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monochromatic, and in-phase wave sources S1 and S2 with 
equal wavelengths l (Fig. 1). Maxima and minima are found 
on the hyperboloids of revolution around the line containing 
the two sources. Conditions of maxima and minima are:

    
.

Here r2 – r1 is the path difference of two rays and m is an in-
teger.

The total amount of 
energy that will be trans-
mitted to the medium 
surrounding the two 
sources will depend on 
the source separation 
(relative to l); phase 
difference between the 
sources may play a role 
as well. First let us con-
sider two well-separated 
sources (d>>l). Here, 

interference will be constructive in some regions and destruc-
tive in others. The total energy flux through any closed sur-
face that encloses sources S1 and S2 is nearly equal to the sum 
of energy flux of two isolated sources taken one at a time. This 
equality, however, is not exact. Only as the ratio d/l becomes 
large will the sum of the energies from two isolated sources be 
nearly equal to the net energy transmitted from the combined 
sources as noted by Refs. 3 and 4. Note also that when source 
separation is large (compared to l), that the phase difference 
between the sources does not affect the total amount of en-
ergy transferred to the medium.

Now we consider the other extreme, d<<l (or r2 – r1<0), 
then oscillations from both sources are practically in phase 
in all points of space. In this case the intensity of the result-
ing waves from the two sources in any point of the space is 
four (not two) times greater than the intensity of one isolated 
source. This is a direct result of addition of the amplitudes, 
which when squared to arrive at intensity, gives an increase 
of a factor of four. So, if d<< l, the net energy flux through 
any surrounding surface (which includes these two sources) 
is nearly double the sum of individual energy fluxes that these 
two sources would have produced when each was isolated.

It is important to emphasize that the law of energy conser-
vation does not require the equality of power radiation of two 
isolated sources as compared to when they are near one an-
other. In fact, two in-phase wave sources do generate greater 
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Introductory physics textbooks consider interference to 
be a process of redistribution of energy from the wave 
sources in the surrounding space resulting in construc-

tive and destructive interferences. As one can expect, the total 
energy flux is conserved. However, one case of apparent non-
conservation energy attracts great attention.1,2 Imagine that a 
pair of coherent, point-like wave sources (located at the same 
position) radiates sinusoidal waves of amplitude A, spread-
ing in a uniform medium. Assume also that radiation of the 
two sources is in phase. Since the energy of oscillation, E, is 
proportional to amplitude squared, one quickly arrives at an 
apparent paradox. That is, the energy of oscillation in every 
point due to only one source is E0 = CA2 (C is the coefficient 
of proportionality), while according to the linear superposi-
tion principle, the combined amplitude of oscillations from 
the two sources is 2A and the energy of oscillations is E = 
C(2A)2 = 4CA2 = 4E0, i.e., four (not two) times greater than 
the energy of oscillation of one isolated source in the absence 
of the second. In the general case, superposition of two waves 
with identical amplitudes and wavelengths produces a wave 
with an intensity somewhere between zero and four times the 
intensity of a single wave source (depending on relative phase 
of the two waves). This leads to the obvious question:  
how can we account for the extra (or missing) energy that nec-
essarily results from in-phase (or anti-phase) wave interfer-
ence? This apparent violation of the principle of conservation 
energy, due to the superposition of waves, is the primary topic 
of this paper.

Levine1 explained this apparent paradox by introducing 
wave impedance. This explanation is technically correct, al-
though many students and teachers are not familiar with wave 
impedance, making it difficult for many readers to under-
stand the given explanation. Moreover, six years after publica-
tion of Levine’s paper, Mathews2 made an attempt to explain 
the above apparent paradox (in the same journal as Ref. 1 but 
without citation of this paper). However, Mathews incorrectly 
states that for every region of constructive interference there 
will be compensating regions of destructive interference, 
which prevents violation of conservation of energy. To see that 
this is in general false, consider the simple example of two in-
phase, identical wave sources at the same location. They pro-
duce constructive interference at all surrounding locations. 
These facts show that this seemingly trivial problem needs 
further discussion and a clear explanation. 

Interference from two identical mono-
chromatic in-phase wave sources

Let us consider interference from two identical point-like, 
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Fig. 1. Interference of two like point 
sources (S1 and S2) of monochro-
matic sinusoidal waves.
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tine. Since destructive interference is prevented, more power 
is transmitted to the air, and the mechanical energy of the 
oscillating fork declines more quickly. Without the cardboard 
tube, the largely destructive interference restricts the rate of 
transmission of energy to the air, and thus the wave source 
maintains its mechanical energy for a longer time. This is 
instrumental in the fork’s ability to produce sound for the 
extended period that we are accustomed to. The fact that 
destructive interference between two wave sources results in 
longer duration of oscillations is very counterintuitive, but is 
supported by the following example.

If the tines could oscillate in phase, the duration of oscil-
lations would be reduced, which is the reason pianos are 
designed with many duplicate strings (and some cases tripli-
cate). Sound duration of in-phase, free vibrations of multiple 
identical closely placed piano strings (which will generate 
constructive interference) is shorter than the duration of one 
isolated string.5 This indicates that the power generation 
from a coupled in-phase pair of strings is more than twice 
that for a single vibrating string. The initial mechanical en-
ergy is dispersed more quickly into sound wave oscillations.

Quantitative analysis
A detailed study of interference of two loudspeakers is pre-

sented by Vanderkooy and Lipshitz.6 The authors derived the 
dependence of total power of radiation of two identical iso-
tropic loudspeakers as a function of distance between them:

 
                               (1)

Here P0 is the total (that is, summed over all directions) 
acoustical power of radiation of one isolated loudspeaker, 

is angular wave number, d is the speaker’s spatial 

separation, and q is the phase shift of oscillations between 
sources S1 and S2. Equation (1) indicates that the total 
power of radiation of two in-phase (q = 0) loudspeakers at 
the same location (d = 0) is four times (P = 4P0) greater than 
the total power of one isolated loudspeaker. This fact has 
been confirmed experimentally by Gander and Eargle.7 For 
phase shift q = p (180o), and d = 0, the total radiation power 
equals zero (P = 0), as expected. 

Now consider the case of two significantly separated 
sources (kd>>1 or d>>l). The power of radiation is equal to 
twice the power of an individual (isolated) radiator (P = 2P0) 
regardless of the phase difference, q. Figure 3 (taken from Ref. 
7) illustrates the above statements. Figure 3 confirms that the 
total integrated power of radiation depends strongly on the 
phase difference between sources only when they are closely 
spaced (d ≤ l). For spacings larger than this, the total inte-
grated power of two sources is always 2P0 (no matter what the 
phase difference).    

When separation of sources is much less than the wave-
length, the fact that total integrated power can be as large as 
4P0 (or as small as zero) does not contradict the law of energy 

power when close to each other (d<l) since they now repre-
sent (effectively) a single source producing a wave of ampli-
tude 2A. The increase in power of radiation is not a violation 
of the law of energy conservation but is due to the additional 
work done by the two wave generators to produce the ampli-
tude of (2A) for combined oscillations from two nearby, in-
phase sources. To accomplish this increase in amplitude, the 
wave sources will each draw more power from their supplies. 
If the supplies are not capable of producing this additional 
power, then the combined wave amplitude will never achieve 
the value of 2A in the first place.

Equally important is the case of two closely spaced wave 
sources that are in anti-phase. If they were isolated, they 
would each produce a net energy flow to the medium, but 
when the two sources are placed in the same location, we ex-
pect zero energy transfer to the medium. Each of the sources 
will do zero work (due to the zero amplitude of the superim-
posed oscillations) and hence will require zero energy from 
whatever is driving them. Once again, there is no violation of 
the conservation of energy. 

Interference of sound waves
Using interference of sound waves as a convenient ex-

ample, the following experiments qualitatively confirm the 
increase (or decrease) in power of the radiation of two closely 
located sources in comparison to twice the power of a single 
isolated source. 

We consider the oscillations of 
the tines of a simple tuning fork. The 
transmitted power of oscillations 
from a tuning fork is small primarily 
because the tuning fork tines oscillate 
out of phase. As the distance between 
the tines is much less than the wave-
length, destructive interference is 
predominately the case for all points 
surrounding the fork. Since the tine 
spacing, while small, is not zero, the 
interference is not completely destruc-
tive (which is why we can hear a tuning 
fork at all). However, sound intensity 
is expected to be less from the typical 

tuning fork with two tines, as com-
pared to one with only a single tine. 
This is easily confirmed by blocking 
the wave propagation of one tine only 
by placing it within a cardboard tube 
(closed at one end, see Fig. 2). This re-
sults in an increase of sound intensity, 

as detected by simply listening (this experiment is posted on 
YouTube at http://youtu.be/Cfwj8j3hNrE). This qualitatively 
confirms that destructive interference is the dominant case 
for the typical operation of a tuning fork. This point is further 
made by noting that the duration of the tuning fork oscilla-
tions decreases when the cardboard tube surrounds just one 

Fig. 2. A tuning fork 
with a cardboard cylin-
der on one prong pro-
duces greater intensity 
of sound in every point 
of space than a tuning 
fork without a card-
board cylinder.
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this coefficient become independent of d. Therefore, imped-
ance is different for an isolated source from that of two closely 
situated sources. For example, consider two in-phase sources 
at the same location. C will be twice that of the case of one 
isolated source. Therefore, power generated by each source 
is twice greater than the power of a single source, and power 
generated by the pair of in-phase sources (in close proximity) 
is four times greater than power of a single isolated source. 
This is a mathematical explanation of the apparent paradox 
described at the beginning of the paper. 

In general, adding the amplitudes of two identical spheri-
cal wave trains (with offset centers and arbitrary relative 
phase) leads to radiation patterns with a total power between 
zero and four times the power of one wave source alone. In 
the case of closely spaced centers, for which the path dif-
ference is a small fraction of the wavelength, the net power 
produced depends primarily on the relative phase of sources 
and the ratio of separation to wavelength. Finally, consider 
the case of widely separated centers that produce an interfer-
ence pattern consisting of multiple bands of constructive and 
destructive interference. This condition does tend to result 
in twice the power of a single source. Ultimately, there is no 
paradox as to the conservation of energy during wave super-
position, but the path to understanding this result is more 
complex than originally expected.    
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conservation. This phenomenon is explained by the fact 
that the air pressure oscillations in the vicinity of one source 
significantly influence air pressure near the second one. In 
this way, a speaker’s diaphragm will oscillate over a different 
amplitude (and thus do a different amount of work on the 
air) due to the proximity of the other speaker. Engebretson8 
explains these phenomena as the influence of the impedance 
of medium on the radiation power. 

Conclusion
The superposition principle for interference of two co-

herent, in-phase, identical, closely located sources of waves 
leads to a four times increase in total power (4P0) when 
compared to a single isolated wave source (P0). Since the two 
sources are in-phase, constructive interference will occur 
for all points in space. However, in the case of significantly 
separated (but still in-phase) wave sources (d>>l), there will 
exist separate regions of constructive and destructive interfer-
ence, resulting in the total radiated power being two times 
less than for closely (d<<l) situated sources (i.e. 2P0). This 
is not contradictory to the principle of energy conservation, 
however. When d<<l, the sources of waves are coupled and 
will produce a greater amplitude of oscillations (and thus do 
more work than for well separated wave sources). For closely 
spaced wave sources, it is simply not possible to superimpose 
the oscillations from two in-phase sources without drawing 
more energy from the oscillators themselves. In other words, 
two in-phase sources will “work harder” when near one an-
other, which solves the “paradox” of where the “extra” power 
comes from for this configuration. Similarly, two nearby but 
out-of-phase sources will “work less hard” (due to less dis-
placement), which explains the “missing” total power.

In the equation E0 = CA2, C is proportional to 
.

C depends on the dynamic properties of medium, which, in 
turn, are a function of the distance between the sources of 
oscillations (relative to wavelength). From Eq. (1), it is seen 
that only for significantly large separation of two sources does 

Fig. 3. Normalized (P/P0) power of radiation of two 
coherent sound waves vs parameter for 0o, 
90o, and 180o phase shifts of oscillations of sound 
sources (P is the power of radiation of two sound 
waves and P0 is the audible power of an isolated 
source of sound, i.e., P0 is the power generated by 
only one source in the absence of the second with 
the same amplitude of oscillations as for coupled 
oscillations).6      
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