard deviation of the
deviations of the noisy map from the noiseless map is
typically low for these initial conditions as compared with
nearby initial conditions. Because of the asymmetry of the
response of the nonlinear circuit, the number of superstable
points is sometimes less than 2" + 1. For example, in Fig. 6
there are nine superstable initial conditions between (0 V,
5 V). Including O Vand 5 V provides us a total of 11 initial
conditions that can be used to map 11 encoded values,
which is less than 2/ + 1 = 17 for i = 4. In such cases, we
assume that the functions which encode the data inputs and
control signals to larger encoded values cannot be imple-
mented. The number of functions corresponding to the jth
encoded value x, is equal to C3". In the specific example,

only the functions that encode all their data inputs and
control signals to the first 11 values can be implemented. If
we want to implement all the functions, then we need to
iterate the map for more iterations so that the number of
superstable initial conditions is equal to or more than
2M 4 1.

As the domain and codomain are different, we will need
a decoder in this case. We fix the decoder threshold at
7 = 2.5 V, so that an output from the nonlinear circuit after
m iterations is taken as logic 1 only if it is greater than 2.5 V
and 0 otherwise. Thus, nearby superstable initial conditions
representing local minima and maxima of the nonlinear
circuit are mapped to 0 and 1 by the decoder. If the maxima
remains below 2.5 V or the minima is above 2.5 V, we take
that as an error and the functions corresponding to such an
encoded value x, are counted as nonimplementable. For
example, for the 4th iteration of the circuit for V. = 0.5V,
the minima at 0 V, 3.09 V, 5 V are all above 2.5 V and result
in an error. Thus, the total number of nonimplementable
functions is obtained by adding the number of functions
corresponding to encoded values which cannot be mapped
to an initial condition due to a lesser number of superstable
initial conditions as discussed in the previous paragraph
and the encoded values which are mapped to initial
conditions corresponding to maxima below the decoder
threshold or minima above the decoder threshold.

The number of implementable functions for different
numbers of data inputs is shown in Fig. 7. We observe that
the number of implementable functions increases very
rapidly with the number of iterations or data inputs as
the map is iterated m times for m data inputs. If we iterate
more than m times, then the number of implementable
functions will be equal to the minimum of implementable
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FIG. 7. Shown are the number of functions which can be
implemented using the hybrid architecture. The iteration number
i, after which we calculate the implementable functions is taken to
be equal to the number of data inputs m. Note the exponential
increase in the number of implementable functions on a log scale
indicating that the increase in the number of functions is propor-
tional to 22" = 2%
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FIG. 8. The ratio () of implementable functions versus the
maximum number of possible functions plotted for different
values of bifurcation parameter V. and the number of iterations i
(data inputs m). The bifurcation diagram of the nonlinear circuit
for corresponding V, values is shown at the top.

functions for that iteration and the number of all possible
functions, 22",

Next, we calculate the ratio #, of the number of imple-
mentable functions using this nonlinear circuit to all possible
functions 22". We start with m data inputs, 2" control
signals, and iterate the nonlinear circuit for m iterations. The
results for different m and bifurcation parameters V. are
shown in Fig. 8. We observe that the ;7 increases near chaotic
regions of the nonlinear circuit as the nonlinear circuit
undergoes bifurcations. The number of implementable
functions stays high in the period-three window as the basin
of attraction of different fixed points is riddled. Changes in
V. also affect the maxima and minima and occasionally the
number of implementable functions decreases as the
maxima falls below 7 or the minima is above 7. Further,
the domain and codomain are different for this nonlinear
circuit, and the effect of the bifurcation parameter is subdued
by a decrease in the number of superstable initial conditions.
These results suggest that a small digital block in our hybrid
architecture can enable an exponential increase in the
number of functions that can be implemented for a particular
iteration number of the nonlinear circuit.

V. CONCLUSION

We have proposed an architecture to implement multi-
input one-output Boolean functions in a hybrid digital-
analog circuit. The digital block consists of AND gates to
generate 2™ combinations of m data inputs and associate
each combination with a control signal. The output of the
digital block is used as an input to an encoder which maps it
to 2™ + 1 analog values which are used to initialize the
nonlinear circuit with corresponding superstable initial
conditions. The nonlinear circuit resolves the initial con-
ditions such that alternate initial conditions are mapped to
maxima and minima of the map after m iterations. The
output is then decoded using a simple threshold-detecting
decoder. This architecture is robust to noise, as the effect of
noise is at a minimum at superstable initial conditions and
can scale superlinearly by coupling redundant circuits [11].
Moreover, if the domain and codomain of the nonlinear
circuit are the same, then the output can be used directly as an
input to the next stage, allowing an easy concatenation
of CC elements. We have also demonstrated the utility
of this architecture in a three-transistor nonlinear circuit.
Transistor-based nonlinear circuits and digital blocks can be
built on the same integrated circuit [6], and this hybrid
architecture makes it possible to implement a large number
of functions, as the output can be obtained in a few iterations
of the nonlinear circuit and the smearing of the output due to
the exponential amplification of noise can be avoided.

ACKNOWLEDGMENTS
We gratefully acknowledge support from the North
Carolina State University (NCSU) wunder Grant

044006-6



IMPLEMENTING BOOLEAN FUNCTIONS IN HYBRID ...

PHYS. REV. APPLIED 7, 044006 (2017)

No. 201584-70677 and the Office of Naval Research under
Grant No. NO00014-16-1-3056 and STTR Grant
No. N00014-14-C-0033.

APPENDIX: DIGITAL BLOCK DETAILS

Here, the combinations imply the logical AND (A) of the
k data inputs. For example, we have C{§' or one combination
when no input data are selected, C' or m combinations
when a single data input is selected, C3' combinations when
two data inputs are selected (d; A d; for 1 <i <m and
i < j <m)and C}} or one combination (d; A dy A ...d,,;)
consisting of all the data inputs. We need C}' + C§' + - - - +
C" two-input AND gates to generate these combinations as
we can use the output of the k — 1 data-input combination
and generate a k-input data combination by its logical AND
with another data input. Let us denote these combinations
of data inputs by X; for 1 <i<2"™ Each of these
combinations X; is then associated with a control signal
¢; through an additional logical AND operation. The
association with control signals will require a further
(2™ — 1) two-input AND gates, as no gate is required for
the first control signal. Thus, the digital block requires
about (2" — C' = CJ") + (2" = 1) = (2™ —m - 2) two-
input AND gates.
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