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Lorentz Invariant Breaking of CPT

Summary

We present a class of nonlocal quantum field theories, in
which all discrete symmetries, i.e. C , P, CP, T− and CPT ,
are violated while the Lorentz invariance is not !!

We rule out a standard claim in the literature that the CPT
violation implies the violation of Lorentz invariance!!

We demonstrate that at one-loop level the masses for particle
and antiparticle remain equal due to Lorentz symmetry only.

We demonstrate that an inequality of masses implies
non-conservation of the usually conserved charges.



Lorentz Invariant Breaking of CPT

Introduction

The weak interactions break both C and P symmetries.

Individual CP and T symmetries have been observed to be
violated in hadrons.

Combined product, CPT , remarkably remains as an exact
symmetry (still).

The interplay of Lorentz symmetry and CPT symmetry was
considered in the literature for decades
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Prehistory of CPT
J.Schwinger

First Proof of CPT
Lüders and Pauli (Bell?) within the Hamiltonian formulation
of quantum field theory with local and Lorentz invariant
interaction.

General Proof of CPT
Jost within the axiomatic formulation of quantum field theory.
The “local commutativity” condition was relaxed to “weak
local commutativity”.

Lorentz symmetry has been an essential ingredient of the
proof, both in the Hamiltonian QFT and in the axiomatic
QFT.



Lorentz Invariant Breaking of CPT

Violation of Lorentz symmetry and CPT.
A long list of references includes Coleman,Glashow,
Okun,Colladay,Kostelecky, Cohen,Lehner ...

Relation between the CPT and Lorentz invariance.
Does the violation of any of symmetry automatically imply the
violation of the other one?

This issue has recently become a topical one due to the
growing phenomenological importance of CPT violating
scenarios in neutrino physics and in cosmology.



Lorentz Invariant Breaking of CPT

Different masses for neutrino and antineutrino. First
phenomenological consideration by Murayama and
Yanagida(2001).(See MINOS data (2010)).

CPT -violating quantum field theory with a mass difference
between neutrino and antineutrino
First by Barenboim et al (2001) and later by Greenberg
(2002) .

Greenberg conclusion:CPT violation implies violation of
Lorentz invariance.

This result was given as a “theorem”!! The dispute on the
validity of the theorem is the subject of this talk.
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CPT -violating Quantum Mechanics

There is widely spread habit to parametrize CPT violation by
attributing different masses to particle and antiparticle.

This tradition is traced to a good old theory of K − K̄ -mesons
oscillation.

For a given momenta q the theory of oscillation is equivalent
to a non-hermitian Quantum Mechanics (QM) with two
degrees of freedom.

Diagonal elements of 2× 2 Hamiltonian matrix represent
masses for particle and antiparticle. Their unequality breaks
CPT-symmetry.

Such strategy has no explicit loop-holes and is still used for
parametrization of CPT-symmetry violation in D and B
meson oscillations.
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CPT -violating Quantum Field Theory

(QFT) deals with an infinite sum over all momenta.
The set of plane waves with all possible momenta for particle and
antiparticle is a complete set of orthogonal modes and an arbitrary
field operator can be decomposed over this set.
Naive generalization of CPT-conserving QFT to CPT-violating
QFT was to attribute different masses for particle and antiparticle.

Bose commutation relations for particle a(p), a+(p
′
) with

mass m;

Bose commutation relations for antiparticle b(p), b+(p
′
) with

masse m̃

Hamiltonian as a sum over free oscillators
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The Simplest Example

For a complex scalar field one gets the infinite sum

φ(x) =
∑
q

{
a(q)

1√
2E

e−i(Et−qx) + b+(q)
1√
2Ẽ

e i(Ẽ t−qx)

}
,

(1)
where (a(q), a+(q)), (b(q), b+(q)) are annihilation and creation
operators, and (m,E ) and (m̃, Ẽ ) are masses and energies of
particle and antiparticle respectively.
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Greenberg arguments

Propagator is not Lorentz covariant, unless the masses of
particle and antiparticle coincide.

Theory is nonlocal and acausal: the ∆(x , y)-function, i.e. the
commutator of two fields, does not vanish for space-like
separation, unless the two masses are the same, thus violating
the Lorentz invariance.

These arguments support a general “theorem” that
interacting fields that violate CPT symmetry necessarily
violate Lorentz invariance.
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Not a QFT

Such theory can not be considered as a quantum field theory!!!

There are no differential equations of motion.

Conjugate momenta do not exist and, as a result, there are no
canonical equal-time commutation relations

“Free fields” separated by a space-like distance do not
commute. They do not anticommute as well.

One has no rule whether to apply commutation or
anticommutation relations in quantizing the fields!

There are no conservation laws,i.e. no conservation of electric
charge.
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CPT -violating, Lorentz invariant non-local model

We propose a model

which preserves Lorentz invariance

and breaks the CPT symmetry through a (nonlocal)
interaction.

Free field theory is a local one.

Nonlocal field theories appear, in general, as effective field
theories of a larger theory.

Hint(x) = g

∫
d4yφ∗(x)φ(x)φ∗(x)θ(x0−y0)θ((x−y)2)φ(y)+h.c.,

(2)
where φ(x) is a Lorentz-scalar field and θ is the Heaviside step
function, with values 0 or 1.
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The combination θ(x0 − y0)θ((x − y)2) ensures the Lorentz
invariance under the proper orthochronous Lorentz
transformations

The order of the times x0 and y0 remains unchanged for
time-like intervals, while for space-like distances the
interaction vanishes

The same combination makes the nonlocal interaction causal
at the tree level.

There is no interaction when the fields are separated by
space-like distances and thus there is a maximum speed of
c = 1 for the propagation of information

C and P invariance are trivially satisfied, while T invariance is
broken due to the presence of θ(x0 − y0) in the integrand.
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One can always insert into the Hamiltonian a form-factor
F ((x − y)2), for instance of a Gaussian type:

F = exp

(
− (x − y)2

l2

)
, (3)

with l being a nonlocality length in the considered theory. Such a
weight function would smear out the interaction and would
guarantee the desired behaviour of the integrand in this equation;
in the limit of fundamental length l → 0 , the Hamiltonian would
correspond to a local, CPT - and Lorentz-invariant theory.
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Quantum theory of nonlocal interactions

The S-matrix in the interaction picture is obtained as solution of
the Lorentz-covariant Tomonaga- Schwinger equation :

i
δ

δσ(x)
Ψ[σ] = Hint(x)Ψ[σ] , (4)

with σ a space-like hypersurface, and the boundary condition:

Ψ[σ0] = Ψ . (5)

where Hint is the Hamiltonian in the interaction picture. Then Eq.
(4) with the boundary condition (5) represent a well-posed Cauchy
problem.
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The existence of a unique solution for the Tomonaga-Schwinger
equation is ensured if the integrability condition

δ2Ψ[σ]

δσ(x)δσ(x ′)
− δ2Ψ[σ]

δσ(x ′)δσ(x)
= 0, (6)

with x and x ′ on the surface σ, is satisfied. The integrability
condition (6), inserted into (4), requires that the commutator of
the interaction Hamiltonian densities vanishes at space-like
separation:

[Hint(x),Hint(y)] = 0 , for (x − y)2 < 0 . (7)
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Inserting our decomposition into (7), we get:

[Hint(x),Hint(y)] =

=

∫
d4ad4bθ((x − a)2)θ(x0 − a0)θ((y − b)2)θ(y0 − b0)×

× [φ(x)φ2(a) + h.c ., φ(y)φ2(b) + h.c .] . (8)

The commutator on the r.h.s. is a sum of products of field at the
points x , y , a, b, multiplied by commutators of free fields like
[φ(x), φ(y)], [φ(x), φ(b)], [φ(a), φ(y)], [φ(a), φ(b)].
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A straightforward calculation shows that the terms containing
these fields:∫

d4a d4b θ((x − a)2)θ(x0 − a0)θ((y − b)2)θ(y0 − b0)×

2∆(a− b){φ(a), φ(b)}φ(x)φ(y) + h.c . (9)

does not vanish at space-like distances between x and y and thus
the causality condition (7) is not satisfied.
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This, in turn, implies that the field operators in the Heisenberg
picture, ΦH(x) and ΦH(y), do not satisfy the locality condition

[ΦH(x),ΦH(y)] = 0, for (x − y)2 < 0, (10)

when the quantum corrections are taken into account. This is in
accord with the requirement of locality condition (10) for the
validity of CPT theorem both in the Hamiltonian proof
(Luders,Pauli)and as well in the axiomatic one (Jost, Bogoliubov),
taking into account that there is no example of a QFT, which
satisfies the weak local commutativity condition (WLC) but not
the local commutativity (LC).
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Non-local QED

We propose a class of (slightly!) non-local Lorentz invariant field
theories with explicit breakdown of CPT symmetry and with the
same masses for particle and antiparticle.
A good example is a non-local QED with the Lagrangian
L = L0 + Ln.l ., where L0 is the usual QED Lagrangian:

L0 = −1

4
F 2
µν(x) + ψ̄(x)[i ∂̂ − eÂ(x)−m]ψ(x) , (11)

and Ln.l is a small non-local addition:

Ln.l .(x) = g

∫
dy ψ̄(x)γµψ(x)Aµ(y)K (x − y) , (12)
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Here Fµν(x) = ∂µAν(x)− ∂νAµ(x) is the electromagnetic field
strength tensor, Aµ(x) is the four-potential, and ψ(x) is the Dirac
field for electrons.
Non-local form-factor K (x − y) is chosen in such a way that it
explicitly breaks T -invariance, e.g.

K (x − y) = θ(x0 − y0)θ[(x − y)2]e−(x−y)2/l2 , (13)

where l is a scale of the non-locality and the Heaviside functions
θ(x0 − y0)θ[(x − y)2] are equal to the unity for the future
light-cone and are identically zero for the past light-cone.
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Non-local interaction breaks T-invariance, preserves C- and
P-invariance and, as a result, breaks CPT-invariance. This
construction demonstrates that CPT-symmetry can be broken in
Lorentz-invariant non-local field theory! The masses of an electron,
m, and of a positron, m̃, remain identical to each other in this
theory despite breaking of CPT-symmetry. The evident reason is
that the interaction Ln.l .(x) is C-invariant and its exact
C-symmetry preserves the identity of masses and anti-masses.
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A New Step

To study further the relation between mass difference for a particle
and an antiparticle and CPT-symmetry we introduce a non-local
interaction that breaks the whole set of discrete symmetries, i.e. C,
P, CP, T, and CPT.
There is no discrete symmetry which preserves equality of m to m̃
in this case.
We start from the standard local free field theory of electrons with
the usual dispersion relation between energy and momentum:

p2µ = p20 − p2 = m2 = m̃2 (14)

In principle the non-local interaction can shift m from m̃. But an
explicit one-loop calculation demonstrates that this is not true. So
we conclude that it is Lorentz-symmetry that keeps the identity

m = m̃ . (15)
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This conclusion invalidates the experimental evidence for
CPT-symmetry based on the equality of masses of particles and
antiparticles. CPT may be strongly broken in a Lorentz invariant
way and in such a case the masses must be equal. Another way
around, if we assume that the masses are different, then Lorenz
invariance must be broken. Lorentz and CPT violating theories
would lead not only to mass difference of particles and antiparticles
but to much more striking phenomena such as violation of gauge
invariance, current non-conservation, and even to a breaking of the
usual equilibrium statistics (for the latter see our unpublished
papers).
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C, CP and CPT violating QFT

To formulate a model we start with the standard QED Lagrangian:

L0 = −1

4
Fµν(x)Fµν(x) + ψ̄(x)[i ∂̂ − eÂ(x)−m]ψ(x) , (16)

and add the interaction of a photon, Aµ, with an axial current

L1 = g1ψ̄(x)γµγ5ψ(x)Aµ(x) (17)

and with the electric dipole moment of an electron

L2 = g2ψ̄(x)σµνγ5ψ(x)Fµν(x) . (18)
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The first interaction, L1, breaks C and P-symmetry and conserves
CP-symmetry. The second interaction breaks P- and CP-symmetry.
Still the sum of Lagrangians

L = L0 + L1 + L2 (19)

preserves CPT-symmetry. To break the CPT we modify the
interaction L1 to a non-local one L̃1:

L1 → L̃1(x) =

∫
dyg1ψ̄(x)γµγ5ψ(x)K (x − y)Aµ(y) . (20)

With this modification the model

L = L0 + L̄1 + L2 (21)

breaks all discrete symmetries.
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One-loop calculation

In general to calculate high order perturbative contributions of a
non-local interaction into S-matrix one has to modify the Dyson
formulae for S-matrix with T -ordered exponential

S = T

{
exp

(
i

∫
d4xLint

)}
(22)

and the whole Feynman diagram techniques.
But in the first order in the non-local interaction one can work
with the usual Feynman rules in the coordinate space. The only
difference is that one of the vertices becomes non-local.
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Mass and wave function renormalization for particle and
antiparticle

We start with the standard free field theory for an electron, i.e.

L = ψ̄[i ∂̂ −m]ψ (23)

that fixes the usual dispersion law

p2 = p20 − p2 = m2 . (24)

The self-energy operator, Σ(p), contributes both to the mass
renormalization and to the wave function renormalization. In
general one-loop effective Lagrangin can be written in the form:

L(1)eff = ψ̄[i(Aγµ + Bγµγ5)∂µ − (m1 + im2γ5)]ψ . (25)
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It is useful to rewrite the same one-loop effective Lagrangian in
terms of the field for antiparticle ψc :

ψc = (−i)[ψ̄γ0γ2]T , (26)

L(1)eff = ψ̄c [i(Aγ5 − Bγµγ5)∂µ − (m1 + im2γ5)]ψc . (27)

We see that the mass term is the same for ψ and for ψc , but the
wave function renormalization is different: the coefficient in front
of the pseudovector changes its sign. This change is unobservable
since one can remove Bγµγ5 and im2γ5 terms by redefining of
variables.



Lorentz Invariant Breaking of CPT

Indeed
ψ̄(A + Bγ5)γµψ ≡ ψ̄′

√
A2 + B2γµψ

′ , (28)

where
ψ = (coshα + iγ5 sinhα)ψ′ , (29)

tanh 2α = B/A , (30)
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and

ψ̄(m1 + iγ5m2)ψ ≡
√

m2
1 + m2

2ψ̄
′ψ′ , (31)

where
ψ = exp(iγ5β)ψ′ , (32)

tan 2β = m2/m1 . (33)

This simple observation is sufficient to conclude that technically
there is no possibility to write one-loop corrections that produce
different contributions for particle and antiparticle. Still it is
instructive to check directly that the difference is zero.
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Explicit one-loop calculation

We are looking for a one-loop contribution into self-energy
operator Σ(p) that breaks C, CP, and CPT symmetries and that
changes the chirality of the fermion line. It is clear that this
contribution potentially can be different (opposite in sign) for
particle ψ and antiparticle ψc .
To construct such contribution we need both anomalous
interactions L̃1 and L2. Indeed interaction L2 changes chirality
and breaks CP symmetry, while non-local interaction L̃1 breaks C
and CPT and leaves the chirality unchanged. In combination they
break all discrete symmetries and change chirality. There are two
diagrams that are proportional to g1g2 (see Fig. 1).
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Figure: The diagram contributing to the mass difference of electron and
positron. The blob represents a non-local form-factor.
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We will calculate these diagrams in two steps. The first step is a
pure algebraic one. Self-energy Σ(p) is 4×4 matrix that was
constructed from a product of three other 4×4 matrices, i.e. two
vertices and one fermion propagator. Notice that any 4×4 matrix
can be decomposed as a sum over complete set of 16 Dirac
matrices. In this decomposition of Σ(p) we need terms that are
odd in C and changes chirality. Fortunately there is only one Dirac
matrix with these properties. That is σµν . So

Σ(p) = σµν Iµν (p), (34)

where Iµν represents Feynman (divergent) integral. We could
obtain eq. (24) after some long explicit algebraic transformation,
but the net result is determined by the symmetry only.
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The second step is the calculation of Feynman integrals. Again
fortunately we do not need actual calculations. Indeed due to the
Lorentz symmetry of the theory this Iµν should be a tensor that
depends only on the momentum of fermion line p. The general
form for Iµν is

Iµν = Agµν + Bpµpν . (35)

As a result we get
Σ(p) = σµν Iµν ≡ 0 (36)

and we conclude that the one-loop contribution into possible mass
difference is identically zero.1

1Recently our former collaborators published a paper where they
demonstrated that for a particle with a non-standard dispersion law the quantity
which they define as mass can be different for particle and antiparticle [?].



Lorentz Invariant Breaking of CPT

CPT and charge non-conservation

Naive generalization of CPT-conserving QFT to CPT-violating
QFT is to attribute different masses for particle and antiparticle.
For a complex scalar field one has to use the infinite sum

φ(x) =
∑
q

{
a(q)

1√
2E

e−i(Et−qx) + b+(q)
1√
2Ẽ

e i(Ẽ t−qx)

}
,

(37)
where (a(q), a+(q)), (b(q), b+(q)) are annihilation and creation
operators, and (m,E ) and (m̃, Ẽ ) are masses and energies of
particle and antiparticle respectively.
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Greenberg found that this construction runs into trouble. The
dynamic of fields determined according to eq. (27) cannot be a
Lorentz-invariant one.
We’d like to notice that for charged particles (say for electrons and
positrons) similar generalization of the field theory breaks not only
the Lorentz symmetry but the electric charge conservation as well.
The reason is very simple. For the standard QED the operator of
electric charge Q̂(t) can be written in the form

Q̂(t) =
∑
q

{
a+(q)a(q)− b+(q)b(q)

}
. (38)

Operator Q̂(t) is a diagonal one, i.e. there are no mixed terms
with different momenta. The modes with different momenta are
orthogonal to each other and disappear after integration over
space. This is a technical explanation why one can construct a
time-independent operator.
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If one shifts the mass of electron from the mass of positron the
situation drastically changes. For electron the modes with different
momenta are still orthogonal to each other. The same is true for
the modes of positron, they are also orthogonal among themselves.
But there is no reason for wave function of electron with mass m
be orthogonal to wave functions for positron with mass m̃. As a
result one obtaines

Q(t) = Qloc + C
∑
q

(E − Ẽ )√
4EẼ

[
b(q)a(−q)e−i(E+Ẽ)t + h.c.

]
,

where constant C depends on the sorts of particles and on the
definition of the charge.
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We can conclude from this equation that non-conservation of
charge exhibits itself only in annihilation processes but not in the
scattering processes. So there is no immediate problem with the
Coulomb law. Nevertheless non-conservation of this type is also
absolutely excluded by the experiment. In a case of
charge-nonconservation annihilation of particle and antiparticle
with a creation of the infinite number of soft massless photons
creates a terrible infrared problem. Infrared catastrophe can not be
avoided by usual summation over infrared photons. On the other
hand, as is argued by Okun, Voloshin, Zeldovich, the electron
decay might be exponentially suppressed due to vanishing of the
corresponding formfactor created by virtual longitudinal photons.
Similar arguments lead to the conclusion that conservation of
energy cannot survive as well in a theory with different masses of
particles and antiparticles.
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Conclusion

We have shown that in the framework of a Lorentz invariant field
theory it is impossible to have different masses of particles and
antiparticles, even if CPT (together with C and P) invariance is
broken. On the other hand, unequal masses of particles and
antiparticles imply breaking of the Lorentz invariance. Moreover, in
such theories charge and energy conservation seem to be broken as
well.


