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Quantum chaos

Gutzwiller, Prange, Fishman, Grempel, Srednicki, Deutch, Berry….. 

Correspondence principle

Correspondence principle?

Key question: How does chaotic classical dynamics emerge from quantum 
physics

M. Gutzwiller, Scientific American

KAM theory

The subject of my talk falls under the 
field of quantum chaos. One of the 
motivation of this subject is to define 
what it means. One motivation is to 
define fingerprints of chaos in 
quantum regime, like level statistics 
etc. 


The second motivation which is closer 
to this talk is how classical chaotic 
dynamics emerges from an underlying 
quantum dynamics. 


The three pillars of our understanding 
of  microscopic world is 
understanding is classical regular, 
classical chaotic and quantum 
physics. Usually a more general 
theory does not cannibalize the 
existing theory, but contains the past 
understanding as a limiting case. A 
program of research follows where 
you recover all existing physics 
starting from a most fundamental 
theory, which in this case is quantum 
theory. 




Model for classical chaotic system: Kicked rotor

Kicked rotor
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Chirikov et al ‘78

K is the only parameter 

pn+1 = pn +K sinxn xn+1 = xn + pn+1standard map

The simplest model that facilitates the 
interplay of all these theory is that of a 
kicked rotor. 
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Critical Chaoticnon-chaotic

K=0.5 K~0.97 K=5
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Standard map (contd.)

pn+1 = pn +K sinxn xn+1 = xn + pn+1

Shepalyansky et al Scholarpedia



Suppression of chaos in quantum regime via Anderson mechanism

Prange, Grempel, Fishman ‘82

Manifests classical chaos for 
sufficiently strong driving

Disordered Anderson Insulator in 
momentum space
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Quantum kicked rotor: quantized standard map

Parameters in the quantum regime ~e↵ K

Prange, Grempel, Fishman ‘82



Emergence of classical limit in QKR: Diffusion

 . F. L. Moore, J. C. Robinson, C. F. Bharucha, Bala Sundaram and M. G. 

Raizen, Atom Optics Realization of Realization of the Quantum δ 
-Kicked Rotor, Phys. Rev. Lett. 75, 4598 (1995) 

Jean-Claude Garreau group 

Many more…… 

theory experiment

Prange, Grempel, Fishman ‘82

Aleiner, Larkin, 1996 Tian, Kamenev, Larkin  2005



Lyapunov exponent (Classical) of KR
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Chirikov estimate (linearized standard map)

Can we extract the “Lyapunov exponent” in the semiclassical limit of QKR?

�cl =

⌧
lim
t!1

lim
d(0)!0

1

t
ln

d(t)

d(0)

�

phase space

�cl ⇠ lnK/2 (K > 4)



Out of time ordered four point correlator

C(t) = �h[W (t), V (0)]2i

V (0)
W (t)

??

Larkin and Ovchchinnikov-1967, Aleiner Larkin, 1996 Shenker, Stanford and Maldacena-2013,  Kitaev-2013

Remark: To and fro evolution is with the same Hamiltonian unlike Loschmidt echo
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OTOC for quantum kicked rotor

C(t) = �h[p(t), p(0)]2i

B(t) = �Rehp(t)p(0)i

td ⇠ lnK/2

Exponential growth of OTOC is indeed present 
between the two time scales

Efim B. Rozenbaum, SG, and Victor Galitski

Phys. Rev. Lett. 118, 086801
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Classical to quantum crossover from 
growth rate
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OTOC growth rate post Ehrenfest time slows down due to 
quantum interference effects (weak localization physics)!!!

Efim B. Rozenbaum, SG, and Victor Galitski

Phys. Rev. Lett. 118, 086801
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Aleiner, Larkin, 1996 Tian, Kamenev, Larkin  2005



Lyapunov exponent and OTOC growth rate

Remark: OTOC diagnoses local phase space chaos!

Efim B. Rozenbaum, SG, and Victor Galitski

Phys. Rev. Lett. 118, 086801
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Signature of a classical transition in two point 
function

Efim B. Rozenbaum, SG, and Victor Galitski

Phys. Rev. Lett. 118, 086801
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Summary and Future direction

Using OTOC we extracted “Lyapunov exponent” like exponent , a key fingerprint 
of chaos in a quantum calculation of QKR

We quantitatively understand the difference between the OTOC growth rate and 
classical Lyapunov exponent 

We would like to extend this analysis to static chaotic systems where a thermal 
expectation has a bound on the OTOC growth rate

Extract this exponential growth of OTOC from the effective field theory of QKR 
ala Altland and Zirnbauer 98


