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PREFACE

The theory of molecular quantum electrodynamics hasits origins in the work
carried out by the founding fathers of quantum mechanicsin the late 1920s. A
complete formulation of quantum theory applicable to nonrelativistic
particles was quickly developed, enabling a fundamental description to be
given of the chemical and physical properties of matter at the atomic and
molecular levels. It was only natural that soon thereafter the new mechanics
were applied to electromagnetic radiation, with the consequence that the
photon emerged as the particle associated with the quantization of the
Maxwell field. This was followed by the construction of a single conceptual
and calculational quantum mechanical framework for the study of the
interaction of light with matter, which provides ameans to probe the structure
of atoms and molecules that manifest in numerous forms of spectroscopy.

While the next generation of theoretical physicists focused their attention
on formulating a self-consistent and fully covariant theory of electron—pho-
ton interaction, an endeavor that was ultimately successful, despite the
introduction of the mathematically and physically unsatisfactory technique
of renormalization, a device that continues to be used in the present-day
calculations to yield results of physically observable quantities that are not
divergent, a negative feature that besets all such field theories and is inherent
to them, progress in the noncovariant theory of radiation—matter interaction
continued, especially in regard to the foundations of the subject and its
application to problems of interest in the field of chemical physics. Detailed
expositions may be found in texts such as Power’s Introductory Quantum

Xi
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Electrodynamics (Longmans, London, 1964), Healy’s Non-Relativistic
Quantum Electrodynamics (Academic Press, London, 1982), Craig and
Thirunamachandran’s Molecular Quantum Electrodynamics (Dover, New
York, 1998), and Milonni’s The Quantum Vacuum (Academic Press, San
Diego, 1994). Highlights included the explanation of spontaneous emission
and the computation of its rate, the calculation of the Lamb shift—the
splitting of the 2§, ;, and 2P| ; levels in atomic hydrogen—and the deriva-
tion of the form of the retarded dispersion potential by Casimir and Polder, to
name but three historically significant examples. Predictions of these and
other phenomena, such as the anomalous magnetic moment of the electron,
have been compared with measured values to unparalleled levels of
accuracy, in the process providing remarkable agreement with experiment
and reassuringly high degrees of confidence in the theory.

Atomic, molecular, and optical physicists and theoretical chemists have
extended the domain of application of molecular quantum electrodynamics.
These include investigation of single- and multiphoton absorption and
emission and scattering of light by matter and the study of chiroptical
processes such as optical rotation and circular dichroism. With continuing
progress being made in the generation of coherent sources of radiation,
numerous and wide-ranging applications have been made to phenomena
occurring in the area of nonlinear and quantum optics. Examples include, but
arebynomeanslimited to, the laser-induced optical activity, hyper-Rayleigh
and Raman scattering, coherent anti-Stokes Raman scattering, optical Kerr
effect, second-, third-, and high-harmonic generation, and four-, five-, and
six-wave mixing, many of whose theoretical bases may be found in the books
by Mukamel (Principles of Nonlinear Optical Spectroscopy, Oxford Uni-
versity Press, New York, 1995) and Andrews and Allcock (Optical Har-
monics in Molecular Systems, Wiley-VCH, Weinheim, 2002).

A topic of widespread interest and fundamental nature in which
quantum electrodynamics has made significant contribution is the field of
interatomic/intermolecular interactions. The QED formalism lends itself
naturally to a description in which coupling between matter occurs via the
exchange of one or more virtual photons. Considerable advances have taken
place in the last twenty-five years in the quantum electrodynamical
theory of intermolecular forces, which mainly constitutes the subject matter
of this book. Before giving a standard presentation of the concept of an
intermolecular potential and a semiclassical perturbation theory treatment
of short- and long-range forces, the latter decomposed into familiar
electrostatic, induction, and dispersion terms in Chapter 3, the quantum
theory of the nonrelativistic interaction of a charged particle with a
radiation field is explicated in Chapter 1. This entails construction of the
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total Hamiltonian for the system comprising matter, electromagnetic field,
and their coupling, beginning with the classical Lagrangian function and
applying the canonical quantization procedure. Solutions for the interact-
ing system are developed via perturbation theory expansion. An alternative
formulation of the quantized theory of electron—photon interaction is
expounded in Chapter 2. The viewpoint adopted and the method developed
is slightly less familiar field theoretic approach, in which the Maxwell field
interacts with the electron wavefield, whose rigorous construction is found
to take place most easily in the Heisenberg picture of quantum mechanics
by employing the techniques of second quantization. The time dependence
is now contained solely within the dynamical variables. By solving
Heisenberg operator equations of motion for the fermion and boson
operators, the Maxwell field operators may be obtained in series of powers
of the electronic charge. This is in contrast to the theory presented in
Chapter 1, for which the Schrodinger picture is advantageous, with the time
dependence occurring exclusively within the states of the system. Either
formulation may be used to calculate expectation values for quantum
mechanical observables for processes involving the interaction of one or
more sources of external radiation with a single atom or molecule—the
optical phenomena mentioned above, although not covered in the present
work. Both theoretical schemes are, however, applied to the calculation of a
variety of intermolecular interactions that are especially effective at long
range and for which molecular quantum electrodynamics is best suited as it
automatically accounts for the finite speed of propagation of electromag-
netic signals. Hence, effort is made to elucidate contributions to the
intermolecular interaction energy for which quantum electrodynamical
predictions are found to differ from results obtained using a semiclassical
prescription. This begins in Chapter 4, which is devoted to resonant transfer
of energy. Chapter 5 exclusively deals with dispersion forces between pairs
of molecules. Energy shifts between ground and/or electronically excited
species are evaluated using three different physical viewpoints and calcula-
tional schemes. These include diagrammatic time-dependent perturbation
theory, a response formalism using Maxwell fields, and a method in which
molecules couple via fluctuations in their charge distribution. Discrimina-
tory effects are also studied in excitation energy transfer and van der Waals
dispersion occurring between optically active species. The three different
computational approaches are then applied to the calculation of many-body
forces in Chapter 6. Explicit results are obtained for retardation corrected
three-, four-, and N-body dispersion potentials. In Chapter 7, the modifica-
tion of intermolecular energy shifts by external radiation is investigated.
These include changes to pairs of molecules coupled via exchange of one
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and two virtual photons. Interactions of this type form the basis of optical
binding forces and, although small in magnitude, have recently come within
the range of experimental detection. Interesting field-induced interaction
energies between chiral molecules are also calculated.

While the formalism presented in the first two chapters and its application
in the last four chapters may at first sight appear imposing, it is intended that
atthe very least Chapter 1 will provide a detailed and self-contained account
of the theory of molecular quantum electrodynamics derived from the
first principles. Mastering this chapter will enable readers to reproduce
perturbation theory calculations of intermolecular interactions given in later
chapters and their extension to more complex problems. Background
material required for a thorough understanding of the content covered is
a first course in quantum theory in which the postulates are presented along
with standard elementary examples leading to examination of atomic and
molecular systems and the common methods of solution by techniques of
approximation. This is well within the scope of advanced undergraduate
students of chemistry and physics. Advantageous is a prior exposure to
mathematical methods. The same could also be said of classical mechanics
and classical electrodynamics, which along with quantum mechanics form
the foundations of quantum electrodynamics. For this purpose, the Lagran-
gian function and Hamiltonian formulation are introduced in Chapter 1
along with Maxwell’s equations. A similar approach is adopted in the
presentation of coupled wavefields in Chapter 2. Understanding of this
chapter will allow the response theory calculations of intermolecular forces
to be followed easily.

It is hoped that the book will prove useful to both the theorists seeking to
acquaint themselves with new methods and experimentalists requiring
knowledge of the latest forms of intermolecular potential energy functions.
In addition, the book will be accessible to students of the subject as well as
to researchers expert in the discipline.

The study of intermolecular forces has been a long and ongoing endeavor
and the results obtained over the years have in fact impacted all areas
of science. A variety of differing approaches within the framework of
molecular quantum electrodynamics will be used in this book to compute
the interaction energy of two or more bodies as a function of their separation
and orientation. This theory is preferred for treating interactions between
atoms and molecules, both for its rigor and for the chemical and physical
insights it affords. The emphasis, therefore, is on developing the theory and
applying it to fundamental intermolecular processes. The presentation
given is general enough to hold for a wide range of situations, yet applicable
to specific systems of interest. Despite three differing physical viewpoints
being proffered in this work, there remain others within the realm of
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Coulomb gauge quantum electrodynamics that can be deployed to explore
intermolecular forces. Perhaps the best known among these alternatives is
the dressed atom approach. Little mention is made of this methodology, as
being superbly dealt with in the treatise by Compagno, Passante, and
Persico (Atom-Field Interactions and Dressed Atoms, Cambridge Uni-
versity Press, Cambridge, 1995). For this and other reasons, the choice of
topics covered has been the authors alone. Hence, there is no discussion of
medium effects and methods to treat this important aspect. Likewise, no
details are given concerning measurement of intermolecular forces or
interactions occurring between atoms or molecules with surfaces. These
and other more general aspects of intermolecular forces may be found in
Margenau and Kestner’s monograph, Theory of Intermolecular Forces
(Pergamon, Oxford, 1969) and the book by Maitland, Rigby, Smith, and
Wakeham (Intermolecular Forces, Oxford University Press, Clarendon,
1981). Discussion of experiments is limited to those attempting to directly
measure different manifestations of the so-called Casimir effects, including
van der Waals dispersion forces. Also excluded are recent proposals for
enhancing and suppressing transfer of excitation by external radiation in the
so-called laser-assisted resonant energy transfer (LARET) processes. Like-
wise, no details are given of the dynamical Casimir effect.

No attempt has been made to provide a comprehensive list of references.
Only primary texts and key articles are cited. SI units have been used
throughout. All errors lay solely with the author.

Words of thanks are due to many. First and foremost, the author owes a
great debt of gratitude to ‘“Thiru” Thirunamachandran, who unfortunately
did not live to read this book. His influence on the author as teacher, research
guide, and friend are all too evident, as is his imprint on this work. The author
benefited greatly from numerous discussions with T. Thirunamachandran
relating to molecular quantum electrodynamics, as well as with David P.
Craig and the late Edwin A. Power. Thanks are also due to David L. Andrews
who read Section 1.10 and offered useful insights into state sequence
diagrams. Bridget W. Alligood is kindly thanked for skillfully drawing all
of the figures contained in this book and for critically reading Chapter 1.

Finally, thanks go to Anita Lekhwani, Senior Acquisitions Editor at John
Wiley & Sons, Inc., for her enthusiasm in supporting this project, and to
Rebekah Amos, Editorial Assistant at this publishing house, for her prompt
and friendly assistance during the writing and production process.

AKBAR SALAM

Winston-Salem, North Carolina
August 2009



CHAPTER 1

MOLECULAR QUANTUM
ELECTRODYNAMICS:
BASIC THEORY

One finds then that the Hamiltonian for the interaction of the field with an
atom is of the same form as that for the interaction of an assembly of light-
quanta with the atom. There is thus a complete formal reconciliation
between the wave and light-quantum points of view.

—P. A. M. Dirac, Proc. R. Soc. Lond. A 114, 710 (1927).

1.1 BACKGROUND

Quantum electrodynamics (QED) (Schwinger, 1958) is the physical theory
that describes the interaction of electromagnetic radiation with matter. Its
characteristic feature is that the radiation field, as well as the material
system, is subject to the postulates of quantum mechanics. Therefore, the
theoretical framework consists of a single, closed dynamical system
comprising both matter and electromagnetic radiation in mutual interaction
within which energy is conserved. This is unlike the situation in the so-
called semiclassical theory, the historical precursor to QED. In the former
construct, only matter obeys quantum mechanical principles, while the
radiation field is considered as a prescribed, external perturbation on the

Molecular Quantum Electrodynamics, by Akbar Salam
Copyright © 2010 John Wiley & Sons, Inc.



2 MOLECULAR QUANTUM ELECTRODYNAMICS: BASIC THEORY

system and does not form an integral part of it. Even though use of the
semiclassical formalism remains widespread, due largely to its physical
and computational simplicity relative to QED, its inherent deficiencies lead
to critical shortcomings and ultimately limit its scope of availability. This is
especially the case in the treatment of electromagnetic fields interacting
with atoms and molecules, where continuing progress in the generation of
coherent light sources has necessitated a fully quantum mechanical ap-
proach to calculating and explaining a variety of optical phenomena
(Mukamel, 1995; Andrews and Allcock, 2002). In this regard, QED is the
most successful physical theory to date (Feynman, 1985). This statement is
justified on two counts. First, development of the QED formalism has
provided a rigorous foundation for the understanding of electron—photon
interactions at the most fundamental level currently known. Phenomena
cover a vast range of length scales, manifested by particles varying in size
from the gigameter down to the attometer. Second, and perhaps more
convincing, is the ability of the theory to yield numerical values of
measurable properties and the unprecedented agreement with experiment
in those cases where comparison is possible.

A key step that led to the formulation of QED was the recognition that the
mechanical vibrations of a system with infinitely many degrees of freedom
could be represented by quantizing a collection of noninteracting harmonic
oscillators (Born et al., 1926). This insight prompted Dirac (1927) to
quantize the electromagnetic field and to calculate quantum mechanical
probabilities for the absorption, stimulated emission, and spontaneous
emission of light by atoms. Subsequent advances carried out by many
workers, in particular, the significant contributions of Feynman, Schwin-
ger, Tomonaga, and Dyson, resulted in a formulation of QED that satisfied
all of the requirements stipulated by the special theory of relativity, which
was ultimately explicated in both the particle and field theoretic points of
view (Schweber, 1994). This last aspect, for instance, finally enabled the
duality of the wave and particle descriptions of radiation and matter to be
rationalized on the basis of a single theoretical scheme. Interacting
quantum mechanical fermionic matter and bosonic electromagnetic fields
are therefore entirely equivalent to a many-body representation of a system
of material particles—electrons—interacting with quantized particles of
light—the photons.

Early application of both the nonrelativistic and fully covariant versions
of the theory was made to outstanding problems. These included calcula-
tions of spontaneous decay rates from atoms in electronically excited states,
the Lamb shift, and the anomalous magnetic moment of the electron, to
select but three historically significant examples. With continuing advances
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occurring in computational power and experimental procedure during the
intervening years, convergence between theory and experiment has been
ever closer. More accurate calculations and improvements in measurement
capability have yielded for the electronic g-factor, for instance, values in
units of Bohr magnetons of g/2 (experiment) =1.00115965218073(28)
(Hanneke et al., 2008) and g/2 (theory)=1.00115965218279 (Aoyama
etal., 2007). In the case of the Lamb shift in atomic hydrogen, experimental
and calculated values for the splitting between the 2S,,, and 2P/, levels
are 1,057,839(12) kHz (Hagley and Pipkin, 1994) and 1,057,838(6) kHz
(Pachucki, 1994), respectively.

While these and other achievements are indeed remarkably impressive,
there remain difficulties in the underlying foundations of the theory. Chief
among them is the renormalization procedure, without whose aid no finite
quantities may be calculated but which even today lacks rigorous math-
ematical justification. This problem continues to beset other field theories
of modern physics, of which QED is but one example. Another limitation,
which also applies in general to other field theories, is the approximate
nature of solutions generated when systems interact. A common method of
solution is a perturbative expansion in series of powers of some appropriate
coupling constant, with no a priori guarantee of convergence of succes-
sively higher order terms, or whether summation of the infinite series is
indeed possible. In QED, for example, the eigenstates of one or more
charged particles in isolation are taken to be known, and the microscopic
Maxwell’s equations in free space can be solved and appropriately quan-
tized. By forming a product state, the wavefunctions of this separable
system are then used as base states for a perturbation theory solution in
series of powers of the electronic charge or the fine structure constant.

Although QED correctly treats the coupling of radiation and matter at
high energies, where fermionic pair particle creation and destruction events
occur concomitantly with changes in photon number, the emphasis in the
presentation to follow will be on conservation of the number of charged
particles, which may exchange energy directly or indirectly with the
radiation field. Conversely, as there is no conservation of photon number,
any integer quantity of real or virtual photons may be created and
annihilated during the course of a particular process. Hence, the formalism
to be developed and applied will be suitable for systems composed of
charged particles such as bound electrons in atoms and molecules posses-
sing energies much less than mc?, m being the mass of the aggregate and ¢
the speed of light. Since the mass is assumed to be a constant, the system
of interest is slow moving, with low velocity v, and automatically satisfies
the condition v < ¢. When this limiting procedure is applied to covariant
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QED, the result is a nonrelativistic version of the theory, which is more
commonly known as molecular QED (Power, 1964; Healy, 1982; Craig and
Thirunamachandran, 1998a). Its construction from first principles and its
application to a variety of long-range intermolecular interactions form the
subject of this book.

In addition to providing valuable insight and expressions for forces
between particles, the most celebrated being the formula for the retarded
van der Waals dispersion potential between a pair of neutral molecules in
the ground state, the theory of molecular QED has been employed with
considerable success to radiation—molecule interactions. Examples include
single- and multiphoton absorption, emission and scattering of light,
optical activity and chiroptical spectroscopy, and nonlinear and quantum
optical phenomena. Specific processes studied involving the interaction of
radiation with one center include calculation of the circular dichroism rate,
the angle of rotation of plane polarized light as it traverses a chiral medium,
Rayleigh and Raman scattering of linear and circularly polarized radiation
and their hyperanalogues, second, third, and higher harmonic generation,
four-, five-, and six-wave mixing, and laser-induced optical activity.

Since intermolecular interactions are mediated by electromagnetic
forces, coupling of radiation with matter, as well as between two or more
particles, may be treated correctly and consistently within the framework
provided by the nonrelativistic quantum theory of electron—photon inter-
action or molecular QED. This is most commonly delineated for the
interaction of a charged particle with electromagnetic radiation; it begins
with the classical Lagrangian function and ends with the construction of a
quantum mechanical Hamiltonian operator that is arrived at via the familiar
canonical quantization procedure. Details are presented in this chapter.

More fundamental, though less well known—despite much progress
being made in the past 25 years or so—is the field theoretic formulation of
molecular QED (Salam, 2008), involving the interaction of second quan-
tized matter and radiation fields, which is the subject of Chapter 2. For a
variety of applications, this approach offers anumber of advantages over the
conventional method in which only the radiation field is second quantized.
Forinstance, properties directly related to electron and photon fields, such as
the Maxwell fields in the vicinity of a source of charge, its energy density, and
rates of flow of electromagnetic energy, may be evaluated. Moreover, the
electromagnetic fields are subsequently employed to calculate energy shifts
between molecules using a version of response theory.

The interactions occurring between atomic and molecular systems,
especially those operating at large separation distances, form the focus
of the remainder of the work. In Chapter 3, the standard presentation of
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intermolecular forces originating from classical electrostatics is given.
The pair potential is first divided into short- and long-range regions, with
the exchange-repulsion energy being the major contribution to the inter-
action energy in the former distance regime. At large separations, the
charge distribution between pairs of molecules is expanded in an electric
multipole series and quantum mechanical perturbation theory is used to
extract the electrostatic, induction, and dispersion terms within the form-
alism of semiclassical radiation theory in which no account is taken of the
photonic character of electromagnetic radiation. Applications of the quan-
tum electrodynamical theory to intermolecular interactions are then given
in the chapters to follow. In Chapter 4, the theory of resonance energy
transfer is given, a fundamental process taking place in microscopic
systems but prototypical in that its interpretation as due to the exchange
of a single virtual photon between the pair serves as a basis for the study of
other molecular interactions using the formalism of molecular QED. Both
perturbation and response theory calculations are presented, followed by
their application to the evaluation of the transfer rate between two chiral
species. Chapter 5 is devoted to van der Waals dispersion forces. Three
different physical viewpoints and calculational techniques are detailed for
the computation of the energy shift between two neutral polarizable
molecules in the ground state. In addition to perturbation and response
theories, the induced multipole moment approach is introduced and shown
to simplify calculations considerably. Results are also obtained for elec-
tronically excited molecules undergoing dispersive coupling, and the
functional form of the discriminatory potential between two optically
active molecules is derived. Chapter 6 covers nonadditive and many-body
forces. Attention is focused on the effects of retardation on energy transfer
and dispersion interactions taking place among three or more particles.
In Chapter 7, the effect of an external electromagnetic field in modifying the
molecular pair interaction energy is treated. Adoption of the approach
whereby molecules couple with each other and to the incident laser via the
moments induced by the radiation field is shown to be a more efficient
calculational method than the diagrammatic perturbation theory computa-
tion. Changes in energy shift induced by an applied field and dependent on
the handedness of individual bodies are also studied.

1.2 QUANTUM DESCRIPTION OF MATTER

The continued failure of the application of the laws of classical mechanics
to microscopic particles eventually led to the formulation of a new
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dynamics—quantum mechanics (Dirac, 1958). At its foundation, however,
remain a number of key concepts and ideas from classical theory (Goldstein,
1960). One of these fundamental constructs is the Lagrangian function, and
another is the physical variational principle and the versatility associated
with it. Taken together, they yield the Euler—Lagrange equations of motion
and provide an alternative formulation of classical mechanics to Newton’s
laws of motion. The former may be used to solve any problem within the
classical domain and ultimately to provide a rigorous means of quantizing
the specific system of interest. As long as a judicious choice of coordinates is
made, often the most difficult task at hand, the ensuing equations to be solved
are frequently simpler than those obtained by direct application of Newton’s
laws, and yet contain all of the essential physics. This freedom in the
selection of the specific coordinate representation lends itself to the for-
mulation of the classical Lagrangian L for a system of particles in terms of
generalized coordinates and velocities g and ¢; the Lagrangian is a function
of these two variables as well as of the time . If the Lagrangian does not
depend explicitly on the time, then it is defined to be the difference of the
kinetic energy T and the potential energy V; the energy of the system is
therefore conserved. For a system in which the potential energy is a function
of the position only, the Lagrangian has identical definition, namely,
L =T-V. The equations of motion follow after invoking Hamilton’s
principle, namely, that of all of the allowed paths the system may pursue
between initial and final times #; and 75, the actual one taken in config-
uration space is that for which the variation of the time integral of the
Lagrangian, also called the variation of the action S, is an extremum. By
application of standard calculus of variations, the Euler-Lagrange equa-
tions of motion for a system of particles &, with N degrees of freedom, are

found to be
d /0L OL
—(=—|—-5—=0, ¢{=1,2,...,N. (1.2.1)
dr\9q:) 0q;

From the form of the Lagrangian, it is evident that motion in classical
mechanics is reversible. Replacing ¢ by —¢ leaves the Lagrangian as well
as the equations of motion unaltered.

To facilitate the transition to quantum mechanics, in which the positions

and momenta of the system of particles are canonical, it is convenient to
define the Hamiltonian H as

N
H=> pg.—L. (1.2.2)
é=1
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This quantity is a function of the generalized coordinates, their canonically
conjugate momenta, and time. The momenta are found from

oL

g = — :12N. 1-2'3
pg aqf; é ) 4 ’ ( )

When the Hamiltonian is time independent, it is equal to the sum of the
kinetic and potential energy, H=T + V. Evaluating the total differential
of (1.2.2) and noting from equations (1.2.1) and (1.2.3) that

OL

Pr=—— (1.2.4)
= 0qe
yields Hamilton’s canonical equations
OH OH
qy:—; p :——’ 5:172’...71\]7 125
Sop Y 0q: (123)
and
OH OL
—=—— 1.2.6
ot ot’ ( )

which are now the equations of motion. A consequence of the resulting
dynamics is that 2N first-order equations (1.2.5) have to be solved,
rather than N second-order equations (1.2.1). After writing the classical
Hamiltonian function in terms of the canonically conjugate dynamical
variables, the quantum mechanical form of the Hamiltonian operator is
obtained straightforwardly by promoting the classical variables to quantum
operators, the latter obeying the canonical commutation relations for
particles ¢ and &,

[‘?57315’] =0; Lﬁg,ﬁg] = 0; [qgaﬁg’] = ih555’~ (1'2'7)

By way of illustration of the development above, consider a system
of particles ¢ with charges e:, masses m,, and position and velocity vectors
g: and G, whose classical Lagrangian function is (Landau and Lifshitz,
1972)

S 1 221 ccce
. 1 2 S 1.2.8
SR DL v e wE G
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This leads to the quantum mechanical Hamiltonian operator

=2
P: 1 ezey
2me  4meg = |Zj§—2jél\

H(G.p) = (1.2.9)

¢
It is easily verified that the Lagrangian (1.2.8) gives rise to the correct
equations of motion: applying (1.2.1) produces Newton’s second law
equation for particle &,

1 eze

= = = 3
4meg 7 ]qé_qé,|

meq: (1.2.10)

whose right-hand side is recognizable as the generalized Coulomb force,
obtained from the potential energy term in the Lagrangian via

F = —ov(q)/0d.

1.3 ELECTRODYNAMICS AND MAXWELL EQUATIONS

The unification of electricity and magnetism with classical optics occurred
with the formulation of Maxwell’s equations (Jackson, 1963)—the basic
laws underlying the behavior of electromagnetic radiation. As a conse-
quence, light was understood to be an electromagnetic wave in which
radiation of all frequencies could, in principle, be generated. Maxwell’s
quartet of equations is expressed as

V-D=p, (1.3.1)

V-B =0, (13.2)
_ - OB

E+=—=0 133
. - 0D -

H=""47 1.3.4
V x 5 + ( )

These fundamental equations completely determine the electromagnetic
field, and the electrodynamic nature of such radiation is clearly evident
from them. The fields E and B shall be termed the electric and magnetic
fields, respectively, even though the latter is more properly called the
magnetic flux density or the magnetic induction. The auxiliary fields D
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and H are designated the electric displacement and magnetic field, respec-
tively. No confusion shall result from the use of the descriptor “magnetic
field,” as the approprlate symbol shall be used for the quantity concerned,
either B or H. The E and B fields are fundamental in that they propagate in
regions of space that contain no sources of charge. Further, if the charge
density p and the current density J account for all charged entities, then E
and B describe the radiation field in its totality. On the other hand, including
the contributions to p and J of the elementary charges and their currents,
which are manifested in the form of polarization fields and currents,
necessitates the introduction of the two auxiliary fields D and H.
The bound charged particles are viewed as forming a medium that contains
the fields. These in turn describe the response of the material system to the
applied fields via the electric polarization and magnetization fields.
The connection between the derived and fundamental fields is arrived at
through constitutive relations and the introduction of the electric permittivity
¢ and the magnetic permeability u to describe the properties of the medium.

Although the interaction of radiation and matter is to be applied to bound
systems moving at a very small fraction of the velocity of light, the
equations of electrodynamics are themselves invariant in form under
Lorentz transformations and are compatible with FEinstein’s relativity
theories. When Maxwell’s equations are combined with Newton’s second
law of motion and the Lorentz force equation, a complete description of the
nonrelativistic classical dynamics of charged particles interacting with
electromagnetic fields results.

For the subsequent development of the quantum theory of electron—
photon interaction, it is advantageous to work with Maxwell’s equations in
microscopic form rather than employ relations (1.3.1)—(1.3.4) that are
applicable when the distribution of charge is taken to be continuous. In
place of the macroscopic Maxwell equations, their microscopic equivalents
can be expressed solely in terms of the microscopic forms of the electric and
magnetic field vectors € and b and the sources of charge and are given by

V -é = p/e, (1.3.5)
V.b=0, (1.3.6)
- ob
e4 — = 1.3.7
Vxét =0, (1.3.7)
hd = 1 (95 1 -
p— _— 1. .
V xb 20t T e (1.3.8)
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To facilitate the microscopic treatment of matter, a discrete particle
description is adopted for a collection of charged particles o possessing
electrical charge e,, situated at ¢, and moving with velocity ¢, for which
the charge and current density are defined to be

p(F) = e,6(7—q,) (1.3.9)

and
J0) =" e, 0(7—,), (1.3.10)

where J(7) is the Dirac delta function, which is strongly localized at the
origin of the charge. By carrying out an average of the microscopic
field over the molecular volume, the macroscopic Maxwell equations
can be obtained from the microscopic Maxwell-Lorentz equations
(1.3.5)—(1.3.8). In Section 1.2, it was remarked that forward and reverse
motions are identical in classical mechanics. The same is true for the
electromagnetic field in relativity theory, with the additional requirement
that the sign of the magnetic field is reversed as well as ¢ — —¢. Itiseasy to
see that the equations of motion of a charged particle in a field are
unchanged on transforming ¢t — —¢, é —¢é, and b — —b in the Lorentz
force expression

dp,

TR R b), (1.3.11)

where v, = dq,/dt is the velocity and p, = m,V, is the momentum of
particle a.

The coupled first-order partial differential equations of Maxwell can be
solved for the fields € and b for a variety of simple cases in electromagnetic
theory. However, for many other situations and for the eventual quantiza-
tion of the radiation field via the canonical quantization scheme, it is
convenient to introduce two electromagnetic potentials and to rewrite
Maxwell’s equations in terms of them. One is the scalar potential ¢ and
the other is the vector potential . The definition of the latter readily follows
from the second Maxwell equation (1.3.6),

b=V xa, (1.3.12)
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on noting that the divergence of the curl of a vector field vanishes.
Inserting (1.3.12) into the third Maxwell equation (1.3.7) yields

- oad
e+ — | = 1.3.1
V x (e—i— 8t> 0, (1.3.13)

so that the factor within parentheses can be defined in terms of the gradient
of a scalar function, in this case the scalar potential, since the curl of the
gradient of a scalar field is zero,
o oa
V¢ =2+ —. 1.3.14

p=2¢+ 5 ( )
Substituting relation (1.3.14) into the first inhomogeneous microscopic
Maxwell equation (1.3.5) produces

-2 0 .= . 0
\V4 “(V-d)=-*L 1.3.15
bt 5 (V@) =" (13.15)
while using definitions (1.3.12) and (1.3.14) in the last Maxwell equa-
tion (1.3.8) gives

2, 10%4 == 1 9¢ 1 -
i——— — A+ 5= =——J 1.3.16
v c? or? v (V “ra 81) 5002] ( )
on using the vector identity
Y x (V xd)=-Va+V(v-a) (1.3.17)

Maxwell’s equations have now been reduced to two coupled equations
instead of four, with the potentials related directly to the sources. The
equations (1.3.15) and (1.3.16) can be further simplified into two separate
inhomogeneous wave equations, one dependent on ¢ only and the other on
d only. This may be achieved by taking advantage of the gauge freedom
associated with the potentials. From relation (1.3.12), it can be seen that d is
undetermined to the extent that the gradient of a scalar function of the
position and time, f, can be added to it,

i—d =a+Vf, (1.3.18)

a transformation that leaves b invariant. Substituting (1.3.18) into (1.3.14)
enables the form of the transformation that must simultaneously be made to
the scalar potential such that € is unchanged to be derived:

od

- = _8 - = ./
—e=o Vo= (d+V)+V§, (1.3.19)
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from which
= l af _
V<q§ —p+ E) =0 (1.3.20)
or
b—d =0T (1321)

The scalar potential is therefore determined to within the time derivative of
the same function f. The two relations (1.3.18) and (1.3.21) constitute the
gauge transformation. From them, a set of potentials (d, ¢) can always be
chosen such that the Lorentz condition (1.3.22) is satisfied:

10¢
2ot
which when inserted into (1.3.15) and (1.3.16) results in the wave
equations

V-d+ 0, (1.3.22)

-2 1 0% p
S 13.2
(V c? 812) €0 (13.23)
and
-2 1 02 1 -
- — ld=——j. 1.3.24
(V c? 8t2>a 806‘2] (1.3.24)

The most convenient choice of gauge, from the point of view of
nonrelativistic theory, is the one in which the vector potential is sole-
noidal, that is, V.-d= 0, also known as the Coulomb, radiation, or
transverse gauge. In this gauge, ¢ is seen from equations (1.3.22)
and (1.3.23) to obey Poisson’s equation

Vip=-1L, (1.3.25)
€0
with solution
— 1 p(F/’ [) 321
) =—— d 1.3.26
¢(V7 ) 47T80J |?_?l| r Y ( )

which represents the instantaneous Coulomb potential due to the charge
density and from which this gauge takes its primary name. Fixing the
gauge in equation (1.3.16) yields the inhomogeneous wave equation
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satisfied by the vector potential,

-2 10\, 1-/[0¢ 1 -

A further advance is made through the explicit decomposition of the
vector fields é and b into their parallel (Il) and perpendicular (L)
components; this is known as Helmholtz’s theorem, which holds for any
vector field and gives rise to irrotational and solenoidal vectors, respec-
tively. From (1.3.6), b is purely transverse and (1.3.5) and (1.3.7) become

v .3l :Sﬁ (1.3.28)
0
and
ﬁxé’L:—%, (1.3.29)

while the fourth microscopic Maxwell equation (1.3.8) separates into

1 92! 1 -
=—— 4+ 1.3.30
2 ot 8002] ( )
and
O Iz R
Vxb==—+4+—j . 1.3.31
X ¢z Ot + 8()(,’2] ( )
The equation of continuity,
= -l Op
V- —=0 1.3.32

follows immediately on taking the divergence of (1.3.30) and
using (1.3.28). Similarly, equation (1.3.14) divides as

el =—vo (1.3.33)
and
oa
-1 _ =
== (1.3.34)

in the Coulomb gauge, enabling the inhomogeneous wave equation for
the vector potential (1.3.27) to be expressed exclusively in terms of
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transverse variables,

=2 1 6° I -1
—=—=ld=——7j 1.3.35
<V c? 8t2>a eoc?’ ( )

with ¢ continuing to satisfy Poisson’s equation (1.3.25). The solution of
the equation (1.3.35) for the vector potential is given by

<L
- L (== )e) 5
t) = d 1.3.36
a(r,1) 47‘68002J |7—7 " ( )

which appears to be retarded, but is in fact not so. This is because its
source is the transverse rather than the total current, the former being
nonlocal, resulting in a* having identical characteristics also. Causality is
recovered in the Coulomb gauge by including both transverse and
longitudinal components, thereby ensuring that all static contributions
cancel one another. No such difficulty arises in the Lorentz gauge (1.3.22),
the solutions to the wave equations (1.3.23) and (1.3.24) being properly
retarded, recognizing that the total current appears as the source in the
equation for 4,

- U (o =lF=7"l/€) 5
r,t) = — d’7’, 1.3.37
(b( ) 47[8()] |V—r/| ( )
L U ([ = [F=7") /) 5o
t) = d’7. 1.3.38
a1 471?8062J = ' (13.38)

It is worth noting that @ is gauge invariant, since from the transforma-
tion (1.3.18) only the longitudinal component of ¢ can change. Conse-
quently, from (1.3.34), it is seen that &~ = —a in all gauges, and
the effect of a gauge transformation is to change the contributions from
d and ¢ to el

1.4 QUANTIZATION OF THE FREE ELECTROMAGNETIC
FIELD

In Section 1.2, it was shown how the quantum mechanics of a system of
particles is rigorously built up from a classical mechanics in canonical
form. In this section, it is shown how the same principles may be applied
and suitably adapted to the radiation field propagating in vacuo. Ultimately,
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this will lead to the quantum mechanical Hamiltonian for the electromag-
netic field and its corresponding eigenvalues and eigenfunctions, the latter
in a form convenient for its later adoption as a basis set in the perturbation
theory solution to the interacting matter—radiation problem.

When there are no sources present, both the charge and current density
are zero so that the microscopic Maxwell equations (1.3.5)—(1.3.8) applic-
able to the electromagnetic field in free space become

V.-é=0, (1.4.1)

V-b=0, (14.2)
- ob

e+ — = 1.4.
Vet o =0, (1.4.3)
. . 102

b———=0. 1.4.4
V x 2 0 ( )

Solutions are easily found for the fields € and b, which describe electro-
magnetic waves in a vacuum, as well as for d@. Continuing the development
in the Coulomb gauge, clearly from equation (1.4.1), € is purely transverse,
which from (1.3.14) means that ¢ can be taken to vanish so that é = —a.
Substituting this relation and (1.3.12) into (1.4.4) and using identity (1.3.17)
leads to d’ Alembert’s equation for the vector potential,

~2 1 0%\,

¢ and b satisfy identical wave equations. By taking the curl of equa-
tion (1.4.3) and substituting for V x b from (1.4.4) yields the wave
equation for &, and carrying out a similar procedure on (1.4.4) first, results
in the equation for b. One form of solution to the wave equation for each of
the three fields is in terms of plane waves,

a=dgel T, (1.4.6)

¢ =egeyer T (1.4.7)
and

b = by by e 7t (1.4.8)
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where in the last two solutions the pre-exponential factors, respectively,
denote the scalar amplitude and the polarization vector of the respective
quantity, with &y = ickdo on using € = —d. The direction of propagation of
the electromagnetic wave is described by the wavevector k, whose mag-
nitude is obtained after insertion of the approprlate solution into the wave
equation from which it is found. Thus, |k| = k = w/c, where w is the
circular frequency. The relation between the amphtudes of the two elec-
tromagnetic fields is found on inserting (1.4.7) and (1.4.8) into (1.4.3)
and (1.4.4), producing

k x 8y = cby (1.4.9)
and
R 1.
kXb():—ze(), (1410)

respectively, where the circumflex designates a unit vector. From the last
two relations, it may be inferred that the three vectors &y, bo, and k are
mutually perpendicular and form a right-handed set, at the same time
illustrating the transverse nature of electromagnetic waves. Transversality
also follows on substituting the harmonic solutions (1.4.7) and (1.4.8) into
the first two source-free Maxwell equations (1.4.1) and (1.4.2),
respectively.

Because the respective polarization vectors in the plane wave solutions
for é (1.4.7) and b (1.4.8) always point in the same direction, the waves are
described as being linearly polarized. A wave with a more general state of
polarization may be formed by combining two such independent waves. An
example is the case of two different electric fields, each possessing a phase
01 and J,, whose superposition produces an elliptically polarized wave

(7, 1) = (e1@, e 4 0,8, ei52)eiE'77iu)t. (1.4.11)

If both waves have identical amplitudes e; = e, = e, but a phase difference
of +7/2, a circularly polarized wave results. For orthogonal unit vectors
e; and é;, the left- and right-handed circular polarizations are defined
to be

1
LR — — (2 iey). (1.4.12)

V2

If, however, the phase difference between the two waves in (1.4.11) is
01—0, = 0, £x, then linear polarization results, where the tangent of the
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angle of the polarization vector with respect to €, is given by the ratio of the
amplitudes e, to e, that is, tanf = (ep/e;), and with a modulus
e= /el +es .

In free space, the wavevector k associated with the plane waves is
unrestricted in value. To enumerate and normalize the allowed states in the
quantum theory, the field is described in terms of modes as first carried out
by Rayleigh (1900) and later by Jeans (1905). With d, €, and b satisfying
vector Helmholtz equations of the type (1.4.5), a complete set of states is
readily obtained by expansion in Cartesian coordinates over a parallele-
piped of volume V = LL,L., where L., L,, and L. are the dimensions along
the three axes of the box, x, y, and z. This corresponds to a multiple Fourier
series, which for the vector potential, when subject to the periodic boundary
condition that g has identical values on opposite sides of the box, gives for
the number of allowed modes

(ny,ny,n.) = % (ky, ky, k-)LyLyL., (1.4.13)
(27) ’

where ny, n,, and n. are integers and k;, i =X, y, z, are the wavevector
components, with the two modes of the field characterized by the three
values of n. Monochromatic solutions to the wave equation for the
vector potential (1.4.5) are easily found via separation of variables
a? (k,7,t) = @ (k,7)a(1), with the spatial part obeying the Helmholtz
equation

VAN (K, 7) + k2P (R, ) = (1.4.14)
and the temporal part satisfying

%a(t)

ar T w?a(t) =0, (1.4.15)

with @ = ck the circular frequency. As a Fourier series expansion in the
plane waves subject to (1.4.13), the vector potential is

Zi(?, l) _ Z[g(i) (I_C’)a(i) (]_C’)eilz F—iwt + é’(’l) (l_{’)a(i) (]_C’)efilz -7‘+iwt]7

kA
(1.4.16)

applicable to a wave propagating along k at speed c. In expansion (1.4.16),
2% (k) is the unit electric polarization vector of mode (k, 4), A being the

—

index of polarization, and a®) (k) is the Fourier amplitude, with the overbar
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denoting the complex conjugate. From the Coulomb gauge condltlon the
transverse property of the modes is readily apparent, namely,k al (k) =0.
With @ and b also transverse, their unit vectors are resolved parallel and
perpendicular to the vector potential for each mode k, so that 2 )(k) =

A (k), 8% (k) = 5 (k), and k form a set of mutually orthogonal unit
vectors. The mode expansions for the electric fields are easily obtained
from (1.4.16) via (7, 1) = —0a(F,t)/0t and b(7,1) = V x (7, 1). Once
field quantization is carried out, their explicit normalized forms will be given.

Having outlined the essential characteristics of the free classical radia-
tion field, and its description in terms of modes when confined to a box of
volume V, as a precursor to quantization, electrodynamics is presented in
terms of the Lagrangian formulation. To account for the infinite number of
degrees of freedom possessed by the radiation field, the Euler—Lagrange
equations (1.2.1) for a system of particles require modification. To accu-
rately describe the smooth and continuous variation of the field, a La-
grangian density £ is introduced, which is a functional of the field and the
variables that define the latter. Integrating £ over all space yields the
Lagrangian function, L. Analogous to functions, which enable a variable to
be converted to a number, a functional provides a means for going from a
function to a number, in this case assigning a number to the field. It may be
recalled that in the analytical dynamics of particles, the Lagrangian was a
function of the generalized positions and velocities. For the electromag-
netic field, however, instead of ¢, the generalized coordinate is chosen to be
the vector potential, while the velocity analogous to ¢ is taken to be d. In
addition, < is a function of the gradient of @, thereby ensuring that spatial
variations are properly included. Thus,

L= Jz(a’, Va,d,1)d*F. (1.4.17)

Applying the variational calculus along with Hamilton’s principle as in the
case of particles earlier, but with variation now performed over the new
variables, the Euler-Lagrange equations of motion for the electromagnetic
field are modified to

0 <&4’> 0 o<l oL _o, (1.4.18)

2:\oa) T ax, 00a/0x) 0w

in which the second term is new relative to equation (1.2.1) and expresses
the rate of change with respect to position of the variation of the Lagrangian
density with the spatial derivative of the vector potential.
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On taking, as is common, the square of the electric field to be propor-
tional to the kinetic energy of the field and the square of the magnetic field as
contributing to the electromagnetic potential energy, the Lagrangian
density for the free field in analogy with point particles is written as the
difference in kinetic and potential energy,

4:5{;2—8(6 xﬁ)z}. (1.4.19)

Using (1.4.19) in (1.4.18) leads to Maxwell’s equations, the appropriate
equations of motion for the radiation field. Specifically, the wave equation
for d (1.4.5) results,

-2 1 9%
(v —gw>a,- =0, (1.4.20)

as originally obtained from Maxwell’s equations.
Like the Lagrangian for the field (1.4.17), the Hamiltonian H is a
functional and is defined in terms of a density functional %,

H— [ (@, 1, Va, )dF, (1.4.21)

with # itself found from
#=M-d—2. (1.4.22)

ﬁ(?) is the field momentum canonically conjugate to the vector potential,
defined as

oL

() = —, (1.4.23)
oa
which from (1.4.19) is seen to be
Ti(7) = ¢od, (1.4.24)

being proportional to the electric field é. When expressed in terms
of canonically conjugate variables, the Hamiltonian density (1.4.22) is
written as

1 (= -
= {H2 +e2A(V x a’)z}, (1.4.25)
280
which is equivalent to the electromagnetic energy density

=2
(¢0/2)(¢% +¢*b"). From the preceding development, in particular, the
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description of electromagnetic radiation in terms of modes of the field, it is
now a simple matter to show that the radiation field enclosed in a fixed
volume is equivalent to a mechanical oscillator. This theorem was first

proved by Jeans (1905). On substituting the mode expansions for ¢ and n—
the latter obtained from (1.4.24)—into the Hamiltonian density (1.4.25), or

alternatively using the derived mode expansions for € and b in the energy
density, the radiation field Hamiltonian (1.4.21) can be written as

H =28V Y K*a" (k)a? (i), (1.4.26)
k.

after the field modes have been normalized. Two new, real canonically
conjugate variables are now defined according to

4z, = (a0V)* () +-a)) (1.4.27)
and
pi, = —ick(zV)"? (ag)—ag')), (1.4.28)

which yields for the Hamiltonian (1.4.26) the expression

! 2 2 2
H= ZHM = Zi(pﬁﬁ‘” a3 ;) (1.4.29)
k4 k)

which is seen to be a mode sum over classical harmonic oscillator
Hamiltonians in mass-weighted coordinates. Hamilton’s canonical equa-
tions (1.2.5) are easily seen to be satisfied by the choice of conjugate
variables. Recalling (1.4.6),

- )
—2=pr .. —=-—wqy, 1.4.30
o "Pii g, g ;s ( )
and from (1.4.29)
OH OH 2 .
=P, =4 =wq Pr i (1.4.31)
31’/2,1 k2 k2 86]]; 5 k.2 k2

which provides desired confirmation of the result.
From (1.4.29), it may be concluded that quantization of the free field may
be accomplished by quantizing a collection of noninteracting harmonic
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oscillators. The solution of the latter problem is familiar from quantum
mechanics. A brief summary is given of the method of solution and of the
resulting energy eigenvalues and eigenfunctions in a form that makes it
readily applicable to quantization of electromagnetic radiation (Dirac,
1958). For an individual oscillator o of mass m, and angular frequency
w, representing a single mode of the radiation field, the Hamiltonian for the
electromagnetic field is given by

H= Z pﬁqu) (1.4.32)

where the dynamical variables ¢, and p, are the coordinate and canonically
conjugate momentum.

Consider a one-dimensional harmonic oscillator, whose classical
Hamiltonian function is

1
H=>- —(p* +mPa*¢?), (1.4.33)

there now being no need for the subscript «. The corresponding quantum
mechanical Hamiltonian is taken to be of the same form as (1.4.33), with ¢
and p represented by their respective operator equivalents subject to the
fundamental commutator

g, p] = it (1.4.34)

By introducing two mutually adjoint operators a and ' in terms of p and ¢,

_%<\/m_?q+i\/m_%;p> (1.4.35)
_ \2 (@ q—i\/ﬁ p), (1.4.36)

the quantum mechanical Hamiltonian can be expressed as

and

H= %w (ad" +d'a). (1.4.37)

Although both a and «' are real, they are not symmetric and hence not
Hermitian unlike ¢ and p. Using the fundamental commutator (1.4.34), it is



22 MOLECULAR QUANTUM ELECTRODYNAMICS: BASIC THEORY

easily verified that
[a,a’] = 1. (1.4.38)

Hence, the Hamiltonian can be written in two other ways equivalent
to (1.4.37), namely,

1 + 1
H = <aTa—|— 5) how = <aa'—§> ho. (1.4.39)

Its characteristic solutions are then given by the eigenvalues and eigen-
functions of the operator a'a. This operator is called the number operator 7.
Its eigenvalues are the positive integers and zero, representing the numbers
of quantized particles in the allowed eigenstates |n). In the case of the
electromagnetic field, these particles are called photons. They satisfy
Bose—Einstein statistics, with the wavefunction for # identical such par-
ticles being totally symmetric. Thus,

d'aln) =nn), n=0,1,2,..., (1.4.40)

the ground state ket |0), for example, having an eigenvalue of zero.
From (1.4.39), it is easily seen that the eigenvalues of the harmonic
oscillator are

1
<n+ 2>hw, n=0,1,2,..., (1.4.41)

with the lowest energy corresponding to (7iw/2), the zero-point energy of
the field (Milonni,1994). A ladder of states separated by a quantum of
energy hw is generated in accord with Planck’s quantum hypothesis. The
individual operators ¢ and ¢ are annihilation and creation operators, acting
on the occupation number state and, respectively, decreasing and increasing
the number of particles by unity. This aspect of being able to tackle changes
in particle number together with the correct statistical laws that the particles
obey is called second quantization. It provides the link between quantum
field theory and the many-body formulation (Mandl, 1959). For a normal-
ized state |n), the operator equations are

0, n=20,
a‘n>_{nl/2|n—1>, n=l, (1.4.42)

2,3,...
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and
) — 1/2 _
d'ln) = (n+ 1) ln+ 1), n=0,1,2,.... (1.4.43)

The wavefunction formed from the projection of the states in the Hilbert
space of the system is now taken to be an operator instead of a classical
number and is interpreted as a quantized field. This generalized many-
particle occupation number space is called a Fock space and applies to both
fermions and bosons (Fock, 1932).

The eigenvalues and eigenfunctions found for a single harmonic oscil-
lator are easily adapted to the solution of the many-particle uncoupled
harmonic oscillator Hamiltonian (1.4.32), which has been shown to be
equivalent to a sum over Hamiltonians for each mode of the radiation field.
In terms of the destruction and creation operators (1.4.35) and (1.4.36) fora

-

(k, Z2)-mode photon, which are subject to the commutation relations
[a® (k),a) (k")) =0,
[a" D (K),a"™) (k")] = 0, (1.4.44)
@) (), )] = 830,

the analogues of (1.4.37) and (1.4.39) are

| 7 Y 7
H =32 [a?F)a"D(R) +a"O Ry (k)] ek

1
5 | Tick (1.4.45)

whose eigenenergy is the sum over all oscillators « of the energy of a single
oscillator,

- - o 1 o
Hiny(ky, 20),m(ka, 2a), ) = <na(ka,/1a) + 5) Ty |ny (K1, A1),

o

ny(ka, 22),...), (1.4.46)

where n,, denotes the occupation number of oscillator o. From (1.4.42), it is
seen that when n =0, it is not possible to absorb a particle from the ground
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state of the system. For the electromagnetic field, the state in which all
single particle states are empty, that is, n, =0 for all o, corresponds to the
electromagnetic vacuum. By successive application of the creation opera-
tors on the vacuum state, all other basis states of the field may be generated,
as in

7 - 4t (R
m(Fr, ), ma(a,da), ) = [kl

(l’l ‘)1/2 ‘0(1}’1711)70(]_(’2,/12),...},

(1.4.47)

and are known as number states, and they form an orthonormal basis set. It
is customary to specify only nonzero occupation numbers of the field. The
expression (1.4.47) is the analogue of the wavefunction in the one-particle
theory. Hence for a (k, 1)-mode photon,

@Ry dDE)ln(R, 1) = iR, 2)), n=0,1,2,...,  (1.448)
a(/’»)(;}’)|n(lzj;&)> — n1/2|(n—1)(E,i)>, n=12,..., (1.4.49)

@ OE)E, ) = 0+ )P+ 1D)E ), n=0,12,..
(1.4.50)

The quantum mechanical counterpart to the classical mode expansion for
the vector potential (1.4.16) at t =0 is of the form

% 1/2 . T L L
a(v) = - 2(2) (4) ik-r | 2(4) w(2) ik T
aF) =" (2806kv) [y e 7 + 2 (Bya ) e 7],

k.4

(1.4.51)

where in the quantum theory the Fourier amplitudes @ and a" are understood
to be annihilation and creation operators obeying the rules of commuta-
tion (1.4.44). The normalizing factor appearing in (1.4.51) is obtained on
evaluating the expectation value of the energy of the radiation field for a
number state |n(k, 7)), which is known to be (n+1/2)%w®. The mode
expansions for the quantum electric, magnetic, and canonically conjugate
momentum field I1(7) follow from (1.4.51) and their defining equations
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given earlier. They are

L Hek N2y o o e ) e a e i
€<r>=lZ(zgov) (69 (K)a) (R)e 7= (F)a D (k)7
ki

(1.4.52)

(1.4.54)

In the expressions for the mode expansions, the quantization volume
appears explicitly. Quantum mechanical observables, however, are of
course independent of this quantity. For systems normalized in finite but
large volumes, the summation over the allowed wavevectors k which are
restricted by (1.4.13), may be replaced by an integral through the corre-

spondence
1
— -
V; Vooo (2n)3

where d’k is the volume element in momentum space.

Often when calculating transfer rates, scattering cross sections, and
energy shifts involving photons of a particular polarization—be they real or
virtual photons, a sum over the two polarizations is required. Recalling that
e (k),2? (k), which can in general be complex, and k form a set of
mutually perpendicular unit vectors, it follows that

(Ve D (k) = 85—kik;. (1.4.56)
A=1,2

Jd%, (1.4.55)

Using the definition for the wunit magnetic polarization vector

5 (k) = k x 27 (k) allows two additional sum rules to be obtained for

electric—-magnetic and magnetic—magnetic combinations. They are

D (R)b (k) = sk, (1.4.57)
J=1,2
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where ¢ is the Levi-Civita third rank antisymmetric tensor, and

N (k)b (k) = 6y—kik;. (1.4.58)

i=12
The imposition of quantum mechanical principles to the vibrational modes
of a classical electromagnetic wave led to the automatic emergence of
the quantized particle of light—the photon—from the formalism. In the
process, the underlying duality of the wave and particle pictures of light has
been revealed. This complementary description can also be found in
reverse. Beginning instead with the photon, application of quantum me-
chanics to assemblies of such particles yields quantization of a set of
classical mode oscillators. This second viewpoint is applicable to bosons in
general, as well as to fermions, and forms the basis of quantum field theory.
The presentation of the latter in a form applicable to interacting matter and
electromagnetic wavefields is the subject of Chapter 2.

1.5 INTERACTING PARTICLE-RADIATION FIELD SYSTEM

Thus far, the variational calculus and Hamilton’s principle of least action
have been applied first to a system of isolated charged particles and then to
the free radiation field. In each case, the equations of motion were obtained
from the classical Lagrangian function expressed in terms of generalized
coordinates and velocities. For material particles undergoing nonrelativis-
tic kinematics, the equations of motion lead directly to Newton’s dynamical
laws, while for electromagnetic radiation, Maxwell’s equations resulted.
The classical Hamiltonian function was then constructed for each non-
interacting system by defining the momentum canonically conjugate to the
generalized coordinate variable and eliminating the generalized velocity in
favor of this new quantity. The respective Hamiltonian was then converted
to its quantum mechanical form by elevating the dynamical particle and
field variables to operators, and the ensuing Schrodinger equation was
solved for radiation and matter eigenvalues and eigenfunctions. An analo-
gous procedure is now followed for a system of charged particles and
radiation field in mutual interaction (Heitler, 1954; Power, 1964; Healy,
1982; Craig and Thirunamachandran, 1998a). It will be seen that this
problem is no longer separable. Particle and field are inextricably linked—
the dynamics of one affecting the other, and vice versa. Overall, however,
energy is conserved as that given up by matter is gained by the field and that
lost by radiation is acquired by the system of charged particles. Ultimately,
this leads to perturbation theory solutions of the coupled matter—field
system. As before, there is considerable freedom in the specific choice of
classical Lagrangian function. Its only limitation is that it must lead to the
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correct equations of motion. Since the noninteracting matter—field system
constitutes a completely separable case, it is sensible to partition the total
Lagrangian into a sum of molecule, field, and interaction Lagrangians,

L:Lmol+Lrad+Lint7 (151)
where
1 22 .
Lo =5 >, = V(). (15.2)
o
1 . -
Liad = erad a7 = 50 J{ﬁz—&(v x d@)2}d7, (1.5.3)
Lin = J-‘Iint(7)d3? = J]_’L(?) : a(7)d37 (154)

Unsurprisingly, the molecular and radiation field Lagrangians (1.5.2)
and (1.5.3) are identical to the Lagrangians (1.2.8) and (1.4.19), respec-
tively, when the quantum mechanics of a collection of charged particles,
and the electromagnetic field in the absence of sources, was studied. The
form of the interaction Lagrangian (1.5.4) is a direct result of working in the
Coulomb gauge. The scalar potential, describing the electrostatic Coulomb
potential, is replaced by the electrostatic potential energy with lthe trans-
verse vector potential describing the radiation field. In (1.5.4), ;7 (¥) is the
transverse part of the current density, obtained by projecting the total
current density onto the transverse delta function dyadic 5; (¥) (Belinfante,
1946) so that

JHF) = eajin 05 (F—4,). (1.5.5)

It is straightforward to demonstrate that the Lagrangian (1.5.1) is of the
appropriate form. Using (1.5.1) in the Euler—Lagrange equations for
the field (1.4.18), the vector potential is seen to obey the inhomogeneous
wave equation,

-2 1 82 RPN 1 -1l
<V —c—zw>a(7) =——>J (l’), (156)

instead of its source-free counterpart (1.4.20). Note that (1.5.6) is identical
to equation (1.3.35), the latter following directly from the Maxwell—
Lorentz equations in the Coulomb gauge. Substituting the total Lagran-
gian (1.5.1) into the Euler-Lagrange equations for an assembly of
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particles (1.2.1) yields for the ith component

mC(QI(o() == + €x€; (CIof) +e [q E(éa)]i’ (157)

6611'(0(
where relations (1.3.12) and (1.3.34) have been used, and which is
immediately recognizable as Newton’s equation of motion modified by
the addition of the Lorentz force law terms representing the interaction of
charged particles with the transverse radiation field.

The total Hamiltonian may be evaluated from the total Lagrangian in the
usual way according to

H:Zﬁa~?1a+Jﬁ-é7d37—L, (1.5.8)
o

after calculating the momenta canonically conjugate to the generalized
position and vector potential. The former is now given by

- oL
Py =—— = My, +e,d(q,), (1.5.9)
aq,
while the latter is identical to that obtained using the free field,
. oL .
() =~ = ed(f) = —e08" (F). (1.5.10)
d

Substituting for Z]’ , and d into (1.5.8) produces what is universally known as
the minimal-coupling Hamiltonian (Craig and Thirunamachandran,
1998a),

H = 3 o A ed@)) V@) + 5 [(T)

+e2(V x d(7))*}dr. (1.5.11)

At this stage, it is advantageous to collect the charged particles o together to
form atoms and molecules . Further, it is approximated that the nuclei
are located at fixed positions in space relative to electrons, which are
allowed to move. Hence, the dynamical variables of the charged particle
system are the electronic coordinates and momenta. The clamped nuclei
approximation is justified on the grounds that the nucleons are significantly
more massive than electrons. This is a simplification that is frequently made
in chemical physics and is adopted in what follows. For many situations,
however, such as the treatment of molecular vibrations and the dynamics
of chemical reactions, nuclear motions cannot be ignored. For such
applications, it is convenient to describe the interaction of radiation with
quantum mechanical electrons, but with the nuclei moving classically in a
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specific version of a semiclassical formulation of the theory. This has been
achieved by coupling the Maxwell and Schrodinger equations in a cano-
nical prescription (Masiello et al., 2005). The time evolution is followed by
integrating the first-order Hamilton’s equations subject to well-defined
initial conditions for the dynamical variables. The solutions are formally
exact in the limit of infinite basis sets, though in practice computations are
carried out with a set of truncated functions. The other, more difficult
option, is a fully quantum mechanical treatment of electronic and nuclear
degrees of freedom coupled to radiation.

By dividing the total electrostatic potential energy into a sum of one-
particle and two-center terms,

V=>"V(@+ D V(EE), (1.5.12)
¢ 334
the Hamiltonian (1.5.11) can be written as

Hmin _ Hmin +Hmin +Hmin (1513)

mol rad int

where the molecular Hamiltonian is

Hpol ZZ{ﬁZﬁi(éHV(é)}, (1.5.14)

¢

in which p, is the momentum of electron o with position vector ¢, and V(£)
is the intramolecular potential energy of molecule £. The radiation field
Hamiltonian is

: 1 ) - N P 72\ 13
= o [{IT 4 809 x @b =2 @2+ B,

(1.5.15)

expressed in terms of the vector potential and its canonically conjugate
momentum, or in terms of electric and magnetic fields. The third term
of (1.5.13) accounts for the interaction between radiation and matter and is
explicitly given by

Ht = =53 5,(0) - d(@,(0) + 5> 2@ (@,(6) + Viner,
4 o 13 o
(1.5.16)

while Vi, i1s given by the second term of (1.5.12) and describes
the intermolecular potential energy between molecules ¢ and &'. The
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superscript min is inserted because the total and individual Hamiltonians
are constructed from dynamical variables specific to this particular
formulation.

The quantum mechanical analogue of the classical Hamiltonian (1.5.13)
is obtained on promoting the particle and field coordinates and canonically
conjugate momenta to quantum operators subject to the following com-
mutation relations valid at equal time:

(9t (), i) (E)] = i O O (1.5.17)

and
[a;(F), T;(F")] = ihdy; (F—F"). (1.5.18)

The commutator between field operators (1.5.18) was expressed alterna-
tively by (1.4.44) in terms of the annihilation and destruction operators for a
mode of the radiation field in free space.

While the minimal-coupling Hamiltonian (1.5.13) rigorously describes
the interaction of a charged particle with the electromagnetic field, it
proves to be awkward when it is applied to radiation—molecule and
molecule-molecule processes. This is due to the appearance of the particle
momentum, the vector potential of the radiation field, and the intermole-
cular coupling term in the interaction component of the Hamilto-
nian (1.5.16). The first of these variables is not the most appropriate for
a chemical species, the second is more often expressed in terms of the
fundamental electric and magnetic fields, while the third term must always
be included when treating two or more particles. In the following two
sections, an alternative Lagrangian and Hamiltonian are obtained that have
proved to be more suitable for application to atomic and molecular systems
interacting with the radiation field.

1.6 MULTIPOLAR LAGRANGIAN

The Lagrangian for the interacting charged particle—electromagnetic field
system (1.5.1) is a function of particle coordinates and velocities g, and g,
as well as a functional of the analogous field dynamical variables d(7) and
d(7). It was shown to lead to the correct Euler-Lagrange equations of
motion. Lagrangians that differ in the total time derivative of a function or
functional of the coordinates and the time, f(q,d,t), are said to be
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equivalent. Thus,

d . .
L' =[N —f(g.a,1). (1.6.1)
dr
Because the variations in the path correct to first order between the initial
and final times vanish,

oq(t;) = oq(ty) =0, (1.6.2a)
oa;(t;) = oa;(ty) = 0, (1.6.2b)

the variations of the action integral involving old and new Lagrangians are
then identical,

tf Iy
S5 = 5 JL“SW de =9 JLOM dr = 85, (1.6.3)
t; t;

where the action S is the time integral of the Lagrangian. Hence, identical
Euler—Lagrange equations of motion follow from L™ as derived from L%,

A Lagrangian equivalent to that of (1.5.1), one that leads to a Hamilto-
nian that is better suited to deal with atomic and molecular systems, is
obtained by adding a function of the form

jﬁlﬁ) -d(r)d’r, (1.6.4)

as was first suggested by Goppert-Mayer (1931). If = (7) in (1.6.4) is taken
to be the transverse component of the electric polarization field, the
resulting new Lagrangian is of the multipolar form, whose explicit structure
will be given below. Before going on to this, the decomposition of
charge and current densities in terms of electric and magnetic polarization
fields is carried out and their multipole expanded forms are given.

In a medium, the electric and magnetic polarizations result from charge
and current densities. The former is separated into contributions from free
and bound charges, while the current density is composed of terms arising
from electric polarization and magnetization currents due to the relative
motions of bound charges, and the contributions from convective and
Rontgen currents. For a neutral system, the convective current vanishes,
while for stationary nuclei there is no Rontgen term.

The charge density (1.3.9) may be partitioned as

(1.6.5)
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in which p™¢ = 3~ ¢,5(¥—R) is the net charge density of the distribution.
This division of the source necessitates the introduction of the vector R, an
expansion point about which multipole moments are defined and which
may be taken as the center of mass, an inversion center, or the origin of a
local chromophore center. The electric polarization field () can be
written in closed form as the parametric integral (Woolley, 1971)
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(1.6.6)

a sum of electronic and nuclear contributions, with Z,(&) and Q,(¢) the
atomic number and position of nucleus a of molecule &, and

PR =) _BED). (1.6.7)
¢

Concentrating on the electronic term and expanding the delta function
produces

b2 (G0 -R) - 9Y - - Jo-Raar (1658)

which after carrying out the A-integral results in the familiar electric
multipole series expansion of the polarization distribution; the dipole term
is given by

=

PUET) =D eulq,(6)—Re)d(F—Re) (1.6.9)

and the quadrupole polarization by
— — 1 - = . = - = —
FAET) = =3 5:ea(@u&)-R:)@,(O)—Re) - Vo(—Re). (1.6.10)

The superscript indicates the order of the moment, with the familiar electric

dipole defined as ~
w6 = ead,(&)—Ry); (1.6.11)
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and the electric quadrupole moment tensor as
1 - e
04(&) = 53 el (&) -Re) (@8 -FRo), (1.6.12)
Ca

With the polarization field defined by (1.6.8), the multipolar Lagrangian is
obtained from the minimal-coupling Lagrangian (1.5.1) on using (1.6.4)
in (1.6.1); that is,

:;{5;é§<é>—v<é>}+ﬂ{é (7= (V xa(F))’ }d'F

N J (ji (7)_%1(70 A4(7) 37— Jﬁl (7)-a(7)d*7 - Z Viner (€,£),

(1.6.13)

where the partitioning of the total electrostatic potential energy into intra-
and intermolecular terms according to (1.5.12) has been used explicitly.

From the definition of the transverse current density and the electric
dipole polarization distribution (1.6.9), it is seen that in the electric dipole
approximation,

=L dﬁl(7)

F) = 1.6.14
Jr = (1.6.14)
and the particle momentum canonically conjugate to the position,
. aLmult -
p(l = = :mqom (1615)
a4,

is equal to the kinetic momentum.
To proceed further, the third term of ™ s examined in detail.
Employing the identity (Power and Thirunamachandran, 1971)

Go(-7) = L (G-R) jé(f—ﬁ—w—k’»dz
0

d
dt

1
+V x (é'—l_é)xé’J/lé(?—I_?'—/l(Z]'—I_é))di (1.6.16)
0
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enables the difference between the transverse current and polarization
densities to be written as
- G
f(?)—pTZ(V):v X i (F), (1.6.17)
showing that the current density for a system of neutral molecules moving
with zero velocity is composed of electric and magnetic polarization
contributions. On the right-hand side of (1.6.17) is the curl of the magne-
tization field, m(7),
1
m(E7) =Y e{(@,()-Re) x 4,(¢)} J15(7—ﬁ¢—?~(6a(5)—§5))di,
> 0
(1.6.18)

with the contribution from nuclei given by
1

+ Y@z OO -Re) x B} | 20(-Re-(8u(0)-Re))a
a 0
(1.6.19)

so that

m(F) = m(EF). (1.6.20)
4

On again expanding the J-function in a Taylor series and performing the A-
integral, the ith component of the electronic contribution to the magnetiza-

tion (1.6.18) is given by
1

miER) = 32 ed @R x 1O [1[1-4a.0 R %)
0
+%{l(zj“(é)_I_ég)j(zjd(é)_l_éf)kﬁjﬁk}z_ }5(?—1?5)“

1 2 _—
S3@.()-R), 9,

“1 .3 B, L o(F-Re)
1@ R, (@) ~R), Y Vi
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where the first term, including 5(?—135), is the magnetic dipole magnetiza-
tion, the second is the magnetic quadrupole magnetization, and so on, with
the magnetic multipole moments defined as

i) (€)=Y 5 (@) -Re) x (), (1622)

2 2 S " -
m ()= el (@()-R)xG,(O}(@.(O)-Re).  (16.23)
o
Of course, the right-hand side of (1.6.17) and the form of (1.6.18) are
obtained by explicitly evaluating the left-hand side of the former, the two
terms being given by

- —

=S e (@) |10,

A
1oL o
G SIACR SRA SIS
" - |1 2 S o -
>R O |4 @) Re) Tk | 7o)
(1.6.25)

Returning to the multipolar Lagrangian (1.6.13), inserting (1.6.17) pro-
duces for Lmu!t

L Lo+t (9507 (PP ) 7)Y Ve 2.2,

e
(1.6.26)
where

Lmolzz{émZ%(é)—V@)} (1.6.27)

¢
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and
Lrad:%J{az(f')—&(ﬁ xd(F))*}dF. (1.6.28)

The last three terms of (1.6.26) now constitute the new interaction terms
with coupling now occurring through the polarization and magnetization
fields instead of through the transverse current density as in (1.5.4) (Power
and Thirunamachandran, 1978).

Even though the formal equations of motion are identical for equivalent
Lagrangians, their actual expressions will differ due to the introduction of
new variables. The result of the addition of the time derivative of (1.6.4) to
the minimal-coupling Lagrangian to form L™ led to the appearance of
polarization and magnetization fields. The equations of motion for the
radiation field, expressed in terms of p(7) and 71 (F), are known as
the atomic field equations. They are obtained from the Euler—Lagrange
equations of motion for the field and (1.6.26) as follows. Defining
the appropriate Lagrangian density Z™! from (1.6.26), the three terms of
the equations of motion

o ajmult o a‘lmult a‘lmult
— | —= — — =0 1.6.29
a1 ( o > T o 0(0a:/0x)  da; (1.6.29)
are
mult
0L woia(F)—p(7) = —d-(7), (1.6.30)
6611'
where d:* (F) is the transverse component of the electric displacement field,
d(7) = a2 (¥) + B (7), (1.6.31)
8.4”“““ 5 80,‘ 8aj
= — —— 1.6.32
o0aijoxy) <3xj 8x,->7 ( )
and
mult
&;a,- _ [V x m(). (1.6.33)

Taking the time derivative of (1.6.30) and adding to (1.6.32) and (1.6.33)
produces for (1.6.29)

V x b(F) = 3017 {Maz(?) + [V (7| } (1.6.34)
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which on substituting (1.6.17) for fL(F) and using (1.6.31) yields the
source-dependent Maxwell-Lorentz equation
10¢-(F) 1 -

xE(?):C2 o T aal (7). (1.6.35)

<

By defining the magnetic analogue /(F) of the displacement field,
h(7) = eoc®b(F)—m(F), (1.6.36)
(1.6.34) can be written in terms of both auxiliary fields as

od (7)

V x h(F) = o

(1.6.37)

which expresses the Maxwell-Lorentz equation (1.6.35) in terms of d (¥)
and Ah(7).

As expected, Newton’s force law with Lorentz term—the equation of
motion for the particle (1.5.7)—results when L™ (1.6.26) is used in the
Euler-Lagrange equation

mult mult
4oL o, (1.6.38)
dtog, (&) 04,(S)

1.7 MULTIPOLAR HAMILTONIAN

Having obtained in the previous section the equations of motion satisfied by
the multipolar Lagrangian for the interaction of a system of charged
particles and electromagnetic radiation, it remains to apply the canonical
quantization scheme to L™ given by (1.6.26) to derive the multipolar form
of the Hamiltonian operator. Before the latter can be constructed, the
momenta canonically conjugate to the particle coordinate and the vector
potential of the field are first evaluated using (1.6.26). The first of these is
given by

. :8Lmult: - a . o s
P =g a0+ 52 5)j{v i ()} - (F) 7
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after inserting the expression for the magnetization field applicable to a
single charged particle (1.6.18). Defining a further vector field,
1

7iy(&7) = —e(q,(¢)—Re) Ji5(7—§¢—?~(6a(6)—Ré))dﬂn (1.7.2)
0

which s seen to be 4 times the electronic part of the polarization field p(&,7)
(1.6.6), with

=S (), (1.7.3)
&
the conjugate momentum (1.7.1) can be written more succinctly as
P& =i, (&)~ [ (&7 x BT, (174)

Note that the kinetic and canonical momenta are no longer identical, but
differ in the second term on the right-hand side of the last relation. The
momentum conjugate to the field has been evaluated previously andis given by

mult
L™ coin(F)—p - (F) = —d(F), (175)

9a;(F)
being the negative of the transverse displacement field; this is unlike the
situation in minimal coupling, where I1(7) was found to be proportional to the
negative transverse electric field (1.5.10). The multipolar Hamiltonian is
obtained from (1.5.8) on inserting L™ and summing over particles o and
aggregates &,

H™ =3"5,(¢) .j]a(g)+Jﬁ(?)~fz’(?)d37—Lm“1‘, (1.7.6)

S

I1;(F) =

and replacing 67 and @ by using (1.7.4) and (1.7.5). This results in
., 2
pmult — o TI(7) 272 | 3=
Z +Z£V(é)+zj ( . ) +2b (F) pd7
—l—saljﬁl(?)-l:[(?)dw —J%(?)-E(?)d3?

! i, (E,F) x b(F)dF 2
—i-% 2 {Jn“( ,F) x b(F) r}

1 5L (7)Pd7
+280jy FPEF+Y Vi) (1.7.7)

334
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where the magnetization field /71(7) is given in symmetrized form by
Lo 1 S or - P
m(r) :%éza{na(évr) Xpy(é)_pa(é) Xl’la(é,}")}, (178)

and whichdiffers from (1.6.18) because thekinetic and canonical momenta are
now no longer equal to each other.

The penultimate term of (1.7.7), proportional to the square of the
transverse polarization, is composed of intra- and intermolecular terms,

JZ\ PP + ! JZP (& 7) PHE FEF. (1.79)

el

il

Noting that 7(F) = " () + 7' (F), the total intermolecular polarization
product vanishes for nonoverlapping charge distributions due to the rapid
fall off with r of the polarization field outside the source molecule. Hence,

T DI ACURECRT A DY ACURICR T
<24 <29
(1.7.10)

The right-hand side of (1.7.10) can be shown to be equal to
> <t meer (€, E'). An explicit demonstration within the context of elec-
tron wavefields is given in Section 2.3. Therefore, in the multipolar
Hamiltonian, the intermolecular Coulomb interaction energy is canceled
by the intermolecular part of the transverse polarization, leaving an
intramolecular self-energy term (1/2g) [ > ¢|ﬁL(§,7)|2d37. The multi-
polar Hamiltonian (1.7.7) can now be written as

1
H = H s | S NP (170)
¢

where

Hyol' = {ﬁ Y B+ V(i)}, (1.7.12)
¢ o

2 &0
_ % J{Eiﬁ( P+ 225 (7)) R, (1.7.13)
0
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and
- - 1
H{;’f“ = 861 Jﬁi(F) -H(?)d37— [ﬁa(?) (V% Ei(?))d3?—i— — {Jﬁ(?)

+ —J0,-]-(17,7/)b,-(7)bj(?/)d37d37'. (1.7.14)

The last term in (1.7.11) is the aforementioned one-center contribution
from the transverse electric polarization field; it is independent of the
radiation field and does not contribute to processes that involve a change in
the state of the electromagnetic field, although it must be included when
calculating self-energy corrections. The last term of (1.7.14) represents the
diamagnetic interaction, with the field O;(7,7') given by

- = 1 7 7
0;(7,7") = ZZgik/Ssznk(f,r)”m(ﬁly”/)

11
X ”Ma(?—ﬁé—z(qx(g)—ﬁé))(s(?'_ie é,_z/(qﬂ(g’)_ﬁ 2))dadi.
00

(1.7.15)

Noteworthy featyjies of the multipolar Hamiltonian include the fact that the
Maxwell fields d (7) and b(¥) appear explicitly in the radiation field and
interaction Hamiltonians. The dependence of H™"!' on the electromagnetic
fields only, rather than on the electromagnetic potentials clearly has the
advantage of making equation (1.7.14) independent of gauge. Molecules
couple directly to the radiation fields through the electric polarization,
magnetization, and diamagnetization fields. Absent from H™! is the
intermolecular electrostatic interaction term. Interaction between mole-
cules is now mediated by the field via the exchange of transverse photons
that propagate with speed c.

The interaction Hamiltonian may be conveniently expanded in terms of
multipole moments using the relations (1.6.8), (1.6.21), and (1.7.15) for the
fields p(&,7), m (&, 7),and O (7, 7"), respectively, so as to simplify its use in
subsequent applications that depend only on specific multipole moments.
After carrying out the volume integral, the first few terms of (1.7.14) are
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therefore
Hmlt = §j{e d (Re)—e5' 0y(&)V,d-(Re) - (&) -B(R:))

}j{ &)—Re) x BRY + -

(1.7.16)

comprising electric dipole ji(¢), electric quadrupole Q;(¢), magnetic
dipole (&), and lowest order diamagnetic coupling of species &, with
this last term of (1.7.16) being proportional to the square of the magnetic
field.

From the definition of the electric displacement field (1.7.5) and
the mode expansion (1.4.54) for the canonically conjugate momentum
Ii(7), the mode expansion for the transverse electric displacement field
operator is

_lz<hck80) [—»(i)(l_c')a().)(]_é)eik & B)at D (R)eF T

(1.7.17)

It is of interest to point out that from the definition of the transverse
current density (1.5.5) and the electric dipole polarization distribu-
tion (1.6.9)

s (—») dﬁ - (7)
F)=—7""+>
/ d
in the electric dipole approximation and that the particle momentum
canonically conjugate to the position operator,

8Lmult
94,

(1.7.18)

=mq,, (1.7.19)

Py=

is equal to the kinetic momentum. Relation (1.7.5) still holds for the
momentum canonically conjugate to the vector potential, but now also in
the long-wavelength approximation. The effect of (1.7.18) is to replace

coupling to fl (7) by the transverse polarization in the multipolar Lagran-
gian (1.6.13) so that

Lt — —Jp (F) - d(F)PF= > Vimer(£,E). (1.7.20)

<
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As before, H™! equation (1.7.11) results when (1.7.20) is used instead of
the last three terms of (1.6.13), but with H™! now given by the first term of
equation (1.7.16) only, which is the electric dipole form of the interaction
operator.

Converting the dynamical variables to quantum mechanical operators,

which obey the commutation rules

(9t (), jip) (E)] = iy G O (1.7.21)

and
(@ (P ()] = inoy (F=7") (17.22)

produces the quantum analogue of the multipolar Hamiltonian (1.7.11).
This Hamiltonian is frequently used as the starting point in the calculation
of processes involving the interaction of radiation with matter as well as for
the study of long-range intermolecular forces. A completely second
quantized form of H™! proves to be advantageous for many of the
applications to be detailed in subsequent chapters. The presentation of
this field theoretic viewpoint is left for Chapter 2. Finally, it is interesting to
note that the commutation relations (1.7.21) and (1.7.22) are identical
to those occurring for minimal-coupling variables. The preservation of
commutation rules is a direct consequence of carrying out a transformation
that yielded an equivalent Lagrangian.

1.8 CANONICAL TRANSFORMATION

In the Hamiltonian formulation of classical mechanics, the equations of
motion satisfied by the generalized coordinates ¢; and momenta
pi, i=1,..., 3N, for a system of N particles are Hamilton’s canonical
equations (1.2.5). Alternatively, these relations may be expressed in terms
of the Poisson bracket, which for two differentiable functions f and g that
are functions of p and g,

_[9fog _ofog
{f’g}{aqap 3paq}, (1.8.1)

so that
q={q,H} (1.8.2)
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and
p=A{p,H}. (1.8.3)

From the definition (1.8.1), it is seen that the Poisson bracket for the
canonical pair g and p is unity,

{q.p} = 1. (1.8.4)

If f is explicitly a function of time, namely, f = f(q, p, ?), then the time
evolution of fis given by

- of
f=AfHE+ 5 (1.8.5)

In Section 1.6, it was shown how equivalent Lagrangians could be
generated by the addition of the total time derivative of a function of the
coordinates, which amounted to a canonical transformation of the dyna-
mical variables, with construction of the corresponding Hamiltonian
function requiring the evaluation of the canonically conjugate momenta.
In general, the momenta obtained from two equivalent Lagrangians differ.
Under a canonical transformation, however, the Poisson bracket (1.8.1) and
Hamilton’s canonical equations of motion (1.8.2) and (1.8.3) are preserved.

When fis a quantum mechanical operator, the counterpartto (1.8.5) is the
Heisenberg equation of motion

.1 of

in which the commutator bracket now appears instead of the Poisson
bracket. Analogously, the quantum versions of Hamilton’s canonical
equations take the form

ihg = [q,H| (1.8.7)
and
ihp = [p,H|, (1.8.8)

with the fundamental commutator between position and momentum
given by

lq,p] = ih. (1.8.9)

Application of a quantum canonical transformation leaves the commu-
tation relation (1.8.9) and the operator equations of motion (1.8.7)
and (1.8.8) unchanged. One type of transformation that possesses these
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properties is given by

qd =eSqe™ (1.8.10)
and

P =e"pe s, (1.8.11)

where S is an Hermitian operator and is called the generating function of
the transformation. The transformed Hamiltonian is then found from the
starting one by expressing it in terms of the transformed variables. In effect,
this amounts to transforming the original Hamiltonian by the application of
the canonical transformation; that is,

H' =e"He ™. (1.8.12)

Hence, the multipolar Hamiltonian can be obtained from the minimal-
coupling Hamiltonian via the application of a canonical transformation of
the form (1.8.12) with a suitable choice of the generator S (Power and
Zienau, 1959). It now remains to find the connection between the functionf,
whose time derivative when taken and added to a Lagrangian produces
equivalent Lagrangians, and the function S, which when utilized according
to (1.8.12) gives rise to equivalent Hamiltonians.

Beginning with the Lagrangian L, an equivalent Lagrangian L' is given
by

d 0 0
L/(q> Q> t) = L(C], é]v t) + &f(% [) = L(Qv % t) + E]f(qv t)q+ af(% Z)v
(1.8.13)

where f does not depend on the velocities. The Hamiltonian obtained
from L’ is

H =pq-L, (1.8.14)
with

U oL of(q.1)
=% o

(1.8.15)

since ¢’ = ¢.
Employing the identity (Craig and Thirunamachandran, 1998a)

eABe’A:B+[A,B]+%[A,[A,BH+%[A,[A,[A,B]]]—i—-~-, (1.8.16)



CANONICAL TRANSFORMATION 45

in which A and B are two noncommuting operators, the transformed
momentum (1.8.11) becomes

2

. i
)4 =p+l[5,p]+5[5, [S,p]]+ -+
- (1.8.17)
:p_ha_q7

where § is taken to be a function of ¢ only, and making use of the
commutation relation

08
[S(q),p]zlhafq, (1.8.18)

which results in only the first two terms of (1.8.17) surviving and all
successive commutator expressions vanishing. From (1.8.15) and (1.8.17),
the relation between the function f and the generator S is easily seen to be

f=—1s. (1.8.19)

Recalling (1.6.4), the generator that transforms H™" to give the same H™"!t
as that calculated from L™ when starting with L™" is therefore

:_Jﬁw) (P (1.8.20)

Because S is a function only of the generalized coordinates, only the
canonically conjugate particle and field momenta are affected by the
canonical transformation. Thus, the former is calculated from

P (©) =B (O™ =Py (O +ilS ALy O+, (1.821)

on using the identity (1.8.16). Inserting the expression for the electronic
part of the electric polarization field (1.6.6), it can be shown that

By (€) =132§i>“(5)+€5(%(€))—Jﬁa(é,?‘) x b(7)d’F. (1.8.22)

Similarly, the transformed field momentum is

— mult ,_, min _j§__ ppmin

(7)) =eST™" (F)e S =™ (7) +i[s, ™" ()] +

(7)} 4

— min

(7) +% Uﬁl(?’) -d(7)dr

(1.8.23)
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The commutator bracket is evaluated using the relation (1.7.22), giving
- mult ,_, — min

o F=0 #-p-F), (1.8.24)

with all subsequent terms in the expansion (1.8.23) vanishing due to the fact
that S commutes with the first commutator.

Substituting for ™" (¢) and ™ t(7") from (1.8.22) and (1.8.24) into the
minimal-coupling Hamiltonian (1.5.11) results in

i =3 FZ { 5.6+ j 7(EF) % 5(7)(13?}2 +V(©)

g 2m
! (7 p—(7 Vi (7 4 !
+ 2—80J{[H(r) +P AP AV x d(F) I+ Vina (&, E),

&<

(1.8.25)

which is identical to the multipolar Hamiltonian (1.7.7) constructed from
the multipolar Lagrangian.

It is straightforward to demonstrate that the time derivatives of the
generalized coordinates are unchanged by the canonical transformation and
are in fact equal to each other in the two formalisms. For this purpose, it is
convenient to use the Heisenberg equation of motion (1.8.7). Thus,

-, min 1

G, (&) =13,(), H™] Z%{ﬁ;“i“(é)wa(z]z(g))} (1.8.26)

and
- mult 1 mult 1 e = 137
G, (&)=~ [G.,(&), H™"] = 2 (&) + [7(E,F) x b(F)d
(1.8.27)
Clearly,
~,min - mult
q, (&) =4, (&) (1.8.28)
on using (1.8.22). In a similar fashion,
-, min 1 : — min
a ()= P [Zi(?),Hm‘“] = 8611_[ @) (1.8.29)
and
smult 1

i (7) = = [a‘(?)’Hmult] _ Sal{ﬁmuh(?,) —|—ﬁl(7)}, (1.8.30)
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which with the aid of (1.8.24) prove that
"y = a™" (7). (1.8.31)

Finally, it should be mentioned that the transformation discussed in this
section is more precisely known as a Lagrangian-induced quantum com-
pletely canonical transformation (Power, 1978). This corresponds to a
quantum canonical transformation with time-independent generator S. The
transformation is therefore unitary, and the eigenspectra resulting from the
use of either H™™" or H™! are identical.

1.9 PERTURBATION THEORY SOLUTION

In Section 1.7, it was shown how the multipolar Hamiltonian in Coulomb
gauge for a system of charged particles in interaction with electromagnetic
radiation could be written as a sum of molecular, radiation field, and
interaction Hamiltonians, as well as including a term involving the square
of the intramolecular transverse polarization field (1.7.11). It now remains
to discuss how such a system of quantum mechanical equations is solved in
general.

In the absence of any interaction between radiation and matter, the total
Hamiltonian is simply a sum of molecular and radiation field Hamilto-
nians, Hyo + Hyag. Such a Hamiltonian is separable, with eigenenergy
being the sum of the molecule and radiation field energies and eigenfunc-
tions being the product states of molecule and radiation field wavefunc-
tions. The quantization of the free electromagnetic field was carried out in
Section 1.4, where an occupation number representation was used to
specify the state of the radiation field, with n quanta of frequency w having
energy nho. Earlier in Section 1.2 it was shown how the application of the
variational calculus to the classical Lagrangian function for a system of
charged particles and the subsequent application of the canonical quanti-
zation prescription led to the familiar quantum mechanical molecular
Hamiltonian H o, whose solution using a vast array of quantum chemical
techniques is formally taken to be known, yielding eigenfunctions |E,,)
for a molecular state of the system characterized by quantum number m
with eigenenergy E,,. The form of the total Hamiltonian for the coupled
matter—field system, be it in the minimal-coupling or multipolar frame-
works (1.5.13) and (1.7.11), respectively, naturally lends itself to a
perturbation theory solution.
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The total quantum electrodynamical Hamiltonian is divided according to
H = Hy + Hyy, (1.9.1)

where
Hy = Hiol + Hraa (1.9.2)

constitutes the unperturbed Hamiltonian, with

ot = ) {ﬁ AL V(é)} (19.3)

¢

and
1 - o
Hyg = gj{l'lz(?) + 23V x (7)), (1.9.4)
0

The eigenstates of Hy are written as product states of molecular and radiation
field eigenfunctions |ES;n(k, 1)) = |ES,)|n(k, A)) corresponding to mole-
cule ¢ inelectronic state |m) and the electromagnetic field characterized by n
photons of mode (k, 2). These orthonormal functions form a basis set that is
employed in the perturbation theory solution. The justification for such a
treatment is that Hy represents the solution to a known problem, in the case
of (1.9.2) the noninteracting system of molecule(s) and the radiation field.
Further, the coupling of radiation and matter, given by the second term
of (1.9.1), is viewed as a small perturbation on the total system. This is based
on the fact that the particle—field interaction terms are considerably smaller
in magnitude than the strengths of Coulombic fields present within an atomic
or molecular system. Except for very intense fields, of the order of
10'2 V. m~!, the perturbation approximation holds true for both the minimal-
and multipolar-coupling schemes. The interaction Hamiltonians for these
two formalisms are, respectively, given by

e 6’2
Hl?lltm = %Z Zﬁx(g) ’ Ei(aa(é» + %Z Zﬁz(aa(é)) + Vinter
- (1.9.5)

and

H™I = el [ 5(7) _C-Z'J-(?)d3;;_ [ m(7) -B(F)dﬁ

nt
1

+ EJO,-]-(?, 7 (7)b;(F A F 7. (1.9.6)
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The expansion of the three terms of (1.9.6) in lowest order multipole
moments was given by equation (1.7.16).

The two most common perturbative approaches for the solution of
equations of the type (1.9.1) differ in their dependence on time. In time-
independent perturbation theory, the equation to be solved is the time-
independent Schrodinger equation,

(Ho + AHin)|i) = Eili), (1.9.7)

for the energy of the perturbed system E; which is taken to be nonde-
generate, and its corresponding perturbed state function |i) in a power
series expansion in the perturbation operator H;,. This is most frequently
done using the method of Rayleigh and Schrodinger (Levine, 2000)
for Hamiltonians that do not depend on time and is most useful for
calculating shifts in energy levels of the perturbed system along with its
perturbed wavefunction. The parameter A, which lies between 0 and 1,
ensures the perturbation operator, in the present case the interaction
Hamiltonian, is applied smoothly. Ultimately, 4 is eliminated by setting
it equal to unity, corresponding to the situation in which the perturbation is
acting fully. When 42=0, equation (1.9.7) reduces to the unperturbed
problem, represented by the Hamiltonian H,,, which satisfies the eigenvalue
equation

Holi®) = EO)i0)y, (1.9.8)
whose eigenfunction |i(?)) and eigenenergy EEO) are taken to be known. The
perturbed state and energy are expanded in series of powers of 4,

1) = [{O) + 2i{Vy + 22y + - (1.9.9)
and

E=EY 4+ EM 4 E® 4+ . (1.9.10)
i), i), ... and EM,E@) ... are successive perturbative corrections to

the state function and energy, respectively, of the perturbed problem. Well-
known formulas result for the perturbed state |7) and energy E;. In terms of
the unperturbed state |i(”)) and energy E( ) , they are

i) = |i© Z VO‘H‘“"Z YOI (1.9.11)

(0)£4(0) l _E
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and

(O H. 170y ;0 7. 15(0)
I int|!
E = E,(O) <l(0) |Hint|l'(0)> + E < | 1ntV( ><] | nt| >
j(()) 7&'(0) E -

(1.9.12)

In the term corresponding to the first-order correction to the wavefunction
and to the second-order correction to the energy, the sum is executed over
all unperturbed states except |i(?).

When the interaction Hamiltonian or the total Hamiltonian is time
dependent, the dynamics involves the time evolution of the stationary
states of the unperturbed system, which can now make transitions from one
state to another under the influence of the perturbation. The dynamics is
governed by the time-dependent Schrodinger equation

L0
ih = (1)) = HI¥(1), (1.9.13)

in which the states |W(#)) are explicitly time dependent. This is character-
istic of the Schrodinger picture of quantum mechanics. It is convenient to
view the time variation of the state function |\¥'(#)) as due to the action of a
transformation operator U(#) on a fixed state of the system at some initial
time 7,

(1)) = U0) ¥ (10)). (1.9.14)

U(¢) is more commonly called the time evolution operator, and it is unitary
so that the normalization properties associated with |\P'(7)) are retained for
all ¢. Substituting (1.9.14) into (1.9.13) shows that U(¢) satisfies the
equation of motion

0
ih=-U(1) = HU(1), (1.9.15)

whose formal solution is simply
U(t) = e =0/ (1.9.16)

when subject to the initial condition U(zo) =1, enabling |\¥(¢)) to be
evaluated at any time via (1.9.14).

In the standard treatment of time-dependent perturbation theory,
all system states are written in terms of the eigenfunctions li) of the
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unperturbed Hamiltonian Hy with energy E;, Hy|i) = E;|i), along with their
time-dependent factors, as in

[P(0) = ai(t)e i), (1.9.17)
l

and the problem amounts to determining the time-dependent coefficients
a;(t) from which state-to-state transition probabilities may be calculated.
This is known as Dirac’s variation of constants method. Equivalent results
for the time evolution may be obtained in terms of the operator U(¢)
introduced above (Ziman, 1969). Further calculational advantages ensue,
however, if the time factor is removed from each basis state and absorbed
into the operator itself, so that using (1.9.7)

[P(1)) = e Ho=0)/hy (1, 1) [P (10)). (1.9.18)

The perturbation operator becomes
HY (1) = et/ g, o ~iFo(=o)/ (1.9.19)

Both the states and the operators are time dependent, and the focus is on the
effect of the perturbation on the system. This representation lies in between
the Schrodinger picture and the Heisenberg formalism. Recall that in
the latter viewpoint, the dynamical variables are all time dependent and
the states are time independent. The new picture symbolized by equa-
tions (1.9.18) and (1.9.19) is called the interaction representation or the
Dirac representation, as indicated by the additional label /. Hence,
U, (t, tp) is the interaction picture time-evolution operator. It satisfies the
operator equation of motion

ih% Ui(t,to) = HL (H)U(¢, to) (1.9.20)

on using (1.9.18) and (1.9.19) in the time-dependent Schrodinger
equation (1.9.13).

Continuing in the interaction representation, but now dropping the
symbol /, the state function at time ¢ is given by

(1) = Ut 10)|¥(10): (19.21)

If H;,, is time independent, then analogously to (1.9.16), the formal solution
to (1.9.20) is

U(t, ty) = e Hmnli=t0)/h (1.9.22)
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On the other hand, if Hiy = Hin(?), but is taken to be a c-number, the
differential equation (1.9.20) can be integrated to give for the time-
evolution operator the solution

t
U(t, 1) = exp —%jHim(t’)dt’ . (1.9.23)
to

This form of U(¢, ), however, cannot be used in the quantum theory, since
Hi, is an operator and does not, in general, commute with itself at two
different times #; and 7. A formal series solution for U(t,t)) may be
constructed for application in quantum mechanical problems when Hj,, is
an operator. This is accomplished by integrating (1.9.20) with respect to
time, subject to the initial condition

U(l(), Zo) =1, (1.9.24)
to give
1 t
U(l, lo) = 1+EJdl‘1 Him(tl)U(ll,lo). (1925)

fo

The right-hand side of (1.9.25) is reinserted as an expression for U(t;, fo)
under the integral sign and successively iterated in this way, eventually
leading to a power series for U(¢, ty) in terms of Hiy. Thus,

1 Ih—1

U(t,to):1+n2j; <%>njdzljdzz... J dt,Hine(11) ... Hine(2,). (1.9.26)

to to To

The time ordering of the operators is explicit and the series result (1.9.26) is
exact. In applying perturbation theory, the central problem is to compute
successive terms, and if at all possible, the series sum.

It is now a simple matter to use (1.9.26) to calculate the probability
amplitude of finding the system in the final state |f) at time # as a result
of a perturbation H;,;, which began to act at a time 7, when the system was in
the initial state 7). The matrix elements of the time evolution operator are

i(Ef—E;)(t—10) /T _ 1]
E;—E;

FU 1)l = 65— 3 (&) © L (1927)
4

where the matrix element for the process is denoted by Mj. Clearly, there
is no probability of finding the system in state |[f) in zeroth order of Hiy
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because the initial and final states are orthogonal to one another. In powers of
the perturbation operator, the matrix element is expanded as

HmtI IHmt Hind[ID (I Hipt | I (T Hip i
= (f|Hine1) +Zf| D] |>+Z<f| \11) (1| Hin 1) (| Hina )

E El I/ (Ei_EI)(Ei—E”)

F |l [TET) (LT | i [1T) (21 i 1) ([ Hid )
(Ei~E)(Ei—En)(Ei~En) 7

+>
LTI

(1.9.28)

where as before summation is carried out over all intermediate states that
connect initial to final excluding the system states |i) and |[f).

Ignoring the Kronecker delta term of (1.9.27), the time-dependent
probability of finding the system in the final state is

L2
sin“wg(1—19) /2
Pri(t)=|{f|U(t,10)]7)] —E 4|My (& 2#, (1.9.29)
fi

where energy is conserved subject to
hows=(Ef—E;). (1.9.30)

In atomic and molecular systems, transitions can occur between discrete
bound states that form part of an energy manifold. If the final state belongs
to a continuum of levels centered at some frequency w with range Aw, the
total probability Py () is a sum of all individual probabilities,

Pioi(t Zpﬁ—t (1.9.31)

with Pr.;() given by (1.9.29). This picture of a transition from a discrete
state to a continuum of levels holds if each transition is taken to be
independent of every other one. This is true for small ¢ — #y. Thus,

2n
Ptot(t) = ;7|Mﬁ(é)|2(l_t0)pf’ (1932)
where p, is the density of final states, namely, the number of levels per unit
energy, dns/dEy. Taking the time derivative of (1.9.32) leads to the familiar
Fermi golden rule transition rate expression

d 2
M= el = Z—n MA(O) - (1.9.33)



54 MOLECULAR QUANTUM ELECTRODYNAMICS: BASIC THEORY

The evaluation of level shifts and spectroscopic rates using the
perturbative expansions (1.9.12) and (1.9.28) is greatly facilitated by
the introduction of diagrammatic techniques, the most well known being
the time-ordered graphs of Feynman (Feynman, 1948, 1949a, 1949b;
Mattuck, 1976). These diagrams have the additional advantage of yielding
further valuable insight into the underlying physical process by providing a
visual representation of individual electron—photon interactions in time-
ordered sequences of emission and absorption events. For a process
involving the interaction of n photons, the leading contribution to the
quantum amplitude is given by the nth-order term in Hj, when the coupling
between radiation and matter is linear in the electric and magnetic fields, as
is the case for the electric and magnetic multipolar series. At a specific order
in perturbation theory, the summation over all intermediate states that link
the same initial and final states |7) and |f) amounts to the drawing of all
possible topologically distinct time orderings of photon creation and
destruction operations. Therefore, an individual time-ordered diagram is
isomorphic to one term in the time-dependent perturbation theory sum of
the probability amplitude for a given nth-order process.

Feynman diagrams have proved to be extremely versatile in depicting,
and beneficial in computing, electron—photon interactions occurring in
elementary particle physics, many-body perturbation theory, atomic, mo-
lecular, and optical physics, and theoretical chemistry, though originally
developed to be applied in quantum electrodynamics. Soon after
their initial deployment, Dyson (1949) immediately recognized the
power of the newly proposed visual representation, remarking that
“In Feynman’s theory the graph corresponding to a particular matrix
element is regarded, not merely as an aid to calculation, but as a picture
of the physical process which gives rise to that matrix element.” As such, an
adapted version of Feynman’s originally proposed diagrammatic technique
aids in the calculation of matrix elements within nonrelativistic theory.
Numerous radiation—-molecule and molecule—molecule interactions have
been calculated and understood at a fundamental level, through the employ-
ment of time-dependent perturbation theory together with time-ordered
diagrams.

There are, however, a number of drawbacks associated with this
particular pictorial representation. Chief among them is that for higher
order processes, for example, those involving emission/absorption of a
significant number of real and/or virtual photons at either single and/or
multiple molecular centers, the number of possible time orderings describ-
ing evolution from the same initial to final state for a specific process can
very quickly grow in number. Obviously, this limits the actual drawing of all
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contributory diagrams required in the perturbation theory summation over
all possible intermediate states to ensure that the resulting amplitude or
energy shift correctly accounts for all terms. Illustration of a process by one
graph on its own or by a finite subset of the total number of time orderings
therefore provides an incomplete picture and is devoid of physical meaning.
A further deficiency is that common features associated with distinct
processes are not brought to the fore in the time-ordering approach. To
overcome some of these shortcomings, a new visual representation of
laser—matter and intermolecular interactions—a state sequence diagram—
has recently been formulated. A summary of the principles underlying their
formal construction is given in the next section.

1.10 STATE SEQUENCE DIAGRAMS

An alternative visual representation to time-ordered diagrams has been
developed in which one picture, termed a state sequence diagram, is
employed to illustrate and aid in the calculation of a specific laser—molecule
or intermolecular process (Jenkins et al., 2002). Drawing of these latter type
of diagrams is made possible by transforming the representation of
photon—matter couplings in hyperspace, whose dimension is determined
by the particular process under investigation, to a coordinate network
existing in one plane; application of linkage rules allows valid connections
to be forged between initial, intermediate, and final states in a systematic
manner without explicit reference to individual photon emission and/or
absorption events. The treatment given is general enough to enable both
unique and indistinguishable electron—photon interactions to be examined
in one formalism, thereby accommodating the effects of possible photon
degeneracy.

The first step in the construction of a state sequence diagram
involves initial identification of the total number of electron—photon
interactions, 1, occurring in some process. This quantifies the hyperspace
dimension of the interacting system. Next, an index is assigned to each
photon interaction. This labeling conceals any physical significance asso-
ciated with photon creation and annihilation, with the procedure to be
followed in the drawing of network planes and state sequence diagrams
essentially involving index manipulation. Next, an orthonormal basis
set that spans the n-space is introduced by representing each index by a
vector i;,

I ={c\i1, a0, ..., Cain}, (1.10.1)
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where the coefficient c; of the ith vector denotes the photon multiplicity.
Clearly,

> a=n, (1.10.2)

where the sum is executed over the number of distinct indices, j. Also
evident is that when each of the photonic events is unique, #n =j and all of
the vector coefficients are unity. When more than one photon of a particular
mode is emitted or absorbed, however, the particular coefficient will no
longer be one so that j# i, but since 7 is fixed in value, n — j indices will
have vanishing coefficients and are therefore superfluous; hence, no
vector representation is necessary in this case. Thus, the truncated set of
vectors [ = { cl?l, ey cj?’j} represents a subspace of dimension j in the full
n-dimensional hyperspace, with the coefficients arranged subject to

¢y > Ci—1 > 20 > 1. (1103)

The initial, final, and intermediate states for a process are then denoted by
points in the hyperspace through generation of coordinates (Cy, C5, . . ., C))
from the vectors (1.10.1). The scalars C; take on values C;=0, 1, ..., ¢; to
accommodate the possible sequencing of /. Because the initial and final
states are well defined, they correspond to fixed points on the planar
interaction network. The intermediate states, on the other hand, in general
require sequence ordering. Taken together, a two-dimensional array of
points results, their joining indicating an allowed ordering of photon
creation and destruction events.

The points occurring in the interaction plane are designated by the
coordinates (k, /). Those points lying on the vertical axis are termed
hyperspace numbers / and are obtained as follows. From the vector
coefficient with the highest value is found the numerical base of the space,
B, through the relation

B=c¢+1. (1.10.4)

The numbers / are found by first converting the hyperspace coordinates to
base B and subsequent re-expression in base 10, namely,

(C1,C,...,C;) — C,C,...Cj|z = hyperspace number|,, = A.
(1.10.5)

Meanwhile, the points lying on the horizontal axis, k, are found from

k=Y "¢, (1.10.6)
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withk=0,1,...,ncomprisingn + 1 subsets of the complete set of {(k, /1)}
points. Each subset is composed of m elements denoted by the vertex '
with the values of m restricted to

m=1,...,|rl, (1.10.7)

from which k can be construed as accounting for the number of steps
between point 7}’ and the point representing the initial state |i). Because |i)
represents the state of the system before any interaction has occurred, its
network coordinate is taken to be the origin (0, 0), since k=0 and C;=0,
and can also be denoted by r}. In the interaction plane, the coordinate of
the final state is denoted by (n, Ay or r,'1 since k takes on its maximum value
of n. The hyperspace number for f, /i, corresponds to the situation in which
the number of components for each member of the set /is a maximum and is
obtained from

(Cl,Cz, ey Cj) —C1C ... Cj‘qu_‘_l = hf‘lO‘ (1108)

Finally, rules that connect two points in the interaction plane must be
formulated, from which all allowed paths between the |i) and |f) termini can
be constructed so that the state sequence diagram can ultimately be
sketched. For any two vertices 7’ and rZZ/ mapping coordinates
(C1,Cy...,Ci) 10 (C'y,Cy..., C)

J
Z‘C/i_ci| =1, (1.10.9)
P

which together with equation (1.10.6) results in the linkage rule
K'=k+1. (1.10.10)

The total number of paths 2 permitted between |i) and |f) is given by

! 1.10.11

P el (1101
and represents permutations of interaction indices. Application of this
procedure enables the construction of an interaction plane network that
serves as a template for the eventual state sequence depiction of all
processes of order n involving distinguishable electron—photon coupling
events. The number of permutations calculated from (1.10.11) is equal to
the number of possible time-ordered sequences of photon absorption and
emission events as drawn in separate time-ordered diagrams when a
particular process is considered. Hence, it is apparent that the advantage
offered by the state sequence approach lies in the information embodied by
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the interaction plane network and that one state sequence diagram contains
all time orderings.

It proves useful to introduce additional properties associated with the
interaction vertices to further aid the drawing and understanding of network
planes. One of these is the structure coefficient, defined by

ETe = . (1.10.12)

To aid in the arrangement of vertex sets and to specify the value of m, a
partition function F' is introduced through

F={c;...;¢}, (1.10.13)

which relates the basis set 1 (1.10.1) to the structure coefficients. For the
specific case in which all of the photon creation and destruction events are
distinguishable, namely, all of the indices ;; are unique, F = {1;...;1},
and n =, the values of the structure coefficients (1.10.12) are the binomial

coefficients,
n n!
=——, 0<k<n,
<k> (n—Fk)!k! (1.10.14)

0, k<0,k>n.

Hence, a process containing # distinct photonic events will give rise to an
interaction plane network and an eventual state sequence diagram parti-
tioned with coefficients generated by the nth row of Pascal’s triangle.
Furthermore, knowledge of the structure coefficient (1.10.12) for a given
value of k enables the structure of an interaction network plane to be
predicted via the recursion relation

tamigdpnd = N Aewiahpy), (1.10.15)

where n' = n—c; and j’ = j—1. Iteration of (1.10.15) creates partitions that
contain n-space coefficients greater than unity, enabling degenerate
photons also to be treated. Successive application decreases the value of
the coefficient, finally bottoming outat F = {1;...; 1} or the null set, in the
process reducing to the result (1.10.14). For the case when C;> 1, the
partition function (1.10.13) can be expressed as

F={ci;...;¢cu5...¢j}, (1.10.16)

after the introduction of an index u, with ¢; > --- > ¢, > 1, and so
describes degenerate cases where n>j. All structure coefficients can
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therefore be expressed through nested sums of binomial coefficients,

Kj—u .
{(71;.4.§C'u;<..cj}TZ7j Z Z Z ( u I )

—cj ko=ki1—cj_ kj—u s 1=kj—u—Cu kj—u+l
(1.10.17)

Formal application of the prescription presented herein to enable drawing
of state sequence diagrams for a variety of intermolecular interactions will
be undertaken in the chapters to follow as appropriate; these will be
compared and contrasted with the commonly used Feynman diagram
approach. State sequence diagrams have been employed with success to
processes such as second harmonic generation, six-wave mixing, two-
photon distributed absorption, energy transfer and pooling in two-, three-,
and four-center systems, and laser-induced intermolecular forces.



CHAPTER 2

MOLECULAR QUANTUM
ELECTRODYNAMICS: FIELD
THEORETIC TREATMENT

... the natural formulation of the quantum theory of electrons is obtained by
simultaneously conceiving radiation and matter as waves in interaction in
three dimensional space. . .

—P. Jordan, Z. Phys. 44, 473 (1927).

2.1 INTRODUCTION

Two common formulations and representations of quantum mechanics are
the Schrodinger and Heisenberg pictures (Dirac, 1958). In the former
description, the time evolution of the system is determined by the time-
dependent Schrodinger equation. It has the characteristic feature that
the state vector of the system changes with time while the operators are
time independent. In the Heisenberg point of view, on the other hand, the
dynamical variables correspond to moving operators and the states to fixed
vectors. Now the dynamics is dictated by the Heisenberg equations of
motion for the dynamical variables. The two pictures are related by the
transformation theory, in which a unitary transformation is applied to both
the state vectors and the linear operators. This ensures that the expectation

Molecular Quantum Electrodynamics, by Akbar Salam
Copyright © 2010 John Wiley & Sons, Inc.
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value of an observable quantity is identical in either representation. Clearly,
at the initial time, the Schrodinger and Heisenberg picture operators are the
same. Because the Heisenberg equation of motion for an operator is the
quantum mechanical analogue of the classical mechanical equation defin-
ing the time variation of a dynamical variable subject to Hamilton’s
principle, Heisenberg’s formulation is often beneficial in that it enables
various aspects of classical mechanics to be easily converted to quantum
theory. Hence, for many applications, adoption of the Heisenberg picture
offers calculational advantages as well as additional physical insight, even
though the Schrodinger picture is the more commonly chosen viewpoint
that typically leads to simpler equations to be solved. As a result, quantum
electrodynamics can be developed and applied according to either
viewpoint.

Formulation of the theory in the Heisenberg picture is most easily carried
out using the techniques of second quantization on adopting a field theoretic
point of view, in which electron and photon fields interact. While a well-
defined classical limit exists for the quantized electromagnetic field, no
such limit exists for the quantized electron wavefield. Picturing matter and
radiation as fields is, however, entirely equivalent to a many-body descrip-
tion of a system of electrons interacting with the photons of the radiation
field, bringing to the fore the complementary nature of the wave and particle
points of view. Even though electron—positron pair production can be
treated easily using the formalism of second quantization, such an effect
does not occur for the systems to be examined in what follows. Hence, the
fermion operator simply causes a change in the excitation energy level of
a bound electron.

In Section 2.2, the second quantized minimal-coupling Hamiltonian is
derived from the Lagrangian for the interacting electron and photon
wavefields by following the standard canonical quantization procedure.
It is then shown how L;, may be transformed to L, by changing the
generalized coordinate of the electron wavefield, from which the second
quantized multipolar Hamiltonian then results. Section 2.3 demonstrates
how application of a canonical transformation on H,;, yields H,,.;. Exact
expressions are obtained in Section 2.4 for the time-dependent vector
potential and Maxwell fields within the electric dipole approximation.
Comparison and contrast are made between minimal- and multipolar-
coupling radiation fields in Section 2.5. In the following section, the electric
displacement and magnetic field operators linear and quadratic in the
electric dipole moment are computed. It is found that for many applications
it is necessary to go beyond the first-order fields. Similarly, a number of
problems require, for their solution, knowledge of the higher multipole
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moment Maxwell fields. Sections 2.7 and 2.8 contain expressions for the
Maxwell field dependent upon magnetic dipole, electric quadrupole, and
diamagnetic couplings. In the final two sections of this chapter, observables
associated with the radiation fields are calculated. These include the
electromagnetic energy density in the vicinity of a source and the Poynting
vector.

2.2 NONRELATIVISTIC QUANTUM FIELD THEORY

In Chapter 1, the key steps were given for obtaining the quantum electro-
dynamical Hamiltonian operator in either the minimal-coupling or multi-
polar form for a charged particle interacting with a radiation field starting
from the classical minimal-coupling Lagrangian function. In this section,
a detailed presentation is given of the alternative field theoretic approach
in which both matter and radiation are considered as wavefields, leading
ultimately to the multipolar Hamiltonian in second quantized form.

If the electron is viewed as wavelike, the Lagrangian for the situation in
which no radiation field is present, and self-interaction energy terms are
neglected, gives rise to the Schrodinger equation and its complex conjugate
when the Euler-Lagrange equations are applied to the electron wavefields
¥(§) and y(g) (Schiff, 1955). It was shown in Section 1.5 that to correctly
include the effects of electromagnetic radiation, and its subsequent interaction
with matter, the principle of minimal electﬁrt&ggmgnetic coupling could be
invoked, that is, to simply gl}b)stitute —ihV " (the gradient form of the
momentum operator) by —iaV Yy eqt, Including now the self-interaction
energy, as well as the external potential V(§), the minimal-coupling Lagran-
gian for the system is written as (Power and Thirunamachandran, 1983a)

Lmin(aL; l//, l/_/; i ) l:ba l//) = szin dr

i
—_— le@ {i —inv'” +ea" (@) + V(@)
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where £, is the Lagrangian density and dz is the complete volume element.
It may be verified that L, leads to the correct equations of motion. Effecting
variation of the electron wavefield (g ), using the Euler-Lagrange equation

0 (Mmm 0 8—4min 8‘4Imin .

o oy Oxonjo) o (22.2)

produces
S (0 S e N Gl L ACALAC R
@) ={ g =09 e @+ V@) o [M DS D via)

(2.2.3)

which is the Schrodinger equation for an electron coupled to a radiation field.
Onmaking use of equation (1.4.18) to carry out the variation with respect to the
coordinate variable of the electromagnetic field, namely, the transverse vector
potential yields, after eliminating the vector potential and its time derivative in
terms of the magnetic field and the electric field, respectively,

19¢-(F) 1 -1

), (2.2.4)

which is the transverse component of the fourth Maxwell equation (1.3.31).
The transverse current is expressed as
L T (@) — e Wt
it ==e[p@ -9 et @) s -Dw@Ed, 229
where (3L (F—q) is the transverse delta function dyadic (Belinfante, 1946). By
followmg the procedure for constructing the dynamics in canonical form, the
minimal-coupling Hamiltonian may be obtained from the minimal-coupling

Lagranglan (2 2.1)by firstcalculating the fields canonically conjugate toy/ (g ),
¥(§), and @"(§). These are

Hmin 7)) = — i :_ _“’ 2.2.6
D i@ 2" 20
I:Imin(é») _ a‘f’miﬂ — _%lp(é‘)’ (227)
N (q)
and
A7) = O () = —soe (7). 228)
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Note that because the equations of motion for the electron fields are first order
in time, the canonical conjugates IT™"(g) and IT™" (§) are proportional to the
Hermitian conjugates of the wavefields ¥/(¢) and /(g). As found in the
treatment for a charged pamcle the momentum conjugate to the vector

potential 7™ (7) is equal to —gyé™ (). The minimal-coupling Hamiltonian
is then calculated in the usual manner via

Hon= [P @0(@)05+ [ @) (@)
+ Jﬁmi“ (7)-@" (F)d*F—Lmin

~[a >{ S [-in? e @)+ V(@)

2 ru(aDw(ad
N >z{§q>d3q/}w<a'>d3a

8neo) |G—q |

260J{ F)+e2A(V x a(7))* )&, (2.2.9)

onusing thelastthreerelations and Lagrangian (2.2.1). Itisusual todecompose
the Hamiltonian into a sum of molecular, radiation field, and interaction terms
as follows:

Hyin = HQ},‘I‘ —i—H;;‘(‘i" —|—H1’rr1‘t‘“, (2.2.10)

where
min 7= hz =(4)\2 - 82 &(al)l/j(_‘/) — = =
= [0 5 (0 V@) g [ fu@ea
(2.2.11)

= 5 [0 433 xam) P par =2 {20+ 8 (7)o
0

(2.2.12)
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Note that nointerparticle interaction terms appear in equation (2.2.10) because
the treatment presented thus far in this section is applicable to a single electron.
The extension to many charges will be presented in Section 2.3.

The quantum mechanical version of minimal-coupling Hamiltonian
(2.2.10) is obtained by promoting the canonical variables to quantum
operators. The appropriate pairs satisfy the equal-time anticommutation or
commutation relations

(@), (@) =0G-7), (2.2.14)

(i (7), m (7)) = iho (F—7). (2.2.15)

Note that two othg use_ful commutation relations ensue from (2.2.15) on
using (2.2.8) and b = V X d(¥), respectively. They are

(a- (), e+ (7] = — 26t (77 (22.16)
€0
and
et (7), b)) = ;_hg,-jﬁf)a(ﬁ?'), (2.2.17)
0

where ¢ is the Levi-Civita alternating tensor, and the gradient acts on
variable 7.

It was shown in Section 1.6 that by adding a total time derivative of a
function of the coordinates of a particle and the time to the minimal-
coupling Lagrangian, Ly,;, could be converted to Ly, from which Hyy
could be constructed directly. A number of advantages were given for the
use of the multipolar formalism in studying radiation-molecule and
molecule-molecule processes, especially those associated with H™!t, For
interacting electron and Maxwell fields, the Lagrangian functions in the
two frameworks are also related, but this time by a change in the generalized
coordinate of the electron field, which is transformed through the relation

W(g) =e S Dp(q), (2.2.18)
where
- O R [ o
S(q) = %Jp(r,q)-a (F)d’F. (2.2.19)

The coordinate describing the electromagnetic field, the transverse vector
potential ™ (7), however, remains unchanged. In equation (2.2.19), (7, §)
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is the electric polarization field of a single bound electron, expressed in the
form of a parametric integral and implicitly containing the complete
electric multipole series. It is given by
1
(7.3) = —e(§—R) }5(7—1?—1(51—1?))& (2.2.20)
0

U

If the first term in the expansion of j (7, §) is retained, for instance, giving
the electric dipole polarization field —e(§—R)d(F—R), the electric dipole
approximated multipolar Lagrangian and Hamiltonian result. This approx-
imation corresponds to the neglect of any spatial variation of the vector
potential over the extent of the species. When the first spatial derivative
of @*(¥) is included along with the electric quadrupole polarization field,
three new interaction terms appear after the electric dipole coupling term in
the multipolar Hamiltonian. They are the magnetic dipole, electric quad-
rupole, and lowest order diamagnetic interactions. In what follows, the total
electric polarization field (2.2.20) is used.

By effecting (2.2.18), the minimal-coupling Lagrangian transforms to

. P . i < i oL d i d —i
Lmin(alawvw; aLawal/j) :Lmin (aLaeS(/)vd)e S; a 7&(es¢)>&(d)e S))

- 2 ool
:Lmult(aJ_7¢7¢; a ad)’(:b)v (2221)
with L, for the complete multipolar series given explicitly by

Ly = J:él muledT

— [o@{ 5, -9 +ea @+ 19 V5@ 4 via)

+ e J<?><fi’>¢<€7’>d3c7’}¢<a>d3fz
=

(7))’ }dF

Ql

+—J[¢<a’>¢s<a>—<}s<a>¢<a>1d3a+—j (1) - (¥ x

—”¢<a>ﬁ<f,c7>~é7 (7)o@ 7. (22.2)
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It is convenient for later use to replace the last two terms occurring within
square brackets of the first term in equation (2.2.22) by the identity

ei*(g)+1nV'"'s(g) = e (§)+ V7 jp‘(f, §)-a* ()&
_ Jﬁ(?, 7) x b(F)EF, (2.2.23)
where
1
ii(7,q) = —e(G—R) Jw(?—zﬁ—z(a—ﬁ))dz (2.2.24)

0
is a polarization field that differs from the electric polarization field (2.2.20)
by a multiple of /.

The equations of motion for the generalized coordinates of the multi-
polar Lagrangian density follow from equations (2.2.22) and (2.2.23).
Using these equations in the analogue of equation (2.2.2), it is found that
for the electron wavefield ¢(g), the Euler-Lagrange equation

a 81!“\1[ a (9‘4mut a‘lmul p—
5 —055] 9% 8(3<7>/6]xj') — 6(7)‘ = 0 produces
* =(4)\2 e &5@/)4’(?/) )

——(V V(g d’g

(@) =4 — jﬁ(f, 7)- (A $(@).
. 1 - 2
- an, q)-b(P)dF + P, Uﬁ(?, ) x b(?)dﬂ
m

(2.2.25)

Note the appearance in (2.2.25) of the symmetrized magnetization field
m(7, q), defined by

(2.2.26)

The first terms in the expansion of each of the fields /71(7, §) and 7 (¥, §) are

_, e

(7. 4) = — 5 (G—R) % (~ine")o(7-R) (2.2.27)
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and

-

(7,4) = — g (G—R)s(F—R), (2.2.28)

S|

which lead to the recognizable magnetic dipole and lowest order diamag-
netic interaction terms in (2.2.25), respectively,

% {(;1_,3) « _ﬁﬁ@} -b(R) (2.2.29)
and
2 - -
8€_m [(G—R) x b(R)]z, (2.2.30)

Variation of the multipolar Lagrangian density (2.2.22) with respect to the
vector potential gives contributions

Qazmuh o JRan E T L = NP
ot oa, 04 (7) ledJ(q)p; (7, 4)d(§)d’g (2.2.31)

and

i oL mult . oL mult
9x;0(0a;/0x;)  da;

L. .
= —C280[v X V X a(”)]i + —gilmgjkqub(q)

2m
<—ﬂﬁ§” + [0.0) % 5, 07 ) I
AN o ) (@)Pd
) (—ihv_,- + [1.a) < 5@, W)
(2.2.32)

On using the definition for 72 (¥, §) given by equation (2.2.26), the equation
of motion for the photon field obtained from the sum of expressions (2.2.31)
and (2.2.32) can be written as
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At this stage of the development, it is beneficial to introduce two auxiliary
fields, the electric displacement field

—

d(7) = 68(F) + p(7) (2.2.34)
and its magnetic analogue
h(F) = eo?b(F)—im(F), (2.2.35)
where
50) = [ $@FG. 0@ T (2.2.36)
and
() = | 9@y, 2)p(@)a (22.37)

(2.2.38)

in which the currents are contained implicitly within d(7) and b(F).
Equation (2.2.38) is an alternative expression of the source-dependent
Maxwell-Lorentz equation

- 1o (F 1 o1

<

which can be obtained from (2.2.33) on inserting

i@ = +V x m(F). (2.2.40)

The two auxiliary fields d (7) and A(F) describe the effects of a medium
formed by the bound charges within which they operate and are subse-
quently modified by.

In a manner similar to that used to derive Hy,,, the multipolar Hamilto-
nian Hpyye is now obtained from L,y given by (2.2.22). First, the cano-
nically conjugate momenta are evaluated. They are found to be

o 8‘Zmult o .

mult /= lh_ =
N 1(‘]) m—;d’(‘l% (2.2.41)
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I:Imult(q») _ Pomut _‘_(15(;1)7 (2.2.42)
6@ 2
and
i ) 8%() )~ | 9@ .00 @ T = ~d-7)

(2.2.43)

Again the momenta canonically conjugate to the electron fields are their
Hermitian conjugates. In contrast to the minimal-coupling scheme, in
which the momentum conjugate to the vector potential was proportional
to the transverse electric field, equation (2.2.8), in the multipolar formal-
ism, the conjugate momentum is equal to the negative of the transverse
electric displacement field. Analogous to (2.2.9), the multipolar Hamilto-
nian is

=\ ] /= — —mult , >\ ] /- — —mult /- —'»L — —
Hmunzjnm““<q>¢<q>d3q+jn “<q>¢<q>d3q+jn N(#)-&" (F) P — Lo

_ J&(ﬁ){@(—ihﬁ@ n Jﬁ(?,g) B (?)d3?)2

DD 8¢ o
G-

o0
F%
S
h
<

+V(g)+

3 [{wam [s@p Fae@er 9 <ae) e
(2.2.44)

which can also be partitioned into three terms consisting of molecular,
radiation field, and interaction contributions,

Hmu]t — Hmult +Hmu1t _|_Hmult' (2245)

mol rad int

Each term is given individually by

2 (7 2 1=l —/
= J«s@){—h—m(v“’)f V(@) + g [HE )d3a’}¢<a>d3a
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—12
+ 20 (V X a’(?))Z}cP?:lJ {d () +eoc252(7)}d3?,

&0 2 &0
(2.2.47)
= —s,! [0@5G.0)-d ()o@ETET
- |o@mea) bes@ead (22.48)
2
3| 0@ ([6.0) <5 PI7 ) d(@17

The interaction Hamiltonian (2.2.48) contains the complete multipolar
expansion of the charge, comprising electric, magnetic, and diamagnetic
terms. It should be noted that expression (2.2.44) for the multipolar
Hamiltonian may be considered as a sum of molecule and radiation field
energy terms, with each in turn being a sum of kinetic and potential energy
contributions. By promoting the canonically conjugate pairs of variables
associated with the electron wavefield to operators subject to the equal-time
anticommutation relation

(@), 6], =047 (2.2.49)

and using commutator (2.2.15) for a;"(¥) and its conjugate momentum,
Hpie of equation (2.2.44) takes on quantum mechanical form. All pairs of
canonical operators other than those represented by relations (2.2.14),
(2.2.15), and (2.2.49) either commute or anticommute.

2.3 QUANTUM CANONICAL TRANSFORMATION

The quantum electrodynamical multipolar Hamiltonian (2.2.45) may be
obtained directly from the quantum mechanical minimal-coupling Hamil-
tonian (2.2.9) by applying a quantum canonical transformation on the latter
(Power and Thirunamachandran, 1983a) instead of transforming L, to
L via the application of the classical coordinate transformation (2.2.18)
and constructing Hy,ye from Ly, A characteristic feature of a quantum
canonical transformation is that the commutator relation (2.2.15) and
anticommutators (2.2.14) and (2.2.49) are preserved along with the equa-
tions of motion for the operator. This is directly analogous to canonical or
contact transformations in classical mechanics (Goldstein, 1960; Power,
1978), which leave the Poisson bracket between two canonical variables
and their respective dynamical equations invariant. The relation between
a multipolar canonical variable Op, and its minimal-coupling counterpart
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Onmin, When a quantum canonical transformation is effected with a generator
S that is Hermitian, is given by

Omuit = € Opine™. (2.3.1)
Hence,
Hmin(ai]in( r), nmm( )7lp( ), ‘//( )
= Huin (e~ Sy, (F)e™s, e 57t mun(F)e'S; 675 ()¢, e §(§)e)
= ¢ Hysin (A7), Fmate (7); (7), §(7) )&
= Hunutt (@ (F), Tt (F); $(4), 0(7)), (23.2)

enabling the transformation to be interpreted as a unitary rotation in Hilbert
space. The choice of S is dictated by the fact that the same H ,,,;; must result
as that obtained by application of the coordinate transformation (2.2.18).
Therefore,

s = [s@s@o@da =5 | o@pr.0)- @ Oo@ar. 233)

With this choice of S, the vector potential stays the same, while its
canonically conjugate momentum 7,,;, changes to

7_fmult(’_;) = ﬁmin(;") + 1[57 ﬁmin(?)]f +
= oia?) + 5 | @PFDDCGa () i)

= Tomin(F) =D (), (2.3.4)

on using the commutator (2.2.15) and the identity (1.8.16). Because the
commutator in (2.3.4) commutes with the generator (2.3.3), only the first
bracket in the expansion (1.8.16) is nonvanishing.

In similar fashion, for the operator electron field,

H@) =@ +IS V@] + s [SV@)] ] +

— (@) +z‘j W@)S@W@) @) ¢F
o1 [ W@ s@ (@) @)@ W) @) ) Eqeds

+ljS(é’)S(é”)é(6—6’)6(?1—31”)1#(&‘)@?/d3é’”+
(2.3.5)
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and its Hermitian-conjugate field ¢(g) = /(§)e”@; all terms in the series
are seen to contribute. It is worth noting that the second quantized operator
transform ¢(§) = e’*y/(§)e " that leads to (2.3.5) is the quantum mechan-
ical analogue of the transformation for first quantized fields (2.2.18).
A consequence of the transformation of the electron fields in the two cases
is the changes produced in the equations of motion. From the Heisenberg
operator equation of motion, these are found to be

lhl//(ﬁ) = [w(a)vain]—
1

B (S S il L ACALAC S By
ol vt @ v+ o [N g e
(2.3.6)
and
ihg(G) = [¢(G), Hmu]
1 =@ (e o )
m [—Zhv + Jn(r,q) x b(r)d r} +V(qG)
e (d(G)oG) 5,
B ) a1 ° )
+5Jﬁ(?,z,‘) Z ()7
+ 2%0]&(*’)#(7, )o@\ -5 . 9)&F
(2.3.7)

which are the second quantized versions of equations (2.2.3) and (2.2.25),
respectively. Because the electron wavefields in the two formalisms are
nonidentical, they satisfy different Schrodinger equations. Further, it is
worthy of remark that Schrodinger equation (2.3.7) may also be obtained
by starting with the equation of motion for ¥/(§)(2.3.6) and carrying out the
transformation (2.3.5).

The second quantized formulation of the minimal- and multipolar-
coupling Hamiltonians presented thus far has been limited to the descrip-
tion of a single charge interacting with a radiation field. For later application
of the theory of interacting electron and Maxwell fields to atomic and
molecular systems, and especially to intermolecular interactions, a suitable
many-body Hamiltonian needs to be developed. This extension is made by
considering each atom, molecule, functional unit, chromophore, to give
rise to a single-electron field with the assumption that the fermion fields
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of different centers are noninteracting. Hence, there is no exchange of
electrons between distinct bodies, although within a particular unit, the
Pauli exclusion principle is obeyed. Ignoring terms due to the kinetic
energy of the nuclei and denoting the electron wavefield of center ¢ by
¢:(q), whose total nuclear charge is Z:e, the generalization of the multi-
polar Lagrangian (2.2.22) is

1 @ [ ]
) m [— AVAEE Jné(r,q) X b(r)dzr]
Lo == [ 6:(@) A CILY
¢ = ¢ ¢ 3=/
+V§(q)+ 8RSOJ ‘—»_éﬂ/‘ d
1 - o Zc’e €2J_f’(ql)¢é’(al) ) N\ 3=
- E : ——= /== d d

_Z”%(El)ﬁg(?’fl)ﬁ (7F)$:(q)dF &g, (2.3.8)

where 1_2'5 is the location of center &. In the above Lagrangian, V:(g) is the
Coulomb potential energy between the nuclei of aggregate £ and between
the electron field ¢:(§) and these nuclei, while the second and third terms
describe the intermolecular Coulombic contributions.

Itis now shown how both the inter- and intramolecular Coulomb terms are
contained within the longitudinal components of the total electric polariza-
tion field. First, it is noted that because of the Coulomb gauge condition,
the Coulombic terms may be expressed as the following field energy,

€0

L Jz'(?) &l (1), (2.3.9)

where the longitudinal electric field &/(7) = —V(7), where ¢(F) is the
scalar potential, which is a solution of Poisson’s equation. In the neutral
system being considered, V-d (7) = Obecause the true ‘?harges are the only
sources contributing to the displacement field. Hence, d  (7*) = 0 when there

are no residual charges, and from the definition of the electric displacement
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field (2.2.34),V - &! (F) = —(1/80)6 -;3” (¥), so that equation (2.3.9) can be
written as
1

2 Jrl(?)y &°F, (2.3.10)

where the longitudinal component of the electric polarization field is
defined by

il Z*" ij( PLEDe@)EF,  (23.11)

with
Pl (.3) = —e@—z‘ég),M(?—&—W—Eg))dz, (23.12)

where 5‘1.1‘.(7) is the longitudinal delta function dyadic (Belinfante, 1946).
Using the relation

(7)) = —ViV; pi (2.3.13)
and the identity
- d
a;V,f(F—id) = —af(?—)fz) (2.3.14)
produces for expression (2.3.12) the formula
H 55 e = 1 1
¥,g) =—Vi|>——=— — . 2.3.15

Inserting (2.3.15) into equation (2.3.11), which in turn is substituted
into (2.3.10), and using conservation of charge,

j&sg@m(w* -7, (23.16)

the intra- and intermolecular Coulombic interactions are

(2.3.17)
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and

57 280
24
1 - Zé/e ezj¢g’@/)¢c (Zjl) 3/ 3
__1 )l -2 | 2)9d) e\ (a)d
Exé
2
e Z2:2
+3 T
Teo e ‘RC_R5/|
&

(2.3.18)

In an analogous manner, the corresponding transverse polarization field
contribution 2—1()[ |5 (7)|*d°F can be partitioned into intra- and intermole-
cular terms. Adding the intermolecular part of this contribution to equa-
tion (2.3.18) produces

T T
_ P+ —
ng'P GRS

T
1 7 1 (2.3.19)
_ R S o = o 3o
_z—gozé:J\pé (F)|d r+2—80§Jp§(r)-pé/(r)d r.
Eee

The rightmost term of expression (2.3.19) represents the total polariza-
tion field, which is localized at a specific center; hence, this term vanishes
for each pairwise contribution. An effective intramolecular potential
energy function composed of the one-center terms of equations (2.3.17)
and (2.3.19) may be written as

f= o [bere
B 2 1 ) =/ -/
v Joca{via+ o [Z D% D g o
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This finally allows the multipolar Lagrangian to be expressed as

Lo = — Z U ¢5(ZI’){% [—ihﬁ(‘?) + J (7, q) x b(7) ﬁ]z}

T % V J [0:(@) (@)~ (@) (@) °G
+ 830[ { [SoﬁL(?)—ﬁl(F)]z—&(ﬁ x ()’ F.  (23.21)

This Lagrangian contains no intermolecular terms; all of the molecular
dependent contributions are of one center in nature. As for charged particle
theory, the intermolecular interaction occurs via the transverse electro-
magnetic field. This is in direct contrast to the minimal-coupling frame-
work, in which both the Lagrangian and the Hamiltonian contain pair
electrostatic interaction terms. By following the standard canonical quan-
tization procedure, the multipolar Hamiltonian for a molecular assembly
may be obtained from equation (2.3.21) and partitioned as

Hynaty = ZHgg}t +Hpg' 4 ZHfg;m (2.3.22)
¢

Individual contributions are given in the next section.

2.4 MULTIPOLAR MAXWELL FIELDS

In the previous two sections, it has been shown how the multipolar
Hamiltonian in second quantized form could be obtained from the classical
minimal-coupling Hamiltonian by changing the generalized coordinates
of the system or by applying a quantum canonical transformation to the
minimal-coupling Hamiltonian operator. In the electric dipole approxima-
tion, the multipolar Hamiltonian for a single molecule is given explicitly by

Hmul[ Hmult +Hmult +Hmu1t (2.4.1)

mol rad int >

where

Hil' = j&@{— (99 ¢ v<c7>}¢<a>d3c7, (242)
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gJ_Z(_j 5
Hrr;lglt — S_OJ {—zr + ng (7)}d37, (2.4.3)
2 &5
and
R . R
Hi'" = —861J¢>(61)u-d (R)¢(q)dq, (2.4.4)

for a source electric dipole moment ji located at R, with self-energy terms
being ignored since they are independent of the Maxwell fields and do not
affect their equations of motion. In the second quantized formalism, the
electron wavefield is expressed as

$d,1) =D ba(0),(d), (2.4.5)

where ¢,(4) is the orthonormal electron field mode and b,(¢) is the time-
dependent fermion annihilation operator for the state |n) of energy E,.
The boson creation and destruction operators a (k) and a'® (k) for a
(k, Z)-mode photon are contained implicitly in the last two terms of the
total H_’almiltonianﬂ(2.4.1) through the mode expansions for the radiation
fields d (7) and b(7).

It is instructive to examine the time dependence of dynamical variables
in the multipolar- and minimal-coupling frameworks and to calculate the
time-dependent field operators, including that for the vector potential
(Power, 1993; Power and Thirunamachandran, 1999a,1999b). The time-
dependent mode expansions for the vector potential, electric displacement
field, and magnetic field are

1/2 . o ) ) N
Zi(?, Z) = Z <h> [é’(i) (k)a(l) (k,l)e’k'r —|—§</1) (k)aT().) (k,l)e_lk'r} ’

= 2e0ckV

| (2.4.6)
o 1/2 . . L. B o
Ten=i3 (hg;go> e (E)a (k0" T2 (R)a' D (K, 1)e 7

K2
(2.4.7)
and
[;(4 f) Z( hk >1/2 [-,(i)(l-{’) (;)(I‘C’ 1) ik -7 ;(A)(l—é) 1(;)(]}' 0) —ik ;]
rt)=t a ,1)€ - a ,1)e
o 2e0cV
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The time evolution of the boson annihilation operator a“)(l;,t), for
example, is obtained from the Heisenberg equation of motion

ihamult(t) — [amult(t), Hmult]_ (249)
on inserting (2.4.1) and using the commutation relation at equal time,

[mult (k l) multf (4 (k l)] —5"“/5417 (2.4.10)

where the mode dependence has been suppressed in formula (2.4.9). This
leads to

1t 1t —iwt hek \'? i(k-R+wn2(4) 72 t N )4

™ () = g™ (0)e ‘w+h o) e (k)-szu(z)e"”
0

(2.4.11)

and consists of a source-independent and a source-dependent term. It is
convenient to partition the fields (2.4.6)—(2.4.8) into free- and source-field
contributions. Hence, for the vector potential,

a0 =a%F0n+a% 0, (2.4.12)

where the source-free term is obtained from the first term of expres-
sion (2.4.11),

—(0)mult /- n 172 - 7 ,)mu ik -F—iw
a h(r’t):Z<ZeockV> [yl (E o)t T
%

A (E) mult(k 0) 71%-7+i(1)f:|. (2.4.13)

Substituting the second term of (2.4.11) into the mode expansion (2.4.6)
gives for the source-dependent contribution to the vector potential,

t

s)mult ,— 1 ) =4 7N ik - (F—R —io(t—t

a’ “<r,z>=2(280v> e B (B 0 fay (Ve 0 emC
K, 0

(2.4.14)

where H.C. is the Hermitian-conjugate term. Two necessary and key steps
used repeatedly in the computation of Maxwell fields, and in subsequent
applications to follow, are the summations over polarization and wavevector.
The former may be carried out with the identities given in Section 1.4. In the
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present case, use is made of relation (1.4.56). For the wavevector sum, use is
made of the continuum approximation as exemplified in the prescription
(1.4.55), with Pk =k2dkdQ in spherical polar coordinates, where dQ is an
infinitesimal element of solid angle. The angular integration is performed
by noting that

g
Ejei’k"dQ:SIZfr, (2.4.15)
from which
1 AT S ) =\ sinkr
EJ((SU—kik])e dQ= k( A v)

+V;
' (2.4.16)
L smkr coskr sinkr
= (5ij_”i”j) Ir 511 3"1”] 2 ik ) ([

t

Jdtlﬂj(ﬂ)

0 (2.4.17)
dk%sin(kﬁ—ﬁ|)cos(kc(t—t’)).

1
F—R|

X
S 1

Using the result

o0

%Jdk%sin(kr)cos(kc(t—t’)) :%{sgn[r—c(t—t/)} +sgn[r+c(t—1')]},

0
(2.4.18)

equation (2.4.17) becomes

t

4n£0
a(s)mult(;_»’ l) _ t—|F—R|/c

- . 1 -
—(—V 5,-]-+Vi j) Jdll,uj(l/), l<|7"—R|/C.
0

(2.4.19)
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In expression (2.4.19), the gradient operators act on the retarded time as well
as on 1/(|F—R|). Noteworthy is the fact that for < [f—R|/c, the vector
potential is nonzero.

In a similar fashion, the transverse displacement field may be partitioned
into vacuum and source fields and computed using the relations
(2.4.11), (2.4.16), and (2.4.18). The free displacement field is given by

—(0)mult . fickeg /2 () (7, (A)mult (7 ik -F—iot
d (F,1) = zZ( X% ) [e (k)a (k,0)e

k2

_Z;(/l) (l_c’)aT(Z)muh(l_c’7 0)64% -7‘+z’wt]' (2'4‘2())

The free field operates entirely in the boson space, changing the number of
photons by one. Substituting the second term of (2.4.11) and its adjoint into
the mode expansion (2.4.7) gives for the electric dipole-dependent vector
operator the form

s)mult /— . k \5 7\eik - (F—R —io (1=
AN F ) =iy <C_> o (K)e” (k) R)Jd[/“j(’/)e wI-HC..

(2.4.21)

Carrying out the mode sum yields
t
Jdt/.uj([l)

0

s)mult ,— -2 =
AN F ) == (=5, + ViV

!  4n? F—R|

X Jdk2 sin(k|F—R|)sin(kc(1—t))
0

c ) > o 1
= (=V 9+ ViV)) R
t

dez’uj(z’) {8(|F—R|—c(t—1))=S(|F—R|+c(t—1))}.
0

(2.4.22)

Only the first 5-function contributes in (2.4.22) because ¢ = t—|F—R|/c
lies between 0 and ¢; the second term vanishes as it lies outside the range
of integration over 7. The source field is thus strictly causal, and the
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displacement field must be evaluated at the retarded time. Finally,

| w(1=[F=R|/¢)
P—R|
0, t < |F—R|/c,
(2.4.23)

with the gradient operators acting on the retarded time as well as on
1/(J7—R|). From the source-dependent vector potential (2.4.19), it is a
simple matter to evaluate the source-dependent magnetic field and the
transverse and total electric field operators, even though the last two fields
do not appear in the multipolar formalism. Nevertheless, their evaluation
will help compare the fields in the two frameworks. The magnetic field is
obtained from

, t>|F=R|/c>0

b F 1) = [V x @™ E )

0, t < |F—R|/c,
(2.4.24)

which also vanishes for 7 < |[F—R|/c, while the source-dependent trans-
verse electric field is

S)mu — d S )mu. —
e M F ) = — a7 0)
L(ﬁzé..jﬁ@) L (= 7=Rl/) (D), 1> [F—Rl/e>0
4me PN R St ’
I LRSS S t< [F=R]/c
dmeg. - VTV R ’

(2.4.25)

which like the source-dependent vector potential contains a nonvanishing term
for t < |F—R|/c. In the Coulomb gauge, the longitudinal electric field is
related to a static distribution of charges. For an electric dipole source,

1

o _ —
eymut(r’ t) — —80 lluj([)éj(r) - _W

(05=37i#)w;(1), r>0,

(2.4.26)
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which is related to the electric polarization field via

e“mult(}—;7 t) 80 lp‘ll (},. t) — 8 pl (r [) (2427)

1

Thus, expression (2.4.25) can be written as

eL(s)mult (7’ [)

i

1, =20 == - -
——(-V76;+ViV)) = quj( —|F=R|/c)—ey ' pi-(F,1), t>|F—R|/c>0,
4mey |7 —
—ey \p(7,0), t<|F—R|/c,

(2.4.28)

with the total electric field given by

1 ) 5 o 1 - "
V 0;+V,V; = F—R|/c), t>|F—R|/c>0,
e:ot( )mult( 7 f)= 47.580( it Vi )‘ﬂ_R :“]( —|F=R|/c) [F=R|/c
0, t<|7”—1_é|/c7
(2.4.29)

which is seen to be equal to &, ld.(s>mult(7, t) expressed by (2.4.23).

1

2.5 MINIMAL-COUPLING MAXWELL FIELDS

In the previous section, explicit formulas were obtained for the time-
dependent vector potential, transverse and total electric fields, and electric
displacement and magnetic field operators due to an electric dipole source
moment by starting from the second quantized multipolar Hamiltonian and
calculating the time evolution of boson operators from the Heisenberg
equations of motion. To further examine the similarities and differences
between multipolar- and minimal-coupling frameworks (Salam, 2008), the
corresponding fields are evaluated in the latter scheme. Now the starting
point is the minimal-coupling Hamiltonian. For a single particle, this may
be written as

2

e -2
H™ = % 4+ H + pe aqg,t)+ %a (4,1), (2.5.1)

where the first two terms of (2.5.1) are the molecular and radiation field
Hamiltonians (2.2.11) and (2.2.12) and the last two terms are the interaction
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terms. It should be noted that the total Hamiltonian (2.5.1) is expressed in
terms of canonically conjugate variables derived within the minimal-
coupling formalism, which differ from their multipolar counterparts. From
equation (2.2.8), for instance, the conjugate momentum of the radiation
field coordinate is equal to —eye™ (7). For radiation field wavelengths
larger than molecular dimensions, the spatial variations of the vector
potential may be neglected to a first approximation, thereby leading to
the electric dipole approximated form. Situating this dipole at R as before,
the interaction Hamiltonian is then

(R,1). (2.5.2)

The time evolution of the photon annihilation operator in minimal coupling
is obtained from the Heisenberg equation of motion

h
2e9ckV

12
ihilmin(l)—[ mln( ) Hmm] — hwa+ — < > [p+ (R l)] —*())(k)’

(2.5.3)
on using the commutation rule (2.4.10), which remains valid since the two

Hamiltonians are related by a quantum canonical transformation. Perform-
ing the time integral in (2.5.3) leads to

i o\ ~(2) t
min (/) — ,Min(())e i@l 4 —iorZ I_C' dt/—» —ik -R+iwt
)= 0 g (o) e R [atie TR

(2.5.4)

where use has been made of the relation between the kinetic and canonical
momentum of the material system,

e%(c? R)="2 [+ ea(R)]. (25.5)

As in the case of the source-dependent fields and vector potential in the
multipolar framework, the second term of (2.5.4) is substituted into the
respective mode expansions and the wavevector and polarization sums
carried out. From (2.4.6), the source-dependent minimal-coupling vector
potential is found to be
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t
1 ) - o 1
= -V 0;+V:V; — |d7 i (¢
4nzsoc( itV '/)|?— |J Hir)
2 . — = . /
X dkﬁsm[ldr—RHsm[kc(t—t)],
0 (2.5.6)
which after carrying out the k-integral results in
t
L(—ﬁzé--wﬁ)L J af (1), t>|F—R|/c>0
| dre (AT TH A =
al(s)mm (F,t)= tt—\?‘—Rl/c
1 ) - o 1 , , -
E(fv 5,,+V,VJ) |?—§|Jdt [,uj(t )f,uj(O)], t<|F—R|/c.
0

(2.5.7)

The transverse electric field can be derived in a manner similar to that
used to obtain the vector potential in the multipolar formalism. Alterna-
tively, it is given straightforwardly by

eii(s)min (’—;71[) _ —élgs)min (71) 1
) o o o =
-V 0;+VV;)——=|u;(t—|F—R|/c)—u; ()|, t>|F—R|/c>0,
ey Y O V) e i RY )0 > 7R e
= 1 -2 - - 1 L o=
E(—V 51‘#“%)@[#/(0)—#;0)]7 1<[F=R|/c.

(2.5.8)

Since the longitudinal electric field is the same in both frameworks, the dipole-
dependent term (2.4.26) can be added to equation (2.5.8) to give the total
electric field in minimal coupling,

1 2 Lo 1 L .
ey Y O HVIV) 7R W (1=[F=R|/c), t>[F=R|/c>0,
tot(s)min /-
‘i (F0=4 1 =2 - = 1 ~
—(=V 9y iVj)—=—=u;(0), t<|7—Rl/c.
47‘580( \Y% ]+V V])|7_R|ﬂ]( ) <|r |/C

(2.5.9)
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Interestingly, the source-dependent transverse and total electric fields for
t>|F—R|/c>0 are identical to their multipolar analogues (2.4.28)
and (2.4.29). In contrast, the functional forms differ for ¢ < [ —R |/ c. Neither
the transverse nor the total minimal-coupling electric field vanishes in this
time interval, unlike the multipolar total electric field (2.4.29), which is
causal.

Once again the source-dependent vector potential (2.5.7) may be used to
calculate the time-dependent magnetic field operator due to an electric
dipole. Thus,

- 1 d L = L o=
draoe W g RO > PRI/ >0,
;l‘_

0, t < |F—R|/c,
(2.5.10)

which is equivalent to the result (2.4.24) obtained using multipolar equations
of motion. From the analysis of this and the previous section, it is found that
the field operators are dependent on the time-dependent source electric
dipole moment to which no label min or mult has been attached, despite the
differing time evolution of the two types of Hamiltonian operator. No
distinction is necessary due to the fact that zi(z) is independent of any
canonically conjugate momenta and therefore remains invariant in both
constructions. The same is true of the magnetic field, b (7, 7).

To further explore the relationship between the various radiation fields in
the two formalisms, it is useful to find the connection between the minimal-
and multipolar-coupling photon creation and annihilation operators. By
applying the transformation

amult — eiSamine—iS’ (2511)
where in the electric dipole approximation the generator is
1. . =
S:%u-a(R), (2.5.12)

it is found that

mu min . 1 /2 — k-
a lt(t) =d (t)—l<m) ,u](t)e]e k R. (2513)
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New features arise in the functional forms of the vacuum radiation fields as
aresult of the difference above, as witnessed by the substitution of minimal
boson operators into the multipolar mode expansions. Illustrating first for
the vector potential,

; 12
(0)mult /- o
UEGUEDS <2ck80V>

k2

x [el(i) (/‘C’)amin(o)eﬂ? Fioot z,l('i) (/‘C’)a”rmin(o)efil? -7+iwt}

KA
% [el(i) (]_C’)—j(i) (]_C')eilz (7—13)—1«0[_55)-) (]_C')e](_)-) (]_C')e—il?(?—ﬁ)—i-iwz}
0, t>[F—R|/c>0,
(0)min /-
=a (F, )+ t =2 = = 1 - 3
! ’ -\ 51 i i) = 7 0 5 t _R 5
T8I 0, 1< Rl

(2.5.14)

showing that the free vector potential is identical in both frameworks for
t > |[F—R|/c, but differs for ¢ < [F—R|/c. Similarly, for the free electric
displacement and magnetic fields,

12
Omult )= \ . hckey
d; (V,l‘)—lg <2V>

kA

= &o¢;
0, t>|F—R|/c>0,
+9 L %6, 4 99— (0), 1< [F—R]/c
47‘[ 7 vy ‘7_E|'u] ) )

(25.15)
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and

0)mult /- .
bl( )m t(r7z) = ZZ 28()CV

)e/()) (];')e—l§-(?—ﬁ)+irut:| ) (2516)

After carrying out the mode sum, the second term in expression (2.5.16) is
found to vanish for [F—R| # ct so that the free magnetic field is equivalent in
both formalisms,

pO™N 7 1) = BN, 1), [F-R|#et. (2.5.17)
Finally, the source-dependent multipolar total electric field at time # outside

the source, when expressed in terms of minimal-coupling boson operators
using the relation (2.5.13), is

. . 1/2
egtot)mull(f" t) — galdi(?a t) = LZ ( ;VEO>
A

1/2
_l thgo min k-7 = Tmin —ik -7
=— ( X% ) [e,-a (t)e™ "—e;a™"(1)e }
k.,
1 ) iR P
v b ) (Eys ) (el F-B) 1 52 (100 (B ye—ik - (-
' D gphl) 7 ®)g) (et TR 120 (k)e (ke )]

= etmin(7 ) ——— (1) |8:—3(F—R).(F—R),
) a0 053G R R)

= e ™7, 1) ey pl (7o 1) = e "V (7 1) 4 el (7, 1) = eV (7, ),
(2.5.18)
demonstrating their equivalence in both schemes. Thus, from (2.5.18),

—mult _,

d (F,1) = g™ (7, 1)+ p(¥,1), forallt, (2.5.19)
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from which it is seen that the total fields are identical for all times.
Meanwhile from equation (2.5.15),

~(0)mult _, S1(0)min = 0 t>|F—R|/c>0
d t) = t ’ > 7 (2.5.20
0=l TR0 G o), <R, 35

showing that the free electric fields are the same for ¢ > [F—R|/c. Inter-
estingly, the source-dependent polarization field is time dependent, but in
the absence of sources is independent of ¢. Noting that from (2.4.23)

—(s)mul —mult —(0)mul
d(y) - Ut—d< ) Ut, the separation of the total minimal-coupling

electric field using equations (2.5.18) and (2.5.19) is

egtot)min(7’ [) _ eiL(O)min (7’ l)

—(=V 6; +V,V; - (t—|F—R|/c), t>|F—R|/c>0,
47T80( l/+ ! ]) ’7_ ’lu]( |r |/C) ‘r ’/C
_l’_
L%, - (0) { < [F—R|/c
dmeg TV R ’
(2.5.21)

with the division of the magnetic field being the same in both formalisms.

In summary, the vacuum field operators differ in the minimal- and
multipolar-coupling frameworks. This is due to the boson creation and
annihilation operators being nonidentical in the two schemes as their time
evolution is governed by two different Hamiltonians. The source-depen-
dent fields at positive retarded time on the other hand are the same. In
addition to evaluating the time evolution of photon operators, the time
dependence of fermion creation and annihilation operators in the two
formalisms can be calculated analogously using Heisenberg’s equation of
motion. Like their boson counterparts, b,(¢) and b (¢) are found to differ in
the multipolar- and minimal-coupling versions of the theory (Power and
Thirunamachandran, 1999b). A consequence of the boson operators being
different is that expectation values of observables involving these operators
will differ. To carry out such a calculation requires the selection of a set of
unperturbed matter and radiation field states. The ground state of such a
system is identical in the two coupling schemes and corresponds to a true
no-particle state. Other states, however, will in general be different as
they are generated by the action of nonidentical operators. Examples of
observables that differ include the expectation value of the photon number
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operator p™n/mult (1) — gfmin/mult(4)gmin/mult(4) and the occupation number
for the matter field N™n/mult(7) = pimin/mult( sy pmin/mult(4) a5 well as non-
identical line-shape functions. .

The distinction between a'”)(k, ¢) and a*”) (k, ) in the minimal- and
multipolar-coupling formalisms is due to the description of the quantized
electromagnetic field in terms of photons. If the radiation field is instead
viewed as primary, these differences vanish. It should be borne in mind that
both the minimal- and multipolar-coupling Hamiltonians give rise to
identical equations for the radiation field operators, these being Maxwell’s
equations. An analogous viewpoint applies to the fermion creation and
destruction operators in the two versions of the theory. Now the equation of
motion for the electron wavefield is Schrodinger’s equation including the
effects of electromagnetic radiation.

2.6 MULTIPOLAR MAXWELL FIELDS IN THE VICINITY
OF A SOURCE

Results from the analysis of the two previous sections of the forms of the
quantum electrodynamical radiation field operators in minimal- and multi-
polar-coupling frameworks showed that the fields independent of the
source are the same for positive retarded times ¢ > [F—R|/c and that
the total fields—source plus free field—are identical for all ¢, with the
source dipole moment operator evaluated at the delayed time 7—|F—R)| /.
To be able to apply the second quantized Maxwell field operators to the
calculation of quantum mechanical observables, for which matrix elements
of the field operators are required, it is necessary to express the Heisenberg
fields at the initial time ¢# = 0. One way this may be achieved is by iterating
the coupled integro-differential equations for the boson and fermion
creation and annihilation operators, which are obtained from the Heisen-
berg operator equation of motion. This enables a series solution to be found
for the Maxwell fields in successive powers of the multipole moments in
terms of photon and electron operators evaluated at the initial time. This is
carried out for the multipolar framework electric displacement and mag-
netic fields only (Power and Thirunamachandran, 1983b; Salam, 2008) by
calculating the time evolution of @™ (¢) and »™!"(¢) and their Hermitian
adjoints by starting from the second quantized multipolar Hamiltonian. In
this case, the source-dependent Maxwell fields are strictly causal, vanishing
for t < [F—R|/c.

In the electric dipole approximation, the multipolar Hamiltonian is
given by
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H™ = Z b (1)bu(1)E, + Z a"' Wk, 0)a? (k, 1) ho
-1 mn i
—& me -d (Ra [)a

m,n

(2.6.1)

where the self-energy term has been neglected. In equation (2.6.1), the
transition electric dipole moment matrix element is given by

i = [&m@ﬁm(a)dw. (26.2)

The time development of the photon and electron creation and annihilation
operators is found from the Heisenberg equations of motion

iha™ (k, 1) = [a¥ (K, t), Huu] (2.6.3)

and
itiby () = [bu(t), Hiur (2.6.4)

on using the standard equal-time boson commutator and fermion antic-
ommutator relations

[P (k, 0, at (K 0] =00 (2.6.5)

and
[bm(t)7 b;r:(t)] + = Omn- (266)

Transforming to new variables «(7) and f,(¢) via the substitutions
a(t) = a(t)e™ ™" and b, (1) = B,(t)e~*" yields

w020+ () > e de’ () (B, (1)

(2.6.7)
and
k 1/21
¢ nm ik -R—i(w w)t'
ﬂn<r>:ﬁn<0>—22<2?0hv> [ar Bt yie® v
/‘g’;~ m ’ 0
_éjefilz ~I§7i(wm;ﬁw)t’a’r (t/)]7

(2.6.8)
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where the mode dependence of the radiation field operators and associated
polarization vectors has been dropped from the last two equations. These
coupled equations may be solved by iteration, in the process generating a
solution in series of powers of the transition dipole moment. The boson
operators are then inserted into the mode expansions for the displacement
and magnetic fields, allowing formulas for the Maxwell fields in the neighbor-
hood of the source to be found. In the Heisenberg picture, the mode expansions
for the displacement and magnetic fields are

Z <h6k80> |: l.oc([)e”;-?7iw[—éia%(t)eiﬂzi?+iwt (269)

and

1/2 . ,
. ik -F—iot 7t —ik -7 +iwt 26.1
)=1i E (2806‘/) [ o(t)e bio' (t)e }, (2.6.10)

which may be written as a series expansion in terms of the order of
iteration, n,

d-(7, 0= d"F0) =d” F0)+d" 70 +d7 7o)+

(2.6.11)

biF,0) = b (F,0) = b (7,0) + b} (7,0) + b (F.0) + - . (2.6.12)

The first terms of equations (2.6.7) and (2.6.8) correspond to boson and
fermion operators at the initial time and are simply «(0) and f3,(0),
respectively, and are clearly source independent. They are used to obtain
the vacuum fields, which are

1/2
07,1 = Z'Z fckeo ! {eia(O)e"E'F’i“”—éiocT(O)e”";'”"“”
7 k. 2V

(2.6.13)
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nk \'? ik -F—iot 7. T —ik -F+iot
<28()CV> [bicc(O)e —bia'(0)e .

<
2
—~
\.‘l
=
Il
~.
]
~

(2.6.14)

The zeroth-order fields are seen to operate exclusively in the boson space,
increasing or decreasing the number of photons by unity.

Substituting f3,,(0) and its Hermitian conjugate into the right-hand side of
equation (2.6.7) and integrating produces an expression for the photon
annihilation operator that is linearly dependent on the transition electric
dipole moment, which is used to compute the source-dependent terms of
the Maxwell fields (2.6.11) and (2.6.12). Thus,

2 mng o i i@ + o)1 _
O((l)(f) - <2h80V> Z'u] ik - Rﬁm( )B,(0 )<el((,omn4—|—(y)>’
(2.6.15)

where p;" 1s a time-independent matrix element of the transition electric
dipole moment Equation (2.6.15) is used to obtain the first-order fields, since

7.1 _lz<hck80> [ o D(1)ek P01 g T ()oK F o

(2.6.16)
and
ik \/? Foriot T
bl(l)(?, l) = lz <2SOCV) [bia(l)(t)elk-rflwt_bl_ocy(l)(l)eftk-r+lwt )
k2
(2.6.17)

Ilustrating explicitly for the linear displacement field, inserting expres-
sion (2.6.15) into expansion (2.6.16) produces

IWmpt —iwt
+ -~ ]z (7_B e'®@mnt __e
X {ﬁm(())ﬂn(())ujmﬂeieje’ (F—R) [W] +H.C.},

(2.6.18)
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where H.C. stands for the Hermitian-conjugate term. The mode sum is
performed using the relations (1.4.55) and (1.4.56), while the angularintegral
makes use of the result (2.4.16), giving for equation (2.6.18),

dl( 7 87‘[2 Zﬁm

m.n

(2.6.19)

eiklF—R| _o—ik|F—R|

‘_’ I—é| [e—ikm,,ct_e—ikct] 1 HC.
7F—

Because the replacement of k by its negative in the Hermitian-conjugate
terms produces essentially the same contribution as the first term, but with
integration limits (—o0, 0), therange of integrationin equation (2.6.19) canbe
extended to (—oo, 00), so that

1
[F—R|

() (7 i ( = =
d; (7, 87t2 Zﬂ 0)B,(0) (=¥ "8+ ViV))
% J dk [eik|771?|efiknmct_eik(\771?Fct)

_e_ik‘F_ﬁ‘e_ik’7’”Ct + e—ik(|7—ié‘ + ct)] , (2620)

which on integrating yields, irrespective of the way in which the pole is
displaced, the first-order electric displacement field

" (7,1)
LS g O O (50, + 9,9 T R0
! —————, t>|F=R|/c >0,
= 4n m,n |7_R|
0, t < |F—R|/c,

(2.6.21)

which is seen to obey FEinstein causality. For a source dipole situated at
the origin in which R =0, evaluating the gradients results in the
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expression

= 1 mn _—1I c
d" (7,0 = -3 B (008, (0)"e ks,
(05—T:t}) N 1 o
* [_ o O 2 i 5 ) |

(2.6.22)

which is recognizable as the quantum electrodynamical analogue of the
classical electric displacement field of an oscillating electric dipole. It
operates entirely in the electron Fock space, changing only the
molecular state of the system. Further, for all 7, the diagonal matrix
element of expression (2.6.22) is the electrostatic field of a permanent
electric dipole moment.

The magnetic field due to an electric dipole source is derived in a
manner similar to that used to obtain the first-order displacement field.
Equation (2.6.15) is substituted into the expansion for the linear magnetic
field (2.6.17). Now the polarization sum is executed using the identity
(1.4.57), and the wavevector sum converted to an integral via the relation
(1.4.55). For the evaluation of the angular integral, use is made of the result

1 s TR I = sinkr .. (coskr sinkr
) e 740 = e S T = i <k— “Ter )
(2.6.23)
Integrating over wavevector then gives
b (7.1
i (0 0) /™ 6 eik""l(‘?_ﬁ|_“t) . 0
- i« Vik———=——, t>|F—R|/c>0,
47‘5800;ﬁm( )ﬁn( ):u] nmgz/k k |,_/"_R‘ |V |/C
Oa < |7—ﬁ|/€,
(2.6.24)

which on taking the gradient after letting R =0 becomes

Dy ! ke . 1 i o
B0 = oD B (OB O i+ s e,

m,n nm

(2.6.25)
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the familiar form for the magnetic field of an electric dipole. The properties
of the first-order magnetic field (2.6.25) are identical to those discussed
previously for the linear displacement field operator. In addition, in the near
zone, the displacement field has inverse cube distance dependence while the
magnetic field exhibits 7~2 behavior; both fields have an inverse power law
form in the radiation zone.

Higher order contributions to the Maxwell field operators may also be
evaluated, the technical procedure becoming progressively more compli-
cated as the order of iteration increases. The next term in the expansions
of the fields (2.6.11) and (2.6.12) is the one in which operators depend
quadratically upon the electric dipole source. For their evaluation, formulas
for o®(¢) and ,821) (z) and their Hermitian conjugates are required.
Ilustrating explicitly for the second-order displacement field, its mode
expansion is given by

2) = - hckeg /2 Q) ( N\ aik Fiot 5 1(2) [\ a—ik F + oot
d? 0 =iy [e,a (e —&' @ (1)e ,
(2.6.26)

where o(?)(¢) is obtained from (2.6.7) on inserting [3,(11)(# ) and its adjoint
from (2.6.8). Thus,

2 ck \* ik -R

o (1) = Z <280hv> ‘u;””ej e
t (2.6.27)
de/ i@y + )1 [‘BT (0) ( /)ﬁ;gl)(t/) +ﬁjﬂ(1)(t/)‘8£l0)(t/)}

1/2 A

1 hick o e i(opm+o)i_q

W) =— np , ik R e mT—1
0= 55 (28 0 e 50 (1)

- 71'((1)”"7(;))1_1
np— _—ik-R T €
S RS PN (1)) [— (2.6.28)
" ( (@pn—c») )]
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giving for equation (2.6.27), after performing the time integral,

1/2 1/2
2 _ Ck Ck/ mn— —ik R
(Z( )([) T Z Z (Zgohv) <2£0hv ﬂj ¢

1;”/«_1111,11,p
- (@O +o—0)i ] (o +o)t |
,u;"’e’le”‘ Ry (0) € €
(@pn+ ") (Wmp+0—0")  (Wpn+ ") (W + o)
B,,(0)B,(0)
. ei(@m+oto)r_q eilom+o)t _
_M;’I’élle—zk 'RO(” (O) : ~— -
(wpn*w )(wmp+w+w ) (U)pnfw )(wzn;z+w)
>< b
TR i(@pn +m+m’)1_1 (@ +m)r_1
‘ugjmé//eilk Ho! (0) ° / N ° 7
—(wpm+") (@pn+o+0")  —(@p+ ) (@pn+®)
+,(0)B,(0)
v i(wpn + 00—t _ 1 i(pm+ )t _ 1
,ﬂl;mellezk -Ra/ (0) € - —~— € -
—(Wpm—")(Opp+0—0")  —(@p—0") (O + )

(2.6.29)
-/

where the prime denotes the photon mode (k ,4"). Equation (2.6.29) and its
Hermitian conjugate are substituted into the mode expansion (2.6.26) and
the (k,4)-mode sum is carried out, producing for the quadratic displace-
ment field the result

d(Z)(;: [)7LZZ hck 1/2
o _471121 2= \26V

ek (0)B,(0)B, (0)e R (=5, + V%))

[ {u?”u’i” s }ei<km+k><|fﬁct> T

y Ep—hw  Epy+ho F—R| +H.C.
X
'u]mn’uZP eikmn(‘?‘fl_é —ct) ‘uZm,U]"lp e*l‘knp(‘?*m*c’)
zn:En,,—hw [F—R)| zn:Enerhw F—R|

(2.6.30)

In near-identical fashion, the magnetic field analogue to (2.6.30) is derived
by substituting the expression for o(?) (¢) and its Hermitian conjugate into the
mode expansion for the second-order magnetic field

1/2 L B .
b,(Z)(7,Z):lZ< ik ) |:bioc(2)(t)eik~r—1wt_bl_OCT(2)(Z)e—1k~r+lwtj|

c— \2¢9cV
k.

(2.6.31)
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and executing the mode sum. This leads to the formula

12
i (@0 4nsozz<29ocV>
ex(0)B,(0)B, (0)e™ # ie V1)

Z { 'ujnm'uk . Hzmﬂ/ } (k +k) ei(kanrk)(WfI_é\*vt)
pm =

X n np_hw Enn1+h |?—R| +H.C.
X
Z 'u}nn’u lknn,(\F—ﬁ\—ct) MZ‘tn’u]”P e—iknp(\?‘—m—ct)
Epi0 ™ F K| aEutfio " FF|

(2.6.32)

A noteworthy characteristic of the quadratic fields (2.6.30) and (2.6.32) is
that in contrast to the vacuum and first-order fields, they act in both the
fermion and boson spaces, changing the state of the electron as well as
creating or destroying a quantum of electromagnetic radiation. Expressions
for cubic and higher order electric dipole-dependent Maxwell fields may be
calculated by iterating (2.6.7) and (2.6.8) to third and higher orders,
yielding complicated functions of the dynamical variables.

2.7 HIGHER MULTIPOLE MOMENT MAXWELL FIELDS

For many applications, especially those involving optically active mole-
cules, the electric dipole approximation is no longer valid and the
contribution due to higher multipole moments needs to be included
(Thirunamachandran, 1988; Salam and Thirunamachandran, 1994). Since
individual multipole moment terms are additive in the multipolar frame-
work, it is facile to extract a specific contribution, be it a unique coupling
term or a collection of terms that are of a similar order of magnitude. By
accounting for the spatial variations of the vector potential to first order and
retaining terms linear in the electric charge, the interaction Hamiltonian
now includes electric quadrupole and magnetic dipole couplings, as well as
the leading electric dipole contribution. Hence, the interaction Hamiltonian
in multipolar formalism correct to this order of approximation is written as

Hine = Zb —lﬁmn d ( ,Z)

+ B(R’7 l) _i_galQZ_mﬁjdil(]_é’ [)}7 (271)
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where 772" and Q" are matrix elements of the magnetic dipole and electric
quadrupole moment operators and are defined analogously to that given
previously for ji"™ by equation (2.6.2). The basic forms of the time-
dependent boson and fermion operator equations remain essentially the
same, as given by formulas (2.6.7) and (2.6.8), but are now modified
slightly due to the effects of including higher multipole terms. By retaining
all three coupling terms in expansion (2.7.1), the boson and fermion
operators linear in the electronic charge are

1/2
1 _ Ck 1 mn . mn—,
oD (f) = <2heoV) ,En,, (u] ej+ n; b+ (— ikic) Qjy ej>

x R (0)8,(0) (‘7)—)1)

(@ +

(2.7.2)

and

1/2
1 h k n 1 n, . 7,
B (1) = ihz; (282‘,> B,(0) [(H;pej+ Cm;pbi+(zkk)Qﬂf€J>
k,A

- ﬂ'(a)]erw)t_l 1
xe Ry (0) (%)‘(H?_ +—m}"b; +(_lkk)lej>

Wpn + O

e~k Ryt (0) (76(;12)_1)] . (2.7.3)

The Maxwell fields in the neighborhood of these additional sources are
evaluated in identical fashion to that demonstrated in the previous section
in the electric dipole approximation. In the present case, use is also made of
the polarization sum (1.4.58) and the following angular averages,

ij e FaQ = £

.o sink
va,,+vv)vksm !

) L
R <coskr sin kr

—Fify) ik T W) + (Oijfk + OicFy + Opci—5F )

k212 k33 kA A (2'7'4)

( sinkr 3coskr 3sin kr) }
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and
1 P -~ o sinkr
EJ‘SU‘kkkk]Citk dQ = — 3 Sykvk
2.7.5
D DY sin kr (Sr—37e) coskr sinkr ( )
- {]k kTl k}" ki kKt k2r2 k3r3 .

Including the electric dipole term, the first-order electric displacement and
magnetic fields correct up to the electric quadrupole coupling term are

4n2ﬂ 0)B,(0 |: mn( 6 0jj 6 \Y )_Zm knmgljkvk

nun

d(l) ?7[ — ) SN = iknm(‘?*ﬁ‘f‘t) -
0 —Q(~V o+ vv)vkr‘ R (R
0, t<[F-R|/c,
(2.7.6)
and
mn Vi 1 mn =2 NAV/
4nsoczﬁ 0)5,(0) {l,uj knmsijkvk—f—;mj ( Vo;+V; V)
b(l)(?’ t) _ . ik (|7 R“*Ct) L o=
! —l—l.Q%nk,,mS{/kaV/] |? I—é| ) > |r_R|/C7
07 1< |7*ié|/€
(2.7.7)

In addition to properties listed in Section 2.6 associated with the dipole-
dependent first-order Maxwell fields, which also apply to equations (2.7.6)
and (2.7.7), itis interesting to note that the electric field of a magnetic dipole
is the negative of the magnetic field of an electric dipole, and the electric
field of an electric dipole is the same as the magnetic field of a magnetic
dipole, with ji"" replaced by /7" in both cases.
Higher multlpole contributions to the fields quadratic in the sources are ob-

tained as for the electric dipole case, using the extension of equation (2.6.27),

1/2
ck mn— mn . mn ik - R
(1) = Z (280hv> (MJ e+ — m b+ (— ikic) O e])e

m,n

t

 fat elem NGO @B @) + VOBV 279

0

and formula (2.7.3). Explicit expressions for these higher multipole-
dependent second-order Maxwell fields are given in Appendix A.
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2.8 MAXWELL FIELDS OF A DIAMAGNETIC SOURCE

In many situations, the observable of a quantum mechanical operator is
proportional to the square of the magnetic field b( 7). In such cases, the
Maxwell fields of the leading order diamagnetic coupling term should be
included for the sake of consistency. To lowest order, this interaction term
is also quadratic in b( 7). Its evaluation is carried out in what follows. It
extends work of the previous section and the results of Appendix A, in
which the electric displacement field and the magnetic field in the neigh-
borhood of an electric dipole, quadrupole, and magnetic dipole moment
were computed to second order in the source. Demanding that the dia-
magnetic coupling term be accounted for is also justified by the fact that it
is of a similar order of magnitude to electric quadrupole and magnetic
dipole couplings and can also be shown to arise when spatial variations of
the vector potential are taken to higher orders.

In a second quantized representation, the lowest order diamagnetic
interaction for a source located at R is

2

e~ qu(a){@—ié) < B(R)Y 6(@)d5. (28.1)

8m

With this as the sole couphng term and on rewriting the vector cross-
product between operators g and b( F) as

{(q R) X b } = ek (G— R) br(R ) (2.8.2)

the total Hamiltonian after inserting the mode expansion for b(F) is

1/2
Fmult — Zb”b E,+ Za aha)— Sz/pgkl!’ Z Z (2800V>

k A
B! 1/2
b b —»_R‘ mn
X (2806"/) m [( ) (q )k]

- 5 - o VN
ik -R __7, —ik R\ (pl )ik R _F 1T —ik R
x (bjae™ K—bjate™* R)(bjd'e® R—pa'"e~* K).

(2.8.3)

In equation (2.8.3), [(§—R),(G—R),]™" is the mnth matrix element of the
product of position operators. All photon mode dependence of the magnetic
polarization vectors and boson creation and annihilation operators has
been suppressed for notational brevity and all time dependence is implicit.
As in Section 2.6, the Heisenberg operator equations of motion are
calculated using the total Hamiltonian (2.8.3) and the commutation
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relation (2.6.5) and the anticommutator (2.6.6). For the boson and fermion
operators, respectively, these are found to be

1 e 1/2
o(dla(l) = 81/p8k117 Z Z (2800V> <2SOCV>

/mn

=3

x@-R)g —R); ]”’"bj

J / —zk R+1wmn+wtﬁ ( )ﬁn( )( ( )zk -R—io)?
0

b

( ) —ik'- R+lwt’) (284)

and

1/2 1/2
ﬂdia(t) . iez e Z hk / hk/ /
n = Qhum ekl — \ 2e0cV 2e0cV

% (bjoc(t/)eilz ~I§—i(wnm+w)l’_l_7a1‘(t/) —i%~§—i(w,,,,,—w)l’)
% (b/m(/(t/)eik R—i(pm + &)1 b OC“( ) 7i]2’.1_éfi(wm,ﬁw/)p).
(2.8.5)

For the solution of the electric displacement and magnetic fields due to a
diamagnetic source, it is clear that only the zeroth-order term of oi2(z),
equation (2.8.4), is needed since in this approximation the time-dependent
boson operator is second order in electronic charge. This leading term is
obtained on inserting fermion and boson raising and lowering operators
at their initial time 7=0, that is, } (0), f,(0), «"(0), and o(0) are
substituted into expression (2.8.4). Integrating with respect to time and
letting R = O results in

2\
o(dla(l) = Sl/pgklp Z Z (28()CV> (280CV>

*’ Smn

x[qiqr]™ B, (0)B,(0)b;
i(o)n1n+w—w’)t_1 _ i(o)m,,—&-w+w’)t_1
(S} (&
< {baa'«» !l—] B(0) [

(wmn +w—w ) l(wmn +w+ CO/)

}.

(2.8.6)
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Substituting equation (2.8.6) into the mode expansion for the transverse
electric displacement field (2.6.9), the diamagnetic contribution is

hk’ 1/2
1 (dia) /-
= g,kpg,m,,zz( ) (o)

k/'{ m,n

e Tl B OO Ot (287)

[ei(wmnw )t_eflwt
X

+H.C.
(Wpn + 0—0)

Performing the usual sum over polarizations and angular average leads to

1/2
i) hk/ mn T
dil(d )(V, [) 167‘[2mC jkp Imp Z Z <28()CV> q] ] ﬁm(O)ﬁn(O)

xa'(0)by, Ggik565 ;) Jdk k(e”"’—e’”")

0
ei(k,,m —k')ct _e—ikct
(K + k—k")

+H.C. (2.8.8)

Integrating subject to the causality requirement that the field vanish for
r> ct and taking the diagonal matrix element of the electronic operators
results in the field

d4 ( 1a)( r) — 8 p ] & 1 ( !8[) V)

[qqu]mn1ﬂjn( )ﬂm( ) ( ) m (289)

i

1
X k38iksrs k k2 ) lk(’ ) +HC

Similarly, for the diamagnetic contribution to the magnetic field, after
substituting relation (2.8.6) into the mode expansion for the b-field (2.6.10),
carrying out the mode sum yields

1/2
dia) /o
b[( a) (7'7 [) 87’[8 WlC2 EjkpEimp Z Z (2800V>

* m

*[g;a™" B}, (O)ﬁm(o)fx(O)bm

e [W_@,.k_sf,m (j s 1) ] SIS

(2.8.10)
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This, along with results in the two previous sections and in Appendix A,
completes the formal derivation of the Maxwell field operators correct up to
second order in the electronic charge.

2.9 ELECTROMAGNETIC ENERGY DENSITY

It was shown in Section 1.4 that the Hamiltonian density for the free radiation
field equation (1.4.25) expressed in terms of the vector potential and its
canonically conjugate momentum is equivalent to the energy density of
the electromagnetic field, (g9/2)(2> + b ). Having now calculated the
multipolar formalism Maxwell field operators in the vicinity of an electric
dipole source moment, the electric and magnetic contributions to the Thomson
energy density due to such a source may be evaluated (Power and Thiruna-
machandran, 1992). The importance of the energy density lies in its relation
to the intermolecular potential between a pair of polarizable molecules,
which arises when a test body is placed in the radiation field of the source.

Since the electric displacement field d () is purely transverse in a neutral
system, because the divergence of d (7) vanishes, £2°'(7) = d_ (7) outside
the sources due to the fact that the total electric polarization field j () is
local. Hence, the electric energy density operator is given by

1 [Jl(?, t)} ’

28()

1 =0 =), =(2) 2
:—[d (F,t)+d "(F,t)+d "(F,1)+

280

1

= [d‘”d ' +d9%4Y+dd® +dVdV+d"ad® +d®d© + ..
0

(2.9.1)

on expanding the field in successive powers of the transition dipole correct
up to second order in the source moment. The important contributions to the
electric energy density arise from the last three terms of the product written
in equation (2.9.1). It is clear that the first term cannot contribute since the
free field is independent of the source. The two terms involving the product
of the zeroth- and first-order fields likewise do not contribute to the
expectation value for a state with a constant number of photons. The first
term to be retained in any calculation of the energy density is that arising
from the product of the field linear in the electric dipole moment. To this is
added the term due to the interference of the vacuum and quadratic field,
since this is also proportional to the square of the source dipole moment.
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For a molecular state |p) and the radiation field in the vacuum state, the
expectation value of the electric energy density involves calculating

1

5 OK.2:pl(@" dV +d"d? +d P d”)pi0K, 7). (29.2)
0

Recalling that the first-order field operates only in the electron Fock space,
use of expression (2.6.21) for a dipole source situated at the origin gives for
the first term of (2.9.2)

1 1 o
5o 2 Pldn) nldVp) = 5 S g ) Fi ),

(2.9.3)
where Fj;(kr) is the tensor field
Fylkr) = (<F,+9,9)
r
— —(551'—?1-?]-)% + (0;—37#) <k;—;f2 + #) ] oikr :fi/_(kr)eikr‘
(2.9.4)

For the evaluation of the last two terms of formula (2.9.2), advantage is
taken of the fact that the vacuum field does not change the electronic state of
the molecule so that the diagonal matrix element over the fermion state may
be taken for the quadratic field (2.6.30). For the molecular state |p), the
matrix element can be expressed as

C 1/2 Lo
(pld® 7, 1)|p) = 4nz<“> [exa(0)e 52 (0)'5,].

20V
(2.9.5)
where
7ki_zn: ’L::n_;: k3Fy'(kV)—2n: l::”_:: kzpFU(knpr)ei(kpﬂJrk)cz
+Z Hﬁnﬂjnp I F; (kr)— Z kn#jnp k3 Fyk r)e—i(k‘,,,,—k)ct.
—E,p+ho Y E,y+ho pr

(2.9.6)
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As aresult, the second-order displacement field, like the free field, operates
exclusively in the boson space, so that the contribution to the electric energy
density from the interference of these fields is

1 - - S -
2o MO, 2:p1d)” Ip: 1, 2)) (18, 2);pld” 1 0(K, 2)
k.2

+(0(k,2):pld? |ps 1k, 2) ) (1 (k. 2);pld” |ps0(k 1)) (2.9.7)

! ek {elze7 +e7ee]€7
87'580k 2V k7 ki k7 ki

Concentrating on the first term of (2.9.7), the polarization sum is carried out
using the identity (1.4.56), the k-sum is converted to an integral via relation
(1.4.55), and the angular average is done using equations (2.4.16) and
(2.9.4) to give

he
32n2ey 2mi

[ A [F o (er)— Foe (k) 2 (2.9.8)

Substituting the tensor field (2.9.6) and collecting terms with identical
denominator, (2.9.8) can be written as
e Tortag o U [k
0
[Fic (k) —Fa (kr) [k Fyy (k) — ke F 3 () e/ Fr =01

(knp—k)
n (i (kr)—Fu (kr)| [ Fy(kr) — k3 Fj(fepr)e/km=R)et]
(knp + k)
_ 1 o, np dk K 37 z —2ikr
N 327[280 n 7k 2n le—knp [ kfik(kr)fij(kr)e
0

k,,pfzk (kr)fll (knp ) ik(r— ct) ikpn (r—ct) + k3 fik (kr)fg,' (k”pr)e—ik(r+ct)eik,,,l(r_ct)]

1 PV [ dkk® . 4 . 4
pn np = V. _k3 (k) (k —2ikr
+327‘E280; 7 F ZﬂiJk—kpn[ i (Kkr)f (fer)e
0

_ pnfk(k”)f,](kpn")elk' —ct) 7zk (r—ct) +k2 fik(kr)J_cij(kpnr)efik(r+(:t)efik,,,,(rfct)]’
(2.9.9)
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where use has been made of the j,k-index symmetry to eliminate the term
without an exponential dependence. Expression (2.9.9) contains both
time-independent and time-dependent terms. The abbreviation PV
denotes the Cauchy principal value, which is taken since exact resonances
are excluded in the k-integral when making the continuum approximation
to the mode sum. The evaluation of the integral depends on the sign of &,
and is carried out by transforming the integral from one along the real axis
to one along the imaginary axis in the complex plane. For a state for which
E, > E,, after making the substitution k = —iu, the time-independent part
of (2.9.9) is

647‘[28 Z'upn Zpkgnflj(kpnr)fik(kpnr)

o0 . 2.9.10)
1 duube 2w (
pn.np . .
S e e I TAL)
0
The time-dependent part is given by
T —uc(t—r/c)
pn ’1[7 3 dud |F..(k ikpn(r—ct) g (= € '
64n3902“j # (=kpm J uu [fy( w)e Jik( lur)4u+ikpn
0
B " o efuc(tJrr/c) B " .
~F )= g (= iur) = -y (pur )" (—ur)
u+ ik,
e—uc(t=rfc) e ) e—uc(t+r/c)
ik ‘_fzj(kpn’”)elk"”( Df o (—iur) ik (2.9.11)
pn pn

Because the exponents decrease for large times, the integrals in (2.9.11)
tend to zero for ¢ > r/c. Also, over a fixed time period, the average of the
time-dependent contribution vanishes due to the modulation factors
e*km! These oscillatory terms are ignored henceforth. Returning to
expression (2.9.9) and evaluating the integral for the case k,, > 0, the
pole contribution is

1 n n
—mz%? #kpkgnfzk(kpn”) i (kpnt), (2.9.12)
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on using the fact that
Jij(Fkr) = —f ;(Fkr), (2.9.13)

a relation easily obtainable from definition (2.9.4). Further, from the
definition of the tensor field Fj;(kr), it is a simple matter to obtain this
quantity for the complex variable k = iu, which occursinequations (2.9.10)
and (2.9.11) and will be convenient for future use. Thus,

Fj(iur) = % (_62517 +§i§j) : = fij(iur)e™", (2.9.14)
where
(iur) =i (5~~—“-)1+(5~—3ﬂﬁ) LI (2.9.15)
filiur) =1 |(05—Fif; ur ij il 22w o

from which the following useful identities easily ensue:
fii(Fiur) =f(Fiur) = —f ;(Liur). (2.9.16)

For k,, > 0, the u-integral part is identical to that appearing in the second
term of (2.9.10), in which the relations given in (2.9.16) have been applied.
Itis important to note that the first term of (2.9.10) has the same sign as the
corresponding term arising from the first-order fields (2.9.3). For those
states n with E, > E,, however, the pole contribution has opposite sign
asindicated by (2.9.12). Itis interesting to note the cancellation of the pole
term arising when k,,, > 0 with the contribution (2.9.3). The reinforcing
and canceling of pole contributions from the zeroth- and second-order
fields with terms from the product of the first-order fields is a striking
characteristic and is a direct consequence of the inclusion of the second-
order field.

Since the second term of (2.9.7) is the complex conjugate of the first, the
total contribution to the electric energy density due to an electric dipole
source is

1 . 1
16722, > Wl KS, FiUepnr)fiy lepr) + 167%% DA
E,>E, AllE,

o0

J du u6672ur

ey £ (i) fe ar). 2.9.17
uz—i-kgn on fij (iur)fix (iur) (2.9.17)

0
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This result holds for transitions from the initial state |p) with summation
carried out over a complete set of intermediate states |n) for an oriented
dipole source. When the initial state is the ground state, only the second
term of (2.9.17) survives,

o0

e o o . 122

32713 [ duu e e (i) [(5jk_rjrk) <u2r2 + w3 + u474>
0

. 1 2 1
0+ 3570 (s + s+ ) | 20.18)
where
On , ,n0
nO,ul M]
oj(iu) =2 g - k2 ) (2.9.19)

is the ground-state dynamic polarizability expressed in terms of imaginary
wavevector. For an isotropic source, the ground-state energy density is

he

16m3¢

T 1 2 5 6 3
6. —2ur . (=
Jduu e “o(iu) Lﬂrz T AT AT s T s

(2.9.20)

where o(iu) = (1/3)d;0;(iu) is the rotationally averaged polarizability,
obtained using result (B.4) of Appendix B. It is instructive to examine the
asymptotic behavior of result (2.9.20) in the limits of large and small
distances r. In the far-zone limit, r is much larger than the characteristic
wavelength of molecular transitions, that is, k,,or > 1. After performing the
u-integral using the result

Jx"e_"xdx =nn""!, Rem >0, (2.9.21)
0

the far-zone asymptote is

23%c0(0)

_— 2.9.22
64m3eor’ (2.9.22)

where o(0) is the static polarizability and corresponds to the @ — 0 limit of
expression (2.9.19). In the near zone, r is much smaller than the reduced
transition wavelength, that is, k,or < 1. Retaining the leading term after
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setting the exponential factor to unity in equation (2.9.20) yields, for the
short-range asymptote, the limit

1 2
> E™P, (2.9.23)
16726016 4

whichis the familiar electric energy density of a static electric dipole source.

Returning to the result (2.9.17) applicable to an excited-state molecule,
the first term is interpreted as an additional contribution to the energy
density arising from real photon emission. After multiplying the geometric
tensors, this first term is

1 2
n npi6
16n2 Z " kpkpn[ i) (kz r? k4nr4>

‘pn
E,>E,
5 . 1 1

+ (0jk + 377k) —k;n’A + —kgn”6 ) (2.9.24)

which on orientational averaging using result (B.4) produces

1 1 1 3
a" + + . 2.9.25
2472g Zn: 7" o [kgn 2kt kS ( )
E,>E,

At large values of r, this term has an inverse square asymptotic limit,
confirming the interpretation of its origin. In a large spherical shell of unit
thickness, the energy is

1 —pn
6re > Pk, (2.9.26)

E,>E,

and is independent of the radius of the shell. The r~2 term of (2.9.25)
obviously dominates the density in the far zone as the second term
of (2.9.17) was shown to produce an r~’ dependence in this limit, as
in (2.9.22), where the static polarizability is now that for an excited source.
Both terms of the energy density (2.9.17), however, exhibit an r°
dependence in the near zone with the contribution of the first term, found
from (2.9.25), given by

1 onp2
oo > (2.9.27)
n

E,>E,
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while the contribution from the u-integral term differs in sign for upward
relative to downward transitions from |p), and is

1 1
- i A —— i 2.9.28
167210 Zn: T+ 16m2¢y10 Zn: I8 ( )

E,>E, E,<E,

A direct manifestation of the electromagnetic energy density is the
intermolecular interaction energy of a test polarizable body placed in the
radiation fields of the source. Hence, the response of a polarizable test
molecule in the ground state, with static electric dipole polarizability
test(0), to the far-zone limit (2.9.22) is

1 =12 23%c
2 2 OC[est(O)d (V) = — m OCtest(O)OC(O), (2929)
0

which is recognizable as the Casimir—Polder dispersion energy shift at large
separation distances (Casimir and Polder, 1948). The far-zone response of
a test body to the radiation field giving rise to an energy density due to an
excited source is found from (2.9.25) to be

2477:28 212 Z 7" *orest (0 [as (2.9.30)
0

E, 2k,

while from equations (2.9.27) and (2.9.28), the near-zone shift is

16 28 = Z |7 P otgest (0 (2.9.31)
AllE

and has the form of a London-type dispersion potential, also obtainable using
electrostatic coupling. In Chapter 5, the pair interaction energy between
polarizable molecules in either ground or excited states is calculated from
first principles using the Heisenberg fields in a response theory formalism.

The second contribution to the energy density of the electromagnetic
field arises from the magnetic field. The calculation is similar to that
outlined for the electric dipole-dependent displacement field and only the
main results are presented.

Correct to second order in ji, the magnetic energy density is

e A R R A ORI )
52008 0). (2.9.32)
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Application of expression (2.6.24) gives, for the expectation value for
the product of the first-order fields evaluated over the state |p;0(k, 1)),
the form

1 - o
5006 (Pl @ 1) m) b 7, 1) p)

1 _
= S5 > kS, G (Kpr) G (k) (2.9.33)
n

where

! Vi eikr | I ikr ikr
Gy(kr) = sz e Vi — = —epli |+ 5 1e" = gy(kr)e™.

(2.9.34)
As for the tensor field Fj;(kr), for future use it is convenient to write the form

of the Gj;(kr) tensor in terms of the complex wavevector k = iu. From the
definition (2.9.34), one easily finds that

—ur

. 1 - e |1 L], )
Gy (iur) = m—zﬁy‘kva = L&jjkTk P + e " = gj(iur)e

ur?
(2.9.35)
It is readily verified from the last two equations that
gij(Tkr) = —g;(Fkr) (2.9.36)
and
gij(iur) = gy(—iur) = —g;(iur). (2.9.37)

Taking the matrix element of the magnetic field operag&g quadratic in ji,
given by (2.6.32), over the molecular state |p) resultsin b (7, ¢) operating
in the photon space only,

7 I ik \/? —iw S AT iot
<p\b$2><r,r>|p>=4MOZ(2W) [ (0)e™ "G ~ea! (00, ],
k.

(2.9.38)

where the tensor field &,; is defined in terms of the dipole moment
and Gy (kr) (2.9.34), analogously to 7; given by (2.9.6) for the



ELECTROMAGNETIC ENERGY DENSITY 113

displacement field,
pn  np n np
10 1" :
gk[ = Z ]_; k3GU(kr)_Z _h kflpGij(knpr)el(kanrk)Ct
n ”P n np

pn np pn np

Ky B My 1 —i(kpn—k)c
+ 27’ K> Gyi(kr)— Z—_Flhwk;n(; (Fpr)e " thm=R)et,

(2.9.39)

Employing the mode expansion for the free magnetic field (2.6.14), along
with equation (2.9.38), gives for the last two terms of (2.9.32)

4 ik i —ik -7
See Z <2V) [b ek "erG .+ eng,bie } (2.9.40)

for the expectation value taken over the state |p; 0(k, 4)). Carrying out the
mode sum in (2.9.40) and adding it to the contribution from the first-order
fields (2.9.33) produces for the magnetic energy density of an oriented
electric dipole source the expression

16ﬂz 1" 1 e, 8 (Kpn ) g1k (k)
E<E
- i 75 iur) g (tur). 9.
1673 4 Ky H uz_l_kgn pn8ij ik
0

AllE,

When the molecule is in the ground state, only the u-integral remains,

fic T . ) .
2 J du ue™ " o (iu) g (iur) g (iur), (2.9.42)
0

which for an isotropic source reduces to

o
he 6 .—2ur (s 1 2 1
T Jduu e 2 o(iu) Lﬂrz + 3 + Al (2.9.43)
0
on using the result (B.4) and which has the far-zone asymptote
Theo (0
0) (2.9.44)

64m3egr’
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After expanding the tensors in the first term of the magnetic energy
density (2.9.41) and rotationally averaging, the additional contribution to
the energy density due to downward transitions is

1 —pni27.6 1 1
2412 Z |2 Kpn [kz 2 + 4 14_]7 (2.9.45)
n pn pn

E,>E,

exhibiting »~2 and r~* far- and near-zone behavior, respectively. The
response of a magnetically susceptible test body to the far-zone lim-
it (2.9.44) then readily gives the dispersion interaction energy between
an electric and a magnetic dipole polarizable pair of molecules,

1 -2 Th
- b =—5— 0 294
28002 /Ctest(o) 647‘[3836’7‘7 Xtest( )OC(O), ( 9 6)

where y,.(0) is the isotropic static magnetic dipole susceptibility,

A(O)_%Zw (2.9.47)
1(0) =3 Em 9.

Interestingly, the energy shift (2.9.46) is repulsive. For a source in an
electronic excited state, the near- and far-zone interaction energies are
found using (2.9.45) to be

1

— w2 " tea(0)5, (2.9.48)
0 n

Ep >Ey

and

1
—=pn|2 4
_W zn: | Xtest(o)kpn' (2.9.49)

E,>E,

The electric and magnetic contributions to the electromagnetic energy
density due to an electric dipole source have been evaluated using the
quantum electrodynamical Maxwell field operators. Not only were the
vacuum and linear fields required, but also the displacement and magnetic
fields second order in ji were needed to be employed to correctly account
for all terms quadratic in the source moment. Each resulting expression for
the energy density is made up of two terms: a u-integral term and the other
valid only for downward transitions from an initially excited state. This last
type of contribution dominates the density at large field point distances
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from the source, displaying an inverse square dependence due to emission
of a real photon. The energy density arising from the fields is directly
observable as an intermolecular energy shift when a test polarizable species
is placed in the fields of the source.

2.10 POYNTING’S THEOREM AND POYNTING VECTOR

The law describing the conservation of energy of the electromagnetic field
may be formulated in terms of a theorem, due originally to Poynting
(Jackson, 1963). Consider the work done by an external radiation field €(7)
and b(7) on a single charge e. Itis given by 7 - é(F) or 7(7) - &(r), having the
dimensions of power per unit volume, where ]( ) is the current density
Because the magnetic force is orthogonal to the velocity of the charge ¢,
no work is done by b( )- Recalling from Section 1.4 that the direction of
propagation of a plane electromagnetic wave is given by é(¥) X b( ), its
divergence, using the vector identity

—

V- (A x B)

—

—A-(V x B), (2.10.1)

-

=B-(VxA)
is

V- (@(F) x b(F)) = b(F) - (V x 8(F))—2(F) - (V x b(F)).  (2.10.2)

Substituting for V x &(7) and V x 5(7) from the last two microscopic
Maxwell field equations (1.3.7) and (1.3.8) produces

V- [e) < 5()| = -b()- S -5 = 2 ¥)J7)
101, 2 ] 1
= 5@[@ 2(7) b(r)]—g(?e(r) J(7)

(2.10.3)

Defjning the electromagnetic energy density by u(i') = (1 / 2)eo[e* () +

b (F)] and the Poynting vector by S(7) = eoc[2(F) x b(7)).
equation (2.10.3) can be written as the conservation law or continuity
equation in differential form,

du(F)

> +V-S(F) = =27 -j(r), (2.10.4)
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assuming a linear, isotropic, and homogeneous medium. The right-hand
side of equation (2.10.4) represents the rate of conversion of electromag-
netic energy per unit volume to mechanical or thermal energy, which in turn
is balanced by the two terms on the left-hand side, the rate of change of
energy per unit volume plus the total outward flow of energy per unit time
across a surface bounding the volume. The Poynting vector is commonly
interpreted as the flow of energy at a point in the field, that is, the energy
crossing per unit area per unit time whose normal is pointing in the direction
of é(¥) x b(F).S(F) is arbitrary to the extent that the curl of any vector field
may be added to it without altering any physical consequences, since the
divergence of the Poynting vector appears in the conservation law (2.10.4).
When integrated over a closed surface, the Poynting vector gives the total
outward flow of energy per unit time. Relation (2.10.4) can also be written
in integral form by integrating over a volume V bounded by a surface S with
element da and normal vector 7 after applying the divergence theorem to
the Poynting vector term. Thus,

J (9;(;([7) &7+ J§ (7) - ida = — J?(f) J (AT, (2.10.5)

Vv S 14

In quantum mechanics, the Poynting vector is a Hermitian operator
given by
1 -

(F.1) = 350c? |8 (F, 1) x B(F, =B (F, 1) x &(F, z)], (2.10.6)

Ll

in which the time dependence is shown explicitly. The quantum electro-
dynamical Maxwell field operators due to an electric dipole source
calculated earlier in this chapter can be used to evaluate the rate of energy
flux in a radiation field (Power and Thirunamachandran, 1992). Equa-
tion (2.10.6) may be expressed in terms of multipolar framework variables
by remembering that for a neutral molecule the total electric field is
proportional to the transverse displacement vector outside the source, so
that the ith component of the Poynting vector is

1
Si(7, 1) = §c2sij~k [df(?, by (7, t) + bi (7, t)djl(?7 t)]. (2.10.7)

For the molecule in an excited electronic state |p) and the radiation field
in the vacuum state, the expectation value of (2.10.7), after expanding the
fields in powers of the electric dipole moment and concentrating only on
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terms second order in fi as before, is calculated from

(0(K,2);p|S:(F, 1) |p; 0(k, A))
1 .
:ECZSUMO(’CJ);J?!(CI}O) +dV+d? + )

x(b +bi + b7 >rp, (k, 7)) +e.c.
1 -
~ 5 o 00k, 2):pl(d b0 +d B+ d V0 p: 0k, ) +-c.c.,

(2.10.8)

where c.c. denotes the complex-conjugate term. The contribution arising
from the product of the first-order fields is found to be

1 oL I o o
EczngO;pldf (BT, b (7, 0+ b (7, 0y} (1:7, )]s 0)

1
=5czsfj~kZ[@|¢?‘>|n><n|b,i”|p>+@|b,i”|n><n|d}”|p>1

32n2 gzjkz.uz ﬂr;fnpk;?n f]l Kpnt) 8 (Kpn") ~+ G (Kpnt )it ( pnr”

(2.10.9)

For the computation of the last two terms of expression (2.10.8), use is made
of the diagonal electron Fock space matrix elements of the quadratic
displacement and magnetic fields (2.9.5) and (2.9.38), producing

cs,,kZ O(K, 2);pld” |p; 1k, 1)) {1k, 2);plbi (7ift) [p; O(K, 2))
+<o<k,1>;p|d- V(@) |p; (K, 1)) (1(k, 2);plb p; O(K, )] +c.c.

o Z (167’6(‘, V> Eijk [ejeikiémémk +em?mj15keiik.7] +c.c.

(2.10.10)

The mode sum is carried out in the usual way. In contrast to the calculation
of the energy density at the analogous step, the wavevector integration
occurring in the Poynting vector can be evaluated exactly for the terms
independent of time by extending the limits of integration to (—oo, 00).
Hence, there are no u-integral terms appearing in the results of the present
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calculation. The contribution from (2.10.10) is found to be

pn 6
327‘[28 8IJICX:Sgn pn ‘ul “Zf pn [f]l( Pnr)gkm(kpnr) +gkm( pn”)ﬁ/( P’lr)]

(2.10.11)

where sgn(x) is the signum function of x. When this is added to the term
obtained from the first-order fields (2.10.9), the Poynting vector of an
oriented source is

S; (I’ f ik
167 280 K Z " ;yfkgn[f;l( kpnt) 81 (Kpnt) + i (kpnt )it (Kpn?')]
E, >E
8 (ol]k(okmnrm Z ,upnﬂzl pn ]l VJV[) (21012)
E,°E,

in which only r~2-dependent terms remain after simplifying the geometric
tensors. It is interesting that only downward transition terms contribute to the
energy flow, the respective terms from upward transitions from |p) arising from
contributions (2.10.9) and (2.10.11) have opposite signs and cancel exactly on
addition. This aspect also featured in the calculation of the pole terms in the
computation of the electromagnetic energy density. After orientational aver-
aging and contracting the tensors, the Poynting vector (2.10.12) becomes

(Si(7,1)) 12%28 > Z |2kt 7 (2.10.13)

E, >E,1

from which the rate of energy loss out of a sphere at any radius r is
2 - ¢ —pni274
4 (Si(7, 1)) = nme Z "k, (2.10.14)

Ey>E,

The r~ 2 separation distance dependence in (2.10.13) is consistent with the
conservation of energy requirement that the energy flow through a spherical
surface be independent of the radius, as is evident from the result (2.10.14).

The rate of flow of electromagnetic energy from a radiating electric
dipole source (2.10.14) can be calculated from the decay rate of a
molecule undergoing spontaneous emission from an excited state (Craig
and Thirunamachandran, 1989). This is done by determining the matrix
element for the spontaneous emission of a photon from an excited
molecule and inserting it into the Fermi golden rule, from which the
power loss through a spherical surface by spontaneous emission may be
obtained, as shown below.
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Consider a molecule initially in an excited state |p) with no photons
present. From the form of the quantum electrodynamical Hamiltonian,
radiation and matter are perpetually in mutual interaction, even when either
one or both components of the system are in their lowest possible energy
states. From state |p), the molecule decays via spontaneous emission to a
lower lying level |n), in the process emitting a photon with arbitrary mode
character (k, 1). |n) can be the molecular ground state |0). To first order, the
matrlx_’element for the transition between initial and final states
|En; 1(k, 2))«|E,; 0(k, A)), with use of the electric dipole approximated

interaction Hamlltonlan Hiy = —¢'fi-d (), is
, ek N2 o) 2w i
M =i Z <W> e/ (k)pPe T, (2.10.15)
E,>E,

from which the emission rate into an element of solid angle d€2 centered
around the wavevector of the emitted photon, after rotational averaging and
using the Fermi golden rule equation (1.9.33), is

(dr(Q)) = Z (?—;) (Z@) &l (2.10.16)

E,>E,

where p is the density of final states. Making use of the fact that the number
of modes of wavevector between k and k + dk in a volume V from equation
(1.4.13) is

V. 37 _
ey

in spherical polar coordinates, the number of levels per unit energy interval
lying between 7ick and 7ic(k + dk) is then

k* dk dQ (2.10.17)

k*V dQ

= e (2.10.18)

Inserting (2.10.18) into equation (2.10.16) and integrating over all possible
angles of emission d€2, along with summation over the two independent
polarizations of the emitted photon, gives for the total rate the expression

k3
—on)2
T p= Z T, e L (2.10.19)

E>E
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since the energy of the emitted photon is conserved subject to
E,, +hck = 0. The rate (2.10.19) is more familiar as the Einstein A
coefficient. The power loss through a spherical surface by spontaneous
emission is given by #ck,, multiplied by the rate (2.10.19). This is seen to
be identical to the Poynting vector (2.10.14). The inclusion of the con-
tribution to the Poynting vector arising from the interference of the
quadratic Heisenberg fields with the zeroth-order fields has been shown
to be critically important because the energy flow from the product of the
first-order fields gives only one half of the spontaneous power rate.



CHAPTER 3

INTERMOLECULAR FORCES

... the theory behind chemistry is quantum electrodynamics.
—R. P. Feynman, QED: The Strange Theory of Light and Matter,
Princeton University Press, Princeton, NJ, 1985, p. 8.

3.1 CONCEPT OF INTERMOLECULAR POTENTIAL

The forces between atomic and molecular systems are responsible for the
overwhelming majority of chemical and physical properties exhibited by
matter (Hirschfelder, 1967; Margenau and Kestner, 1969; Maitland et al.,
1981). Their evaluation entails the computation of interaction energies
between constituent particles comprising the total system, a complex
many-body problem in and of itself. At the quantum mechanical level,
this is achieved by solving the Schrodinger equation for a total Hamiltonian
that is a sum of the individual molecular Hamiltonians and the Coulomb
interaction between all of the charged particles within each component of
the total system. Such a Hamiltonian is constructed as follows.

Consider a system of N nuclei ¢ and 7 electrons o of masses M: and
m, = m,, where m, is the mass of an electron, described by position vectors

Molecular Quantum Electrodynamics, by Akbar Salam
Copyright © 2010 John Wiley & Sons, Inc.
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Rg and 7, respectlvely Let the distance between nuclei ¢ and &
be R = ]Rg /| = |[R:—Ry|, that between electron « and nucleus ¢
be ry: = |Fy— R ¢|, and the separation between electrons o and o be
Fow = |Fu—T ). The nonrelativistic molecular energy Ey,ol, and the wave-
function ‘P(ﬁé, 7, )—a function of nuclear and electronic coordinates, for
such a collection of charged particles, is obtained by solving the time-
independent Schrodinger equation

HuoW(R:,7,) = EmolP(Re, 7), (3.1.1)

where Hy, is the molecular Hamiltonian operator. For the situation just
described, Hy, is given explicitly by

hZ -, n hZ -,
Hmol = — Z 2Mé v Z; 2}’}/18 Vx

(3.1.2)

2 | & z:z, & 1
+— — + ;
dmeg czf:’=1 Réé ; az: a;] Voo
where Z: is tbg charge ?f nucleus &, e is the charge of the proton, and the
Laplacians V and V, operate on nuclear and electronic coordinates,
respectively. Each of the five terms of (3.1.2) has a simple physical
interpretation. The first term represents the operator for the kinetic energy
of the nuclei, while the second term is the operator for the kinetic energy of
the electrons. The first and last terms within braces account for the potential
energy of repulsions between the nuclei and between the electrons,
respectively. Finally, the second term within braces describes the Coulomb

attraction between the electrons and the nuclei.

Solution of the general eigenvalue equation (3.1.1) with Hamiltonian
(3.1.2) presents a formidable problem. An exact solution is possible only for
the simplest element, the hydrogen atom comprising a single proton and
electron. In all other cases, approximate methods of solution have to be
resorted to. One possible simplification lies in exploiting the considerable
difference in mass between nuclei and electrons, for which M > m..
Accordingly the electrons, being significantly less massive, move much
faster than the nuclei, which to a first approximation may be taken to be
stationary. With the nuclei fixed, the nuclear kinetic energy terms may be
neglected in the Hamiltonian (3.1.2). This leaves the Schrodinger equation
for electronic motion to be solved,

(H61+VHHC)¢61 = Ewel’ (313)
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where the purely electronic Hamiltonian describing the motion of n
electrons in the field of N nuclear point charges is

< e? 1
H, = 3.14
el 2m Vi~ 47‘[80 Z ; Fac 4mgy Zl ool ( )
Ve 1s the nuclear repulsion term,
& L Z:Z
Vnuc = Z e 5 (315)

47'[8() o Rif/
!

&>¢

and the energy E is the electronic energy including the contribution from
internuclear repulsion, namely,

E = Eq+ V. (3.1.6)

Since Vy, is independent of electronic coordinates, it may be discarded
from (3.1.3), leaving the electronic Schrodinger equation,

Hellpel = Eell//el- (317)
Its eigenfunction is the electronic wavefunction, /,
Yo = wel[(?oc)7 {Ré}]’ (318)

which describes the motion of the electron and explicitly depends on the
electronic coordinates, but depends only parametrically on the nuclear
coordinates. The electronic energy, E., also has a parametric dependence
on R, Eqy = Eq[{R:}]. Hence, the electronic Schrodinger equation (3.1.7)
is solved at differing nuclear configurations yielding E.;, with each member
of the set {I_ég} corresponding to a different molecular electronic state, from
which E is then calculated using (3.1.6). After solving the electronic
problem, the same assumptions may be used for the nuclear motion.
Reliance is made on the notion that as the nuclei move, the electronic
energy varies smoothly as a function of the parameters {I_éé} Therefore, E
now becomes the potential energy for nuclear motion in the average field of
the electrons, giving rise to a nuclear Hamiltonian,

Hnuclpnuc = Emollpnum (319)

where the nuclear Hamiltonian is given by

h2
M P+E[{R¢}]. (3.1.10)

Hnuc = -
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Recognition of the consequences of the significant differences in mass of
electrons and nuclei and their effect on the molecular Hamiltonian was first
investigated by Born and Oppenheimer (1927).

Solutions to the nuclear Schrodinger equation (3.1.9) with nuclear
wavefunction ,,.[{R:}] describe vibration, rotation, and translation of
amolecule, where the Born—Oppenheimer approximation to the molecular
energy, E.o1, includes electronic, vibrational, rotational, and translational
energy contributions. The corresponding approximation to the molecular
wavefunction appearing in (3.1.1) is then

W[(7), AR} = Yal(F) AR e [{Re}]. (3.1.11)

Since the electronic energy E., is a function of nuclear coordinates, it may
be used to define the concept of an intermolecular potential or an interaction
energy.

It is convenient to write the total energy, E, as a sum of one-, two-, and
many-body terms

E=SE:+ Y Euw+ Eeop + -
Z é cézl a 54;1 e (3.1.12)

=4 &else

= El—body + E2—b0dy + E3-b0dy + S

where E is the one-body energy, E:» is the two-particle energy, and so on.
Frequently, the zero of energy is adjusted so that when the molecules are at
an infinite separation from one another, the potential energy is zero. This is
given by subtracting the energy of each individual isolated atom or
molecule from E. Hence, the intermolecular energy shift is defined by

N N N
AE=E-Y E:= > Egx+ Y Ego+ -, (3113)
¢=1 &é=1 &¢é, c"fl
& &>
a sum of two-, three-, and many-body terms. A common approximation is to
assume pairwise additivity and to calculate the leading term of the energy
shift, that describing the interaction between two particles and given by
. With this form of partitioning, the three-body contribution E;y -, the
four -body term Ez .2, and so on are taken to be nonadditive corrections.
Thus, for three interacting molecules A, B, and C, for instance, the energy
shift is given by AE3 = Eap + Epc + Eca + Espc, where the first three
terms in the preceding sum represent pairwise contributions between any
two of the three entities ignoring the presence of the third body, while the
last term is the nonadditive three-body correction.
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Forces between molecules are typically separated into short- and long-
range contributions. At the former distance regime, the interactions are
overall of a repulsive character, the most important terms being due to
exchange, repulsion, and charger transfer effects. The last of these is a
manifestation of induction forces at short range. In contrast, at long range,
attractive forces dominate, arising chiefly from the electrostatic interaction,
induction, and dispersion terms. A characteristic plot of the pair potential
energy function versus interparticle separation distance, bearing in mind
that the potential function between two molecules is not only a function of
their relative separation but also of their relative orientation, shows that
AE(R) is large and positive at small separations, with AE(R) — oo as
R — 0, while AE(R) has negative value at large R, with AE(R) — 0 as
R — oo. These two extremes are connected by a curve containing one
negative minimum. In the subsequent sections of this chapter, short-range
forces are discussed briefly, followed by an outline of the terms contributing
to the long-range part of the interaction energy within the framework of
classical electrostatics.

3.2 SHORT-RANGE FORCES

Forces between atoms and molecules at short separation distances occur
primarily as a result of overlap of electronic charge clouds associated with
each center. Overall, this leads to a net repulsion. Typically, these forces are
effective over internuclear separation distances R < ao, where a; is the Bohr
radius, but also extend to distances ¢y < R < 10ag, termed the intermediate
range of separation. The asymptotically correct form at very short range is
an exponential function Ae ™K, where A and k are constants. At very short
range, electron exclusion effects dominate the interaction. This prevents
some electrons from occupying the volume between the two nuclei, thereby
reducing the shielding each positive nucleus experiences, and therefore
increases the repulsive force in each of them. Like long-range forces, short-
range interactions are electromagnetic in character. Unlike interactions
occurring at long range, Rayleigh—Schrodinger perturbation theory cannot
be used to compute forces at small separation distances. This is due to a
number of reasons. When there is significant overlap of charge clouds, for
example, the multipole expansion of the electrostatic energy fails to
converge. In addition, the wavefunction used in the computation of
long-range forces is not required to satisfy the antisymmetry principle,
in contrast to evaluation of interactions at short range, for which the
wavefunction must obey the Pauli exclusion principle. Moreover, the
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perturbation approximation for isolated atomic and molecular systems is no
longer valid since the strength of the interaction is large.

A common physical interpretation of short-range forces is given in terms of
the Pauli exclusion principle and the electrostatic Hellmann—Feynman the-
orem (Margenau and Kestner, 1969; Maitland et al., 1981). The latter holds
for the exact solution of the Schrodinger equation for fixed nuclear positions,
from whose solution the total electronic charge density may be evaluated.
The theorem itself states that the forces on the nuclei are simply given by the
Coulombic forces due to a distribution of charges as calculated by classical
electrostatics. When charge overlap is considerable, large distortions in the
charge distributions take place because of the exclusion principle, as well as
from Coulomb repulsion among the electrons. A net repulsion effect ensues
for closed electronic shell species as the respective electronic charge clouds
tend to keep out of each others way, decreasing the charge density between
the nuclei, leading also to a reduction of nuclear screening by the electrons.
For open shell systems, however, increased electron density can occur
between the nuclei, resulting in chemical bond formation.

Formolecules close together, rigorous use of quantum mechanical results
demands that antisymmetrized wavefunctions be employed in the calcula-
tion of intermolecular interaction energies. Their use leads to the appearance
of terms describing the effects of electron exchange, which is a significant
component of short-range forces. This is achieved by writing the total
Hamiltonian for the system as a sum of atomic and molecular Hamiltonians,
the attraction of an electron associated with one particular atom or molecule
to the nucleus of a different center, and interelectron and internuclear
repulsion terms. Computing the interaction energy with a wavefunction
that satisfies the exclusion principle yields for the total energy the sum of the
unperturbed energies of each species, the classical electrostatic interaction
as found in long-range theory, and additional contributions arising from the
second and third terms of the total Hamiltonian mentioned above that are
attributed to exchange and repulsion. For a system comprising two electrons
1 and 2 associated with orbitals ¢ and b of two molecules A and B, respec-
tively, the exchange integral is of the form (a(1)b(2)|r1;'| @(2)b(1)), where
r1» is the distance between the two electrons, which gives a negative
contribution to the energy. The repulsion term on the other hand, describing
overlap of the electrons from the two molecules, is of the form
(alrys +r1pi|b), where ryy and rp; are the distances of electron 2 from
nucleus A and of electron 1 from center B, respectively. Together with the
remaining terms arising from electron— nuclear attraction and interelectron
repulsion, which may be regarded as corrective terms to the electrostatic
energy, the total exchange—repulsion energy is overall repulsive.
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The approach outlined above has its origins in the method developed by
Heitler and London, an early form of valence bond theory, in which the
contribution to the intermolecular potential from electrons assigned to
specific individual atoms is primary, with the total wavefunction being a
properly antisymmetrized product of independent atomic spin orbitals. An
alternative approximate method is the now much favored molecular orbital
theory, in which the Schrodinger equation is solved for the total system
comprising all electrons and nuclei without any prior allocation of elec-
trons, which are in turn described by orbitals possessing the intrinsic
symmetry of the molecular framework. The basis functions used in such
computations need not be true atomic functions. Any set of localized
functions will suffice in principle, although Slater type orbitals and
Gaussian functions have been used for quite some time to represent atomic
orbitals in the well-known linear combination of atomic orbitals—molecular
orbital (LCAO-MO) approach, although the best results are obtained with
variationally minimized Hartree—Fock orbitals.

Since nonrelativistic quantum mechanics is used by and large to investi-
gate molecular structure, no effects due to a first principles treatment of
electron spin are included in the calculation of intermolecular potentials—
both at short and at long range. Instead, for short range, spin orbitals are
formed by multiplying spatial orbitals by orthonormal spin eigenfunctions.
For orbitals a and b containing electrons with opposite spin, the exchange—
repulsion term is zero because the overlap integral, which features as a
prefactor in each of the contributions, vanishes. When the electron spins in
orbitals ¢ and b are identical, however, the spin functions integrate out.

In cases where antisymmetrization of the wavefunction is necessary,
Rayleigh—Schrodinger perturbation theory fails to deal with forces at short
range. This has led to the development of exchange—perturbation theories
(Claverie, 1978; Szalewicz et al., 2005). These include approaches that
employ a set of antisymmetrized unperturbed wavefunctions at the outset,
which are nonorthogonal, and so-called symmetry adapted perturbation
theories (SAPT), in which a simple nonantisymmetrized product wave-
function is used to represent the unperturbed state with antisymmetrization
performed at each order in the perturbation.

3.3 LONG-RANGE FORCES

At large separation distances, typically of the order of 10ay < R < 100ay,
the dominant forces between atomic and molecular systems are attractive.
Effects due to exchange are reduced considerably, if not altogether
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eliminated, now that there is insignificant overlap of molecular electronic
clouds. With the integrity of each center remaining largely in tact, the charge
distribution produces electrostatic energy of interaction, while the ever-
present electronic motion within each species is viewed as giving rise to
transient fluctuating electromagnetic fields that polarize the other species,
and vice versa. The correlation of these temporary fields leads to net forces of
attraction and is the source of induction and dispersion energy shifts. Hence,
at long range, the energy may be partitioned according to

Elong range — Eelectrostatic + Einduction + Edispersion- (33 . 1)

The long-range interaction energy is normally evaluated by perturbation
theory techniques after expanding the electronic charge distribution in the
familiar multipolar series. The ensuing pair potentials exhibit a dependence
on some inverse power of internuclear separation distance.

Other than the three contributions delineated above in the separation
of equation (3.3.1), the remaining dominant interaction between pairs
of molecules that is of long-range character is the resonant transfer of
excitation energy. This occurs when one of the species is initially excited
while the second is in the ground electronic state, with both entities being
identical. The other case occurs when at least one of the pairs is in a
degenerate state—typically an excited state. The interaction may be either
attractive or repulsive, and is not pairwise additive. Resonant migration of
energy forms the subject matter of Chapter 4. Meanwhile the electrostatic,
induction, and dispersion contributions are elucidated in each of the
following three sections after expanding the electrostatic charge distribu-
tion in a multipolar series.

3.4 ELECTROSTATIC INTERACTION

Coupling of permanent electric multipole moments in atoms and molecules
produces the electrostatic contribution to the intermolecular interaction
energy when taken to first order in perturbation theory (Buckingham,
1967). Because permanent magnetic moments in molecules are of con-
siderably lower magnitude than their electric counterparts, interaction of
permanent magnetic moments at each center, resulting in a magnetostatic
contribution to the energy shift, is usually ignored. The electrostatic
interaction energy may be derived and expressed in a number of alternative
ways. In the present approach, the potential due to a static distribution of
charges is first expanded in a series of electric multipole moments. This is
followed by coupling the electric multipole series of a second species to the
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electrostatic potential of the first, generating the well-known classical
interaction energy between two charges, a charge and an electric dipole,
a charge and an electric quadrupole, between two electric dipoles, and so
forth.

Consider the charge distribution of a molecule A comprising » point
charges €, located at positions g;,(A), a=1, 2, ..., n, with respect to an
origin within A. The electrostatic potential at a field point 7, due to such an
arrangement of charges, is

¢ (F) = ! Z _ f4 : (3.4.1)
4neo £ [F—q,(A)]
A Taylor series expansion of the potential produces
e :Zﬁ—zei:qla(wil+ize/;qm<A>q,~a<A>W,l
—r ro 214 r

L1 Lo 1
—Z——#l )WVi- +Qu( )V Vi = O5(A)ViViVi—+ -,

(3.4.2)

where the sums after the first equality of (3.4.2) are taken over all charged
particles «. It is worth pointing out that the electric field, its gradient, the
gradient of the field gradient may be evaluated from either of the
forms (3.4.1) or (3.4.2). Immediately recognizable after the second equality
above is the total charge of the system. Moreover, for the remaining terms
after the second equality of (3.4.2), use has been made of the standard
definitions of the electric multipole moments in their reducible form. Hence,
the second term of (3.4.2) represents the contribution to the electrostatic
potential due to an electric dipole, whose ith Cartesian component is

= &an(A), (3.4.3)
o
the third term is the contribution due to an electric quadrupole source,

0;(A Z'ZeAqm )qjx(A), (3.4.4)

and so on.
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The electrostatic interaction energy between two molecules may be
obtained as follows. Consider a second molecule B, composed of charges eg
situated at points ¢;3(B) with respect to an origin within B. Let R be the
separation distance vector between the origin of the coordinate system of
center B and the origin of species A. Assuming that ¢;3(B) < R for each
charge f3, the electrostatic potential between A and B is

= o (R+4(B))). (3.4.5)
B

It is convenient for future application to expand the charge distribution of
molecule B as a Taylor series and express it in terms of electric multipole
moments, giving for the potential

V(A,B)

{Zeﬁ—i—u, Wi+ Q;(B)V:V,+0j(B)V,V,;Vi + "'}¢A(R)-

(3.4.6)
Substituting for o (R) from (3.4.2) into (3.4.6) produces
V(A,B)
1 el -1 S oo I |
= — =l A i [} i A i : —_ e
47'580{21:1{ :ul( )V R"’Q]( )V V ]k( )V Vjka—i— }

{Zeﬁwﬂ )WVi+ Qi (B)V iV + Oy (B )ﬁﬁﬁk/Jr--.},

(3.4.7)

where the gradient operators now act on R. Multiplying the two terms
within braces and grouping terms with a similar physical origin produces
for the classical interaction energy the expression

SR POTILLES SERIRY

4megV (A, B) =

ap
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(3.4.8)

the familiar sum of monopole—monopole, charge—dipole, dipole—dipole,
and other contributions. The explicit dependence of the interaction en-
ergy (3.4.8) on intermolecular separation distance and relative orientation
is obtained on evaluating the gradients. The first few terms are given by

o1 R;
iR~ R 349
Ve (3.49)
- 1 P
Vi V = —F((S —3RR)), (3.4.10)
- = = l 3 ~ A ~ aA A
ViV;Vi R = 7 (5!-ij + 5ikRj + 5_ij,' — SR,-Rij), (3.4.11)
and
e S S Y 1 1 A A A A
ViV;ViV, R-R [3(5ij5k1 + 0i0j1 + 0110k ) —15(0;5RkR; + 0 RiR;
+ 51’1Rji€k + 5jk1A?l-R[ + 5j/j?ii3k + 5k1RilA?j) + 105Rikji?ki3/].
(3.4.12)

For neutral molecules, the total charge vanishes, leaving for the interaction
energy the somewhat simplified form

(@ ()Y %
ViaB) = g § 0B B0 W]V i |
FOA0uBIT T T +
(3.4.13)

a sum of dipole—dipole, dipole—quadrupole, quadrupole—quadrupole, and
other contributions. The classical interaction energy may be converted to a
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quantum mechanical operator by promoting the classical dynamical vari-
ables to quantum operators. Perturbation theory may then be used to extract
the various contributions to the long-range energy shift.

With the effects of electron exchange contributing negligibly to the
intermolecular energy shift at long range, it is safe to consider the electronic
charge distribution around molecule A as arising from the electrons
assigned to A itself, and similarly for species B. Hence, in the perturbation
theory treatment, an appropriate unperturbed Hamiltonian is a sum of the
molecular Hamiltonians of the two species,

Hy = Hmol(A) +Hm01(B). (3414)

Since H, is separable, its eigenstates are product states of the eigenfunctions
of Hinoi(A) and Hyol(B), designated by |E2) and |EB), to give |[EA)|EB) =
|[EA | EB), which constitutes the zeroth-order wavefunction. Thus,

m’

Hy|E2 EB) = Eo|EA EP) = (E2X + EB)|EA  ED), (3.4.15)

m? m? m?

where the unperturbed energy Ey = EA + EZ, when A and B are described by
quantum numbers m and n, respectively. From the Rayleigh—Schrodinger
perturbation theory presented in Section 1.9, the zeroth-, first-, second-, and
higher order corrections to the energy shift may be evaluated. For the
case in which the isolated molecules are in states |[E4) and |E?), the energy
is given by

E=E* +EP + (E® E*|V(A,B)|E*, EP)
|

IEB EAIVA B)|EA EB)[? 3.4.16
ZZ et (3.4.16)

m#r n;is

where in the last term written above, the sum is executed over all states
|EA) of A and |E®) of B except their initial states |E?) and |E®). In
formula (3.4.16), the perturbation operator to be used is of the form

(e .
S (St St

a’l}

v<A,B>=4L +u,~(A)Mj(B)(5U—3Rin)R_3
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Inserting (3.4.17) into the term corresponding to the first-order correction
to the perturbed energy yields, for nondegenerate unperturbed states, the
electrostatic energy

Eelectrostatic <EB EA‘V(A B)‘E >

ZeﬁieﬁR‘l—<Zei:u Y e
o,f o
:% ‘l'(.“z EQAQ ZepQ ) ’

( X (5,]'—3R,'RJ')R7 + - )
(3.4.18)

where 1’ (¢), 0} (&), and so on are the so-called permanent electric moments
of species ¢ in the unperturbed state |Eé), comprising electric dipole,
quadrupole, and so on, with u/(&) = (E|u;(€)|E;), and so on. By taking
the expectation value of the interaction operator V (A, B) to first order using
ground-state unperturbed wavefunctions for A and B, namely, |ES,ES),
equation (3.4.18) represents the electrostatic interaction between two
ground-state molecules, with ground electronic state permanent moments
appearing instead. Electrostatic couplings are strictly pairwise additive and
may be of either sign. The contributions to the interaction energy due to the
second-order correction term are decomposed in the next two sections.
In the presentation given in this section, no account has been taken of
the finite speed of propagation of electromagnetic signals. This is char-
acteristic of semiclassical radiation theory in which the electromagnetic
field is viewed as a classical external perturbation, with only the appropriate
atomic and molecular dynamical variables subject to quantum conditions.
This is in direct contrast to molecular quantum electrodynamics, in which
both matter and radiation field are quantized, and the effects of retardation
are properly dealt with since all electromagnetic influences travel at
the speed of light. It may be recalled that in the multipolar formalism
detailed in Section 1.7, no intermolecular electrostatic interaction term,
Vinter = Y c<e V(S &"), appeared in the Hamiltonian. Vi, was found to
cancel with the intermolecular part of the transverse polarization field,
(1/2¢) [P+ (7)|* d°F, as demonstrated explicitly in Section 2.3, leaving an
interaction Hamlltoman in which molecules couple directly to the causal
electric displacement and magnetic field operators. Finally, it should be
remarked that interactions between permanent moments are included in the
multipolar formalism and described via transverse photon coupling. This is
presented in Section 7.4.
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3.5 INDUCTION FORCES

Interaction of a permanent moment in one molecule with a second nonpolar
molecule gives rise to an induction force. This is a consequence of the fact
that the field due to a static moment distorts the charge distribution in the
second species, inducing a multipole moment within it. The induced and
inducing moments couple, always resulting in an attractive interaction.
Induction effects are, however, nonadditive.

It was pointed out that in the second-order term for the perturbed energy,
the summations were to be executed over all individual molecular states
of the system except for the initial state. Hence, for both molecules initially
in the ground electronic state, this leaves three distinct contributions to be
examined individually in what follows. These correspond to a term in which
molecule A is excited and B is in the ground state, leading to the induction
energy of A; a term in which molecule A is in the ground state and species B
is excited, which is the induction energy of B; and the final case in which
both entities may be excited. This last situation results in the dispersion
energy shift, whose explicit semiclassical expression is presented in the
next section. Hence, from formula (3.4.16), the induction energy is
obtained from the two terms (Buckingham, 1967),

induction — —

m=#0 E?”_Eé
- Z <Eg7 EA‘V(A7 B)‘Eéa Ef) <Er1137 Eg‘v(Av B)’Eg7 Eg>
n#0 E}—Eg

- Einduction (A) + Einduction (B) .
(3.5.1)

Substituting for the perturbation operator (3.4.8),

Z (Z eA,Uz Z#ﬁm(@) ﬁz%
B

17ﬁ

V(A,B):% [ ZeAQ,J ZeﬁQl, } :

—

x ViV,

\

ad

_l’_

| —

(3.5.2)
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into the first term of (3.5.1) gives for the induction energy of molecule A,

EA—E4
Einduction (A) = g <EoBuEA|
m#0 (477:8())
ehel 1
2R | B3 ) |V
o,f p
4.2

} 1...

|: ZeAQU ZeﬁQl]
e ) B
Z ZeA.ul’ )_Zeﬂui’<A) V,vﬁ
o,f3 I
|: ZeAQl] ZeﬁQl] :| |E8,Eg>

X (Eq, E,|

(3.5.3)

Evaluating the matrix elements, it is seen that the expectation value over ¢4

with states |Ej ) and |E2 ) vanishes, because the charge is a c-number. Thus,

S 1 W8 L.
Einduction (A) = 2(47’:80 (Z /3 )V V E )

m+#0

(Bl (A)|E,) (E 1y (A)|Eg)
E\—Eg
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where 1% (¢) is the ith Cartesian component of the ground-state permanent
electric dipole moment of molecule ¢ and oy (&;0) is the static electric
dipole polarizability tensor,

Om 11710 6 )

H;
o (80)=2) = EC S (35.5)

m=#0

in which (&) is the Omth matrix element of the transition electric dipole
moment operator. Noting that the term within parentheses of (3.5.4) is the
static electric field felt by A due to molecule B,

dmeg

(A5, Qb8BT ) b
B
(3.5.6)

the induction energy of molecule A is then
1
Einduction (A) = Eaii’ (A§ 0>Ei(B; O)Ei/ (B; 0), (357)

correct up to the leading electric dipole approximation. Higher order terms
may be obtained in a similar manner, giving

1 o
Einduction(A) :_E“ij(A;O) (B O) (B 0) ljk(A;O)Ei(B;())VjEk(B;O)

—%@Uk,(A;O)ViEj(B;O)VkE;(B;O)— (3.5.8)
where A (£;0) is the static mixed electric dipole—quadrupole polarizability,
O;ix1(&;0) is the static pure electric quadrupole polarizability tensor, and so
on, analogous to expression (3.5.5) for the static electric dipole polarizability.
Terms nonlinear in the electric field may also be included in a systematic
manner, giving rise to higher order and higher multipole susceptibilities, such
as the electric dipole first and second hyperpolarizability tensors ﬂijk(é ;0)
and yi,-k,(é; 0), and electric dipole—dipole—quadrupole hyperpolarizability
B 1(&;0). An expression similar to (3.5.8) holds for the induction energy of
molecule B, Eiyduction(B)-

3.6 DISPERSION FORCES

Dispersion forces are ever present between all interacting atomic and
molecular systems. They are purely quantum mechanical in origin and arise
from the coupling of the fluctuations in charge distribution at each center



DISPERSION FORCES 137

due to motion of electrons. For the interaction of two neutral nonpolar
molecules, the dispersion force is the only force in effect. The dispersion
energy shift is also known as the induced multipole-induced multipole
interaction, as the coupling is mediated by the temporary distortions in
the electronic charge distribution in one species inducing a similar change
in the charge density of the second molecule, leading to a transient moment
being induced there, with coupling occurring between these induced mo-
ments. For a pair of molecules in the ground electronic state, the dispersion
energy shift is always attractive.

Like the induction energy, the contribution to the intermolecular inter-
action energy arising from dispersion forces may be obtained from the
second-order correction term to the perturbed energy. But this time, the
matrix elements include excited states of both A and B simultaneously.
Hence, from the last term written explicitly in (3.4.16), the dispersion
energy shift is derived from

EB,EAVA B EA,EB EB,EA VA,B EA,EB
Edlsperslon— ZZ 0 l )’ n>< n m’ ( )‘ 0 0>.

m#0 n£0 (E;1‘1 Eé) + (EE - Eg)

(3.6.1)

On substituting for the perturbation operator V (A, B) from (3.4.8), it is seen
that the first nonvanishing term is the electric dipole—electric dipole inter-
action, followed by the electric dipole—quadrupole, electric quadrupole—
quadrupole, electric dipole—octupole terms. For instance, the leading
dipole—dipole term is given by

dispersion — 47758()R3 o a2 e A ) n (EB Eg)
x (05 = 3RiR;) (67 — 3RiRy), (3.6.2)

- 5 Z“?mEA PO (B)(B)

which is the familiar R~% dependent London (1930) dispersion energy
shift between a pair of anisotropic electric dipole polarizable molecules
Rotational averaging using the result <H?“'(é)u}' (&)) = (1/3)0;]7% (&))?

yields the recognizable form

a-d T )I 2@ (B)
AES = > § . (3.63)
ispersion ™ D q g eOR el + (EB — EB)
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Since the perturbation operator coupling the two molecules involves an
interaction that is instantaneous, no account is taken of the effect of the
finite speed of propagation of electromagnetic influences. This deficiency of
the semiclassical treatment is remedied in the quantum electrodynamical
description of dispersion forces, which is examined fully in Chapter 5.
In that chapter, dispersion energy shifts are also calculated between
excited molecules, along with contributions arising from higher multipole
moments.



CHAPTER 4

RESONANT TRANSFER OF ENERGY

It is neither the point in space, nor the instant in time, at which something
happens that has physical reality, but only the event itself.

—A. Einstein, The Meaning of Relativity,

Methuen and Co. Ltd., London, 1946, p. 29.

4.1 INTRODUCTION

From the viewpoint of molecular quantum electrodynamics, one of the
simplest intermolecular interactions, at least conceptually, is the resonant
exchange of energy between a pair of entities A and B, which may be atoms,
molecules, chromophores, functional units, and others. This process
corresponds to the transfer of energy—typically electronic and/or vibra-
tional energy—resonantly from a species A, located at R4, whichis initially
pre-excited to some quantum state |n) with energy E,, to a body B, situated
at R, which is in the ground electronic state |0) at some initial time ¢ =0,
but it acquires energy E, and becomes excited to state |n), with A now
decaying to the ground state. Migration of energy between the pair may be

Molecular Quantum Electrodynamics, by Akbar Salam
Copyright © 2010 John Wiley & Sons, Inc.
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represented by the nonchemical equation

A"+B—A+B, (4.1.1)

where the asterisk denotes the localization of excitation energy. In what
follows, A and B are taken to be chemically equivalent, although the
treatment given is general enough to be applicable to nonidentical A and B
so long as they both have overlapping energy spectra.

Because of its fundamental nature, this system has been the topic of
considerable study in two distinct but related contexts. One has been its
adoption as a prototype to test the foundations of quantum mechanics and
measurement theory. A second and equally important feature of the
dynamics exemplified by this system is the role it played in helping to
elucidate the mechanism underlying the resonant exchange of energy
between two particles. This aspect was originally treated by Forster
(1948), whose quantum mechanical calculation with dipolar coupling
resulted in the transfer rate exhibiting an inverse sixth power dependence
on separation distance. This dependence on donor—acceptor separation
applied to distances large enough so that there is no overlap of molecular
charge distributions associated with each center, but which is short enough
so that the coupling may be viewed as occurring instantaneously between
the two. At very short separations, a contribution to the rate also arises from
a Dexter (1953) type of direct and exchange energy term. This has been
treated previously, but will not be considered henceforth, since transfer
rates will be computed for pair separation distances R = |§B—§ 4| outside
the region of overlap of molecular wavefunctions.

It is well known that intermolecular interactions are electromagnetic in
origin. Therefore, at sufficiently large donor—acceptor separations, the
finite speed of propagation of electromagnetic influences must be correctly
accounted for. In this regard, molecular quantum electrodynamics, which
automatically allows the effects of retardation, has been employed with
striking success in the study of intermolecular forces. The first applications
of this formalism to resonant energy transfer were carried out by McLone
and Power (1964) and Avery (1966). They showed that at separations large
relative to characteristic molecular transition wavelengths, the dependence
of the transfer rate varied as R, as expected from classical considerations.
These and subsequent efforts (Andrews and Sherborne, 1987; Andrews,
1989; Craig and Thirunamachandran, 1989; Daniels et al., 2003; Salam,
2005a) have led to a unified theory of resonance energy transfer applicable
to all separation distances beyond the region of orbital overlap. In this
unified description, the interaction is viewed as being mediated by the
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exchange of a virtual photon, which carries energy from the donor moiety to
the acceptor species. Time—energy uncertainty enables the creation of such
a photon—which is undetectable—from the electromagnetic vacuum.
From the general expression valid for all R, the short- and long-range
limits of the transfer rate follow straightforwardly as asymptotic limits. The
near-zone asymptote reproduces the R™° Forster rate, which due to its
original derivation using electrostatic dipolar coupling is termed the
radiationless transfer mechanism. At the other extreme, the mechanism
is described as radiative, yielding an inverse square law. In this case, due to
the significant donor—acceptor separation, the propagated photon becomes
ever more ‘“‘real” in character, the exchange of excitation corresponding to
the uncorrelated events of emission of light by the donor followed by
photon absorption by the acceptor. Indeed, resonance energy transfer is one
of the most elementary processes that can involve virtual photon exchange.
Another example is the dispersion potential, the interaction of two neutral,
nonpolar ground-state molecules, which is interpreted on this basis as
arising due to the exchange of two virtual photons, and will be studied in
detail in Chapter 5.

Despite its fundamental status as a prototypical system for the study of
energy transfer, the donor—acceptor model has been versatile enough to be
applied to a variety of chemical and physical systems in which migration of
energy occurs (Scholes, 2003). These range from simple bimolecular
systems to complexes containing multiple chromophores and other large
macromolecular aggregates and include, but are not limited to, phenomena
such as Dicke superradiance, the harvesting of light in complexes posses-
sing the photosynthetic unit or other photosensitive centers, the transport of
excitation in molecular and ionic crystals via the quasi particle called the
exciton, intramolecular resonance energy transfer within dendrimers, and
exchange of excitation in nanocomposite materials and photoactive devices
such as organic light-emitting diodes.

The present chapter is organized as follows. Section 4.2 details the
calculation of the matrix element using standard diagrammatic perturbation
theory from which the transfer rate is computed using the Fermi golden
rule. Its asymptotic forms at short and large separation distances are
examined with a view to understanding the mechanism of energy transfer
in play at these extremes of separation. Energy transfer between optically
active molecules is then investigated. A number of interesting new features
are found to occur, the most important being the discriminatory nature of
the exchanged energy. It is then shown how an emitter—absorber model may
be used to calculate transfer rates. In Section 4.6, the electric and magnetic
displacement fields computed in Chapter 2 are used in a response theory
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formalism to readily evaluate the matrix element for migration of excitation
energy, along with the resonant dipole—dipole coupling tensor. Section 4.7
is devoted to time-dependent energy transfer and questions of causality and
Section 4.8 focuses on the proof demonstrating that exchange is causal to all
orders in perturbation theory.

4.2 DIAGRAMMATIC PERTURBATION THEORY

The matrix element for the resonant transfer of excitation energy between
two molecules is first calculated using diagrammatic perturbation theory
methods. Consider a system comprising species A, which at 1 =0 is in
excited electronic state |n), with energy E%, and an acceptor B that is
initially in the ground electronic state |0), with energy EZ, between which
energy is exchanged. From (1.7.11), the quantum electrodynamical Ha-
miltonian operator is given by

H = Hmol (A> +Hmo] (B) +Hrad + Hint(A) +Hint(B)7 (421)

which forms the starting point for the calculation. The first two terms denote
molecular Hamiltonians Hy,oi (&), £ = A, B, and are Schrodinger equations
familiar from the nonrelativistic Born—-Oppenheimer approximation of
molecular quantum mechanics. Note that the Hamiltonian for the radiation
field H.,q appears explicitly in the specification of the system, being treated
on the same footing as matter in the quantum electrodynamical formalism.
The final two terms of equation (4.2.1) describe the coupling of radiation
and matter, and they may be viewed as a perturbation on the whole system if
the interaction terms are assumed to be small relative to intramolecular
Coulomb energies. Hence, the total Hamiltonian (4.2.1) can be separated
into a sum of unperturbed and perturbation Hamiltonians Hy and Hiy,
respectively

H = Hy + Hiy, (422)

where

Hy =" Hupoi(&) + Hraa (4.2.3)

E=AB

and

Hi = Y Hin (). (4.2.4)

(=AB
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From (4.2.3), the base states are seen to be product molecule and field states
corresponding to the eigenstates of Hy, namely, the energy of species & and
the occupation number for the electromagnetic field, the latter quantifying
the number of photons. When examining interactions between particles, the
preferred choice of quantum electrodynamical formulation to employ is the
multipolar version of the theory. Notable among the advantages mentioned
in the first two chapters are that molecules couple directly to the radiation
field through their multipole moments with no two-, three-, and multicenter
terms showing up in the coupling Hamiltonian. All interactions between
molecules occur via the exchange of transverse photons that propagate at
the speed of light. This description is also appropriate for the present
scenario in which there is zero overlap of charge clouds associated with
each center and the pair separation distance is large relative to the
constituent particle center of mass distances within each body.

For transfer of energy between neutral electric dipole systems, the
leading term of the expansion for the electric multipole series is sufficient
for the interaction Hamiltonian, namely, the electric dipole approximated
form

- Sl - 1o Sl
Hin = —25 fiA)-d (Ra)—c; '(B) -d" (Ry), (425)
where i(¢) = —e(g(¢)—R:) is the electric dipole moment operator of

particle ¢ positioned at I_éi.

From the viewpoint of quantum electrodynamics, migration of energy
may be pictured as arising from the exchange of a single virtual photon
between the pair. It may be represented by the two time-ordered diagrams of
Fig. 4.1. Time increases vertically upward in these graphs, with a solid line
indicating the state of the electron. A wavy, or occasionally dashed line,
denotes a photon (real or virtual), which is further specified by its mode,

0 7 0 i}

Him(B) ‘”im(’q)

H]III(A) (E. 8)
n 0 n 0
A B A B

{a) ib)
FIGURE 4.1 Time-ordered diagrams for resonant transfer of energy.



144 RESONANT TRANSFER OF ENERGY

with normally only changes in the radiation field being shown. The
intersection of a wavy and solid line depicts the coupling of radiation and
matter via the relevant term or terms of the interaction Hamiltonian, and is
called an interaction vertex. That only two diagrams contribute to the
matrix element for energy transfer reflects the two directions in which
the virtual photon may propagate between the pair, crossing from A < B.
The presence of two electron—photon coupling vertices in each time
ordering means that the leading contribution to the matrix element is of
second order in Hj,. The appropriate term from the perturbation theory
expansion (1.9.28) is

M Z <f’Hmt’1 I‘Hmt‘ ) (4.2.6)

11

where |7), |f), and |I) are initial, final, and intermediate states of the total
system and are easily read off from the respective Feynman diagram by
reading horizontally across that particular graph, with the sum in (4.2.6)
executed over all intermediate states that link |7) to |f), with the denomi-
nator, E; = E;—Ej, corresponding to differences in energy between initial
and intermediate states. According to Feynman’s rules (Feynman 1949a,
1949b), all topologically distinct diagrams that connect the same initial and
final states of the system contribute to the matrix element or energy shift,
with each time ordering corresponding in a direct one-to-one mapping to a
specific term in time-dependent perturbation theory. Hence, the drawing of
time-ordered diagrams greatly facilitates the perturbation theory computa-
tion of the probability amplitude, and this becomes especially so when
higher order processes are tackled in subsequent applications.

For use in formula (4.2.6), the initial and final states describing transfer
of energy are given by

= |E},E§;0(,¢)) (4.2.7a)
and
1) =|E§,EL;0(B,¢)). (4.2.7b)

The former represents excitation energy E’ localized on unit A, with B in
the electronic ground state with energy Ej. In (4.2.7b), A is seen to be in
the ground state with species B now excited to state |n), with energy EZ.
Note that a state of the radiation field without photons characterizes both the
initial and final specifications of the system. Two types of intermediate
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state link |7) to |f), and they are readily written down from Fig. 4.1 as
L) = |Eg, Eg; 1(B, ¢)) (4.2.82)
and
) = |Ey, Ex; 1(Be)). (4.2.8b)
In both of these intermediate states, one virtual photon is present, whose
mode is designated by (7, ¢). In the first intermediate state obtained from the
leftmost graph shown in Fig. 4.1a, both moieties are in the ground state, A
losing its excitation as a result of virtual emission, while both species are
excited in the second intermediate state derived from the second graph drawn

in Fig. 4.1b. Evaluating the two contributions to (4.2.6) using (4.2.5), (4.2.7),
and (4.2.8) produces

_ th On n0
s = (e (o)

—(&) /= &) o elﬁ.R &) r\=&) /= e_iﬁ‘ﬁ
x {< PP gy TP >@>)},

—(Efy + hep
(4.2.9)

where the internuclear separation distance R =R B—R 4. Because the
virtual photon traversing the pair is emitted and subsequently absorbed at
either center, properties describing its mode behavior must be summed over.
These include its polarization and its wavevector. The former is carried out
using identity (1.4.56), while the latter is converted to an integral via the
prescription

1 1 .
V2 Jor (4210

Substituting these relations along with E%B = Tick for the transition energy
in either species gives for (4.2.9) the expression

1 eiﬁ ‘R efiﬁ ‘R

167532 1" (A (B) Jp(ézy—ﬁiﬁj){ R (k+p)}d3ﬁ. (4.2.11)
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To facilitate evaluation of the angular integral, the volume element is written
in terms of spherical polar coordinates as d*5 = p*>dpdQ. Making use of the
result

1 NN 1 ) - = \SinpR
— | (S;—=p.p,)e™ Q=— (- p Vi , 4.2.12
47J(5] pib;j)e d p3( V6 +ViV)) R ( )
(4.2.11) becomes
1 (A) "O(B)(—ﬁzé--+ﬁﬁ-)lj L b LGapra
amrgy M PTYIR Ik T ) ST
(4.2.13)

One method of solution of the wavevector integral occurring in (4.2.13)
makes use of special functions and circumvents the need for integration in the
complex plane (Daniels et al., 2003). After extending the limits of integration
from O to oo to —oo to 0o, the solution of the Green’s function is

1T (1 1 T
- inpRdp = — — eTikR 4.2.14
2R J {(k—p) - —(k+p)}smp P="r ( )

and it is seen that two equally valid solutions to the wavevetcor integral, and
consequently the resonant interaction tensor, emerge. Before going on to
write the form of the matrix element in terms of the solution (4.2.14), it is
briefly remarked that identical results may be obtained using conventional
integration techniques by displacing the pole in (4.2.13) by introducing +in
to the resonant denominator and employing the identity (x + i’ry)fl =
(PV/x) F ind(x), where PV denotes the Cauchy principal value.

Substituting (4.2.14) into (4.2.13) yields for the matrix element the
result

eisz

V705 + ViV —. (42.15)

My = ——Ou?”(A)u,’-’O(B)(—V

which can be written succinctly as

My = 1" (A (B)V; (k,R), (4.2.16)
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where VI;E (k, ﬁ) is the complex retarded resonant dipole—dipole coupling
tensor defined by

N X . 1 5 e:FikR
Vi( ’R):_4npo( V' 8y+ViV;)
1 . . .
RiR;) (14 ikR)—(8;—R:R;)k*R*| e TR
= s (0= 3RR) (1 iR) —(5— RiRy IR T,

(4.2.17)

with the second line of the above relation being obtained after performing
the tensor calculus. Both choices of sign appearing in the coupling
tensor (4.2.17) are permissible, although the lower sign is frequently
selected.

The behavior of the transfer matrix element as a function of separation
distance is governed by the form of Vl-jF (k,R). In the near zone, where
kR < 1,the dominantterm of (4.2.17) is the first, yielding the matrix element

w"(A)°(B)

MY ~
fi 4menR3

(8;—3RiR;), (4.2.18)
which is recognizable as the static dipolar coupling interaction with char-
acteristic inverse cube dependence on R. At intermediate separations, the
second term of (4.2.17) is important, varying as R~ 2. The long-range
character of Vl./i. (k, R) is determined by the third term of (4.2.17), exhibiting
R~ separation distance dependence, with this term being purely transverse
with respect to R due to the prefactor (3;—R;R;).

The exchange of excitation energy between the A-B pair is measured
through a transfer rate, which may be readily evaluated from the matrix
element (4.2.16) by using the Fermi golden rule (1.9.33), being propor-
tional to the modulus square of the matrix element. Thus, the transfer rate is

r—27;lpfu?"(A)M?°(A)M§)"(B) "(B)Vj (k R)Viy (k,R) - (42.19)

expressed in terms of the transition dipole moment of each species and the
resonant interaction tensor coupling the two molecules. The result (4.2.19)
holds for dipole moments with specific orientations. Often donor and
acceptor species are completely randomly oriented, as in the fluid phase,
in which case (4.2.19) is orientationally averaged. After employing result
(B.4) of Appendix B, the rate takes the form

) = [E(A) P (B)] [k*R* + K*R* +3]. (4.2.20)

36nh82R6
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It is noteworthy that the ambiguity in the choice of sign for the resonant
coupling tensor appearing in the matrix element has no effect on the rate
since the coupling tensor is multiplied by its complex conjugate when
evaluating I'. The asymptotic limits of the transfer rate at short and long
separation distances are readily obtained from the result (4.2.20) valid for
all R beyond wavefunction overlap. In the near zone, the kR independent
term within square brackets dominates, yielding

Py

FNZ
() = 12n h2R6

E" A PIE™ (B, (4.2.21)
which has the familiar R~° Forster-type dependence on separation. This
asymptote is commonly interpreted as the radiationless exchange mechan-
ism as it arises from static dipolar coupling in which propagation of the
electromagnetic signal between the pair is viewed as occurring instanta-
neously. At the other extreme of separation, kR > 1, corresponding to the
long-range or far-zone limit,

(') = 7" (A4) |5 (B)I, (4.2.22)

36mhe 2R2
which exhibits an inverse square dependence on R. At large separations, the
transfer of energy is described as radiative since the propagated virtual
photon acquires real character, the mechanism for migration of energy in
this range being understood to be the result of two separate events of
spontaneous emission by the excited donor molecule followed by the
absorption of radiation by the unexcited acceptor body. Single virtual
photon exchange between an excited and unexcited pair of molecules
allows a unified description of resonant transfer of energy to be given within
the framework of molecular quantum electrodynamics.

The exchange of energy may be treated with the familiar second-order
secular perturbation theory in which the stationary states of the excited A-B
pair, (1/v2)(|EA, EB) & |EA, EP)), are obtained and whose use leads to a
zero net transfer rate since these states decay by spontaneous emission by
the coupled pair. Migration of excitation can, nevertheless, take place in this
case if the two species are identical and transfer is rapid relative to
collision or fluorescence-induced decay, which is possible if A and B are
close together. For large R, or for reduced transition strength, or for times
too short to enable measurement of a stationary state, as well as for a
nonidentical A-B pair, excitation energy transfer must be viewed and
computed as a time-dependent process. There are situations, however,
when even the time-dependent picture is inadequate. This is the case when
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A and B are considered as an isolated system and the initial (4.2.7a) and final
states (4.2.7b) are taken to be sharp. Then the Fermi golden rule cannot
strictly be used to calculate a transfer rate due to the lack of a density of final
molecular states. Nonetheless, the method is a useful one in that it allows
the basic features of the process to be elucidated and understood.

4.3 STATE SEQUENCE DIAGRAM REPRESENTATION

In this section, it is shown how state sequence diagrams may be used instead
of time-ordered graphs for the perturbation theory computation of the
matrix element for the resonant transfer of energy. This example serves as
an instructive one on which to apply the formal construction scheme
presented in Section 1.10, even though the state sequence picture may be
drawn directly from the Feynman diagrams for resonance energy transfer.
This last fact is also the case for any particular process involving electron—
photon coupling.

According to the conventional diagrammatic techniques within time-
dependent perturbation theory, the most common being the time-ordered
graph inspired by Feynman, the resonance energy transfer is interpreted as
arising from the exchange of a single virtual photon between the pair, as
illustrated in Fig. 4.1. To leading order, the matrix element is given by the
second-order term in perturbation theory. Therefore, the hyperspace num-
ber n is equal to two in the present problem, and because the virtual photon
creation and annihilation events are distinguishable, the orthonormal set of
basis vectors from (1.10.1) is 7 = { 17y, 172} and the number of distinct
indices j is also two, corresponding to j =0 and 1. For these two values of
J-the C;=0, 1. k, on the other hand, has values 0, 1, and 2 and since the base
of the hyperspace dimension B = ¢; + 1 =2, the coordinate points (k, 1) for
the construction of the interaction plane network are easily computed, and
they along with the pertinent vertex designation 1} according to (1.10.7) are
given in Table 4.1. By convention, for a fixed value of k, the vertices

TABLE4.1 Vertex Properties Associated with Two Unique Photonic Events

Hyperspace Hyperspace
k Vertex Coordinate Number (Base 2) h (Base 10) (k, h)
r(l) 0, 0) 00 0 0, 0)
1 r% (1, 2) 10 2 (1,2)
" (1, 1) 01 1 (1, 1)
2 r 2,3) 11 3 2,3)
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k

FIGURE 4.2 Interaction plane network for two distinguishable radiation—
matter couplings.

are arranged in increasing order of m. Next the appropriate linkage
rules given by (1.10.10) are applied, with the total number of paths
obtained from (1.10.11) equal to 2!/1!1!=2. The structure coefficients
{1,1}Tk2,z’ k =0,1,2 are found from the prescription (1.10.14) to be 1, 2,
and 1, which correspond to the second row of Pascal’s triangle. The net
displayed in Fig. 4.2 is easily seen to follow, with the explicit coordinates
given in Table 4.1. It is instructive to point out that the network map shown
in Fig. 4.2 forms the basis for the construction of state sequence diagrams
for all processes involving two unique radiation—matter interactions, after
the appropriate representation of initial and final system states (Jenkins
etal., 2002). Therefore, from the stencil shown, the state sequence diagrams
for two-photon absorption from two different beams, emission of two
photons of differing modes, and all linear forms of light scattering such as
Rayleigh and Raman—all of which are unimolecular in origin, as well as
for resonant migration of energy—a bimolecular process, may be readily
constructed. The salient radiation—matter states and associated energies are
then written down straightforwardly. A general state is given by

<

rad,) = |matrz1 )

rady) = |mat»; rads), (4.3.1)

with the relevant energy comprising a sum of radiation and matter energies.
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FIGURE 4.3 State sequence diagram for resonant transfer of energy.

The state sequence diagram for resonance excitation transfer is shown in
Fig. 4.3. In these pictorial representations, time increases from left to right.
The state of the system at a particular time instant at which an event
corresponding to an interaction vertex occurs is represented by a box, the
left-hand most corresponding to the initial state and the right-hand most to
the final state of the system. Between these two extremes in time are drawn
theintermediate states that connect |i) to |f). Withineach box are depicted the
state of the material particle(s) as well as changes in the state of the radiation
field. The former are denoted by circles, with one or more arranged
horizontally in a line corresponding to species A, B, C, and so on. An open
circle designates the species to be in the ground electronic state, while acircle
that is filled or contains a letter labels the excited electronic state of the
specific unit. The appearance of ¢ in a state box denotes the presence of a
photoninthe system—eitherreal or virtual, with additional labels being used
to differentiate between photons differing in mode character. Hence, in
Fig. 4.3, the leftmost box corresponds to state |7) given by (4.2.7a) with the
black circle showing that A is initially excited and the open circle alongside
corresponds to acceptor species B, which is initially unexcited. No
photons—real or virtual—are present, hence an absence of the label ¢. In
the rightmostbox of Fig. 4.3, the open circle corresponds to the de-excitation
of A to its lowest energy state, and the circle denoting B is filled, indicating
transfer of energy from the donor species A. It is the state sequence
representation of the state (4.2.7b). The intermediate states (4.2.8a
and 4.2.8b) resulting from the two possible time orderings and site of virtual
photoncreation areillustrated in the center of the figure. The lower box shows
that both species are in the ground electronic state, with one virtual photon
present after virtual emission by A, the label ¢ denoting the virtual photon is
placedinbetween the two circles, and the latter depicting the two bodies. The
upper box illustrates the situation in which both A and B are electronically
excited with one virtual photon traversing between the pair, having been
created at B. The lower pathway coincides with the time-ordered graph of
Fig. 4.1a in which the virtual photon is emitted by A, while the upper path
corresponds to creation of a virtual photon by B, which becomes excited in
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the process, and is illustrated by Feynman graph of Fig. 4.1b. Since the
state sequence diagrams represent an alternate pictorial display of time-
dependent perturbation theory methodology, the matrix element is cal-
culated using (4.2.6) and yields (4.2.16), with no special computational
benefit being gained by the use of state sequences in this case since the order
of perturbation theory is low and the number of paths is only two. Additional
features and limitations associated with state sequence representations of
intermolecular interactions and virtual photon propagation will be detailed
in Chapter 5, when retarded dispersion forces are examined.

4.4 ENERGY TRANSFER BETWEEN CHIRAL SYSTEMS

Thus far in this chapter, the leading contribution to excitation energy
transfer between a pair of molecules, one of which is excited with the other
in the ground electronic state, has been calculated. Only the first term of the
multipolar form of interaction Hamiltonian, namely, the electric dipole
coupling term, needed to be retained. In many systems, however, especially
those of chemical and biological interest, the electric dipole approximation
to the transfer rate is no longer sufficient as deviations from the Forster
result are found to occur, and the contributions arising from the inclusion of
higher multipole moments are required. This is pertinent for species in
which the ratio of molecular or chromophore size to interparticle separation
distance is sufficiently large. One such studied system is the interaction
between the carotenoid S; state and chlorophyll (Scholes et al., 1997),
where higher order multipole corrections are found to be significant at
typical separations occurring in this light-harvesting complex. Another
example, of broader applicability, is provided by chiral molecules, between
which migration of energy also takes place.

Molecules that lack an improper axis of rotation are termed chiral. These
entities exhibit a number of chiroptical properties, such as rotation of the
plane of polarization of light and differential absorption, emission, and
scattering of circularly polarized radiation. In addition, discriminatory
effects occur when optically active species interact with each other, such as
through resonance coupling or the dispersion force. Due to the low number
of symmetry elements in a chiral body, normally restrictive selection rules
applicable to electronic transitions are relaxed. Magnetic dipole, electric
quadrupole, and higher order multipole transitions become allowed in
addition to the leading electric dipole excitation process. When molecules
possess no symmetry, belonging to the C; point group, for example,
transitions are allowed simultaneously to all multipole orders.



ENERGY TRANSFER BETWEEN CHIRAL SYSTEMS 153

The perturbation theory treatment of bimolecular resonant migration of
energy presented in Section 4.2 is now extended by relaxing the electric
dipole approximation and including magnetic dipole interaction terms,
thereby making the treatment applicable to excitation energy exchange
between optically active species (Craig and Thirunamachandran, 1998b).
In this case, the total Hamiltonian is again given by equation (4.2.1), but the
interaction Hamiltonian (4.2.5) is now modified by the addition of magnetic
dipole couplings, and is of the form

Hin(A) + Hi(B) = —&5 i(A) -d (Ba)—in(A) - b(R)
—¢ 'i(B)-d

where 771(&) = —(e/2m)(§(¢)—R;) x P is the magnetic dipole moment of
specigs & located at ﬁg, whose mass is m and linear momentum is p,
with b(7) the magnetic field operator.

As for pure electric dipole coupling, the matrix element for energy
transfer between optically active molecules is evaluated using the second-
order perturbation theory formula (4.2.6), in combination with the two
time-ordered diagrams shown in Fig. 4.1, but with each interaction
Hamiltonian term now a sum of two terms—containing an electric
dipole and a magnetic dipole contribution as in (4.4.1). Initial, final, and
intermediate states represented by (4.2.7) and (4.2.8) apply to the present
case. Making use of the mode expansions for the microscopic displacement
and magnetic fields, the matrix element is evaluated in the standard manner
to yield
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Unsurprisingly, the leading term above, proportional to u%"(A) /,L}’O(B), is
identical to matrix element (4.2.9) calculated within the electric dipole
approximation, which led to result (4.2.16) in terms of the retarded
resonant electric dipole—dipole tensor V;F (k,R). Recognizing from
(1.4.58) that the sum over magnetic polarization vectors is identical to
that arising from summation over electric polarization vectors, the term
arising from the product of the transition magnetic dipole moments is the
same as that for electric dipole coupling (4.2.11), with ﬁO” (&) replaced by
(1/¢)m™ (&), ¢ =A,B. After grouping together pure electric, pure mag-
netic, and the mixed terms and carrying out the polarization sum, the matrix
element (4.4.2) becomes

Gy [ A (B) + (A (B

M= ( hep
P 260V 1

ey 1A (B) £ (A)°(B)

eiﬁ-ﬁ e—iﬁ-ié 143
X + . 4.
(Eqo—ficp)  —(Euo+hep) ( )

Hence, the pure magnetic dipole coupling contribution to the matrix
element and transfer rate for isotropic systems are written immediately
from (4.2.16) and (4.2.20) as

m-m 1 n 7 D
M = " (A)ni (B)Vj (k. R) (4.4.4)
and
m-m Py — On 2| = n0 277.4 p4 252
I’ =" A B)|"|k"R*+k“R"+3 4.4.5
() = ol AP B[R ER +3]), (445)

where fick = E,, Vif (k,R) is defined by (4.2.17), and the superscript m—m
denotes the pure magnetic dipole contribution. Like its electric—electric
(e—e) counterpart, the transfer rate (4.4.5) does not depend on the
handedness of A or B. Since 7 is a factor of the fine structure constant
smaller than i, the corrections (4.4.4) and (4.4.5) are usually ignored. The
cross-term between the e—e and m—m terms do, however, depend on the
chirality of each species and is the source of one of the discriminatory
contributions to the rate. It arises from the term proportional to
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T(A)in(A)(B)in(B) +m(A)fi(A)m(B)ii(B) in (4.4.3). It is explicitly
given by
. 2np, _ _
<1"dlSC> — # W;-e M}?.m + MJ%.CMJIC?-m)
Py

—0n — 10 —0n — 10 4 p4 2p2
= A)-m (A B)-m™ (B)|(k*R*+k"R*+3).
e ) AW (B) (B (R + KR +3)

(4.4.6)

The second source of discrimination originates from the second term
within large braces of (4.4.3). Converting the p-sum to an integral and
performing the angular average using the result

L Py I = sinpR .fcospR sinpR) .
dQ=F-V = - Re, (447
4anke TV g =T\ r e e (4.4.7)

the electric-magnetic contribution to the matrix element is

M = e R |10 (A (B) -+ m" (A) 2 (B)|

27'528()6’

o

1 [p*cospR psinpR

X — d
J K2 p? ( R )
0

(4.4.8)

where k = E,o/fic. Again, contour integration or use of special functions
can be employed to evaluate the integral whose result is

T 1 p*cospR psinpR n , AR
sz—pz < R — R2 dp = W(l + lkR)ejF’ s (449)
0

yielding for (4.4.8),
M = [0 (A (B) +m" (A (B) U (k,R). (44.10)

The retarded resonant interaction tensor U?f (k,ﬁ) coupling electric and
magnetic dipoles is defined by '

lk 6 C¥ikR
&k Vi =
Y R 4meycR3

Uy (k,R) = e Ry (ikR F K*R*)e TR,

_47reoc
(4.4.11)
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with factors that vary as R~' and R™2. From the form of Ul.;—f (k,f?), it is
apparent that the interaction (4.4.10) occurs through emission and absorp-
tion of a real photon of frequency w=w,o=E,/% and is therefore
completely dynamic and solely transverse in nature. This is true even in
the near zone, since in the limit kK — 0, U,-;—.L(O,I_é)—>0, as expected on
physical grounds because static electric and magnetic dipoles do not
couple. The coupling (4.4.10) is maximized for the configuration in which
1 (&), m(&"), and R are orthogonal to one another. The transfer rate arising
from (4.4.10), which is also discriminatory, is

dise — znhpf ’M;;l_—m+m—e 2

27 k2
- (4rzoc)” A )+ i () ()|

J
< [ A)(B) + " (A) g (B)]

L eTikR L etikR
X 8ijmva gklnvnT ) (4412)

which after orientational averaging becomes

Snpfk2

. —*OVlA '}/T’anA —0n B ﬁ;ln() B k2R2+1 .
S ) A (B) 5 (B (P 1)

<1—-disc> —

(4.4.13)

The total discriminatory transfer rate is given by the sum of (4.4.6)
and (4.4.13),

Pr

—0n — n0 —0n — 10
- A)-m (A B)-m™ (B
il 1) I (B)- 7 B)

<rdisc> —
x [2k*R* +2I°R* +3]. (4.4.14)

It is customary to express the molecular factors appearing in the re-
sult (4.4.14) in terms of the optical rotatory strength tensor, defined to be

RY(&) = —ig™ (&)™ (&), (4.4.15)
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so that

(Fdisc> _ 'Of

=1 RMAR(B)[2k*R* +2k*R* +3]. 4.4.1
st (DR BRKR L2043 (@410

Because [i is a polar vector and /72 is an axial quantity, their dot product
produces a pseudoscalar R, which changes sign when one enantiomer is
replaced by its mirror image form. The total transfer rate (4.4.16) clearly
depends on the handedness of each optical isomer, changing sign when
one enantiomer is substituted by its antipode.

The limiting forms of the rate are readily obtainable from expres-
sion (4.4.16) after the usual approximations. In the near zone, where
kR < 1, the rate reduces to

risy = Pr ponqypiop 4.4.17
< NZ> 6nhS%C2R6 ( ) ( )» ( )

exhibiting inverse sixth power dependence on intermolecular separation
distance. It is of interest to note that this asymptote arises solely from the
first contribution to the discriminatory transfer rate (4.4.6) due to the
vanishing of (4.4.13) for small k (k — 0). At the other separation extreme,
kR > 1 and the rate is

. pk*
rdse)y = 2 RM(A)R™(B 4.4.18
< Fz > 971178(2)CZR2 ( ) ( )7 ( )
which displays the expected inverse square dependence on R and is
characteristic of migration of excitation energy being mediated by real

photon emission and absorption.

4.5 EMITTER-ABSORBER MODEL

In the diagrammatic perturbation theory treatment of resonant transfer of
energy, coupling between the pair, be they chiral or not, was understood to
arise from the exchange of a single virtual photon. For the cases studied, the
transfer rate was shown to display an inverse square dependence on
interparticle separation distance in the limit of large R. The mechanism
at play at this distance extreme was interpreted as occurring as a result of
emission of a real photon by the excited donor followed by photon
absorption by the unexcited receiver and viewed as two separate events.
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The well-known transmitter-receiver or emitter—absorber model (Andrews
and Sherborne, 1987; Andrews, 1989; Craig and Thirunamachandran,
1992), therefore, naturally lends itself to the description of radiative energy
transfer. It involves picturing the donor as a source of radiation that
spontaneously emits a photon, while the second body acts as a receiver
entity, absorbing the propagated photon. Intermolecular coupling takes
place via their common radiation intensity. This viewpoint is now applied to
the long-range migration of energy between optically active molecules
(Craig and Thirunamachandran, 1998b) from which the electric dipole-
approximated result is easily obtained on letting the transition magnetic
dipole moment term vanish.

Consider an excited chiral donor species A spontaneously emitting a
circularly polarized photon of mode (k, L/R). The initial and final states are
given by |i) = |[E};0(k,L/R)) and |f) = |E4; 1(k,L/R)), with A initially
in excited electronic state |n). The matrix element is easily calculated using
the first-order time-dependent perturbation theory and the interaction
Hamiltonian

-

Hu(A) = &5 i(A) -d " (Ra)—(A) - b(Ry). (4.5.1)

It is given by

em [ Tck 1/2_(L/R) >\ | on [ on —ik R4
v =i(aey) @R @@ £ e FE @)

where A is positioned at R 4, the abbreviation em is used to signify emission,
and use has been made of the identity

MO () = Fiel M (K), (45.3)

which may be verified on inserting the definition of the unit circularly

polarized electric vector (1.4.12) into the transversality relation
NG . « N
B )(k) =k x 2" (k). Emission occurs with a given polarization in a cone

of solid angle d€2 centered around the direction of propagation. The rate is
calculated from the Fermi golden rule,

AL = = M5’ py, (4.5.4)

where the number of levels per unit energy interval of the final state is
denoted by p; Since the number of modes in volume V with wavevector
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lying between k and k + dk w1th energy in the range fick and %ic(k + dk)
within the cone is Vd*k /(2n)* = (Vk2dk dQ/(27)?), the density of final
states is this quantity divided by 7ic dk, giving

V2 dQ
=— 455
& (2n)*he ( )

Substituting (4.5.2) and (4.5.5) into (4.5.4) produces

k3 dQ - =(L/R) = i 2
drR(Q) = ——“®(k)e™" (k) |5 (A) £ -m™ (A 4.5.6
ERQ) = g 8N R @) i A) £ LA ()L (456)
which on orientational averaging yields
(arr@)y = K92 ) 1 o)) (45.7)
24n2¢epth K c o

Integration over solid angle introduces a factor of 47 and produces an
expression for the rate of emission over all directions

i3 2

FL/R —*OI’[A :i:i—*()nA
(Tem) = oot | (4) £ m™(A)
_ i3 |*O”(A)|2+i|n20”(A)|2$§ﬁ0"(A)-r?z”O(A)
6meh # c? c ’

(4.5.8)

where the upper and lower signs refer to L/R-circular polarization. It should
be noted that for pure electric and pure magnetic dipole emissions by a
chiral molecule, the rate is independent of the helicity of the emitted
photon. Further, the respective contributions apply for a given polarization;
an additional factor of two, therefore, arises on summation over the two
independent polarizations. It is advantageous to express the emission rate at
a point r in terms of the radiant energy flux per unit area per unit frequency
interval, I(w;r), with

hek ck*
47y? 247‘[2807‘2

I(w;r) = (TLERY i"(A) +



160 RESONANT TRANSFER OF ENERGY

Now consider an optically active acceptor molecule B, initially in the
ground electronic state |0), undergoing one-photon absorption of circularly
polarized light, whose irradiance per unit frequency is given by (4.5.9). The
absorption rate is calculated similarly to that given for emission above.
Interaction Hamiltonian (4.5.1) is re-employed but with A replaced by B,
and with the initial and final states now given by |i) = |Ef; 1(k, L/R)) and
If) = |EB;0(k,L/R)). The first-order perturbation theory gives for the
matrix element

hek \ 2 o i 7R
Mebs — (L/R) n(p 20 (B) | ik - Rs 4.5.1
1 = —i(2) e [+ L) R, @10

where “‘abs’ designates absorption. Insertion of the above into the Fermi
golden rule yields the absorption rate

27 hck o o : 2
Fi‘éf = i L é’(L/R)(k)é»(L/R)(k) ﬁnO(B) T in—;an(B) , (4511)
‘ o \2gV c
which on rotational averaging results in
. 2
R nekpy | I
<T§§s > = va A" (B) —m"(B) (4.5.12)

It is worth pointing out that for absorption from an incident beam contain-
ing N photons, the cross-term of equation (4.5.12) leads to the single
molecule rate for circular dichroism of species B,

AnikN
38()V pf

(TCPy = i (B) - "™ (B). (4.5.13)

Noting that the intensity of light from a single photon is

hetk
=2 (4.5.14)
Vv
equation (4.5.12) can be written as
abs 3hcey c ' o

Substituting (4.5.9) for the intensity due to radiation emitted by the excited
donor into the acceptor absorption rate (4.5.15), with r = R = |Rg—R,

B
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gives the radiative contribution to the transfer rate,

2

ﬁ”0(3)$£ﬁ4”0(3) . (45.16)

The leading contribution, namely, the pure electric dipole terms of each
molecule, is seen to be identical to the far-zone transfer rate (4.2.22) after
summing over left- and right-hand circular polarizations. In similar fashion,
the discriminatory contribution to the radiative transfer rate may be
extracted from (4.5.16), and is

< disc k4pf

dis :W[iﬁO"(A)-ﬁq”o(A)] [ii™(B) -m™ (B)], (4.5.17)

which is equal to (4.4.18) on noting the definition of the optical rotatory
strength (4.4.15) and on adding terms arising from each individual helicity.

Toward the end of Section 2.10, it was shown that the spontaneous
emission rate multiplied by the photon energy is equal to the Poynting
vector. Hence, the multipolar Maxwell field operators in the vicinity of a
source presented in Section 2.6 may be used to calculate the net rate of flow
of energy from an excited molecule when the former is taken to be the
source of radiation incident on the acceptor moiety instead of using the
perturbation theory method illustrated above.

4.6 RESPONSE THEORY CALCULATION

Diagrammatic time-dependent perturbation theory was used in Section 4.2
to calculate the matrix element for resonant transfer of excitation energy
between an excited and unexcited pair of interacting molecules. An explicit
functional form for the retarded resonant electric dipole—dipole coupling
tensor valid for all separation distances outside the region of overlap of
molecular charge distributions was given. The transition rate, and its
asymptotic limits in the near and far zones, was calculated using the Fermi
golden rule formula. The treatment was then extended to deal with optically
active molecules and the resulting discriminatory transfer rate.

In this section, it is shown how an alternative physical picture and
calculational method may be used to evaluate the matrix element for
migration of energy resonantly. The approach entails the use of the
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multipolar Maxwell field operators in the neighborhood of a source
computed in Section 2.6 in a response theory calculation (Power and
Thirunamachandran, 1983c). The unexcited acceptor molecule B couples
via its transition electric dipole moment to the radiation field due to the
excited donor molecule A, giving rise to the matrix element directly.

Using this method, the leading contribution to the matrix element for
energy transfer is found by treating species B, located at Rp, and initially in
the ground state, as a test dipole in the electric displacement field due to the
source dipole of A evaluated at the location of body B. The response of B to
the electric dipole-dependent driving electric displacement field of source
A, situated at R 5, and which is undergoing an 0 < n transition, leads to the
interaction energy

—salu]’.'O(B)e_iwo”tle(A;EBvZ)~ (4.6.1)

In Section 2.6, the electric displacement field was expanded as a power
series in the source dipole moment,

d*(A;Rp,1) = d" (A;Rp, 1) +d" (fi:A;Rp, 1) +d) (Afi; As R, 1) + -+
(4.6.2)

where the first term on the right-hand side of (4.6.2) is the vacuum field,
independent of the source, and the second term is the first-order electric
displacement field, linearly dependent on the source moment . The
contribution from the second term of (4.6.2) gives rise to the matrix
element for energy transfer that is proportional to the transition electric
dipole moment at each center. The first-order displacement field is
explicitly given by (2.6.21). Taking its zero—nth matrix element produces

ik,,o(‘?—ﬁA ‘ —CZ)

oL 1 ) N
(O\di(l)(u;A;r,t)\m:Euj@”(A)(—V S+ Vi V) ———=——. (463)
|I”—RA|
Inserting (4.6.3) into (4.6.1) results in the matrix element
L0y B) (—5,4 5% )eik"omrm (4.6.4)
dmag i PN R R >

which on using the definition for the retarded dipole—dipole coupling
tensor, Vl./i. (k,l_é) given by (4.2.17), is seen to be identical to the result
obtained for My (4.2.16) using perturbation theory, recalling that k =k,

and R= |ﬁ3—l_éA|. The method presented clearly has the advantage of
illustrating the role played by radiation fields in the transfer of energy.
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Itis straightforward to apply the response theory approach to the evaluation
of transfer rates between systems containing higher multipole moments, as
occurring in the migration of energy between chiral centers (Craig and
Thirunamachandran, 1999; Salam, 2005b). To leading order in this latter
case, for example, matrix elements are required for the magnetic dipole-
dependent electric displacement field and the electric and magnetic dipole-
dependent magnetic fields, in addition to (4.6.3). Thus, from (2.7.6) and (2.7.7),

(1Y 437, ) = — ) () S (a5
i 14y Ty - Ac 'j n0%ijk V k ’?—I_?'A‘ .0.
and
(1) - - - _ 1 on . ) =
(OB 75 457, ) ) = 1 {4) (ot Vi)
) RN el‘k,,o(‘?—K’Al—Cl‘)
+—m"(A) (=Y 5ﬁ+vivj)}_,7-». (4.6.6)
‘V—RA‘

For exchange of energy between an optically active pair, the extension
of (4.6.1) is _ | ~
_EEIM;?O(B)e—twontdj( )(ﬁ —|—n_i;A;RB, l)

_m;lO(B)e_in"tb;l) (ﬁ _{_ﬁ/17A7I_éB, f),

(4.6.7)

which directly leads to the matrix element

e+m 1 10 On va ViV
M —mo{[u,- B4 (-V'0,+ V%)

1 -
+ WO BY (A) (i V)|

1 . =
- [—myo(B)u?"(A)(zknos,;kvk)

+ %m’?O(B)mQ"(A)(—V

1



164 RESONANT TRANSFER OF ENERGY

on using the definition of the retarded dipole—dipole interaction ten-
sors (4.2.17) and (4.4.11). Expression (4.6.8) is a sum of electric, magnetic,
and electric-magnetic cross-terms and is identical to the sum of (4.2.16),
(4.4.4), and (4.4.10). The discriminatory transfer rate (4.4.16) results
from (4.6.8) on extracting the modulus square of the electric— magnetic
interference contribution from the first term of the last form of (4.6.8)
and adding it to the absolute value squared of the second term of the last
equality of (4.6.8).

4.7 TIME-DEPENDENT ENERGY TRANSFER
AND CAUSALITY

The importance of the study of the resonant transfer of excitation
energy between an excited and an unexcited molecular pair lies not only
in the delineation of the underlying mechanism associated with the
migration of energy but also in the role played by this system in helping
to further understand the nature of causality and signal propagation. These
aspects emerge most clearly when exchange of energy takes place between
nonidentical systems, for which the Fermi golden rule rate formula does not
apply. Instead, the time-dependent probability must be calculated for
various state specifications of the system. An early calculation in this
context was carried out by Fermi (1932), who used time-dependent
perturbation theory and electric dipole coupling to calculate the probability
for energy transfer between the pair. Causal behavior resulted only when
certain approximations were made in the evaluation of the matrix element,
namely, that nonresonant energy denominator terms in the probability
amplitude were dropped and that integration limits over frequency were
extended from nonnegative values to (—oo, o0). Subsequent efforts have led
to the accumulation of a large body of literature in which the Fermi
problem, and the multitude of scenarios that arise within it corresponding
to different possible experimental setups, has been examined in detail. The
conditions that ensure strict Einstein causality, that is, the excitation
probability vanishes exactly for times 7 < R/c, where R is the distance
between the transmitter and receiver objects, are now well understood
(Power and Thirunamachandran, 1983c, 1997). The appropriate computa-
tional techniques to be adopted and the physical viewpoint to be employed
in the solution of the problem are presented below. It is found that the
calculation of the transfer probability between two different species is most
easily carried out in the Heisenberg picture using the Maxwell fields
calculated in Section 2.6.
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In Fermi’s original formulation of the energy transfer problem, the
probability was required to be found for complete specification of the final
state of the system, namely, knowledge of the molecular states of donor and
acceptor, as well as the state of the radiation field was to be ascertained. A
noncausal result was obtained using time-dependent perturbation theory
when no mathematical approximations were made. While such a statement
of the problem provides a perfectly valid experimental scenario, measure-
ment would prove to be technically challenging. An equally acceptable,
alternative statement is to ask the question: Given that initially the system
comprises molecule A in an excited state, B in the ground state with no
photons present, what is the probability of finding B excited at some time?
In this reformulation, possibly experimentally more amenable, explicit
mention is made of only the state of the receiver entity, with the state of
the source molecule and the radiation field being left unspecified. Since A
and B are taken to be nonidentical in the present case, different labels are
used to denote excitation. The counterparts to the initial and final
states (4.2.7a, 4.2.7b) are

= |E), ES;0(B,¢)) (4.7.1)

and
= |A,E}; F). (4.7.2)

The initial state is the same as before, but now in the representation of the
final state, only the state of the acceptor species B is indicated precisely. The
kets |A) and |F), respectively, designate eigenstates of molecule A and
number states of the radiation field, which are left arbitrary. The time-
dependent probability for the process represented by states (4.7.1)
and (4.7.2) is calculated via

- Z z |<f|Hint|i>|2’ (473)

where the sums are executed over a complete set of field states and
eigenfunctions of A.

Adopting the multipolar framework, the second quantized Hamiltonian
for the system is

H= Hmol + Hrad + Him, (474)

where

Hpol = ZbTb Ep+ > bibEE, (4.7.5)
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) /= |
Hyq = ; <aT(8)(p)a(£)(p) + 5) fw, (4.7.6)
where the circular frequency w = c¢p and p is the scalar magnitude of

the wavevector. In the electric dipole approximation, the interaction
Hamiltonian is

Hiy = —& " Z:bJf (A, 1)by(A, 1)ii" (A) d (RA)

-

! Zb* B, 1)by(B, )i (B) -d (Rp). (4.7.7)

where the time dependence of the fermion creation and destruction
operators is explicit. Using the method described in Section 2.6, it is
straightforward to calculate the electric displacement field for the two-body
system. To first and second orders in the source moment, the field is found
to be additive and may be written as

L =(0)

d (F,0)=d  (F,1)+d(A;F, 1) +d(B;T, 1), (4.7.8)

(0
where d ( )(7, t) is the free displacement field and the source-dependent
terms are given by

AET1) = 3 S B (i [F—Re Ji (1= 7—Rel /o

m,n

X W) (=Y 5y + V)

eiwgm(t_‘?_ﬁél/c)
_’—_,, (4-7-9)
V—Rg‘

for £=A, B. Note that the interaction picture fermion creation and
annihilation operators are evaluated at the retarded time r—|F—R|/c. A
consequence of this is that the field corresponding to one particular source is
not equal to the value of the field in the absence of the other molecule, and
vice versa. It is only at time ¢ =0 do the respective fermion operators act
exclusively in the Fock space of the particle concerned. For all other times,
ﬂ; and f, act in the total system space—in this case the space of atoms A
and B and the field.

In terms of the fermion annihilation and creation operators, the prob-
ability (4.7.3) can be written as

=3 (F 0N 0B (0B (1)]0%,m5 05, ) [P, (47.10)
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where the molecular state |0°) corresponds to a zero-particle fermion state
with properties b5[0°) =0 and b{°|0°) = |n). Expression (4.7.10) is
computed correct up to the fourth order in the transition moments by
extracting contributions proportional to |f*|*|Z8|* for times 7 > R/c. For
this case, the only field states that contribute are zero-photon |0(7, ¢)), one-
photon |1(7, ¢)), and two-photon |1(7, ), 1(7, ¢')) states. Hence, (4.7.10)
is the sum of three terms

P(1)=|(0(,£):0" 0| By (1) BE (1) 0%, 0(7. 2)) |
+ 37 [(1(F,e):01, 08|84 (1) B2 (1)[0F,m*;0(5,2)) |

modes

+ 3 [(1F2), 15 ,&):00, 07183 (1) B (1)]0% 505 ,),0(5.,6))

modes

(4.7.11)

To proceed further, the form of the time-dependent fermion operators are
needed, and they are readily obtained from the Heisenberg operator
equations of motion together with the Hamiltonian (4.7.4). This procedure
was detailed in Section 2.6. Hence,

B (1) =B,(0)+ B, (:1), (4.7.12)

where
. t
Er=. 0\ l / —mn 3L 19 7'w,€mt/
Bn(w)—go—hgjdtu( A Re B (e (47.13)
0

Examining in amplitude form the first term of (4.7.11), substituting (4.7.12)
produces

(0(7,);0%,0%[ [By (0) + By (i 1)] [ B (0)+ B (Es )] |07 m*;0(7 ) )

= (0(F,£);0",0°| [B6.(0) B (Es 1)+ By (73 1) B (1) ] |07 ;07 )
(4.7.14)
on using f5(0)|0°) =0. The second term in the second line of (4.7.14)
contributes to the probability for ¢ <R/c and is ignored. On insert-

ing (4.7.12), the first term becomes
t

<0(13,8);0A,031ﬁ’3(0)%ihu,-(3)Jdl’ﬂg(f)dﬁ(ﬁ’BJ’)e"“’f‘)”IOBymA;O(ﬁ,S)%
0
(4.7.15)
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which can be approximated to
t
o (B) |t 0 iR ). (47.16)
0
0
Since this term is explicitly proportional to ,u?” (B), with the field linear in
the moment due to A ensuring that (4.7.16) depends on 1;(A) also, the
matrix element appearing in this last equation is evaluated solely in the
space of the donor species. Incidentally, the contribution (4.7.16) does
indeed vanish for ¥ <R/c since the electric displacement field operator
linear in the source moment is causal. From (4.7.9), this field is given by

4 (A7, 1) = ZW@mmmm

47
-2 JEEN 67 mn(l |l RA‘/L)
X (=V 04+ VV;)—— , (4.7.17)
V—RA‘
so that the amplitude to be used in the first term of (4.7.11) is
~ ’ (¢ ~R/c)
i 0 0 b 22 o o e @ ¢
it (B (4) delel W (=V 0+ ViV —
R/c
1 : -2 - - e mOR/C
4TCS hufn ( )M;O(B)el( no me)R/C ( v 5 +V,V R
ei(‘*’fo o) (1=R/e) _ (47 18)
X . .
(wnO_w?nO)

Next, the modulus square of (4.7.18) is evaluated to obtain the probability
for R < ct, recalling that this will be the dominant contribution since the
second term of (4.7.14) applies to R > ct. Thus, the probability is

IM%@$FWWW®WWW®

— - - mi R/L
(—VZ(S,_-,-JrV,-V)eI; ]

ei<w§()*wﬁm)([*R/") —1

(“’50 _wﬁo)

) N i) R/
(—V 5k1+VkV,) R X

(4.7.19)
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In addition, for resonant transfer of energy, w3, ~w?,. This further

enhances the probability due to the near-resonant denominator.
Returning to expression (4.7.11) and examining the second term in the

form of a probability amplitude, this contribution can be written as a sum of

two terms again making use of relation (4.7.12),

(17, 6);0%, 0°1,,(0) B, ;1) |0%, m*; 0(B, &)
+(1(, ); 0%, 0°| By, (s 1) B, (s £)|0°, 5 O(F ). (4.7.20)

The first term of (4.7.20) has a nonzero term that is proportional to i(B), so
that the contribution to the third-order amplitude that depends on
fi(B)|fi(A)]>, namely, quadratically on ji(A) and linearly on fi(B), is
required to evaluate the probability correct to |fi(B)|*|f(A)|*. The term
linear in ji(B) is given by

t

sfhu?"w)J ! (15, )|, (R, 1)[0(7, 2))

0

1/2
hek o @) L et(w+wn0)1_1
= On(BYe,” (p)e P Re | ———— 1. 4.7.21
(280V) W (Bl (7) o @721)

The third-order amplitude has contributions arising from both terms
of (4.7.20). They are

(1(7,£); 0%, 08| B, (0) BB (fi; £)|0F, 5 0(, €))
+(1(B, 2); 01, 0| BA (1 1) B2 (i1 1)]08, A 0(F, €)). (4.7.22)

Because the second term of (4.7.22) is found to yield a noncausal result, it is
dropped from further consideration. The first matrix element of (4.7.22) is
causal, however, and it contributes to the time-dependent probability for
energy transfer through interference with the first-order amplitude (4.7.21).
The relevant term of the third-order fermion annihilation operator is of the
form

t

— l n in / N -
B (i 1) :%_hMiO(B)Jdtle o’ BR(0)d\? (Rifi; A; Rp, 1), (4.7.23)
0
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so that the first term of (4.7.22) becomes

t

i N = 5
goh,u?”(B)J Celsl (15, 0)|d? (ifi:A; Rp, ) |0, 2)).  (4.7.24)

0

Appearing in the last two formulas is the electric dipole-dependent
second-order electric displacement field of excited donor molecule A
evaluated at the position of particle B, Rp, whose explicit functional form
is given by (2.6.30), which is strictly causal. From (4.7.21) and (4.7.23), the
first-order third-order interference term is then

t

t
On n /// " 1 w8 1
2h22“ 10(8)[ae e faret
0

: (4.7.25)

x (0(, &)d” (Re; ") |1(, ) (1(B, ¢)|

X d/(z) (ﬁﬁ;A;K’B,z)m(ﬁ,e)) +c.c.

Alternatively, the quadratic field is readily obtained from (4.7.9). Its
diagonal matrix element evaluated over the electronic state |m) is

Y 3 1, s L1
ok s s R, ) = E“g (B)(=V 05+ V;Vi) %
X [<m‘ﬁo( (l —R/C)|O> —iwh (' ~R/c)
+ (O] (/=R /) mpe'ta R (4.7.26)

Inserting (4.7.26) into (4.7.25) and recognizing from (4.7.13) that

'—R/c

OB -Rj) ) =) | are o o R, ),
0
(4.7.27)
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produces for the interference term,

A mOA
4n80h3z;u (A (A)
, t |
Jdl/"e @ho! Jdl’e“"m’( ﬁzéj/{—i-ﬁjﬁk)l—e
0 R/c
/—R/c
x J A (0(B, &)|d” Ry, ") [1(3,2))(1(5 )|} (Ra, 1")|0(F, 2))
0

% [e lwm()t lwﬁl()(t’—R/L) el‘”mo’ e —ie? (1 R/c)} +ecoc.
(4.7.28)

When w8 ~ o, the leading term of (4.7.28) after carrying out the mode
sum and time integrals is found to be

—»Om —»nO 2
%hz > i (B)|

(4mep) o

S mOR/C N
x (—V(S 1998 ! J do
( ) ) (0f+o

R wh—wh, 5 ) (wﬁzo + ‘”)

=
I
<11

V) R

-(—62 sin(wR/c)]

x (e i(why + )t ])(ei(“’ﬁ)*‘”ﬁm)[_ei(wﬁf"’ﬁﬂ))R/") +c.c.,
(4.7.29)

for isotropically averaged species A and B.

Finally, returning to (4.7.11) and evaluating the third term, which
involves two-photon states and is proportional to fi(A)zi(B). Its amplitude
is computed from

(1@, 2), 107, ¢); 0, 0°1B (1) B (1)10%, s O, ), O(F, )
1 mO J/ lwAtJ el t
— ) [dreieho o
8%7;[2’“1 )

x (1(,e), 17, ¢")|d" (R, >d°><RB, )07, ¢),0(5,¢)).
(4.7.30)
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Expression (4.7.30) contains the off-diagonal matrix element of the spa-
tiotemporal vacuum field correlation function, which is noncausal and
therefore does not contribute to the time-dependent probability for ¢ > R/c.
The transfer probability is, therefore, given by the sum of (4.7.19) (after
orientational averaging) and (4.7.29). The dominant contribution to P(%) is
given by (4.7.19) since it is proportlonal to (wB)— wﬁlo)fz, in contrast
to (4.7.29) that has a (w?,—w",)”" dependence. After random aver-

aging, (4.7.19) becomes

P(1) = ZZI”"’ )P (B
29

47I8 m,n

A R/c

x[(_% 99

sin®{ [(wfh—wfho) /2] (t=R/c) }
[(ofy-o)/2]

X

o G S PG [3+ R+ o8

sinz{ [(ofy—oho) /2] (-=R/0)}
[(ofy-wo)/2]

B . A _
where wy, ~ w),, = cp.

X , t>R]c, (4.7.31)

4.8 PROOF OF CAUSALITY OF ENERGY TRANSFER
TO ALL ORDERS IN PERTURBATION THEORY

The time-dependent probability for resonant transfer of energy has been
calculated correct up to terms proportional to the product of the modulus
squares of the transition dipole moments of A and B, and the result was
shown to hold for R < ct. When ¢ < R/c, P(f) vanishes at this order of
approximation. In this section, it is demonstrated that the probability is
strictly causal to all orders in perturbation theory (Power and Thirunama-
chandran, 1997). Again, the possible experimental scenario posited in the
previous section is considered, namely, the situation in which species B is
excited at some time 7 for ¢ < R/c, ignoring the state of donor A—which was
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initially excited—and the state of the radiation field. For this purpose, it is
convenient to define a projection operator for entity B in terms of the
electron Fock space operators,

Pun(B; 1) = B},(B; 1)B,(B; 1). (4.8.1)

The time-dependent probability (4.7.11) can be written as the
expectation value of the projection operator 2,,(B;t) for B to be found
in state |n) at time ¢,

P(1) = (0(7, &); m", 0% |2 (B; 1)[ 0%, m"; (5 ¢)).. (4.8.2)

Differentiating (4.8.1) with respect to time and inserting
ﬁn B t Oh Z —»mn ’ RB7 )ﬂm(B t) ! (483>

with the last relation obtained from (4.7.13), an equation of motion may be
written for 2,,,,(B; t). It is

§

Pun(B: t) = B, (B 1), (B; 1) + B, (B; 1) B, (B; 1)

[

—»uv 5B
= __h (B)d (RB, )p;g(B Z) mnuvrs(t)

(4.8.4)

where
Tmn;uv;rs(t) = 5u1‘5n55mv e_iwmyt_éusémrénv eiwm,t' (485)

Note that in the classical quantity defined in equation (4.8.5), the indices
appearing as subscripts in the Kronecker deltas refer to electronic states of
molecule B and do not designate Cartesian tensor components. As usual,
the Kronecker delta is nonvanishing only when the two suffixes are equal to
each other, in which case they give unity. From (4.8.4) is obtained an
integral relation for the projection operator,

t

-1

Pon(B; 1) = Pyn(B;0)— thI'_’”V( )-d (RB, 1) Tmuvys (1) Prs(B; 1').
&0

(4.8.6)
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Iterating generates the following series correct to Nth order,

t

Jdtl [ﬁuv(B) "?L (RB’ ZI)} T’"n;uvv‘S(t/)prS(BQO)
0

pmn(B;t) :pmn(B;O)_goLh

ol 14
1 ’ " | suv LB
- B)- R
+< 80h> Jd[Jdt [M (B)-d ( th)}
0 0
7 -1 - " /"
X [ﬁuv (B) -d (Rth )} Tmn;uv;rs(t/)Trs;u’v';l"S’([ )PV'S’ (B;O)

131

; NZ IN—1 B L
0 0 0

X [ﬁ(B) 'Eil (ﬁB,ZZ)] [ﬁ(B) '3L(EB’IN)}

XT(I] )T(lz) e T(IN)P,.NSN (B, 0),
(4.8.7)

where in the last term of (4.8.7), the molecular labels have been omitted.
The displacement field appearing in the formula for the projection operator
is the total field evaluated at B. This is of the form

-1 -(0)

d (Rp,ti)=d  (Rp.t;)+d (B;Rp,1,), (4.8.8)

gince for 0 <t <R/c, t; lies within this range and Q(A;ﬁB, z,~) =0. Thus,
d (B; Rp, t) is independent of 1i(A) and hence of the intermolecular separa-
tion distance R. From this it can be concluded that after N iterations, with N
arbitrary, the projection operator 2,,(B;t) is independent of R for

0 <t < R/c, thereby proving the causal nature of P() to all orders of ji(B).



CHAPTER 5

RETARDED DISPERSION FORCES

That is obviously a question of zero point energy.
—Remark by Niels Bohr to H. B. G. Casimir, from H. B. G. Casimir,
Niels Bohr, A Centenary Volume, A. P. French and P.J. Kennedy (Eds),
Harvard University Press, Cambridge, MA, 1985, p. 180.

5.1 INTRODUCTION

A key triumph of the theory of quantum electrodynamics is its application
to the study of molecular interactions. Problems of this type may be
examined using the formalism developed and successfully applied to a
single atomic or molecular center coupled to one or more sources of
external radiation, as exemplified by numerous and wide-ranging spectro-
scopic processes and quantum optical phenomena. This transferability of
the theory is due to the fact that ultimately all intermolecular couplings are
electromagnetic in origin and can be rationalized at one level as resulting
from the emission and absorption of virtual photons, as most clearly
personified by the use of the multipolar version of molecular quantum

Molecular Quantum Electrodynamics, by Akbar Salam
Copyright © 2010 John Wiley & Sons, Inc.
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electrodynamics. As demonstrated in the previous chapter, the perturbation
theory calculation of the resonant exchange of excitation energy is most
easily understood as arising from the transfer of a single such particle
between the pair. Creation and destruction of virtual photons are described
by the same theoretical techniques that are used to treat emission and
absorption of real quantized particles of light, with the added requirement
that all possible modes of the one or more virtual photons must be summed
over. This is due to the rapid (subject to time—energy uncertainty) appear-
ance and disappearance of this virtual particle. Hence, energy is conserved
only between initial and final states of the interacting system, but may be
violated for intermediate states.

Another fundamental intermolecular process that proves amenable to
study by the methods of molecular quantum electrodynamics, which forms
the subject of the present chapter, is the van der Waals dispersion force. For
two neutral nonpolar molecules in their ground electronic states, this
potential was first calculated using the methods of a quantized field theory
by Casimir and Polder (1948). Employing the minimal-coupling Hamilto-
nian and invoking the long-wavelength approximation, in which the spatial
variations of the vector potential were neglected, and leading to the electric
dipole approximation, they computed the interaction energy as a function
of the internuclear separation distance R and found the remarkable result
that at separations large relative to reduced characteristic transition wa-
velengths occurring within the molecular species, the energy shift varied as
R™’. This was in direct contrast to the accepted inverse sixth power
dependence on R of the dispersion interaction first found by London
(1930), whose perturbative calculation used a static dipolar coupling
potential. The diminution in the strength of the interaction at long range
was attributed by Casimir and Polder to proper allowance being made for
the finite speed of propagation of electromagnetic signals in the fully
quantum mechanical formulation of the theory. Fluctuations in the charge
distribution taking place at one center, which induce a similar distortion in
the electron density of the other particle, are therefore felt by the second
molecule after a time delay R/c, by which further time the charge cloud in
the first species will have subsequently redistributed, no longer coinciding
with its original configuration. London’s familiar result was found to follow
as the short-range limit of the general form of the potential valid for all R,
and was understood to arise from instantaneous mediation of electromag-
netic influences, a singularly unphysical feature of the semiclassical
method. While there has not yet been explicit experimental verification
of the Casimir-Polder potential in the microscopic regime since the
derivation of their result, there have been macroscopic measurements as
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well as a number of experiments concerned in general with Casimir effects.
The final section of this chapter is devoted to this topic.

In this chapter, three different physical viewpoints and calculational
schemes within the multipolar framework are adopted to evaluate the van der
Waals dispersion force. Each comes with its own set of merits and draw-
backs. In the first method to be presented, diagrammatic time-dependent
perturbation theory is employed to calculate the energy shift. This is the
often used method of attack and has the advantage of providing a visual
representation of the interpretation of the interaction as due to the exchange
of two virtual photons. One disadvantage of this technique is the difficulty
associated with its application to the computation of the interaction energy
when one of the pairs is electronically excited. Nonetheless, the calculation
is detailed in Section 5.6. Afterward, a second approach is introduced. It
relies on the Maxwell field operators derived in Chapter 2. The method takes
the form of a response theory in which one molecule is viewed as a test
polarizable body in the electromagnetic field of a second source object, and
vice versa. A distinct benefit of this approach is that the energy shift when
both entities are in electronically excited states is easily calculated from the
outset, with potentials when one or none of the molecules are excited
reducing as special cases of the more general result. Finally, a third variant is
presented, which like the second method enables both ground- and excited-
state dispersion energies to be readily calculated and is commonly known as
the induced multipole moment method. This approach is based on the fact
that a moment is induced in a polarizable molecule by the action of a
radiation field. The moments induced at each center are coupled to
the retarded resonant multipole—multipole interaction tensor, whose
dipole (both electric and magnetic terms) form was calculated and appeared
in the treatment of the resonant transfer of energy to low order in the previous
chapter. By taking the expectation value of this product of moments and the
coupling tensor over appropriate molecular and field states, the energy shift
is obtained in a facile manner. This particular approach has a number of
advantages over the first two mentioned above when other intermolecular
process are evaluated, as will be shown in subsequent chapters.

Each of the three alternative physical and computational approaches is
then used to calculate higher multipole moment contributions to the retarded
dispersion interaction. Chief among them is the term proportional to the
product of mixed electric—magnetic dipole polarizability of each molecule
that characterizes the energy shift between optically active species, which is
found to be discriminatory. Other contributions include those involving a
magnetic dipole susceptible molecule, as well as the effect of the diamag-
netic coupling term, and electric quadrupole and octupole and diamagnetic
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interaction terms, which have recently acquired significance due to the
computation of highly accurate dispersion potentials for homo atom dimers
comprising hydrogen, helium, and alkali metals. Of the four mentioned
interaction terms, only the magnetic dipole and diamagnetic contribution to
the dispersion energy shift will be examined in detail. Using the methods to
be described in this chapter, higher order terms involving electric quadru-
pole and octupole interaction terms may be evaluated in similar fashion to
that used for electric and magnetic dipole coupling terms.

5.2 CASIMIR-POLDER POTENTIAL.:
PERTURBATION THEORY

The dispersion energy shift is most commonly calculated by means of
diagrammatic time-dependent perturbation theory (Craig and Thirunama-
chandran, 1998a). Within the multipolar formalism, this interaction has a
simple interpretation. It is viewed as arising from the exchange of two
virtual photons of modes (7, ¢) and (7', ¢') between the pair. For two neutral
nonpolar molecules A and B, both in their electronic ground states, the total
Hamiltonian for the system is given by

H = Hy + Hiy, (5.2.1)
where
Hoy = Hinol(A) + Hinol (B) + Hrag (52.2)
and
Hine = Hini(A) + Hin(B). (5.2.3)

To leading order in perturbation theory, the dispersion potential is com-

puted using the fourth-order formula

(O|Hine[IIT) (I | Hig [IT) (1T | Hing [ ) {I| Hin |O)
(Em—Eo)(En—Eo)(E1—Ey)

AE = —
TNt

. (5.24)

when the interaction Hamiltonian is linear in the electromagnetic field. On
making the electric dipole approximation, (5.2.3) assumes the form

— 1 —

Hi =~ i(A) -d " (Ra) ;" ii(B)-d " (Rp), (5.2.5)
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where A and B are positioned at ﬁA and ﬁg, respectively. An additional
term in the perturbation theory expression for the total energy shift (5.2.4)
due to normalization of the wavefunction has been omitted since it
applies only when the molecules are polar, a property that is not being
considered in the present treatment. The initial and final states appearing
in the equation for the interaction energy are the same in this problem
and are denoted by the ket |0) = |EJ, E5; 0(3,¢),0(7',¢')) corresponding
to both molecules in the their lowest energy state, E‘f, E=A, B, and the
field without photons. That the dispersion force is a manifestation of
fluctuations associated with the electromagnetic vacuum is evident from
the state representation of the system. In expression (5.2.4), the sums are
taken over all possible intermediate states that link |0) via the coupling
Hamiltonian (5.2.3). To facilitate evaluation of the energy shift and the
writing of intermediate states, as well as calculating differences in energy
between intermediate and ground states, as occurring in the denominator
of (5.2.4), time-ordered diagrams may be drawn. For the dispersion
interaction, which involves traversal of two virtual photons between A
and B, there are 4! distinct permutations of electron—photon coupling
vertices of the type exemplified by the interaction Hamiltonian (5.2.5).
Because virtual photons are ultimately indistinguishable, with the
primed and unprimed labels characterizing the two modes being intro-
duced merely as a device to aid calculation, with each mode being
individually summed over, the overall number of graphs depicting this
process is reduced by a factor of two, thereby avoiding any double
counting of virtual photons. The relevant graphs are illustrated in Fig. 5.1
in which the two virtual photons and their respective modes are
designated by ¢ and ¢'. The excited energy levels of molecules A
and B are labeled by |r) and |s), respectively. Virtual photon emission
from a molecular ground state may be understood by recourse to the
time—energy uncertainty principle. For time intervals short subject
to AEAt > (#1/2), sufficient energy is acquired from the vacuum field
to permit creation of such a virtual photon. From the various time-
ordered sequences, four types of intermediate states are clearly evident.
They comprise (i) both species in the ground state with two virtual
photons in transit, (ii) both molecules excited with simultaneous pro-
pagation of two virtual photons, (iii) both molecules excited with no
photons present, and (iv) one species excited with one virtual photon
being exchanged. The intermediate states along with the ket |0) are used
to form and compute the numerator in (5.2.4), with the energy denomi-
nators read off from the individual graph and the last of these are listed
explicitly in Table 5.1. The interaction energy is obtained from the
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FIGURE 5.1 Twelve time-ordered graphs used for the calculation of ground-

state dispersion potential.
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TABLE 5.1 Energy Denominators Used in the Calculation
of Casimir-Polder Potential

Graph Denominator

@) (Eso + Ticp) (Ticp + Ticp’) (Eno + Ticp')

(ii) (Ego + hicp’) (hep + Ticp' ) (Evo + Ticp”)

(iif) (Eso + T1cp) (Evo + Eyo) (Evo + Ticp')

(iv) (Eso + Ticp) (Evo + Eso) (Eso + Ticp')

(v) (Eso + Ticp’) (Exo + Ego + Ticp + Ticp”) (Evo + Ticp')
(vi) (Eso + Ticp") (Evo + Ego + Ticp + Ticp' ) (Eyo + Ticp)
(vii) (Ego + hicp”) (hep + Tiep) (Evo + Ticp)

(viii) (Eso + ficp) (Ticp + Ticp’ ) (Ero + Ticp)

(ix) (Eso + ficp’) (Evo + Eso) (Evo + Ticp)

(x) (Evo + Ticp)(Ero + Eso) (Evo + Tacp')

(xi) (Eso + Ticp) (Eyo + Eso + Tiep + Ticp') (Eyo + Ticp)
(xii) (Exo + hicp') (Eyo + Eo + Ticp + Ticp”) (Eyo + Ticp)

expression (5.2.4) by adding the contribution from each of the 12 graphs.
It is found to be

AE==% %% 2ep ) (2er & (B)e B)e e (7)
et = 260V | \ 260V | k / !
p.p &€ r,s
Xii

<y (A ) (B (8)e VTR D7 (5.2

On deriving (5.2.6), use has been made of the fact that the factor preceding
the exponential function is invariant to the sign of 7 and/or 7', so that the
sign or signs of these vectors may be changed in the summands to give the
form of the exponent written. Appearing in the expression for the energy
shift are the transition electric dipole moment matrix elements of each
molecule taken over ground and excited electronic states, the internuclear
separation distance vector R=Rz—R,, with the energy denominator of
graph (a) signified by D .
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The energy denominators from the 12 graphs may be summed to give
l —1 (krO ‘|‘ks0 ‘|‘p) 1 1
Z D a T 33 N YA
a=i h C3(kr0+k30)(kr0 +p)(k50 +P) (P+P ) (.p_p )
(5.2.7)

so that the energy shift becomes

ZZ( 2Vz> w—Pibi ) Ou=ppu (A (A)pi (B)

= = prs

(ko +kgo +p)
(krO + ksO) (kr() +p) (kSO -I-p)

1 1
X<<p ) <p—p'>> | G28)

after carrying out the polarization sum using the identity (1.4.56). Con-
verting the wavevector sums to integrals and carrying out the angular
averages using

< (B) &7 )

1 NN
EJ(&;,—pi p;)e? *dQ = Im F;(pR), (5.2.9)
where
A1 I i 1 iR
Ff/'(pR) = (5[/_RiR_f)p_R + (5 —3R; R ) szz p3R3 ey
(5.2.10)
produces
1
A (B’ (B) ————
47T4h680127;'u ( ):uk( ):ul ( )(kr0+k50)
XJJp3p,3 (ko + ks +p) 1
) (ko +p)(ko+p) \(p+P")  (p—1')
xIm([Fy (pR)|Im[Fj;(p'R)]dp dp'. (5.2.11)

Because Im[Fj;(p'R)] is an even function of ', the limits of the p'-integral
in (5.2.11) can be extended to —oo to co and the principal value taken at the
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pole p' = —p, so that

oo 3

P
R = R R 5.2.12
_L(f” SmE R = Rl R, (52.12)
giving for AE the expression
1
AE = — A (B)u*(B) ———
4n3thOZN ( Y (B’ ( )(k1‘0+ks0)

r,s

J6 (ko + ko +p) Re[F,-z(pR)]Im[Fik(PR)]dp‘ (5.2.13)

(krO +P) (ks() +p)

On multiplying the real and imaginary parts of the tensor field F;(pR)
appearing in (5.2.13), the integral in the equation for the energy shift can be
written as a difference of two integrals,

l J (krO "‘ksO +p) eZIpR 6
4i0 (krO —l—p) (kso +p)

ooy B+ Bait)  (aBiu+Buoii+BuBu)  2iBuBy  BuBu
X p2R2+ PR - PR TSRS T pORS

1 T (kr0+kso+p) _2ipR 6
—— d c P
4i l (kro+p)(kso+p) P

ooy 1Byt Baot)  (uBy+ Bt +BiuBu)  2iBuBi  BuBi
X PPR? PR B PR T PSRS ' pORS

(5.2.14)

where o;; = (31;,-—IA€,-R,- and ;= 5;,-—31@1?,-. Inserting p = iuin the first integral
and p = —iu in the second one transforms the integral to a complex variable,
after which their sum gives

o.¢]
lj oy (kB + Bii)
4 u’*R? wR3

0

(ko +iu) (ko +iu) — (kno—iu)(kgo—iu)

10+kv0+lu) (kr0+ks0_iu) ]

. (ouik B+ Bt + BucBjr) +2ﬁikﬁjl +ﬁzkﬁ/1

u*R4 wWR>  udRO

] e Rubdu.  (5.2.15)
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Substituting (5.2.15) into the integral occurring in equation (5.2.13) gives
the Casimir—Polder energy shift for a pair of molecules in fixed orientation
relative to each other,

1 kroks
AE:—7§ Or A 10 A 0Os B 50 B J 050
87'538(2)flc - H; ( )uj ( ):uk ( ):ul ( ) (k’20+u2)(k30+1/12)
" 0

ooy (Bt Baoy)  (cBj+Buoyi+BucBi)

2R W3R3 u*R4
2BuBy BBy o 2R, 6
+ uSRS + uﬁRﬁ u uwdu. (5216)

Orientationally averaging the molecular multipole moments using the result

(" (A) g (A)) i (B) i (B ))—95z;5kz|“°’( WIE*B)P  (52.17)

and contracting the geometrical tensors yields the familiar Casimir—Polder
potential for isotropic systems,

1 S04V 2108 2]0 krokso
AE=————o
36n386h6,zs:|u (A )‘ 17 (B)] (k2 +12) (k2 +u?)
v 0

1 2 5 6 3
% u2R? + w3R3 + u*R4 + WR> + udRO

(5.2.18)

equRuédu’

which holds for all R beyond wavefunction overlap. An expression equiva-
lent to (5.2.18) may be written in terms of the isotropic polarizability o.(; iu)
of species { =A, B at the imaginary frequency o = icu, where

5
B
o(&;iu) . 5.2.19
32 Etzo + (heu)? ( )
It is given by
h o
AE=——"¢ 2Jduu6e_2”Roc(A;iu)oc(B;iu)
1673¢e]

0
1 2 5 6 3
x [ + (5.2.20)

u?R? u3R3+u4R4 wR5  uPRO|’
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It is instructive to examine the asymptotic behavior of the energy
shift (5.2.18) in the limits of large and small intermolecular separation. At
short range, R is much smaller than characteristic reduced transition
wavelengths, sothat kR < 1. Withthisconditione 2R ~ 1, and the dominant
term within square brackets is that proportional to R~®. Employing the
integral relation

T T abdu
=2 b 221
(a+b) J(a2+u2)(b2+u2)’ @b>0, (5.2.21)

0

the energy shift in the near zone is

! 2" (A)PIE”(B)

AEng = —
N 24m262RS —~  (Eo+Eo)

(5.2.22)

whichisinstantly recognizable as the London dispersion energy. At the other
extreme of separation, kR >> 1 andu? may be ignoredinrelation to k% and k2
in the denominators of the general result. After performing the u-integral
using the standard integral result

Jx”e“xdx:n!oc"l, Rea >0, (5.2.23)
0

the far zone asymptote is

23%c

Abpy = ————
Fz 6471738(2)R7

o(A;0)a(B;0), (5.2.24)

in which the static polarizabilities appear, which may be obtained
from (5.2.19) on letting u =0. The potential at large separations exhibits
an inverse seventh power dependence on R and is attributed to the effects of
retardation.

As indicated earlier, the calculation of the dispersion potential between a
pair of neutral, nonpolar molecules in their ground electronic states
constituted one of the foremost successes of the theory of quantum
electrodynamics. This pioneering calculation was first carried out by
Casimir and Polder in 1948. These researchers employed time-dependent
perturbation theory on the minimal-coupling form of Hamiltonian for the
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interaction of radiation with matter, instead of the multipolar framework
treatment presented herein. Nevertheless, in their computations, all con-
tributory terms correct up to the fourth order in the electronic charge still
had to be retained. These comprise single-photon interaction vertices of the
form (e/m)p - d that arise in the fourth order of perturbation theory, a third-
order term involving coupling of the (¢2/2m)d* two-photon interaction
vertex at one site with the (e/m)p - d interaction at the other center, and a
second-order contribution that arises from purely two-photon coupling
vertices at each molecule of the (¢2/2m)a” type. Knowing that the static
intermolecular Coulomb interaction appears explicitly in the minimal-
coupling scheme necessitates the inclusion of the effects of this term. This
is composed of a term in the second order of perturbation theory that
involves only the static Coulomb interaction and a third-order term arising
from the coupling of the mixed single-photon (e/m)p - d@ contribution and
the Coulomb interaction. An intricate calculation accounting for each of
these contributions yields the energy shift (5.2.20).

5.3 NEAR-ZONE POTENTIAL: LONDON
DISPERSION ENERGY

In the diagrammatic perturbation theory calculation of the dispersion
potential applicable to all intermolecular separation distances outside the
region of charge overlap, the interaction was viewed as being mediated
by the exchange of two virtual photons. The near- and far-zone limiting
energy shifts were obtained from the full expression after making the
appropriate physical and mathematical approximations. In this and
the following sections, it is shown how the short- and long-range asymp-
totic interaction energies may be evaluated directly by retaining and
summing over a subset of the time-ordered graphs shown in Fig. 5.1, with
the appropriate graphs to be summed over being justified on physical
grounds.

To be effective at short separation distances, virtual photons with high
wavevector values will dominate the interaction. This is most easily
understood by appeal to the time—energy uncertainty principle. In the near
zone, photons will be emitted and absorbed after a very short time, during
which the energy borrowed by them from the vacuum will be large.
Table 5.1 reveals that denominators arising from graphs (iii), (iv), (ix),
and (x) are the smallest, and consequently, make the biggest contribution to
the energy shift. These four energy denominators can, therefore, all be
approximated to ficpficp’ (E, + Eyo). It is interesting to note that in each of
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the four graphs singled out, only one virtual photon propagates at any given

time instant. Summing the contributions from the four graphs mentioned
above in the usual way produces

ficp hicp’ L "
AE=—4) > <280V> (280‘,) (O—Di 1) (Op—Pjp1)

Aa/r

r s st i(p+7) R 1
" (A) P (A) i (B) i (B) 77 R(hc)zpp’(EroJrEso)’ (5.3.1)

after performing the polarization sums. Converting the 7,p’-sums to
integrals gives

rA A Os B 50 B
8%; ro+EYo A A B (B

(5.3.2)

1 AR NS AN o .
X 3 (5i/c—Pka)(5jz—p’.p;)el(l7+p ) RPpdp.
(2m) J

The integrals featuring in (5.3.2) may be evaluated using the relation

1 A\ R A3 N
nJ((Sij—Pin)ep Rd3pz—m(5ij—3RiRj)a (53.3)

which holds for positive R only, resulting in the near-zone energy shift for
an oriented A-B pair,

1 1
AE:_ OI‘A }OA Os B 50 B
686 2= (ot B AN A B (B)

X (84—3RiRi)(0;—3R;R)). (5.3.4)

The energy shift (5.2.22) follows immediately from (5.3.4) after random
averaging.

In the near zone, the energy shift may be understood as arising from
instantaneous coupling between the two molecules. It is commonly calcu-
lated using the second-order perturbation theory when the static dipolar
coupling potential,

(A)w;(B)(85—3RiR;), (5.35)

Vap=——=
AB 47T80R3 Hi
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0 0

FIGURE 5.2 Diagram used in the calculation of London dispersion energy
depicting static dipolar coupling.

is used as the perturbation operator. Diagrammatically, the interaction may
be visualized as illustrated in Fig. 5.2. Because the interaction is not
delayed, A and B are coupled by V43 at the same time. Applying (5.3.5) in
the formula for the second-order energy shift,

_ (O[Vas|1)(I|Vag|0)
AE = — 21: A(E,—EO)A : (5.3.6)

on using the ground-state representation of the total system |0) given in the
Section 5.2, the result (5.3.4) is easily obtained.

To express the London dispersion energy in terms of polarizabilities, it
is common to make the average energy approximation or to invoke
Unsold’s theorem. An identical result can be achieved on making a
two-level approximation. Denoting the lowest energy transition in mole-
cule ¢ as E¢, the static isotropic electric dipole polarizability is

v 2
2(&;0) =§‘“§)’ , (5.3.7)

where ji(&) is the transition dipole between the two levels. This enables the
London dispersion energy (5.2.22) to be written as

3 .
AE = —(——5—|a(A;0)a(B;0)E 5.3.8
(G 4 00B: 0, (538)
if the scaled energy is

- 2F‘EB
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Finally, it is interesting to note that the averaged near-zone energy
shift (5.2.22) can be written in closed form as an integral over the product of
the polarizabilities at imaginary frequency of A and B in a form that
resembles the Casimir—Polder potential (5.2.20). This is accomplished by
using the integral representation (5.2.21) after extending the domain to
cover both positive and negative imaginary frequencies to give

AE=-— b Y J a4y EoEsol B (A1 (B)[*
=———F u
24n35RO s (Ex +u?)(E +u?)

—00

(5.3.10)

Substituting for the isotropic dynamic polarizabilities from (5.2.19) results in

3 T . .
AE = _<Ws}%R6> J a(A; iu)o(B; iu)du. (5.3.11)

5.4 FAR-ZONE DISPERSION POTENTIAL

In the wave zone, a pair of interacting molecules is separated by a distance
considerably greater than the reduced wavelengths of molecular transi-
tions. Hence, at this separation regime, the most important contribution to
the energy shift is made by virtual photons with low values of wavevector p
and p’. This means that energy may be borrowed from the vacuum for longer
durations and can consequently be effective over larger distances. From
Table 5.1, it is seen that denominators that satisfy this condition each
contain the factor 7ic(p + p’). Once again four graphs of Fig. 5.1 contribute
to the potential in the far zone. They are diagrams (i), (ii), (vii), and (viii).
Since E,g, Eso > hep, icp’, each energy denominator product may be
approximated to E,0E(%icp + ficp’). Adding the contribution from the
four graphs leads to

hep \ [ ep' \ ) (@) o (&) (&)
ap= 4SS (1) (2D el )l ' )
1

b, p e, 1S
X AR AP B (B) 7T
(5.4.1)

After performing the polarization sums, converting the wavevector sums
to integrals, orientationally averaging the transition dipole moments,
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and expressing the molecular part in terms of the isotropic static polariz-
ability

25 [E(OP
a(¢;0) =< , 5.4.2
60 =325 (54.2)
expression (5.4.1) becomes
he v’ " A
AE=— Saas0)a(i0) || P2 0o 001
32 13-
el +7) R 4D dp3. (5.4.3)
(2n) (2n)

To separate the variables p and p’, the following integral representation
is applied:

1 T ,
W:Rjdﬂe_(p+p )er, (544)

enabling the energy shift to be written as

oo

AE= —hifcc(A;O)oc(B;O) [ dn{
0 0

2
1 3 )
Si—pp;)e? Re PRdpdQ 3 .
10 (2n)3jp( j—pip;)e” e PMdp }

(5.4.5)

Concentrating on the factor occurring within braces, the angular integration
may be carried out straightforwardly to leave

1 3 .~ sinpR .~ (cospR sinpR IR
3wt | v [(5,,—R,Rj) O mR)(sz2 S8 |
(5.4.6)
The p-integrals are carried out using the standard integrals
Cax. m
Je “sinmxdx=———, a>0, (5.4.7a)
a‘+m
0

3 P2

xe “cosmxdx=——, a>0, (5.4.7b)
(a®4+m?)*

0
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and
< 2m(3 2_ .2
sze“xsinmxdx—M, a>0, (5.4.7¢)
! (@>+m?)
to give for (5.4.6),
1 . (Bp*-1) R 1
—— | (0;j—RiR))————=%—(0;;—3R,R;))—— | . 4.
i | (9 J)(n2+1)3 (65=3 ’>(n2+1)2 (54.8)

Squaring (5.4.8) and inserting into (5.4.5) produces

he 1. G=2p+3

AE=—— " —a(A;0)%(B;0) Jdn(”—*f) (5.4.9)

niepR (n*+1)

Performing the n-integral using

T 2m—1)1(2n—2m—3)!ln
dx= 5.4.10
J(axz—i-c)" * -(2n=2)lamcn—m=1,/ac’ ( )

0

with 2r + D!!'=1-3-5...2r + 1) and (2r)!! =2-4-6...(2r), results in

23%hc

AE=—————
64n3£(2)R7

2(A;0)a(B;0), (5.4.11)

which is the far-zone Casimir-Polder potential (5.2.24).

Finally, it is shown how second-order time-dependent perturbation
theory may be used to obtain the far-zone energy shift (5.4.11). This is
a viable option due to the observation that in each of the four time-ordered
diagrams used to calculate the wave-zone result, intermediate state |II)
represents a state in which two virtual photons are simultaneously in transit,
in one case emitted by species A and in the other by molecule B. These four,
linear in the interaction vertex graphs, may be reduced to two diagrams by
collapsing the two one-photon coupling vertices at each center to produce a
two-photon vertex at each site, as shown in Fig. 5.3. Each vertex is
represented by an effective interaction Hamiltonian of the form

1 - ~
Heitim = =55 >0 a(&0)d (Re)d (Ry), ¢=A,B, (54.12)

’0 modes ¢
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FIGURE 5.3 Collapsed two-photon graphs for the far-zone Casimir—Polder
potential.

which is able to describe all combinations of annihilation/destruction
events involving two-photons since the coupling Hamiltonian is now
quadratic in the electric displacement field and in the process reducing the
required order of perturbation theory by two. The new interaction
Hamiltonian is obtained from the multipolar Hamiltonian (5.2.1) by
performing a canonical transformation on the latter, with the generator
chosen specifically to cancel the coupling terms linear in the electric
dipole moment and displacement field (5.2.5). Interaction Hamilto-
nian (5.4.12) is also known as the Craig—Power Hamiltonian (Craig and
Power, 1969).

From the two Feynman graphs of Fig. 5.3, the states to be used in the
calculation of AFE are easily written down. As before, the initial and final
states are the same and are identical to the ket |0) used previously, namely,
0y = |E4, EB; 0P, ¢),0(p",¢')). Only one ket is required to represent the
intermediate state of both graphs (Fig. 5.3a) and (Fig. 5.3b) in the second-
order of perturbation theory, as the two states are identical. They are given
by L) = |I,) = |E4,EB; 1(P,¢),1(P',¢)). The energy shift is computed
from

AE — Z (O|Her, int|I) (I|Hegt, int|O) ' (5.4.13)

7 (E]—Eo)

To facilitate calculation, it is convenient to expand the effective interaction
Hamiltonian in terms of annihilation and creation operators for the
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-1
two exchanged virtual photons using the mode expansion for d (7).

This results in

" 1/2 hep! 1/2
Ccpé cpé
Heff, mt 2 a2 Z alj é 0 ( P 0) ( ;V 0)

€0 modes

" [el@ B)e;” () (7)) el 7 K

— e§8> (B (7)) (7)a!) (5! PP Re

& @)ef) (7)a' ) (B)a) (p')e 17T R
(

P

(&)
+é5“’>@>é,~ J(7)a ) (3)a ) (F)e )R] (5.4.14)

Only the first and last terms of (5.4.14), namely, those that destroy and
create two photons, respectively, are required in the calculation. Summing
over the contributions from the two graphs gives

hc 74 () /=
AE = —— ;i (A; 0)ag(B; 0 e
7 L Gy A O B0 0) )
e (7)el") ()P +7) R, (5.4.15)

Proceeding in the usual way by carrying out the ¢, &'-sums, performing a
molecular average and absorbing a factor of ( ) into the product of the
isotropic polarizabilities, transforming the j, p’-sums to integrals, and
dividing by two to avoid double counting of the virtual photons, which are
indistinguishable, yield expression (5.4.3) for the interaction energy shift.
Hence, the remainder of the computation leading to the far-zone limiting
form (5.4.11) is identical to that presented earlier in this section.

5.5 STATE SEQUENCE DIAGRAMS FOR DISPERSION FORCE

Formal rules were given in Section 1.10 for the generation of interaction
plane networks that depict the allowed sequence of photon absorption and
emission events for any nth order process occurring in a hyperspace of
dimension n. After designation of the relevant process-specific initial and
final states, the intermediate levels connecting |i) to |f) in correct time-
ordered sequences may be written systematically and employed in the
construction of the appropriate state sequence diagram (Jenkins et al., 2002).
Perturbation theory may then be used in the usual manner to arrive at the
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probability amplitude or energy shift for the process. This modus operandi
was carried out in Section 4.3 for the problem of resonant exchange of
excitation energy. Since migration of energy was understood to arise from
single virtual photon exchange in the perturbative treatment, its representa-
tion in terms of state sequences was especially facile and could quite easily
and legitimately been sketched directly from the two Feynman diagrams of
Fig. 4.1, which are usually used in the calculation of the transfer rate.

As has been demonstrated in Section 5.2, the molecular QED perturba-
tion theory computation of the van der Waals dispersion energy shift
involves summation over 4!/2! = 12 two-photon exchange diagrams. To
further extend the range of application of the alternative diagrammatic
approach, in particular to higher order intermolecular processes, and to
elicit pros and cons of the method, the state sequence representation of the
dispersion potential is obtained in this section (Alligood and Salam, 2007).

Since there are four distinguishable photon—matter interactions in
the representation of the dispersion force, due to virtual emission and
absorption occurring twice at each center, the hyperspace dimension n
corresponds to four in this problem. With each vertex labeled by an index
and each index in turn denoted by a vector whose multiplicity is one, the
set of four orthogonal basis vectors for the problem are given by
1= {1?1, 1?2, 173, 174}. As perturbation theory formulas demand summation
over all intermediate states linking initial to final, which is achieved in the
graphical method by the drawing of all topologically distinct diagrams, the
analogous procedure in the state sequence formulation is accomplished via
index manipulation. Using the prescription detailed in Section 1.10, hyper-
space coordinates of the form (Cy, C5, C3, C4) with C;=0, 1, only forj = 1-4,
are generated from the set of vectors /. These coordinates are subsequently
converted from a binary base B =2 (since ¢;= 1) to a decimal base, thereby
allowing the (k, /1) coordinates to be obtained for the plotting of the general
4-space interaction plane, and the writing of system states |r}') for each
vertex. This is summarized in Table 5.2. From the entries in the right-hand
most column, the network plane for n = 4 is plotted, as illustrated in Fig. 5.4.
As for the network map Fig. 4.2, which involved all processes described by
two distinguishable photon emissions and/or absorptions, the interaction
plane network shown in Fig. 5.4 serves as a blueprint for the construction of
state sequence diagrams for any process that contains four unique photonic
events. As to be expected and calculated from (1.10.11), there are 24 paths
from the i-terminus to the f-terminus, 4!/1!1!1!1! = 24. Since the two
exchanged virtual photons are differentiated for calculational purposes by
attaching different labels to them, a factor of one-half is introduced in the
computation to account for the fact that mode properties associated with both
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TABLE 5.2 Hyperspace and Interaction Plane Coordinates for Four
Distinct Radiation—-Matter Couplings

Hyperspace Hyperspace
k Vertex Coordinate Number (Base 2) h (Base 10) (k, h)
0 r(l) 0, 0,0, 0) 0000 0 0, 0)
1 r} 0,0,0, 1) 0001 1 (1, 1)
r% 0,0,1,0) 0010 2 (1, 2)
r? 0, 1,0, 0) 0100 4 (1, 4)
r‘l‘ (1, 0,0, 0) 1000 8 (1, 8)
2 ré ©0,0,1,1) 0011 3 (2, 3)
r% ©0,1,0,1) 0101 5 (2,5)
" ©,1,1,0) 0110 6 (2, 6)
r‘2‘ (1,0,0, 1) 1001 9 2,9
" (1,0, 1,0) 1010 10 (2, 10)
rg (1, 1,0, 0) 1100 12 (2, 12)
3 rs ©,1,1,1) 0111 7 3,7
3 (1,0, 1, 1) 1011 11 3, 1D
" (1,1,0, 1) 1101 13 (3, 13)
" (1,1,1,0) 1110 14 (3, 14)
4 ry (1,1, 1,1 1111 15 4, 15)
15—
14 —
13 —
12 —
11—
10 —
9_
8 —
o7
6_
5_
4 —
3 —|
5]
1._

fe]
/o —

]

.

FIGURE 5.4 Network map for four unique photonic events.
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virtual photons are summed over and ultimately all virtual photons are
indistinguishable, being emitted and subsequently reabsorbed. Furthermore,
the structure coefficients are given by the fourth row of Pascal’s triangle: 14 6
41, whichmay be obtained from formula (1.10.14), {l'l'fl’]}TiA fork=0,1,2,
3, 4. As a consequence, these structural features will appear in any ensuing
state sequence diagram when degeneracy is absent.

Returning to the Casimir—Polder potential, associating indices 1 with
virtual emission of photon ¢’, i, with emission of virtual photon ¢, i3 with
virtual absorption of ¢’, and iy with absorption of ¢ leads to the state
sequence diagram shown in Fig. 5.5. Entities A and B are represented by
circles on the left and right of each box, respectively, with an open circle
denoting that a species is in the ground state. Easily identifiable from
Fig. 5.5 are the initial and final state sequences, depicted by the left- and
right-hand most boxes in the time evolution, corresponding to the states
li) = |f) = |0), denoting the vacuum state in which no real or virtual
photons are present and both molecules are in their lowest energy states.
After virtual excitation, entity A jumps to a higher level |r), which is
represented in a cell by a circle with label r enclosed, while the encircled s

o%o
® 20 G ©¢ Oue®
© %0 SO ©re
o O O O
O %G ®Z:© ®¢:0
O%® ° & e
OO

FIGURE 5.5 State sequence diagram for the Casimir-Polder potential. The
pathway corresponding to graph (i) of Fig. 5.1 is

O O 040050 — 0u® — O O |
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denotes a state |s) to which molecule B has been electronically excited. The
modes corresponding to the two exchanged virtual photons ¢ and ¢’ are
designated by (7, ¢) and (7', &), respectively. A symbol ¢ or ¢’ in the upper
right-hand corner of a box representing intermediate states |/I) denotes
which one of the two virtual photons has completed its propagation
between the two centers. Moreover, the subscripts appearing on ¢ or ¢’
indicate the site of virtual emission. Although strictly unnecessary, these
last two additional labels prevent possible ambiguity, particularly for
interactions to and from the second intermediate state in which A is in
excited state |r), B is in state |s), and no virtual photons are present, which
occurs when only one of the virtual photons is traversing between the pair.
Each of the 24 paths that can be traced out in Fig. 5.5 corresponds to one of
the 4! possible time orderings of a two-virtual photon exchange Feynman
diagram, half of whose number are shown explicitly in Fig. 5.1.

All of the relevant matter—field states to be employed in the fourth-order
perturbation theory formula for the energy shift (5.2.4) are readily obtained
from (4.3.1) and the state sequence diagram of Fig. 5.5, and the matrix
elements are computed in the usual manner to yield the Casimir—Polder
potential (5.2.18) along the same lines detailed in Section 5.2. This aspect is
not entirely unexpected since the state sequencing approach provides an
alternate pictorial representation of conventional time-dependent pertur-
bation theory methodology. Nevertheless, a number of distinct advantages
result from the use of state sequence diagrams. One obvious benefit, already
mentioned, is the capturing of all time orderings associated with photon
creation—destruction events for a specific process in one picture and the
systematic generation of all of the states required in the calculation.
Another advantage is the construction of the precursor to the state sequence
diagram—the n-interaction plane. This two-dimensional network map
displays the permitted connectivities between initial, intermediate, and
final states for any process comprised of 7 distinguishable radiation—matter
interactions. From this most general of situations, interaction planes and
state sequence diagrams can be easily generated for the special case when
two or more interaction vertices are indistinguishable, as is the case when
degenerate photons are emitted or absorbed. In each of these two scenarios,
the underlying isomorphism between seemingly disparate and unrelated
processes is manifest. A further benefit of using state sequencing techni-
ques, though one that did not feature in the calculation of the dispersion
potential, is the expediting of computation through the potential to exploit
any inherent symmetry present in a problem and the ability to group
together contributory terms to the probability amplitude that are similar in
structural form, aspects that are more easily identifiable relative to the
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standard method of calculation, which greatly aids in facilitating overall
computational analysis. This becomes especially apparent when processes
involving the emission and absorption of a large number of real and/or
virtual photons from one or more centers are tackled.

Despite these positive attributes and the successful formulation of the
state sequence methodology, there is one serious limitation of the approach
presented in Section 1.10. It concerns construction of diagrams used to
visualize intermolecular interactions occurring between molecules at ex-
tremes of separation. From the applications of the state sequence technique
to intermolecular processes considered thus far, namely, resonance energy
transfer and van der Waals dispersion, all state sequence pathways are
generated, resulting in the diagram being applicable to the full range of
internuclear separation distances beyond wavefunction overlap. While the
limiting functional forms of the interaction may be obtained from the result
valid for all R after making the appropriate physical and mathematical
approximations, additional valuable insight is obtained if near- and far-
zone asymptotic energy shifts or transfer rates can be arrived at directly.
This was the case in Sections 5.3 and 5.4, where arguments based upon the
time—energy uncertainty principle were made to ascertain which of the 12
Feynman diagrams needed to be retained and whose contributions when
evaluated to yield the London dispersion formula and the Casimir—Polder
limit. Unlike the procedure detailed in Section 1.10, which generates all
time orderings, no formal procedure is currently available for indepen-
dently constructing state sequence diagrams applicable to short- and long-
range asymptotic limits. This does not, however, prevent the drawing of
appropriate state sequence pictures for these two limiting separations.
Construction is accomplished by converting Figs. 5.2 and 5.3 to state
sequence notation. For the near zone, the pertinent state sequence diagram
isillustrated in Fig. 5.6. The four pathways correspond to the time orderings
of graphs (iii), (iv), (ix), and (x) of Fig. 5.1, which were shown in Section 5.3

0.0 O

O O GO, O O
O‘P’B@ @‘7’30

FIGURE 5.6 State sequence diagram representing near-zone dispersion
interaction.
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FIGURE 5.7 Single-photon interaction vertex state sequence diagram for far-
zone dispersion energy shift.

to yield the London dispersion energy shift (5.3.4). When the pair separa-
tion distance is large relative to characteristic reduced transition wave-
lengths, it was demonstrated in Section 5.4 that summation over the four
time-ordered graphs (i), (ii), (vii) and (viii) of Fig. 5.1 produced the far-zone
energy shift (5.4.11). From these four diagrams, the state sequence
representation of the far-zone limit may be drawn. This is shown in Fig. 5.7.
Recalling that the long-range limit to the dispersion potential may be
derived by employing the effective two-photon interaction Hamiltonian
(5.4.12), which corresponds to collapsing the two one-photon coupling
vertices occurring at each center to a single two-photon vertex at either site,
as displayed in Fig. 5.3, the pictorial representation in the state sequence
scheme has the most simple form, as shown in Fig. 5.8. Since in perturba-
tion theory the far-zone limiting behavior is interpreted as arising from the
simultaneous transit of two virtual photons, the intermediate states |II) of
Fig. 5.7 and intermediate states |I) of Fig. 5.8 are identical, as expected.

5.6 DISPERSION INTERACTION BETWEEN ONE GROUND
AND ONE EXCITED MOLECULE: PERTURBATION THEORY

Dispersion energy shifts are not limited only to interactions occurring
between ground-state species. The coupling arising from the fluctuations in

oK 22NE S

Ps

FIGURE 5.8 State sequence pathways for wave-zone asymptote of dispersion
potential involving two-photon coupling vertices.
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electron density at each center is manifest when one or both of the pairs are
in electronically excited states. The concept of an intermolecular interac-
tion energy for the situation in which the initial state of A or B corresponds
to an excited state holds as long as the excited state or states in question are
sufficiently long lived relative to the time taken for the photon to propagate
between the two sites. Now both upward and downward transitions have to
be taken into account in contrast to the calculation of the ground-state
dispersion potential in which transitions occur only from the lowest energy
level to a higher lying state. As a result, it is found that the energy shift
contains a term arising from the emission of a real photon due to possible
downward transitions, in addition to a contribution due solely to the
exchange of virtual photons, the last of which is similar in structure to
the Casimir—Polder interaction energy. A direct consequence of the ap-
pearance of this new contribution is the change in the form of the potential
in the limit where the intermolecular separation distance is much larger than
the characteristic reduced transition wavelengths. Instead of an inverse
seventh power dependence on R, the potential exhibits an R~ behavior in
the far zone because the emitted photon has all of the properties associated
with a real quantized particle of light. While the near-zone interaction
energy still obeys an R~ ® power law, it is repulsive when both molecules are
initially excited, but when one of the pairs is excited, the overall sign of AE
is determined by the comparative magnitudes of the relevant transition
energies of both molecules. This aspect is in contradistinction to the
London dispersion energy shift between two ground-state molecules,
which is always attractive.

In this section, the time-dependent perturbation theory calculation of the
dispersion interaction between one ground- and one excited-state molecules
is presented (Power and Thirunamachandran, 1995a). The more general case
in which both species are electronically excited will be expounded in
Section 5.7 using response theory.

Consider two different molecules A and B, the former initially in excited
electronic state |¢) and the latter in the ground state |0). The total
Hamiltonian comprising these two particles and the radiation field, as well
as their mutual interaction, is given by

H = Hmol(A) —|—Hm01(B) + Hpq + Higt (561)

Continuing to work within the leading electric dipole approximation,
the interaction Hamiltonian Hi, is given by equation (5.2.5) as for the
calculation of the ground-state dispersion energy shift. Again, the fourth-
order perturbation theory formula for the interaction energy (5.2.4) is to be
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used for the calculation involving one ground and one excited molecule,
since the force is still mediated by the exchange of two virtual photons
between the pair. As in the calculation of the Casimir—Polder potential, 12
time-ordered diagrams aid in the evaluation of the result. The relevant
graphs are identical to those shown in Fig. 5.1, but with the initial and final
state labels of molecule A changed to q. As before, the intermediate states of
A and B are labeled |r) and |s), respectively, subject to E} < E; and
E® > EE. The former restriction means that only downward transmons
from the excited state of A are to be considered. Although transitions from
|¢) to higher lying intermediate states |r) in A are of course possible, the
resulting contribution is identical in form to the energy shift between two
ground-state species, for which only upward transitions are allowed, and is
given by the Casimir—Polder result (5.2.20), but with the excited-state
dynamic electric dipole polarizability of A appearing in the expression for
AE instead of the ground-state one and replacement of k,y by k.

For this application, the initial and final molecule-field states are
written as

10) = |E}, E5;0(7,¢), 07, ¢)), (5.6.2)

with the modes of the two virtual photons being denoted by (7,¢) and
(§', ¢). The contributing intermediate states to be summed over are read off
from each graph, along with the corresponding energy denominator
product. For convenience and due to important differences compared to
the analogous quantity occurring in the ground-state calculation, the energy
denominators for the present case are listed in Table 5.3 for each of the
suitably modified time-ordered diagrams of Fig. 5.1.

Unlike the case when both molecules are in the ground electronic state,
one or more factors in the denominators of Table 5.3 can be zero due to the
absorption or emission of a real photon. To deal with this when carrying out
integrations over virtual photon momenta p and p’, damping factors £y are
introduced. Adding the contributions from each of the 12 graphs, after
evaluating the matrix elements in the usual way, produces for the energy
shift between an excited- and a ground-state molecule the real part of the
expression

LT (o) oo

—

D, D &, o r,s
xe)” ()l (A (A (B)yi (B) €77 Y T,



202 RETARDED DISPERSION FORCES

TABLE 5.3 Energy Denominator Products E, ', @ =i—xii for Dispersion

a
Interaction Between One Excited- and One Ground-State Molecules

Graph (hC)_BEa

(i) (P +ko)(p+p') (' —keg + 1Y)

(ii) (' + k) (P +p") (0 —krg + i)

(iii) (P + ko) (kso—krg) (P' —krg + 1Y)

(iv) (P + kso)( rq) (P, + ksO)

v) (P’ +kso)(p+ P+ ko—krg) (' =Ky + iY)
(vi) (P + ko) (p+ P + ko—krg) (0 + k)
(vii) (p—krg=iv)(p + ") (P’ + kyo)

(viii) (p—krg—i¥)(p + ") (P + ko)

(ix) (P—krg=17)(kso—krg) (P' + Ks0)

(x) (p—krg=iv)(kso—kKrg) (P —kirg + iY)

(xi) (p—krg—1Y)(p + ' + kso—krg) (p + ko)
(xii) (p—krg—1Y)(p + D'+ kso—krg) ' —krg + i)

where R = Rp—Ry4. Carrying out the polarization sums and converting
the wavevector sums to integrals and performing the angular averages
yields

r1
R

hC3 —F 7S va VAV,
AEF-6 = — PO S s )P By (-0 + 919"
0 rs

xZE;‘dp dp'. (5.6.4)

In going from expression (5.6.3) to (5.6.4), the position vectors present in
the exponentials of the former equation have been formally distinguished
by using R and R; at the end of the calculation they will be put equal.
Further, formula (5.6.4) applies to isotropic A and B as a rotational average
has been carried out. Table 5.3 reveals that the contribution to the energy
shift arising from graphs (x) and (xii) has, in addition to the principal value
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of the integral—which arises from all 12 graphs, a real part. The integrals
over p and p'are performed with the aid of the identity

=—F 1'71:5(x)7 (5.6.5)

where PV denotes the principal value, from which it readily follows that

1 1 PV PV
iy riy . x Y

Y yin (?5@)- ? 5@)) +25(x)3(y). (5.6.6)

The first term on the right-hand side of (5.6.6) can be further written as

PVPV PV <PV PV

T 7—7)%25@)5@)‘ (5.6.7)

Thus, the additional real term from denominators Ex and Ex11 due to the
product of delta functions in (5.6.7) is

1) LI B) (56,151,
144n2eohcz"“‘ RSB (=Y 9;+ V.9,

1 _ _ 1 1
x | | =(sinpRsinp’R+sinp’ RsinpR +
JJZ( P P P P )<ks0_qu ksO +qu
00

2 _ /I I 1 —»iq —50
<100 (phig)d(p' ki) A0 =~ g S IR AP B)F

r1 2k30

—(=V 0,4+ V.V,
R )

———sin(k,4R)sin(k,R),

(5.6.8)

which in fact appears twice, since an identical contribution arises from the
third term on the right-hand side of (5.6.6). The last step in the calculation
of the energy shift involves the evaluation of the contribution independent
of J-functions. This is done using the first term of identity (5.6.7). The
sums over energy denominators are nearly identical to that carried out for
the calculation of the ground-state dispersion energy shift, and equation
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(5.2.7) may be used to give
1

- s =2 ool 2 Lo
‘WZIM"( PR (B)P (- 05+ 9:9) 2 (704 9,9

1 — _
X J JE( sinpRsinp'R+sinp'RsinpR)

00
2( k'q+ks0+l9) 1 /

which on performing the p’ integral yields

) - o \R1
—»lq —»sO
144n4 thm JPIRCB)P (=¥ 05+ V%)) R
X (—ﬁzéiﬁﬁiﬁj)le}eksoiqu J JE( sinpRsinp’R+sinp’RsinpR)
00
2( qu+k50+p) dp
k) 0+ ko) (ko)

(5.6.10)
Using the integral result
PVJsirfl;dx:—f(ab)—i—ncos(ab), a,b>0, (5.6.11)
0
where
e e .
flx)= J 1+u2du—cz(x)sm(x)—sz(x)cos(x), (5.6.12)
0

equation (5.6.10) becomes

fqrq | BB e2. &Rl
T2 2hcz i) VoV
=2 o SR _ _
x(=V 5ij+ViVj)R§[—quf(kso(R+R))+ksof(qu(R+R))
—nkyocos(kyq(R+R))]. (5.6.13)
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It is worth noting that for |¢) =10), the f~dependent terms of (5.6.13) are
equal and opposite to the Casimir—Polder potential and provides an
alternative expression for the energy shift between a pair of ground-state
molecules. Explicitly,

r1
R

—'()r 2
6-G E AR B s ee
A = g hcz (k2y—k2)) (V704 +ViV)
-2 - —
x(—V'0+ViV))" [ o (kso(R+R)) —ksof (kro(R+R))] g

1 _,0,, —0s 2 krOksO
T T2 2th22| PR ®) (k2 —k%)

1 10 6 4 12 )
3 -
krO [krOR f(zkrOR) ( k?ORz k4 R4> +g(2kr0R) (k OR k3 RS)]

| 10 6 4 12
EN
Ko [ksoR f(2ksoR) ( TR k§0R4> +8(2ks0R) (k R K3 R3>
\

(5.6.14)

7

after differentiating and setting R=R, with

g(x)= j Lllj_:zdu: —ci(x)cos(x)—si(x)sin(x). (5.6.15)
0

Since downward transitions from the excited state |¢) are being consid-
ered, the first two terms of (5.6.13) can be identified as the contribution
from upward transitions and designated as

1 (A B, = . o gl

727.E3‘8(2)hc [ (qu_kgo)

—

(=9854 99)" Slkrg (ko (RR)) ko f (g (R+R)

(5.6.16)
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Hence, the energy shift between an excited molecule A and a ground-state
one B is given by the sum of (5.6.13) and twice (5.6.8),

kso

2
E-G_ _
AEE-G—_AE" 1 E @

—»rq =50
144n2ed e k§0)| @B

X(—ﬁzéijﬁ-ﬁiﬁj)R ( V 5U+V V) ]:3

x [cos(kyg(R+R))+2sink,,Rsink,qR] |z_p. (5.6.17)

Inserting (5.6.16) into (5.6.17), evaluating the gradients and simplifying
produces
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(5.6.18)

The first term of the energy shift is similar in structure to the Casimir—
Polder result (5.2.20), but with excited state |g) replacing ground state
|0) of A, and includes contributions from both upward and downward
transitions from |g), since the sum over r is unrestricted. The second term
of (5.6.18), however, applies only for downward transitions and arises
from real photon emission. When both molecules are in the ground
state, (5.6.18) reduces to the Casimir—Polder potential as expected.
Discussion of the asymptotic behavior of the energy shift AEF~C is
deferred until Section 5.7 when the interaction energy between two
excited molecules is computed for all R using response theory.

If A and B are identical or have resonant energy levels, the formula given
for the ground-state interaction energy (5.6.14) is invalid since not only
does the energy denominator vanish but also the term within braces. An
expression for the energy shift may be obtained in this case by carrying out
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the following limiting procedure on (5.6.14),

km_l»;lcl,lol(zk)AEGiG_ 727r31 hczmor’ (- v % 66)113
% (_@2&]_ +6i6})R}l€kY0 j}c"o(zk) [krof (kso(R+22:;:22f (kro(R+R))] g
e ST (90T ) 9099 )
M ERER))— kzg;:*) g(k(R+R))] ’ (5.6.19)
R=R

where the common energy spacing is denoted by 7ick. Carrying out the
differentiations produces

1 —»0) 4 3 1 6
T 2th22| R IOR

73 6 6
_f(ZkR)<—H—k2R2 k4R4>+g(2kR)<2kR R kw)]. (5.6.20)

Thetotal energy shiftis then given by the addition of (5.6.20) to (5.6.14), with
summation in this last equation excluding the term for which k,o=ky.

It should also be remarked that the limiting process cannot be used to
obtain the potential between two identical molecules when one of them is
excited and the other is in the ground state. The limit k4 — k,, does not
exist, as is easily seen from the energy denominators associated with graphs
(iii), (iv), (ix), and (x) in Table 5.3, in which intermediate state |II) is
degenerate with the initial state. Before perturbation theory can be used, the
degeneracy must be removed in lower order.

5.7 RESPONSE THEORY CALCULATION
OF DISPERSION FORCES

In Chapter 4, it was shown how a form of response theory could be used
instead of the routinely applied diagrammatic perturbation theory method
for the calculation of the matrix element for the resonant transfer of energy
between an excited and a ground-state pair of molecules. Adoption of the
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former approach proved to be conceptually simpler and computationally
more direct. It relied on the coupling of the transition electric dipole
moment of the acceptor species to the electric dipole-dependent driving
electric displacement field linear in the source molecule. This viewpoint
is now extended to the treatment of retarded dispersion interactions (Power
and Thirunamachandran, 1993a; Salam, 2008). The physical picture is
one in which a molecule responds, via its dynamic polarizability, to the
Maxwell fields of a second body. Symmetry is maintained in this model as
both species are permitted to simultaneously take on the roles of source and
test molecules. In addition to the advantages already mentioned in using this
formulation to calculate interactions between molecules, it is particularly
advantageous for evaluating dispersion energy shifts when one or both of the
molecules are electronically excited. In fact, response theory enables the
Casimir—Polder potential to be extracted as a special case of the general
result valid when the two entities are initially in higher lying energy levels
rather than in the ground state. This is because intermediate-state resonances
due to possible downward transitions from an excited state, in which a real
photon is emitted and subsequently absorbed, are easily located, character-
ized, and handled by utilizing the electromagnetic field operators.
Consider two neutral, polarizable molecules A and B, positioned at Ra
and R B> respectlvely, with interparticle separation distance vector
R = RB RA Further, take A and B initially to be in excited electronic
states |p) and |r). To leading order of approximation in the multipolar
coupling scheme, let electric dipole allowed transitions occur of the form
|¢*)—|p) and |sB)«|r) to intermediate states |¢*) and |s®) from the initial
states. The intermediate levels may lie above or below the initial states,
thereby enabling the contribution from both upward and downward transi-
tions to be properly accounted for. Another advantage of working with
Maxwell field operators in the Heisenberg formalism is the formal equiva-
lence between quantum mechanical observable quantities and their expres-
sion in terms of dynamical variables in classical theory. Hence, the first term
in the expansion of the interaction energy is given by the familiar formula,

AE = 212 0;i(A; k)di" (B ks Ry)d;(B; ks R )
—%%akl(B;k)d,ﬁ(A;k;ﬁB)d,L(A;k;ﬁB). (5.7.1)

The energy shift is interpreted as arising from the response of molecule &,
&E=A, B, through its frequency-dependent polarizability o;(;k) at
frequency w = ck to the electric displacement field of the other molecule
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& at the position of the first body, d:-(¢'; k; R:). In the electric dipole

approximation, the excited-state dynamic electric dipole polarizability of
molecule A is

OCU<A7IC) =

{ufq(A)H?p(A) N /‘.?%A)P‘ZM(A)}_ (5.7.2)

E,,—Tck E,, + hck

A similar expression holds for the polarizability of B, with states |p) and |q)
replaced by |r) and |s), respectively. Recalling from Section 2.6 that the
electric displacement field in the proximity of a source molecule may be
expanded in series of powers of molecular multipole moments, inserting
the first three terms of the expansion (2.6.11) in equation 5.7.1 and collecting
together all terms proportional to the second power of the transition electric
dipole moment at each center produces for the two excited molecules the
explicit expression

AE = — ZO‘U A k;v B .uakrvvRA)dj(l)(B;ﬁ;krs;R’A)

=3

_—Z“kl (B; kpg)dy, (A lvhkpqv )d(l)(A§ﬁ;kpq§RB)

—% %wmkmwxmwwﬁ@km>

“0 modes
+d (B fifis k; Ra)d }
2
%gwa )(k; Rg)d® (A; fifi; k; Rp)
+d) (4 ifis ks Ry) ¥ (K R (5.7.3)

Interestingly, the first two terms arising from the product of the displacement
fields do not contribute to the energy shift. These two terms comprise
(i) product of the free radiation field, which is independent of j and,
therefore, does not enter into the formula for AE, being simply a corrective
zero-point energy term, and (ii) interference of the vacuum field with the
first-order electric displacement field. This product is also noncontributory
as its expectation value over the ground state of the electromagnetic field
results in a change in the number of photons. The first contributing term is
that arising from the product of the fields linear in the transition dipole
moments, as evidenced by the first two lines of (5.7.3). In the first term of
this equation, for instance, molecule A responds through its dynamic
polarizability to the first-order electric dipole-dependent driving fields of



210 RETARDED DISPERSION FORCES

species B at frequency w,s = ck,s. Surprisingly, the zeroth-order field is used
in the calculation of the potential. As seen from the third and fourth terms
of (5.7.3), there is a contribution from the interference of the vacuum field
with the displacement field that is quadratic in the electric dipole moment,
giving a contribution that overall is second order in the source moment and
that must be added to the first two terms of (5.7.3) for consistency. The
various contributions to the energy shift are now evaluated by utilizing the
source-dependent displacement fields derived in Chapter 2.

Concentrating for the moment on the very first term of (5.7.3), its
contribution to the energy shift is calculated by taking its expectation
value over the molecular state |#) and the vacuum state of the radiation field.
Since the first-order displacement field operates only in the fermion space,
integrals over radiation field states are unity. Thus,

1 - b= - —
52 Dy (As ke )V (B: i s R, 1)15) (51 (B: i s R 1))
0 s

! s
- _WZ%']’(A;]C,S)M]( 'ul k6 lk(kisR)ﬁl(krsR)
0

(5.7.4)

on using the displacement field operator linear in the electric dipole moment
(2.6.21), with the tensor field f;;(kr) given by (2.9.4). For the third term
of (5.7.3) involving the response of A to the product of the free and quadratic
fields of B, only the diagonal matrix element over the electronic state |r) is
required of the second-order field because the vacuum field operates exclu-
sively in the boson space. This quantity has been worked out in Section 2.9
andis given by equation (2.9.5). Also, making use of the mode expansion for
the free displacement field, the third term of (5.7.3) can be written as

5 S oA 0[O, 2)srldl” (s Rl 1R, 2)(1(E, 23
0%

xd”) (B; fifis ki Ra)|r; Ok, 7))+ (O(K, 2); rld? (B: fift; ks R)
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=1
=
=
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z

x|ry 1(k, 2))1(K, 4

n e,(f) (E)?kjé,(-” (l_c')efi/?ﬁ} ’ (5.7.5)
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with 7, givenby (2.9.6). After carrying out the polarization sum and angular
integration, the first term of (5.7.5) becomes

! hck ) (s 7 ik R
_877:283];(W)%(A’k)€i (k)e,” (k)e™ "2y
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§ 0

[Fi(kR)—F g (kR)][K3F . (kR) — k3 Fji (kg R) e~k +K)ct]
(kg—k)

- (Fu(kR) = F (kR)JIF e (kR) — e e (e R)e 0
(ks + k)

(5.7.6)

To evaluate (5.7.6), the Cauchy principal value is taken for the integral,
which is appropriate since exact resonances are excluded in the k-integral
when making the continuum approximation to the mode sum and transform-
ing the integral from one along the real axis to one along the imaginary axisin
the complex plane on inserting k = —iu. On substituting the explicit form of
the tensor field F;(kR) and expanding, (5.7.6) is seen to contain both time-
dependent and time-independent terms. The former is given by

1 rs ST 3OQ . 7 ik,s(R—c
G 2 1 (B (B) (k) jduuzw; icu) [fﬂucsr Ryel=<0)
0
—uc(t—R/c) —uc(t+R/c)
(iR 7 kn(R=eF (i RV
Xﬁk( w R) u—+ ikrs fll(kSV R)C f]k( m R) U+ ikrs
3 " ‘ 7uc(t R/c) "
+fulkisR)e" Sr(R_Lt)J;‘k(_i“ R) 7]{ —fa(kis R)e' (et
—uc(r+R/c)
Xf]k(—luR)W . (577)

Fortimes 7 > R/c,the contribution (5.7.7) tends to zero as the integrals have
exponentially decreasing values. Furthermore, the average of (5.7.7) over a
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finite duration approaches zero due to the modulating factors e,
resulting in the neglect of these oscillatory terms henceforth. Returning
to (5.7.6) and evaluating the k-integral for the two cases k,; > 0 and
kg > 0 produces for the time-independent part

1 rs ST r
T 64n2e2 Z sgn(krs)otyi (As ki) 1 (B) 1 (B)kf it (ks R)fj1 (kys R)
0 s

h (o]
¢ J duu(’e*z”Rocij (A; icu) oy (B icu)fiy (iuR)f (iuR),
0
0

(5.7.8)

where sgn(x) is the signum function. An identical contribution to (5.7.8) is
obtained on evaluating the second term of (5.7.5), so that the contribution to
the energy shift arising from the response of A to the interference of the free
and second-order fields of B is twice (5.7.8). It is important to note that for
states for which E, < Ej, the pole term of (5.7.8) is equal and opposite to the
contribution arising from the product of the first-order fields (5.7.4). When
E, > E,, however, twice the first term of (5.7.8) is identical to (5.7.4),
doubling this contribution overall. This addition and cancellation of pole
contributions from the zeroth and quadratic fields, with terms from the
product of the fields linear in the source moment, also occurred in the
computation of the Poynting vector and electromagnetic energy density, as
detailed in Chapter 2.

After evaluating the second and fourth terms of (5.7.3), namely, those in
which species B is viewed as a test polarizable body that responds to the
source fields of entity A, and adding to twice the value of the contribution
from (5.7.8), the energy shift between two oriented and excited molecules is
found to be
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h
ng% Jduu662“Roc,~j(A; icu)ou (B; icu)fy (iuR)f; (iuR),
0

(5.7.9)



RESPONSE THEORY CALCULATION OF DISPERSION FORCES 213

where the u-integral term has been counted only once. For isotropic A and
B, rotational averaging of (5.7.9) produces
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(5.7.10)

It is interesting to note that the first two terms of the energy shift (5.7.10)
apply only to downward transitions from the initial state and correspond
to real photon emission. The third term, on the other hand, contains both
upward and downward transition terms since the sums over intermediate
states |¢) and |s) are unrestricted. From the result (5.7.10), which applies
when both of the molecules are excited, it is a simple matter to obtain
expressions for the energy shift when one or none of the molecular pairs is
excited. The last of these cases is examined first.

When both species are in the ground electronic state, the first two
terms of (5.7.10) vanish since only upward transitions from the initial
state are possible. Left behind from (5.7.10) is the u-integral term with

p) = [r) = 10),

1 — 21 -0, 2 T 6 _.—2uR qukSO
s L AP B | duae
36m3elhc ; ) (kgo +u) (k3 +u?)
1 2 5 6 3
X [MZRZ + u3R3 u4R4 u5R5 u6R6:| ) (5'7'1 1)

whose composition is made up solely from contributions due to virtual
transitions and is recognized straight away as the Casimir—Polder potential
(5.2.18). This potential and the form of its asymptotic limits were discussed
in Section 5.2.
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If molecule A is taken to be excited while B remains in its ground state,
for example, only the second and third terms of (5.7.10) survive, with
|r) = |0}, and the result (5.6.18) is recovered. It is instructive to examine the
asymptotic limits of these two terms. In the far zone, the dominant
contribution arises from the second term of (5.7.10) and has an R>
dependence of the form

1 —
247T282R2 Z B k["])“’tpq( )’ pq7 (5712)

Ep >E,,

characteristic of emission of a real photon from the excited state [p) of A.
This contrasts with the inverse seventh power dependence at long range of
the contribution from the third term of (5.7.10),

1 ~ 210 2]0 6..—2uR kgpkso
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(5.7.13)
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where the summation over ¢ includes both upward and downward transi-
tions, which has the familiar form

23%c
~ s HA;0)x(B; 0), (5.7.14)
0

with o(A; 0) the static excited polarizability of molecule A. For small R, the
leading term of (5.7.13) is

Iﬁ‘”’( )| (B)[
5.7.15
2471?2 RGZS ‘iP |Eqp|+Es0) ’ ( )

while that from the second term of (5.7.10) is

~ 57 2R6 Z @ (A)Pou(B; Koy ). (5.7.16)

Ep >E,,
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Adding the last two equations results in the total small R limit
- -0,
Z E7 (A) | (B)
2477:2 2RO Eqp +Eg)

(5.7.17)

in which both real and virtual photon terms contribute to the energy shift,
which exhibits R~® dependence on separation distance. The limiting
behavior coincides with results obtained by calculating the response of
a polarizable test body to the fields of the source, the latter giving rise to an
electromagnetic energy density, as presented in Section 2.9.

As already pointed out, when both molecules are excited, all three terms
of (5.7.10) contribute to the interaction energy. To simplify the analysis, itis
convenient to decompose the contributions into three types of terms arising
from transitions |¢) < |p) and |s) < |r) that are both upward, one upward
and one downward, or both downward. Details concerning the first two
scenarios have already been examined, as the functional forms of the
contributions are similar to that found for the ground-state dispersion
interaction and the energy shift when one of the two molecules is excited.
The pertinent formulas are identical except for replacement by the appro-
priate ground- or excited-state polarizability tensor. Downward transitions
from the initial states of both species can occur only when A and B are both
excited and the contribution in this case is new relative to the other two.

When characteristic molecular transition wavelengths are larger than the
internuclear separation, R~°-dependent limiting terms arise from all three
parts of (5.7.10),
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whose addition simplifies to
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At large separation distances, the dominant contribution is again propor-
tional to R~ and originates from the first two terms of (5.7.10) due to real
photon exchange. Their summation may be simplified to

! |#(A)"|5" (B)|* 2 2
4R2 Z EP‘IE”S(qu—i_EPqE”S—i_Ers)'

B 367’[28%(7’16) q.5 (qu + Ers)
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(5.7.20)

In addition to the advantages mentioned in the introduction to this section
regarding employing response theory for the calculation of energy shifts,
the method also clearly shows the role played by both vacuum and source
fields as well as the necessity of including terms correct to second order
in the dipole moment so as to achieve correct results, in particular the
reinforcing or canceling of relevant terms from upward and downward
transition contributions.

5.8 DISPERSION POTENTIAL VIA THE METHOD
OF INDUCED MULTIPOLE MOMENTS

An alternative approach to perturbation and response theories for the
calculation of the retarded van der Waals dispersion energy, including the
additional contributions arising when molecules are excited, is the induced
multipole moment method (Power and Thirunamachandran, 1993b). This
particular technique provides an intuitive physical picture of dispersion
forces and a simplified computational procedure. It relies on the fact that
action of an electric displacement field on a pair of neutral, electrically
polarizable molecules induces an electric dipole moment to leading order at
each center. Even though the expectation value of the radiation field over
the electromagnetic vacuum state vanishes, fluctuations of the field op-
erators persist for this state and are nonzero. Hence, vacuum fluctuations of
the electromagnetic field can momentarily distort the molecular charge
distribution and induce a temporary dipole moment. The moments induced
at each molecular center are coupled via the retarded resonant interaction
tensor, a quantity that features in the transfer of energy between an excited
and a ground-state species, giving rise to a dispersion energy shift on taking
the expectation value of the ground state of the total molecule plus field
system. In this regard, the viewpoint is similar to that originally adopted by
London in his semiclassical treatment of the dispersion interaction in which
virtual dipole transition moments were coupled by a static dipolar coupling



DISPERSION POTENTIAL VIA THE METHOD OF INDUCED MULTIPOLE MOMENTS 217

potential, giving rise to an R~° dependence on intermolecular separation
distance in second order of perturbation theory. In this section, the causal
quantized displacement field operator is used instead of a classical external
electric field, enabling the dispersion potential to be obtained for all R
beyond wavefunction overlap and correctly incorporating the effects of
retardation.

Let A and B be neutral polarizable molecules situated at R4 and Rp,
respectively, with relative displacement vector R = Rp—R,. In the pre-
sence of an electric displacement field of specific mode character at the field
point 7, d* (k A;7), the ith component of the induced moment at site ¢ is
given by

©M(EK) = ey oy (&; k)dl( 2 R:), (5.8.1)

where ;;(&; k) is the dynamic electric dipole polarizability tensor of
species &,

) — W& wEm )
aij(é,k)—;{ E ek T B hk [ (5.8.2)

Coupling of the electric moments induced at A and B occurs through the
resonant interaction tensor at the single frequency w = ck,

N . 1 FikR
VE(k,R) = — 4mo( Vo5 +Viv))
1 DB TP D D \2p2] ~FikR
4n80R3[(5 —3RR;)(1 £ ikR)—(0;—RiR))k°R*|eT"¥.

(5.8.3)

An expression for the energy shift is obtained on summing over all modes
of the radiation field,

AE = Zumd (A; k)i (B; K)Re Vyi(k, R). (5.8.4)

Since it is the real part of the resonant interaction tensor (5.8.3) that appears
in the energy shift formula (5.8.4), which is independent of the signs
occurring in the former, the & superscript is left unwritten in the last
relation. Inserting equation (5.8.1) into (5.8.4) yields an expression for AE
that explicitly depends upon the polarizabilities of each molecule and the
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electric displacement field. Thus,

AE =" e (As K)o (B; k)di- (K, 73 Ra)di-(k, 2; Rg)Re Vy(k, R).
k2 (5.8.5)

Clearly evident from formula (5.8.5) is the presence of the field—field
spatial correlation function, namely, the product of the electric displace-
ment fields at two different points in space. To compute the ground-state
dispersion potential, the expectation value of equation (5.8.5) is taken
over the state \E{)‘,EOB,O(k, 1)) corresponding to both entities in the
ground electronic state and the radiation field in the vacuum state without
photons. The expectation value over the molecular factor is elementary,
yielding ground-state molecular polarizabilities of each species. For
the radiation field part, use is made of the mode expansion for the
transverse displacement field equation (1.7.17), the required quantity
easily shown to be

(O(K, 2)|d;"(k, 7 Ra)d}* (K, % Rp)[O(K, 2))

_ (Tckeo oy ) ik R
_< v ) e (K)el”) (k)e k. (5.8.6)

Substituting (5.8.6) into (5.8.5) produces

AE — Z <th> ,k A k)OC]](B k)e;cﬁ)(l_(‘) ()(l_c‘)ef’ERRe V,](k,l_é)
(5.8.7)

Next the mode sum is carried out. First, by performing the sum over
polarizations using identity (1.4.56) and, second, by converting the
wavevector sum to an integral via the replacement

/)2 g =

polar coordinates, d*k = k*dkdQ, where dQ is an infinitesimal element
of solid angle. Angular integration is then executed using the result

k and expressing the volume element in spherical

1 So s
EJ(éij_kikj)eik RdQ

w o~ Si . . [coskR sinkR
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Following this procedure and inserting the real part of V,-j(k,ﬁ) from
equation (5.8.3), the energy shift (5.8.7) becomes

o]

he Jdkk%c[k(A;k)o;ﬂ(B;k)

AE=——“
16n333R3
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. .  sinkR . . f[coskR sinkR
~ [(%—szm kR O 3RR) (W‘W)]

(5.8.9)

It is convenient to reexpress the energy shift more compactly in terms of the
tensor field F;;(kR) defined by equation (2.9.4) on noting that the angular
integral (5.8.8) is simply the imaginary part of F;;(kR), while the real part of
the coupling tensor V;;(k, R) is (—k>/4neo)Re F;;(kR). This leads to

AE = — % J dick®aty (A; K)oy (B; k)Re[F(kR)|Im[F i (kR))]
& ’
% (5.8.10)
or alternatively as
hic 1 -2 - -\ cos kR
-2 - -\ sinkR
x| (=¥ ou+ Vi) . (5.8.11)

To obtain the result for isotropic A and B, use is made of the average over
the product of the molecular polarizabilities, (o (A;k)o;(B;k)) =
0i0j10.(A; k)ou(B; k), where a factor of 1/3 has been absorbed into each of
the orientationally averaged polarizabilities. Contracting with the tensors
occurring in equation (5.8.10) or (5.8.11) yields

ee]

. 10 6
J dkOC(A;k)OC(B;k)k“ [slnkRCOSkR (2_W + W)

he
AE=———+—+—
167‘538(2)R2

+ (cos? kR—sin* kR) <&—%>} . (5.8.12)
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Recognizing that the term within the square brackets above can be
written as

. 5 3 2 6
szkR<l—W + k4R4) +cos2kR (E_W>

2% 5 6 3 } Stk

_l’_

kR ICR: IORS T 1AR+|C (5.8.13)
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and transforming to an imaginary wavevector variable k = ju results in the
Casimir—Polder potential
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(5.8.14)

after a 90° rotation in the line of integration in the complex plane, where
the polarizabilities have been taken to be real at both real and imaginary
frequencies.

The versatility of the induced moment approach is illustrated by its
application to the calculation of the dispersion potential between electro-
nically excited molecules, reproducing in a facile way the results obtained
via diagrammatic perturbation theory in Section 5.6 and response theory in
Section 5.7. To bring to the fore the essential physics and to simplify the
treatment, molecule A is taken to be excited, initially in electronic state |p),
with species B in the ground electronic level. In addition to upward
transitions from |p)to higher lying intermediate states |¢), molecule A can
now make downward transitions from |p), a scenario that was previously
forbidden when A was in its lowest electronic state. The contribution
from upward transitions when A is excited and B is in the ground state can be
obtained using the induced moment method in a manner similar to that
leading to the result (5.8.14) on taking the expectation value of formu-
la (5.8.5) over the state \E;‘,EOB ;0(k, 1)), where now the excited-state
polarizability of A, equation (5.7.2), appears in the expression for the
energy shift. The explicit form is given by the first term of equation (5.6.18)
or equivalently by (5.7.13).

To evaluate the additional contribution to the interaction energy due to
downward transitions occurring in species A, in which a real photon is
emitted from the excited state, the starting point in the calculation is the



DISPERSION POTENTIAL VIA THE METHOD OF INDUCED MULTIPOLE MOMENTS 221

formula for the energy shift (5.8.5), modified to

AERES _ Zgo i (A K)oty (B; k)i (Ra)di (Rp) V™S (Kpg, R),
K, A
(5.8.15)

where the superscript “RES” denotes the contribution of the resonant term,
corresponding to adownward transition |¢) < |p) in A of circular frequency
Wpg = ckpg, and V}}ES (kpq, R) is the retarded coupling tensor (5.8.3) eval-
uated at the resonant frequency of the downward transition. Employing the
vacuum field spatial correlation function (5.8.6), carrying out the polariza-
tion sum, converting the k-sum to an integral, and applying the integral for
the angular average in the form

1 pa ik Raey L =2 SRV ikR . —ikR
4nJ(5U kikj)e dQ_Zik3< V oy VV)R( e,
(5.8.16)
produces
1 o0
RES _
AE' _47'62801( V 5k,+VkV1) Jdkajl(B k)
0

szz qpk2 YAV (A)VRES (e, B) (HR—e~HF). (5.8.17)

Integration yields

1
RES .
AETS = — 1672¢2 Zq: 17 (A) g (A)otji (Bs Kepg)
ikypR ~ o\ e—tkgR
X {(—vzaﬁvivj) eR } {(—vzakﬁvkv;) © ] (5.8.18)

after substituting for Vi (k, R). In terms of the tensor Fj;(kR), (5.8.18)
becomes

AERES _ _

167t2 2 Z A)oyi(B; kpq)kgpF i(kgpR)Fri(kgpR),
Ep>E,1

(5.8.19)
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where the overbar designates the complex conjugate. It is interesting to
note that the resonant contribution holds only for downward transitions
from |p), with B responding through its polarizability to the frequency
wpq = (E,—E,)/h. Evaluating the gradient operators in (5.8.18) and
performing a rotational average results in the following contribution due
to exchanged photons being on the energy shell in agreement with the
second term of (5.6.18):

1 1 1 3
RES __ - 2 n. 6
AE - _2477,'282 Z "upq(A)| O‘(B’kl’q)kpq 2 R2 + 4 R4 + J6 RS
0 ¢ Pq 1Zi Pq
Ep>Eq
(5.8.20)

Many of the difficulties associated with the use of diagrammatic
perturbation theory techniques in the calculation of dispersion energy
shifts between ground and/or excited molecules are avoided in the induced
moment approach. For instance, integration over wavevector, if at all, is
tackled more easily in the latter method and summation over a large number
of graphs is unnecessary. Further, the viewpoint is conceptually simple and
physically intuitive. It is easy to extend to include the effects of higher
multipole moments and may also be applied to the computation of other
intermolecular interactions such as the modification of the dispersion force
by external radiation or laser-induced resonance energy transfer. Advan-
tages also occur relative to response theory. In the response technique,
a priori knowledge of the functional forms of the Maxwell field operators
in the proximity of a source molecule are needed correct to at least second
order in the electronic charge.

5.9 DISCRIMINATORY DISPERSION INTERACTIONS

It was shown in Section 4.4 that the resonant transfer of energy between two
chiral molecules is discriminatory, being proportional to the optical
rotatory strength tensor of each unit and changing sign when one enantio-
mer is replaced by its mirror image form. Migration of energy is not the only
intermolecular process that depends on molecular handedness—a char-
acteristic of interactions occurring between optically active species in
general, but is also manifest in processes such as dispersion energy shifts,
radiation-induced chiral discrimination, and molecule-induced circular
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dichroism and luminescence, for example. Once again the discriminatory
aspect is attributed to the low symmetry of chiral entities, with transitions in
these species including contributions from higher multipole moments, with
the leading term dependent on the handedness of each molecule being
proportional to the interference of electric and magnetic dipole coupling
terms. In this section, the retarded dispersion interaction between a pair of
optically active molecules is computed. As for the calculation of the
Casimir—Polder potential, three different physical viewpoints and compu-
tational procedures are employed. First, diagrammatic time-dependent
perturbation theory is used to evaluate the energy shift between two chiral
molecules in the ground electronic state. Second, response theory is
employed to evaluate the interaction potential for two excited optically
active species. In this approach, a test chiral molecule responds through its
mixed electric-magnetic dipole polarizability to the electric-magnetic
dipole-dependent electric displacement and magnetic field operators of
a second source molecule. Third, the induced moment method introduced
in Section 5.8 is extended to deal with coupling between chiral
chromophores.

5.9.1 Perturbation Theory

In the time-dependent perturbation theory calculation of the van der Waals
dispersion potential between a pair of neutral electric dipole polarizable
molecules, the interaction was interpreted as arising from the exchange of
two virtual photons between the two centers. Employing an interaction
Hamiltonian that is linear in the electric displacement field necessitated
the use of fourth-order perturbation theory for the calculation of the
energy shift. A similar viewpoint may be adopted for the evaluation of
the dispersion interaction between two chiral molecules (Jenkins et al.,
1994a,1994b). Let these two bodies be labeled A and B, both be in the
ground electronic state, and be located at R4 and Ry, respectively. The
radiation— molecule Hamiltonian for this two-particle system is

H = Hmol(A> —|—Hm01(B) + Hpaq —|—Him(A) +Hint(B)- (591)

To correctly describe optically active molecules, the electric dipole ap-
proximated form of the perturbation operator (5.2.5) is now no longer
sufficient. It is modified by adding the first term of the magnetic multipole

series, namely, the —1(&) - b(R;) interaction term, where 77(¢) is the
magnetic dipole moment operator of species ¢ and b(R;) is the magnetic
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field operator, since selection rules now permit magnetic dipole allowed
transitions to take place in addition to electric dipole allowed ones to
leading order, as well as contributions from higher multipole moment
terms. Therefore, the interaction Hamiltonian can be written as

—

Hin(A) + Hin(B) = —¢; Ti(A) -d " (Ry)—ii(A) - B(Ry)

— —

ey fi(B)-d" (Rg)—i(B) - B(Ry), (5.9.2)

which is identical to the coupling operator (4.4.1) used in the computation
of the discriminatory transfer rate. Although the electric quadrupole
interaction term —é; ' Q;(& )6, d+(R:), where Q;; is the electric quadrupole
moment tensor, is of a comparable order of magnitude to the magnetic
dipole moment, the electric dipole—quadrupole contribution to the disper-
sion potential vanishes for isotropic molecules and is, therefore, excluded
from further consideration.

It may be recalled from Section 5.2 that in the perturbation theory
calculation of the dispersion energy shift, 12 two-photon exchange dia-
grams involving electric dipole interaction vertices needed to be summed.
If Hi (&), E=A, B, given by equation (5.9.2) is used as the interaction
Hamiltonian at each respective center, the resulting energy shift will
comprise three different types of contribution. The leading electric dipole
interaction term will again yield the Casimir—Polder expression, while the
pure magnetic dipole coupling will give rise to the dispersion potential
between two paramagnetically susceptible molecules, in essence the mag-
netic dipole analogue of the Casimir—Polder potential. It is considerably
smaller in magnitude than the electric dipole—dipole interaction and has the
functional form

o
hi
AE = — m J duu4e72uRX(A; ZU)X(B, lu)
0
0

2 5 6 3
1+ = 593
% [ TR TR T iR u4R4]’ ( )
where the isotropic magnetic dipole susceptibility at imaginary frequency

is defined as

Et0| —'0[
7 (&; i) =3 Z (5.9.4)

E%+ hcu '
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A contribution of similar order of magnitude to the chiral discrimina-
tion dispersion potential, which survives orientational averaging, is the
energy shift between an electrically polarizable molecule and a magneti-
cally susceptible one, and details of this calculation are presented in the
following section.

To obtain the energy shift between two chiral molecules, the contribu-
tion proportional to the product of the electric—-magnetic dipole moments
at each center is extracted. This means replacing one electric dipole
interaction vertex in A and B in the time-ordered graphs of Fig. 5.1 by a
magnetic dipole coupling term. Instead of adding the contributions from
12 diagrams, now 48 Feynman graphs have to be summed. The four graphs
ensuing from diagram (i) of Fig. 5.1 are illustrated in Fig. 5.9. For the

(.5" E;) 5

m

Sl
.l
=

(a) (b)

(7', &) 5

r (p. &)

£

1)

Ia
)
-
sl

(c) (d)

FIGURE 5.9 One set of four time-ordered graphs used in the calculation of the
chiral discrimination dispersion interaction. The labels y and m are shorthand for
electric and magnetic dipole coupling vertices.
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current problem, the perturbation theory solution involves techniques and
formulas previously employed in Sections 4.4 and 5.2. The energy shift is
calculated using the fourth-order perturbation theory expression (5.2.4),
but with coupling Hamiltonian (5.9.2). As before, the initial and final
states are represented by the ket |0) = |ES, EB;0(p,¢),0(5,¢)), corre-
sponding to both molecules in their lowest electronic level, with
no photons present. The 48 possible time orderings may be grouped into
12 sets of 4 diagrams, with the product of the energy denominators
occurring in each set given in Table 5.1. Evaluating the four graphs in
diagram (i) of Fig. 5.1, which have the common energy denominator
product [(Ey + ficp’) (hep + hiep') (Eyo + iep)] ™', where r and s denote
excited states of A and B, respectively, correspondmg to the denominator
of graph (i) of Fig. 5.1 as displayed in Table 5.1, the contribution is

(e ()

5 5

X [ () (A (B (BB (B)b (Bel (5ol (7')

+ (A (A)m® (B)u? (B)e (5)b )

( D@)e 3 (7)

m? (A (A (BYmP(B)BY ()el? (Fe” (5)b ) (7')
+u?'< )m2(A) (B (B)el (el (76" (56" (7))
(E

/
x PPV R(Eg + hep') (hep+ hep')(Eo + hep)] .

(5.9.5)

Using the fact that 1" (A)m/°(A) = —m}"(A)°(A) and 1*(B)m)(B) =
—m% (B) & (B) for transition dipole moment matrix elements taken over
real wavefunctions and carrying out the sums over polarization vectors,

equation (5.9.5) becomes

—ZZ<280V> (280V>u°’(A) (4)u (B)mi (B)

X {(5% —pibi) O=ppy) + (Ouw—pipi) (Oji—p;py) +einseina (PP, +l3§f9z)]

xel TPV R[(E,g + hep!) (hep+hep') (B +hep)] . (5.9.6)
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Evaluating the contribution from the remaining 44 diagrams and adding
to (5.9.6) enables the energy shift to be written as

AE=-3"%" <2ffv) (j”v> (A (A (B (B)

_‘4/)

p,p

x [<5,-k—p,-pk><6ﬂ—ﬁ;ﬁ;> + (Gu—Pip) Ga—pip)
xii
+ et (PP +PiPy) }e’(”“’ "y pt, (5.9.7)

the 12 energy denominator products being listed in Table 5.1. Their
summation may be performed in a manner similar to that carried out in the
calculation of the Casimir-Polder potential, since the energy denomi-
nators are the same in both cases. Converting the wavevector sums

in (5.9.7) to integrals and performing the angular averages using relations
(4.2.12) and (4 4.7) produces

1
(kro+ky0)

R s1npR .~  [cospR sinpR
PR +(5ik_3RiRk)( PR. PR
. . sinp'R . . [cosp’R sinp'R
X | (0 —RjR1)—=—=+ (0 —3R;Ri) R RS
. . sinp'R ~ . [cosp’R sinp'R
+ (5ik—RiRk)p,—R+(5ik—3RiRk) W_W

smpR . ~ [cospR sinpR
(0n—R +(07—=3R;R;) (W_W

49 cospR sinpR
itsekjt | ——— 55
( r0 +P SO +P) . pR p2R2

cosp’R sinp’R

p/
PR ((kro+P')(kso+P’)>

(5.9.8)
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which has been separated into two parts, one symmetric and one anti-
symmetric in p and p’. Performing the p’ integral and transforming p to an
imaginary wavevector results in an expression for the dispersion energy
shift between two chiral molecules in fixed relative orientation

[o.9]
duus 672uR

1
AE = — OrA ;jOA OSB sOBJ
47'[38%hc3 Ers K ( )m] ( )/’Lk( )ml ( ) (k%0+u2)(k§0+uz)
’ 0

X [(OfikOCj/—Ei/sEjszsi?z) (uR) > + (ot By + B0y —2eisejneRsR:) (uR)

+ (ot By + Biroit + BicBj—eitseineRsR ) (uR) ™ + 25 By (uR)

+ BB (uR)™). (5.9.9)
where the dyadics o; and f; are defined as oj;=d;— —R; R and
By =0di— 3R; R To obtain the energy shift for a pair of freely rotating

optlcally active molecules, an orientational average is carried out using
the result

(W@ (€)= 30 % (&) 7 (2)], (5.9.10)

yielding the interaction energy

1 =0 — 10 -0, )
AE:—i " A " A o B)- $ B
ez ) ) 8) 7 8)

T duyt e 2uR 6 3
44— 1~ 5.9.11
<] (kfo+u2)(k?o+u2)[ +uR*quz}’ (5:9-11)
0

which holds for all separation distances outside the charge overlap region.
In contrast to the Casimir—Polder potential, the interaction energy (5.9.11)
depends on the chirality of each molecule and is discriminatory. This is
due to the pseudoscalar nature of the dot product of the transition electric
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and magnetic dipole moments that features in the energy shift. When one
optical isomer is changed to its antipodal form, i, a polar vector, changes
sign on inversion while /72, an axial vector, is symmetric to 7 being
transformed to —7. The energy shift (5.9.11) may also be expressed in
terms of the rotatory strength tensor defined in equation (4.4.15). For
chemically distinct species, it is not possible to determine the absolute
sign of the interaction because the rotatory strength may be of either sign.
When the two molecules are chemically identical, however, the energy
shift for opposite isomers is attractive, while that for like isomers it is
positive in sign.

From the general result (5.9.11) valid for all R, it is a simple matter to
obtain the limiting forms of the potential at long and short separation
distances. The physical and mathematical approximations are identical to
those made in calculating the asymptotic behavior of the Casimir—Polder
potential in Section 5.2. In the far zone, after dropping the ? factor relative
to k,0 and kg in the wavevector denominator product and doing the
u-integral,

e R (A)R(B)
AEg; = — , 5.9.12

D DV (55.12)
which is expressed in terms of the rotatory strength tensor and is seen to
exhibit an R~° power law dependence. To obtain the near-zone limit in
which kR < 1, e 2“R is approximated to unity, the term 3(«R)~ in square
brackets is retained, and the integral is evaluated using relation (5.2.21) to
give

1 R (A)RV(B)
AEnz = — . 5.9.13
NZ 12n265¢2RO rzb: Eyo+ Ex ( )

It should be mentioned that just as the R~® London dispersion for-
mula (5.2.22) can be derived from the static electric dipolar coupling
potential (5.3.5) and second-order perturbation theory as shown in
Section 5.3, the near-zone discriminatory shift (5.9.13) can likewise be
obtained by adding the static magnetic dipolar coupling to the electric part
to give

1 1 .

Vap = AR i(A);(B) + gmi(A)mf'(B) (65—3RiR;),  (5.9.14)
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and using the expression for the second-order energy shift (5.3.6) and
extracting the electric-magnetic cross-term.

5.9.2 Response Theory

Having demonstrated in Section 5.7 that response theory is advantageous
for the computation of dispersion potentials between electric dipole
polarizable molecules relative to diagrammatic time-dependent perturba-
tion theory, the interaction between a polarizable species and the source
Maxwell fields of a second body is used to evaluate the discriminatory
dispersion force between two excited chiral molecules in this section
(Jenkins et al., 1994a, 1994b; Salam,1996), extending previous results for
such systems that were limited to ground-state interactions. Labeling the
initial excited electronic states of A and B as |p*) and |r®) as before, with
electric and magnetic dipole allowed upward and downward transitions to
intermediate states |¢*) and |s®), respectively, the extension of the energy
shift formula (5.7.1) applicable to the dispersive coupling between two
optically active molecules is

AE = Im—Gy(A, 0)d* (B; Ra; 1)b;(B; Ra; 1)
€0
+Im— Gu(B, )d (A; Rg; )by (A; R 1), (5.9.15)
€0

A consequence of less restrictive selection rules for electronic transitions in
chiral molecules is that such substances are characterized by a mixed
electric-magnetic dipole dynamic polarizability tensor G;(&; w), defined
analogously to the pure electric dipole polarizability as

Gy(& o) =) {Mf E(,i)zw(é) + ij(,f)fhf) } (5.9.16)

n

In contrast to the electric dipole polarizability tensor o;(&;w), the
mixed tensor G;;(&; @) changes sign when one enantiomer is replaced by
another of opposite handedness, thereby permitting differentiation of
species with differing chirality to occur. From expression (5.9.15), it is
seen that each optically active molecule responds via G;;(&; w), £ =A, B, to
the electric displacement and magnetic field operators due to a second
source molecule at the position at which the first species is located. Since
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the electric-magnetic dipole response tensor (5.9.16) is imaginary for real
wavefunctions, the imaginary part is taken in the formula for the energy
shift. To find the interaction energy between two chiral molecules using
the response theory approach, the electric dipole-dependent Maxwell
field operators in the proximity of a molecule are no longer sufficient.
Contributions from higher multipole moments are required. This nece-
ssitates using the electric and magnetic dipole-dependent first-order
Maxwell fields and the second-order electric displacement and magnetic
fields dependent bilinearly on i and 772. The first of these were found in
Section 2.7 and are given by equations (2.7.6) and (2.7.7). Appendix A
contains the second-order fields correct up to and including the electric
quadrupole coupling, with the relevant fields to be employed in the present
application given by expressions (A.2) and (A.8). Inserting the expansion of
the Maxwell fields in series of powers of the first two multipole moments
and retaining terms proportional to the product of zi and /7 at each center,
the energy shift (5.9.15) becomes

I
AE = Im% % Gij(A; o)
Mgz BN D poz. . B Wip.z 0 B
X |d; " (B; [l; ;s Ra)b; (B s 53 Ra) + ;7 (B3 1 oy Ry)
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xbgl)(A; 1 Wpgs RB)} —Im— Z Gii(A; 0)
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X [b](-o)(a); EA)dfz) (B; [i; ; Ry) + b](-z) (B; fim; w; I_éA)d(O) (w; RA)}
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—Im— Gi(B;
m- > Gu(B; o)

modes
x [b§°>(w; Rp)d? (A; fui; ; Rp) + b (A; firi; 0; Rg)d.” (o3 ﬁg)} .
(5.9.17)

As in the corresponding calculation of the Casimir—Polder potential in
Section 5.7, A responds to the source fields of B, the latter species
undergoing transitions with energy E,; = %ick,,. Meanwhile, B reacts to
the fields of molecule A, for which transitions take place between states
|g)—|p) with energy E,, = fick,, Concentrating for the moment on the
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first two terms of (5.9.17) arising from the product of the radiation fields
linear in the moments, use of (2.7.6) and (2.7.7) leads to

I _
——— = Gy(Aski )KS [ (BYmY (B)f i (knsR)f1 (FersR)
167 E3C7 4
—m(B) 1 (B)g . (krsR) g (KrsR)]
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11 _16n28%c22Gk1(B;kpq)k6 [ pq( )m _7P(A)fki(kqu)flj(kqu)
m q

—11(A) 1" (A) 8 (KpgR) g1 (KpgR) |
(5.9.18)

For the evaluation of the last two terms of (5.9.17), a procedure identical to
that carried out for the calculation of the Casimir—Polder potential using
response theory, detailed in Section 5.7, is followed. Employing the
appropriate second-order Maxwell fields in addition to the free displace-
ment and magnetic fields, equations (2.6.13) and (2.6.14), the contribution
arising from the interference of the vacuum and bilinear fields is
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Appearing in the u-integral terms of the energy shift is the mixed electric—
magnetic dipole polarizability tensor at imaginary wavevector k = iu

Gij(f;icu)—Z{Hi (é)n?j (5)+ ()™ (5)}

E,.—ihcu E,,.+ificu

zzizwn(é)mfm(é)hw, (5.9.20)

B2+ (hew)?

and the geometric tensors fj;(iuR) and g;(iuR) are given by equations
(2.9.15) and (2.9.35), respectively. The total energy shift is obtained by
adding equation (5.9.19) to the contribution (5.9.18). As in the field
theoretic computation of the Poynting vector, the electromagnetic energy
density due to an excited source, and the dispersion force between two
excited molecules, the contribution arising from fields linear in the
moments exactly cancels the term from upward transitions from the
initial state originating from the product of the vacuum and second-order
Maxwell fields, producing

1 S St r
AE= 555> Gk K (1 (B (B ki RVf (kssR)
0 s

—mi (B) )" (B)gi (krsR)gj1 (KrsR)]
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47.53 th3zﬂpq qp )“k (B) Sr(B)
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X Jdu(kquruz)(kferuz) i ((uR)fyr (iuR) — g (iuR) gjn (iuR)).

(5.9.21)

As before, the first two terms of the energy shift apply only for downward
transitions from the initial state, corresponding to real photon emission,
while the u-integral term contains contributions from both upward and
downward transitions. Inserting the geometric tensors and simplifying
produces the following result for the dispersion interaction energy
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between a pair of excited chiral molecules in fixed relative orientation,
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For freely tumbling A and B, an orientational average of equation (5.9.22)
results in the energy shift

1 .
AE=————Y% G(A;ky)|i" m’ k

2 , 2 3
K2R AR kSRS

Ey>Eys
o 2 2 3

12n2 2c2 ZG (Bskpg) | (A)-m ™ (A )|kqp [kz R2+k4 R4+k6 R6]

EP>E,1 qp qp
oo 6 3

i a2
+WjduG(A,lcu)G(B,zcu)u e +uR+W
0

(5.9.23)

Of the three terms of equation (5.9.23), only the u-integral term is present
when both species are in the ground electronic state, as the first two terms
hold only for downward transitions from the initial state. The u-integral
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is seen to be identical to the result (5.9.11) obtained via diagrammatic
time-dependent perturbation theory on inserting ground-state mixed
electric-magnetic dipole polarizability tensors G;(&;w), E=A, B.
Examining the case in which molecule B is in the ground state and A
is excited, it is seen that only the second and third terms of equa-
tion (5.9.23) contribute. Once again the u-integral term has the same
functional form, with the expectation value of G(B;w) taken over the
ground state of B, |0%). Since the far-zone limit of the u-integral was
shown to exhibit inverse ninth power separation distance dependence in
equation (5.9.12), the dominant contribution at large separations arises
from the pole term, having R~? dependence,

1
67z28 c*R?

32 GlBikon) (4) " ()1 (5.9.24)

E >Eq

For small R, the near-zone limit of the second term of (5.9.23) is

1 — —
T An2e2 RS Z G(Bskpg) | (A)-m™ (A)], (5.9.25)
E,oE,

while the asymptotic form in the near zone from the u-integral is

! [E(A) 1% (A) || (B) 17 (B)|
_ E, . (5.9.26
127‘[28(2)C2R6;Sgn( 117) (|Eqp|+Es0) ( )

both terms displaying R~ behavior. Their sum gives for the total small R limit

B (A) " (A)||E™ (B)-m"(B)|
5.9.27
120262 c2R6Z (Egp+Eg) ’ ( )

A]l Eq

and is composed of both real and virtual photon terms.
When both chiral molecules are excited, all three terms of the energy
shift (5.9.23) remain. The far-zone limit of the first term is

: 37 Gl °(8) - (B (5.9.28)

67‘6282C2R2
E, >E

which when added to (5.9.24) results in the total large R limiting form of
the potential. In the near zone, the contribution to the interaction energy
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arising solely from downward transitions contains terms from all three parts
of the result (5.9.23). Simplifying

1 —rs ~ s1
~ 4n2elc2RO > _G(Asky)|i"(B) 7" (B)|

Ey>Es

1 — —
~ 4n2e2 2RO Z G(Bskpg) [i1"1(A)-m® (A)]
q

Ep>Eq

1
ngn(Eqp)sgn(ES,)
q,s

 12n262 2RO

|@"(A)-m™ (A)||i" (B) -m™ (B)|
(|Egp| +Es])

(5.9.29)
to

L ) ) (8) 1 5)
127’[28(2)02R6 7 (qu"i_ErS) ’

Ep>Eq

(5.9.30)

Er>Es

results in a repulsive force.

5.9.3 Induced Moment Approach

In the previous section, it was shown how the method of induced multi-
pole moments allowed the dispersion potential between ground or excited
electric dipole polarizable molecules to be obtained directly in a physically
transparent and calculationally simple way. It is now shown how the ap-
proach outlined earlier may be extended to treat interactions between
optically active molecules (Craig and Thirunamachandran, 1999). As an
application, the dispersion energy shift between a pair of chiral molecules
in the ground state is recalculated. The techniques presented will serve as a
basis for evaluating the radiation-induced chiral discrimination interaction
energy in Chapter 7.

To a first approximation, electric and magnetic dipole transitions
are allowed simultaneously in optically active units. A measure of chiral
response is provided by the mixed electric—magnetic dipole dynamic
polarizability tensor G;;(; ). In the induced moment method for evaluat-
ing dispersion forces, in which fluctuations of the vacuum electromagnetic
field induce molecular multipole moments, both electric and magnetic
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dipole moments are induced to leading order. In a magnetically polarizable
system, for example, application of a magnetic field b(7) induces a mag-

netic dipole moment /7™ as the first moment,

mi(&R) = 7(& k)b (K: Re), (5.9.31)

where Xij(i; E) is the frequency-dependent magnetic dipole susceptibility
tensor. Action of both an electric and a magnetic field on a chiral molecule
characterized by the G;;(¢; k) tensor causes both an electric and a magnetic
dipole moment to be induced. With the ground-state mixed electric—
magnetic dipole polarizability tensor at real wavevector defined by (5.9.16),
the two induced multipole moments are

uM(E) = Gy(& k)by(K: Ry (5.9.32)
and

m () = &' Gy(& k), (K3 R). (5.9.33)

Like the interaction of induced electric dipole moments at each center,
the induced magnetic dipoles of each molecule couple via the resonant
dipole—dipole coupling tensor Vl.jF (k, 13) given by equation (5.8.3). Hence,
the contribution to the energy shift from this term is of the form

m™ (A; K )mi™ (B; K )Re Vyi(k, R). (5.9.34)

For the coupling of an induced electric dipole moment at one center ¢ with
the induced magnetic dipole at a second site &', coupling no longer occurs
via V,;E (k, R), but now takes place through the interaction tensor U;F (k,R),
a quantity first encountered in the resonant transfer of excitation energy
between an electric and a magnetic dipole, defined by equation (4.4.11).
The contribution to the energy shift from such coupling is of the form

" (A; K)mi™ (B; k)ImUj (k, R), (5.9.35)

in addition to a similar term arising from interchange of A and B. Along with
the induced electric dipole—electric dipole coupling term (5.8.4), it is seen
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that the expression for the energy shift proportional to the product of the
electric and magnetic dipole moments at each center comprises four terms,

Re V;;(k,R)

AE — Z {[ md 1nd(B)+ émiﬂd(A)m}nd(B)

+ [1(A) ;“d(B)+m}nd(A)u;nd(B)]ImU,-j(k,ﬁ)}. (5.9.36)

Asfor V;(k, R), the + superscript formerly appearing on Uj; (k, R) has been
dropped, since ImU j[(k R) is invariant to the signs explicitly appearing in
the functional form of the tensor. Inserting the induced dipole moments
from equations (5.9.32) and (5.9.33) into (5.9.36) produces an expression
for the energy shift that highlights the dependence of AE on the chiral
response tensors of each molecule and on the radiation field operators.
Therefore,

AE = Z{[ w (A3 )Gy (B; )by (Ra) by (Rp)

gz 5 GulA: )Gy (B: k)it (Ra)d} (Rs) | Re Vi (k, R)
0

+ 65" [ Gi(4: K) Gy (B; k)b (R (Ro)
+Gki(A;k)Gﬂ(B;k)d,g(ﬁA)b,(ﬁB)}ImUij(k,ﬁ)}. (5.9.37)

To evaluate the ground-state dispersion potential between both A and B
chirals, the expectation value of formula (5.9.37) is taken over the familiar
radiation-matter state |0) = |E3, E5; 0(k, A),0(k ,2')) and the sum over all
modes of the electromagnetic field is carried out. As in the calculation of the
Casimir—Polder energy using this approach, the expectation value of the
molecular factors leads to the ground-state polarizability tensors of the form
(5.9.16) with |m) = 0. The radiation field part again involves the expectation
value of the spatial field—field correlation function, this time featuring
products of the magnetic field at each center, the electric displacement—
magnetic field correlation function, as well as d;- (I_é A)di- (I_é ), withthe last of
these containedin the second term of (5.9.37), which was the sole contribution
to the electric—electric dispersion energy shift, whose expectation value
over the vacuum field state was given by expression (5.8.6). For future
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convenience, the expectation value over the number state of the radiation
field [N ik 1)), corresponding to an occupation number N of photons of
mode (k, 1), for the combination of four electromagnetic field correlation
functions is glveﬁ below (Salam, 2006a). They are obtained from the mode
expansions for d (7) and b(7) from equations (1.7.17) and (1.4.53), respec-
tively. Thus,

(N(k, A)ld(k, 2 Ra)d(k, 7 Rp)IN(K, 7))

= (Z’;) (V- 0 ) (K)o R e (K)o (Kyel R,

Tk
2e0cV

(N(k, 2)|bi(k, 2 Ra)b(k, 25 Rp)IN(K, 7))

-

(N(k, 2)|d-(k, 2 Ra)bi(k, 2 R)|N(K, 1))
hk
2V

[(N—i— 1) (l_c')bl())(k) —ik-R _‘_Ne(/)(l_c’)b(i)(l_c’)eil}‘.ﬁ}’

(N(K, 2)\biK, 2 Ra)d}(k, 4 Rp)|N(k, 7))

(;é) [(N-i— 1)b§7)(]_€’)é(7)(]_€’)e7i12.1—é +Nbl(i) (I_C’)e(./l) (]_é)eilz-l_é} '

(5.9.41)

Inserting N =0 into each of these four relations results in the expectation
values for the vacuum field correlation functions. Each of the four terms of
the energy shift (5.9.37) are now examined and evaluated in turn, taking
the expectation value for the ground state of the system (molecules plus
field). From (5.9.39), the vacuum field correlation function of the mag-
netic field is

(O(K, 2)\bi(k zRA>b-</€,A;R’B>IO<’N>>=( o )b@)(zz)‘}”(zz)e—ﬂ?ﬁ.
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Substituting this relation and carrying out the polarization sum gives for
the first term of (5.9.37),

hk ~ oA TR =
> () Gik(A; k)Gt (B; k) (O —kikr)e ™ *Re Viy(k,R).  (5.9.43)
- 2e0cV k

After converting the k-sum to an integral and performing the angular
integral using the result (5.8.8) and substituting for ReVj(k,R)
from (5.8.3), the above becomes

Jdkk3G,-k (Ask) G (B k)
0

h
1673e5cR

x [(8;—3RiR;)(cos kR+kRsin kR) —(;;—RiR;)k*R*cos kR|

sinkR

x | (Sr—RiR))

~ ~  [coskR sinkR
+ (5k1—3RkR1) ( )

K2R2  k3R3

(5.9.44)

Comparing expression (5.9.44) with equation (5.8.9), the k-dependent
part is seen to be identical in both formulas, with only the prefactor
differing. Following steps identical to that carried out on (5.8.9), which
led to the result (5.8.14), produces the functional form

o0

f i o , 2 5 6 3
—Wjduu e “G(Asicu)G(B;icu) 1+ﬁ+u2R2+u3R3 Rl
0

(5.9.45)

Returning to equation (5.9.37) and examining the second term, inserting
the vacuum electric displacement field correlation function (5.8.6) yields

2 (zh kv) Gri(Ask) Gy (Bik)e (K)el (k)™ *Re Vy(k,R). (5.9.46)
7 0
k.,

Performing the polarization sum gives rise to a term identical to equa-
tion (5.9.43), whose subsequent evaluation yields a contribution equal
to (5.9.45).
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To calculate the third term of the energy shift equation (5.9.37) requires
the N =0 value of the magnetic field—displacement field correlation func-
tion (5.9.41),

- o - hk D _(A) ik B
(O, (R, 3 Rl . s Ra)lo, ) = (3 ) el (e .
Inserting this into the third term of AE produces

2 <2Z€V> G (A K)Gyi(B; k)b (K)ef”) (K)e ™ FimUy (k. R).
K

(5.9.48)

Performing the A-sum using identity (1.4.57) and converting the K-sum to
an integral gives for (5.9.48),

- J ddek3Gik (A; k)G[j(B; k)ﬁklmicme_ﬂ2 'Elm U,-j(k, I_é)
1673

(5.9.49)

Carrying out the angular average using relation (4.4.7) and substituting for
Im Uj;(k, R) given below,

1

&jmBRm (kR cos kR +k*R? sinkR),  (5.9.50)

expression (5.9.49) becomes

oo
ih A
Im— m J dkkSle(A, k)G[/(B, k)gijmgklanRn
0

kR sin kR
<% - 511{27) (KR cos kR + k*R?sin kR). (5.9.51)
Performing an orientational average over the molecular polarizabilities to
obtain the contribution valid for a randomly oriented A—B pair, using the
result (Gi(A; k)Gyjj(B; k)) = 646;G(A; k)G(B; k), where a factor of 1/3
has been absorbed into the definition of each of the isotropic mixed
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electric—magnetic dipole polarizability tensors, defined by

—»Oz —
Z I 2 i )2|th, (5.9.52)
t E[O ( )

and contracting the tensors, noting that 5[k5jlsgmsk1nkmkn = 2, enables
(5.9.51) to be written as

ih (.
_ A: B:
1 6n38(2)cR2Jdkk G(A; K)G(B; )
0
DR+ 2 cos 2kR— —— sin 2kR|. (5.9.53)
sin kR COoS k2R2 sin .

Recognizing that

2i 1 . 2 1
Im [1 + — } 2R — [sm 2kR + —co0s2kR— ——sin 2kR]

kR K2R? kR k2R?
(5.9.54)
expression (5.9.53) becomes
ih [ 2% 17,
Im— ————— | dkk*G(A; k)G(B; k) |1 + — — ——|* R (5.9.55
m 167‘538%CR2J G(A; k)G (B; )[ +kR szz]e (59:55)

Transforming & to the imaginary variable k = iu finally results in the above
becoming

oo

2
J dunte RG(A; icu)G(B; icu) [1 +—+

h
uR  2R?|

_ 5.9.56
1673e3¢cR? ( )

0

For the fourth term of (5.9.37), use is made of the N = 0 value of the electric
field—magnetic field spatial correlation function (5.9.40). The calculation
follows the same lines as for the third term of (5.9.37), and a contribution
identical to (5.9.56) is obtained. Hence, the energy shift is given by twice
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the sum of equations (5.9.45) and (5.9.56),

oo
7
AE = — W J duue "R G(A; icu)G(B; icu)
0

2 5 6 3 2 1
1+ — -1+ =4+ == .9.57
X{[ TR TR T R +u4R4] [ JruR+qu2]}’ (59:57)

which simplifies to

o

h

AE=—— "
813e5cR?

4 6 3
4 . —2uR .7 < 7
J duu € G(A7 lcu)G(B? lcu) |:u2R2 + u3R3 u4R4:| ’
0

(5.9.58)

which is seen to be identical to the chiral discrimination dispersion potential
between ground-state molecules obtained in the two previous sub-sections
using alternative physical viewpoints.

5.10 INTERACTIONS INVOLVING MAGNETICALLY
SUSCEPTIBLE MOLECULES

By relaxing the electric dipole approximation and allowing each molecule to
also interact with the radiation field through magnetic dipole coupling, it was
shown in Section 5.9 that the interaction energy between two molecules each
possessing mixed electric-magnetic dipole polarizability was discrimina-
tory, depending upon the chirality of each species. Including coupling of
the magnetic dipole moment to the magnetic field permits dispersion
forces between molecules with polarizability characteristics different to
Gj(&w), &=A,B, that are of a similar order of magnitude to the
discriminatory dispersion potential between two optically active molecules
to be examined. One such interaction on which the present section focuses is
the dispersion potential between an electric dipole polarizable molecule and
amagnetic dipole susceptible molecule (Thirunamachandran, 1988; Jenkins
et al., 1994b; Salam, 1996). The energy shift between the pair is computed
using response theory, since this method enables contributions to be easily
calculated when one or both of the species are electronically excited. This
potential is important when molecules with small electric dipole polariz-
ability interact with species having a large magnetic dipole polarizability.
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Correct to second order in the molecular moments, with A being electric
dipole polarizable and B responding to the electric dipole-dependent
magnetic field of A through its magnetic dipole susceptibility tensor
%;(B; k), defined by

mi*(B)m;"(B)  m}*(B)mj’(B)
X;’/(B,k)—;{ E—hek T B hek }

2ES, m*(B)m}"(B)
=> , (5.10.1)
S hck

the interaction energy is evaluated from the formula

= ZZO(’/ A; krs B ; kr57RA)d(1 ( ;’T’”krs;l_éA)

Z/kl (B; kpq (A :“akpqa )bgl)(A;#vkpqa Rg)

ik Ry)

|
—
]
s}
=
=
S
=
B
=
T
S
5
§1

(5.10.2)

with body A initially in excited state |p) and able to undergo electric dipole
allowed transitions to higher or lower lying intermediate states |¢) and with
magnetic dipole allowed transitions from initial to intermediate state of
type |s) < |r), with E,; > 0 or E,; < 0, similarly possible in species B.
Employing the first-order electric displacement field due to a magnetic
dipole, equation (2.7.6), and the magnetic field linear in the electric dipole
source, equation (2.7.7), the first two terms of (5.10.2) are readily found to be

mz ZCQZ%A k)i (B)m (B)K§, g (krsR) gt (ki R)
(5.10.3)
32n28 szXkl B kPq :“pq( ) ( ) quk(kqu)g/l(kqu)
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For the evaluation of the third term of (5.10.2), proportional to the second-
order magnetic dipole-dependent electric displacement field, use is made
of operator (A.3) along with the vacuum displacement field (2.6.13), for the
fourth term of the energy shift, the quadratic, electric dipole-dependent
magnetic field is required that is given by equation (2.6.32), as well as the
zeroth-order magnetic field (2.6.14). As in earlier calculations using the
response formalism, upward and downward transitions from both |p) and |r)
arising from the interference of zeroth- and second-order fields, respectively,
cancel and reinforce with corresponding terms from equation (5.10.3). The
energy shift for oriented A and B, after following the familiar computational
procedure, is

1

_ 6
AE = 16n2820220‘l/ (A; k)i (B)m)" (B) k8 (krsR) g1 (KrsR)
s Z (B; kep )1 (A) 1 (A)KS, & (kpgR) gt (KpgR)
16m2e3c2 X\ B Kpg )1 H; pg8ik Kpglt)8j1\ Kpq
q
h Jduuéezukoc,--(A' icu)y (B; icu) g (iuR) g (iuR).
327[380(, y ? 9 9 j

(5.10.4)

After expanding the geometrical tensors using the definition of G;;(kr) and
Gjj(iur) given by equations (2.9.34) and (2.9.35), expression (5.10.4) can be
written as

! s 6 ool 1 1

AE: 167T2 cz SZ az] A krs)mk( ) ;r(B)krsgl.kS'gjltRSRt W—'—W
E,>E,

P 1 1

_]67[2 2 2 Z Lt (B kz”‘l)'upq( ) ( )k SlksgjltRst[m—i-W]

Pq Pq

E,,>E
1 S ya
T gmana kR ) i A Ay (B)m' (B)

q,s

00
Jduué —2uR k‘][’ks"
0

1 2 1
2 1) (1) [ 18R W +u4R4] '

(5.10.5)
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On rotational averaging and contracting the tensors, the result for freely
tumbling A and B is

I _ 2ol 1 I
AE =~ S 2 KAkl (B) k’slk2R2+W

E,>E,
1 1 1
—’Pq
247‘[28262 Z (B; skpg) |7 (A )’ pq k2 R2 k4 R4
Pq
E, >E,,

kgpksr

—*pq —»rs 2 d 6 . —2uR
T 36mie2 hc3z| (B) J e ) (2 )
0

1 2 1
X [u2R2 tomt u4R4] . (5.10.6)

When A and B are both electronically excited, all three terms of (5.10.6)
contribute to the energy shift. The far-zone behavior is governed by the
limiting forms of the first two terms of the result (5.10.6), each exhibiting an
inverse square separation distance dependence, whose summation produces

! LB e
36%28202(7’20 R2 z (ErsEqp+Equs;~), (5.10.7)
E-E,
E,>E;

while in the near zone, both of these terms have R * character

1
247‘[28 C2R4 A ksr | ( )‘ Sl’ (5108)
E>E
from the first term of (5.10.6) and
1
— B:kyo )| (A) |7 5.10.9
24262 2R ;7( skpg) |7 (A) Ky ( )
E,>E,

from the second term of (5.10.6). The following asymptotic limits follow
from the u-integral term of the energy shift

AENz = %ngn (Egp)sgn(E s:)|EquEsr|Wq( 1" (B)F
T2m2e3h AR (|Egp|+|Es])

(5.10.10)
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and

Th

AEgy——21
6432k

2(A;0)7(B;0), (5.10.11)

where in the last expression, o(0) and y(0) represent isotropic static excited
molecular susceptibilities. The energy shift in the far zone displays an
inverse seventh power law. The near-zone limit is not a true static limit, since
there is no static coupling between an electric dipole and a magnetic dipole,
butisretarded, being codependent on the transition wavevectors within each
species. The last five results agree with those obtained from the response of
one body to the fields due to the electromagnetic energy density of the other
found in Section 2.9.

When both molecules are in the ground state, the u-integral of equa-
tion (5.10.6) alone contributes to the energy shift, as in

367‘53 hc3 Z |_‘0q | | 7" )|2 J dunbe >k
0

qukAO |: 1 2 1 :|
+ , (5.10.12
(kf,O +u?) (k% + u?) ( )

W2R?  uwR3  u*R*

with limiting results

1 [1°(A) )i (B)[?
Abnz = o5y 2 EaE 5.10.13
v 72”235h204R4; OO (Eg + Ew) ( )
and
Th
Az = e 4 01(B;0), (5.10.14)

where the polarizability tensors are those for molecules in the ground
electronic state. An important aspect of the dispersion potential (5.10.12) is
that it is repulsive.

As it stands, the results obtained above are incomplete in the sense that
no account has been taken of the diamagnetic coupling term, which like the

2
term (—1/2)x(B;k)b (A;Rp) is also proportional to the square of the
magnetic field (Salam, 2000a, 2000b).
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Consider the ground-state dispersion interaction between an electric
dipole polarizable molecule A and a second species B that is diamagnetic.
From equation (1.7.16), the diamagnetic coupling term is (e?/8m)

- = 2
{G(B) x b(Rp)} , which for a freely rotating source is

b (Ry). (5.10.15)

The ensuing interaction energy is given by the expectation value

62

in which diamagnetic molecule B responds to electric dipole-dependent
source fields of A. The evaluation of the radiation field part of (5.10.16) is
identical to the calculation of the magnetic energy density presented in
Section 2.9, but instead of B being excited, here B is taken to be in its lowest
electronic level. The form of the contribution is similar to the second
and fourth terms of (5.10.2). Computing the expectation value using the
expansion of the magnetic field due to an electric dipole source correct up to
second order in i(A) yields the result

62

AEocfdia —
14473e3c*m

DA AP (8))

n

T Koo 1 2 1
duube 2R L 5.10.17
8 J wie ™ e e Y wr TR | )
0

where the complete set of intermediate state of A is given the new
label n,

(*(B)™ = (0°|4*(B)|0"), (5.10.18)

with the energy shift (5.10.17) holding for all A-B separation distances
R beyond charge overlaps. After making the usual approximations, the
near-zone asymptote is found to be

e2

AEafdia —
NZ 288m3e3c2mRS

SR (A) PG B) o (5.10.19)



INTERACTIONS INVOLVING MAGNETICALLY SUSCEPTIBLE MOLECULES 249

Comparing (5.10.19) with the near-zone limit between electric and
magnetic dipole polarizable molecules (5.10.13), the ratio of the two is
AEL"
AElo\fl—Zdia

~ kR. (5.10.20)

Since in the near zone kR < 1, the contribution from the diamagnetic
coupling term can dominate the interaction.

Returning to equation (5.10.17) and neglecting ? relative to k2, in the
energy denominator and using the standard integral (5.2.23) to evaluate
the integral over imaginary wavevector,

1 A 2u3 u? 7
due 2R |22 T 1021
J ue [Rz + E +R4} il (5.10.21)

the far-zone energy shift is found to be

7¢%

—Smam e (A0 (B)” (5.10.22)
0

o—dia __
AEL ™ =

on using the definition for the static isotropic electric dipole polarizability
of A,

2B AP
A;0) == E . 5.10.23
OC( ) ) 3 - En() ( )

Like the wave-zone limiting form of the potential between an electric
dipole polarizable molecule and a magnetic dipole susceptible spe-
cies (5.10.14), the far-zone energy shift when one of the pairs is diamag-
netic exhibits an R~ separation distance dependence. The two far-zone
asymptotes may be combined to yield a long-range limiting energy shift
between an electric dipole polarizable molecule and a magnetically
susceptible one, as in

Th

AEp7 = ————
T 64mde2cRT

2(A;0)y/(B;0), (5.10.24)

where the modified magnetic susceptibility tensor of species ¢ takes the
form

2

7(60) = £(6:0)— ()™ (5.10.25)
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The first term of (5.10.25), x(&;0), is termed the static paramagnetic
susceptibility tensor, while the second is the diamagnetic contribution.
Although both o(&;0) and x(&;0) are positive quantities for the ground-
state molecules, y'(&;0) may be of either sign depending on the relative
magnitudes of the two components of (5.10.25). If y/(&; 0) is negative, the
molecule is said to be diamagnetic.

Finally, it is of interest to discuss the expression for the ground-
state dispersion potential between two magnetic dipole polarizable mole-
cules, equation (5.9.3), even though it is much smaller than the leading
Casimir—Polder term and is also nondiscriminatory. It may be obtained
straightforwardly using any of the three methods detailed in this chapter
or written immediately from the Casimir—Polder potential. Making the
usual approximations, the asymptotic limits readily follow from (5.9.3).
The pure magnetic dipole correction to the London dispersion formula is
therefore

’— 1 " (A)* 7™ (B)|?
AEL = — . 5.10.26
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At the other separation extreme,
Y 23%
AEL" = ——————7(A;0)%(B;0). 5.10.27

Moreover, noting that the dispersion interaction energy between two
diamagnetic molecules is given by (Salam, 2000a)
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which has inverse seventh power law for all R, the last two results may be
combined and reexpressed in terms of the modified magnetic susceptibility
tensor (5.10.25) to read

23%h

AEmag—mag _
Fz 64H3S%C3R7 X

'(4;0)7 (B;0). (5.10.29)

It is worth pointing out that the result (5.10.29) also contains the far-zone
limit of the dispersion interaction between a magnetic dipole susceptible
molecule and a diamagnetic molecule.
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5.11 MEASUREMENTS OF CASIMIR EFFECT

The change in the mode structure of the electromagnetic field due to the
presence of a pair of bodies relative to their absence is commonly termed
the “Casimir effect” and is frequently attributed to the zero-point energy
(1/2)hw, associated with each mode of the radiation field. The label is also
often applied to a number of other interactions occurring between bodies at
large separation distances, each having a common physical origin inter-
pretable in terms of fluctuations of the vacuum electromagnetic field.
Arguably, the best known among these various manifestations of the
change in the zero-point energy is the so-called Casimir force—the force
of attraction felt by a pair of neutral conducting flat plates separated by a
distance d. Casimir (1948) derived a remarkable formula for the force F per
unit area A between the plates,

2
Fid) _ = he (5.11.1)
A 240 d*
which is independent of the material properties of the plate and contains the
fundamental constants 7 and c.

Other well-known phenomena described as Casimir effects include the
interaction between an atom and a surface—also known as the Casimir—
Polder interaction (Casimir and Polder, 1948)—and the energy shift
between a pair of uncharged atoms or molecules—often referred to as the
van der Waals interaction, whose dispersion component has been exten-
sively dealt with in this chapter. It is an interesting historical note that
Casimir’s original motivation lay in exploring the nature of long-range van
der Waals forces in colloidal suspensions (Verwey and Overbeek, 1948), a
work carried out with Polder. In each of the examples mentioned, an
important consequence of the application of a quantized field treatment to
their study is the retarded aspect of the coupling between the pair of
particles or bodies in question, which is due to the explicit and automatic
appearance of the photon in the formalism, propagating with speed
¢ in vacuo.

The upsurge of interest in the Casimir effect (Bordag et al., 2009) that has
occurred in the last decade and a half has largely been due to advances in
experimentation, thus enabling the highly accurate measurements to be
made of the Casimir force (Bordag et al., 2001; Lamoreaux, 2005). This in
turn has stimulated a rapid growth in the number of theoretical papers
devoted to the subject. These range from alternative derivations of
Casimir’s result to more transparent presentations of the theory of Lifshitz
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(1956), which applied to a material body characterized by a frequency-
dependent complex electromagnetic permittivity, and implications result-
ing from his theory. These include Casimir effects taking place in metals,
nonconductors, and dielectrics, which has led to the study of a multitude of
different geometrical scenarios and boundary conditions. Additional cor-
rections examined include the consequences of imperfect conductivity and
surfaces being nonsmooth to the effects of finite temperature and thermal
Casimir effects.

The Casimir effects and concepts and ideas inherent to it are now playing
an important role in a number of subdisciplines—both within and outside
its traditional domain of atomic, molecular, optical and condensed matter
physics, and quantum field theory. Topics include Hawking radiation, the
Unruh effect, and the dynamical Casimir effect—whose origins are elec-
tromagnetic, manifestations in space—times with nontrivial topology, the
influence of vacuum polarization on inflationary models of the universe in
gravitation, cosmology, and astrophysics, the development of advanced
regularization and renormalization methods in mathematical physics, and
applications of technological value such as the manufacture of nanoelec-
tromechanical devices in which it is now possible to observe repulsive as
well as attractive Casimir forces.

Prior to recent experiments, very few attempts were made to measure
various Casimir effects, while theoretical work was confined primarily to
alternative derivations of the results of Casimir and Polder, rationalizing the
physical basis of the phenomenon along with probing the finer details of the
Lifshitz theory. Part of the imbalance seen in the number of articles
reporting experimental versus theoretical results is the sheer technical
difficulty associated with the measurements concerned. This aspect is
evident from studies carried out by Abrikosova and Derjaguin (1957),
who employed dielectric surfaces and later first made use of curved surfaces
such as a lens, sphere, or a cylinder, thereby avoiding the need for the flat
plates to be parallel to one another, and by Sparnaay (1958), whose work
included the earliest use of metal plates. While Sparnaay’s research is often
cited as providing the first experimental verification of the Casimir effect,
the exponent of d featuring in the expression (5.11.1) for the force per unit
area between the plates was uncertain to £1.

One major limitation of any potential experiment is that the force of
attraction between two parallel plates of infinite conductivity is measurable
only for separation distances of a micrometer or less and is minute. For
instance, a pair of flat surfaces of area 1 cm? separated from each other by a
distance of 1 pum produces a force of the order of 100nN. In addition to
requiring extremely sensitive force measurements, since the force is a
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function of separation distance, d must also be measured to a high level of
accuracy and be reliably reproduced. Additional requirements spelled out
by Sparnaay to further improve agreement between experiment and theory
include ensuring plate surfaces are as clean as possible with low electro-
static charge on them and keeping the voltage between the surfaces to a
minimum. These problems persist yet and prevent to make accurate
measurements even with modern experimental apparatus.

Improvements in experiments involving metallic surfaces were made by
van Blokland and Overbeek (1978), who reported a relative uncertainty in the
measured force of around 25% at separation close to 150nm, but grew
substantially at half a micron. Meanwhile, force measurements were also
made on nonconductive surfaces. Notable among these were the experiments
of Tabor and Winterton (1969) on muscovite mica. This enabled smooth
atomic surfaces to be produced, which in turn allowed the two surfaces to
approach very closely, from which it was then possible to measure the
crossover between the retarded and the nonretarded van der Waals force
regimes. This transition was found to occur at approximately 12 nm.

Another manifestation of the Casimir effect, this time in the microscopic
regime, which offers the potential of measurement, is found to occur in the
excited-state fine structure of the helium atom (Lundeen, 1993), first
predicted by Spruch and Kelsey (1978). At the very long range, the potential
between an electron and a polarizable atom is of the form

11e*710(0)
V(R) = 62 emcRS (5.11.2)
and is repulsive. Since such a force like the Casimir-Polder potential
between two neutral species is not easily amenable to measurement, it was
suggested that the coupling between an electron and an ion would yield
experimental results more readily as the electron may be bound in stable
Rydberg orbits at long range. Microwave spectroscopy of the Rydberg fine
structure could then be used to compare the binding energies of different
Rydberg states. Unlike the dispersion force, which is the only contribution
to the interaction energy between two neutral nonpolar bodies, the potential
(5.11.2) is the smallest of three terms contributing to the overall force in the
Rydberg states of helium. The other two contributions are due to the dipole
polarization, which varies as R, and the dominant Coulomb potential
between the electron and the He™ ion, which has an inverse separation
power law. At long range, where R >> 137a, the relative ratios of the three
potentials, in the order in which they were mentioned, is 1:10*:10"".
Working within the confines of nonrelativistic theory, however, the
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Rydberg fine structure is effectively independent of the Coulomb force
because states with equal principal quantum number are degenerate in a
pure Coulomb field. Even then the contribution to the long-range interac-
tion is very small and comparable to relativistic and possibly radiative
corrections to the fine structure.

In addition to these theoretical difficulties, there are challenges that have
to be met experimentally, the most serious being the level of precision with
which the radiative widths of the states can be measured. For the pertinent
Rydberg states, this width is usually two orders of magnitude greater than
the expectation value of the potential (5.11.2). Nevertheless, microwave
spectroscopy of the fine structure of helium has been carried out by Palfrey
and Lundeen (1984) and by Hessels et al. (1990) using fast beam techni-
ques. This permitted transitions between high orbital angular momentum
states L to be studied, such as between 10/, K, L, and M. The difference
between the measured mean-averaged fine structure interval and the largest
contribution, namely, that arising from the nonrelativistic energies of the
states, theoretically calculated from the Coulomb Hamiltonian leaves a sum
of contributions attributable to relativistic, radiative, and retardation terms.
The last of these contains the long-range Casimir force as given by the
retarded two-photon exchange potential (Au et al., 1984; Babb and Spruch,
1988). For the H-I, I-K, and K-L fine-structure levels corresponding to
n=10, comparison with measurements demonstrates an agreement to
approximately 1 kHz. It should be noted that this is precise to only about
10% of the retardation contribution and applies to separations in the range
10ao—50a, and not in the asymptotically large region.

It was only in 1993 that the first known definitive measurement of the
force experienced by an isolated atom—also known as the Casimir—Polder
force, was made by Sukenik et al. (1993). Their experiment consisted of
passing a beam of sodium atoms in the 3s ground state between a pair of
parallel plates that formed a cavity. Due to the variation of the vacuum field
with position, the atoms are subject to a Casimir—Polder force that pushes
them toward the walls of the cavity. The cavity itself comprises two gold
plates of height 3 cm and length 8 mm, which forms a wedge that varies in
width from 0.5 to 8 um. The transmitted intensity of the atomic beam is
observed as a function of cavity width. Atoms that pass through the cavity
and do not stick to the walls are then excited resonantly to the 12s state by
two superimposed laser beams of wavelengths 589 and 425nm and
detected by a channel electron multiplier. Comparison of the transmission
function is made with curves predicted theoretically based on a near-zone
van der Waals potential and the retarded long-range Casimir—Polder
potential. Agreement between theory and experiment was found to be
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excellent. Treating the strength of the interaction as a variable parameter, a
least-squares fit of the data recorded gave

M: 1.02 £ 0.13, (5.11.3)
AE(theory)
providing unambiguous verification of the inverse fourth-power distance
dependence of the Casimir-Polder force.

Two experiments that prompted the recent renewed interest in Casimir
effects and constitute the first in a succession of modern measurements are
those by Lamoreaux (1997), who used a torsion pendulum balance, and
Mohideen and Roy (1998), who employed atomic force microscopy (AFM)
to measure the Casimir force.

In the first of these experiments, the force between a spherical lens coated
with gold and a flat metal plate was measured. The former was mounted on a
piezoelectric stack, and the latter on one arm of the torsion balance while
the second arm formed the middle electrode of dual parallel plate capa-
citors, whose position and orientation could be controlled by application of
a potential difference to the capacitor plates. A torque is produced by the
Casimir force causing a change in the angle of the torsion balance. The
ensuing change in the capacitances of the two capacitors was then detected
via a phase-sensitive circuit. To counteract angular changes of the torsion
balance, compensating voltages were applied to the capacitors by employ-
ing a feedback circuit, thereby providing a direct measurement of the
Casimir force. This procedure was repeated for separations of 10 pm down
to touching distances of the two surfaces in 16 steps. The electrostatic force
and surface separation were then determined by curve fitting part of the data
to the expected Casimir force. Measurements of the force were accurate to
about 10%.

In the second of the modern experiments, AFM techniques were
employed to measure the Casimir force between a 0.3 mm polystyrene
sphere coated with a 300 nm layer of Al, further covered with a 20 nm layer
of Au/Pd, attached to an AFM cantilever, and a similarly coated optically
polished sapphire plate. The latter was fixed to a piezoelectric transducer
and moved toward the sphere with the attractive force measured by
reflecting a laser beam from the tip of the cantilever. The movement of
the beam on a pair of photodiodes yields a difference signal in direct
proportion to the bending angle of the cantilever. AFM measurements have
the advantage of being reproducible and reliable. Agreement between
theory and experiment was excellent. With only second-order conductivity
and surface roughness corrections included in the comparison, the root
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mean square deviation of the measured force from the predicted value was
found to be 1.6 pN in the total range of measurement from contact distance
(approximately 30 nm) to 1 um separation. This corresponds to a statistical
precision of 1% at the smallest distances of separation. Subsequent im-
provements in experimental procedure as well as in the treatment of surface
roughness and finite conductivity of the metal by accounting for fourth-
order corrections enabled the same level of precision to be achieved over the
complete measurement range.

Experimental efforts continue to be made, especially via AFM techni-
ques, to extend the measurement both to smaller separation distances and
larger distances above the current 1 pm limit. The former will enable further
light to be shed on possible deviations from Newton’s universal law of
gravitation as predicted by string theory in which extra compactified
dimensions appear, giving rise to the so-called hypothetical fifth force
that is effective at distances large relative to nuclear dimensions, whose
characteristic length scale in some models is 10~° m. Similar reasons apply
to examining the force at distances beyond 1000 nm. In this case, limits
could be imposed on the coupling constants of the aforementioned con-
jectured forces to test predictions of supersymmetry and string theory and
to search for new elementary particles. In addition, at large separations, the
effects of temperature come into play and significantly modify the nature of
Casimir forces, especially between real metals.



CHAPTER 6

MANY-BODY FORCES

I just wanted to remind you that the effects that we see on a large scale and
the strange phenomena we see on a small scale are both produced by the
interaction of electrons and photons, and all are described, ultimately, by

the theory of quantum electrodynamics.
—R. P. Feynman, QED: The Strange Theory of Light and Matter,
Princeton University Press, Princeton, NJ, 1985, p. 123.

6.1 INTRODUCTION

The total interaction energy for a collection of more than two atoms or
molecules is not simply equal to the sum of all of the pairwise interactions.
As detailed in Section 3.1, there are terms involving coupling of three-,
four-, and many-bodies that contribute to the energy shift, and which are
nonadditive in nature. While interactions between molecules are dominated
by terms involving pairs of particles, with the approximation of pairwise
additivity proving to be a highly useful device for evaluating contributions
to the interaction energy even when the force itself is inherently nonpair-
wise additive, the inclusion of leading nonadditive contributions is found to

Molecular Quantum Electrodynamics, by Akbar Salam
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be essential for a number of chemical systems, ensuring even better
agreement with experiment for a variety of chemical and physical proper-
ties (Maitland et al., 1981). For example, retaining only the pairwise
additive terms in the two-body potential energy functions for Ar and Xe
results in the computation of the energy of the crystal differing from
experimental values by 10% and 13%, respectively. This is attributed to the
neglect of nonadditive contributions. Accounting for the leading triple-
dipole dispersion energy term, however, improves agreement to a few
percent for solid-state properties. This is to be expected since nuclei of
atoms and molecules are in proximity to one another in a crystal lattice. In
condensed phases, the contribution from the triple-dipole dispersion
potential correction to the interaction energy is, in general, positive for
the majority of molecular configurations. In a related context, the addition
of the three-body contribution to the dispersion potential was found to be
vital in explaining the unusually large differences occurring between
experimental third virial coefficients, C(T), and those computed using the
pairwise additive assumption, in particular for rare gas atoms, with C(7)
being more sensitive to the precise form of the intermolecular potential
function than its lower order counterpart, the second virial coefficient, B(T).
Many-body forces are also expected to play a significant role in the
modification of intermolecular interactions taking place in a medium, for
instance in a solvent.

The most common nonadditive contribution to the total interaction
energy is the dispersion potential between three atoms or molecules.
Hence, this term along with the four- and many-body dispersion potential
forms the main focus of this chapter. Section 6.2 contains the derivation of
the triple-dipole energy shift between three neutral ground-state atoms or
molecules within the framework of semiclassical theory. This was calcu-
lated for the first time independently by Axilrod and Teller (1943) and
by Muto (1943). Their computation involves use of static dipolar coupling
potentials and third-order perturbation theory. Results for different geo-
metrical arrangements of the three atoms are presented. In the following
section, a diagrammatic perturbation theory calculation is carried out with-
in the multipolar formalism of molecular quantum electrodynamics. In this
viewpoint, the dispersion potential between the three bodies is understood
as arising from the exchange of three virtual photons, each of differing
mode, one between A and B, a second between B and C, and a third between
C and A. After allowing for all possible time orderings and summing over
contributions, this yields the retarded correction to the static triple-dipole
dispersion potential, with the latter being shown to hold only in the near-
zone regime. The computation of the general result is involved, and requires
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use of the sixth-order formula for the perturbed energy shift. A simplifi-
cation is made possible by employing an effective 2-photon interaction
Hamiltonian, which results in a 60-fold reduction in the number of
Feynman diagrams that have to be summed over with third-order perturba-
tion theory again being employed. The calculation is given in Section 6.4.
In Section 6.5, it is shown how the correlations of dipole moments induced
in two atoms by a source dressed vacuum field, leads directly to the retarded
triple-dipole dispersion energy shift in a method that is a variation of the
induced multipole moment approach introduced in Section 5.8 to evaluate
two-body dispersion forces. For the computation of a general formula for
the N-body dispersion energy shift presented in Section 6.6, a different
approach to perturbation theory is adopted. It is based on a response theory
formalism, used successfully in the previous chapter to calculate two-body
dispersion potentials between molecules in either ground or excited states.
In the present problem, the Maxwell field operators due to an assembly of
N atoms or molecules considered as sources of charge are first evaluated.
This is followed by determining the response of each particle, taken one ata
time, to the fields due to the remaining N — 1 entities. The limiting forms
of the N-body potential in the radiation- and near-zones are also given.
From the general result applicable to N bodies, the retarded four-body
dispersion potential is evaluated in Section 6.7. Special attention is given to
a tetrahedral configuration of molecules. In Section 6.8, two contrasting
methods are detailed for the calculation of the retarded three-body dis-
persion energy shift when one of the species is initially in an electronically
excited state. One approach involves time-dependent perturbation theory,
and is similar to the calculation presented in Section 5.6 for a pair of
molecules when one of them is excited. For the case of three-bodies, it is
found that two terms contribute to the energy shift. A term arising solely
from real photon emission due to downward transitions in the excited
molecule and an imaginary wavevector integral term of similar functional
form to the ground-state interaction energy between three molecules, which
describes contributions from both upward and downward transitions in
all three bodies and downward transitions in the excited source. In the
second technique, the electric displacement field due to the excited source
molecule induces dipole moments in each of the two ground-state bodies.
The two induced dipoles couple to the retarded dipole-dipole interaction
tensor at the resonant frequency of the downward transition in the excited
molecule. Taking an expectation value over this quantity for a state of the
system in which one molecule is excited, two are in the ground state and no
photons are present—real or virtual, results in the additional contribution
due to downward transitions occurring in the excited species. Finally, in
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Section 6.9, the effect of a third body in mediating the resonant transfer
of excitation energy between two molecules is investigated. In the near
zone, direct transfer between the pair is compared with the rate modified by
the presence of a third species, along with the interference term occurring
due to both of these mechanisms, to gain insight into microscopic and
macroscopic limits of migration of energy taking place in a medium.

6.2 AXILROD-TELLER-MUTO DISPERSION ENERGY SHIFT

It was shown in Section 3.1 that the first nonadditive contribution to
the interaction energy occurs between three bodies, arising from the
simultaneous interaction of three species A, B, and C, AEpc. This term
provides a correction to the energy shift arising from the sum of the pairwise
interactions between any two of the three particles. Since the dispersion
potential is nonpairwise additive, evaluation of the three-body energy shift is
crucial as it is the leading nonadditive contribution to the interaction
potential. Its calculation was first carried out independently by Axilrod
and Teller (1943) and by Muto (1943). Each of them employed third-order
perturbation theory and static dipolar coupling potentials to compute the
dispersion energy shift. Consequently, the effects of retardation were not
accounted for. Details of their calculation are presented below.

Consider three atoms A, B, and C in the ground electronic state
with energies ES, E=A, B, C. Let them be separated by distances

R¥ = \135—1_?'é , ¢ #£ & = A, B, C. Excluding the effects of the radiation
field, the total Hamiltonian for the system can be written as

H=H +H:, +H

mol

+ Hiy. (621)

In the absence of interaction, the first three terms of (6.2.1) constitute the
unperturbed Hamiltonian,

Hy = HQOI +Hrliol +HC

mol?

(6.2.2)

a sum of Hamiltonians for the three isolated bodies. The unperturbed state
of the system is then simply a product state of eigenfunctions of each atom,
]E,§> ¢ =A, B, C, described by quantum number 7; of species ¢ and whose
grohnd state is represented by

10) = |Ey, Eg. Eg)- (6.2.3)
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Since the unperturbed Hamiltonian (6.2.2) is separable, the unperturbed
energy of the system is given by the sum of unperturbed energies of
each body, Egg &=A, B, C. Hence, the energy of the unperturbed ground
state is

Ey=Ey+Ej+ES. (6.2.4)

Interaction of the atoms with each other perturbs the system, causing a
shift in energy relative to the energy associated with each individual
entity. Within the framework of semiclassical theory, the perturbation
operator describing the coupling of the atoms at long range, in which
exchange effects can be safely ignored is given, to leading order, by
static dipole-dipole couplings between pairs of particles. Thus,

Hiy = HYE + HEC + HEA (6.2.5)
where
!
i = 1) (05-3R7R"), £ =aBC  (626)

4neoR§ g

With this form of coupling Hamiltonian, the interaction energy between
the three atoms is given by the third-order perturbation theory formula
for the energy shift,

g = 5 (O 1) U Pl )0 0

: (6.2.7)
EnoEro

Il

where the sum is carried out over all intermediate states excluding
the initial and final states, with the latter being identical to the initial
state in the case of the dispersion interaction. In expression (6.2.7),
Ej = E|—Ey and Ej9 = Ej—Ey, denote differences in energy between
intermediate and initial states. In the present formulation, the three-body
dispersion potential is viewed as arising from the instantaneous exchange
of a virtual photon between each pair of particles, that is, between A and
B, between B and C, and between A and C. Since this can occur in 3!
possible time orderings, 6 diagrams may be drawn depicting the coupling
between A, B, and C and consequently, 6 terms contribute to the energy
shift in (6.2.7). Each species is therefore involved in the exchange of two
virtual photons and can subsequently return to the electronic ground state
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after virtual excitation to an excited intermediate state. Let the set of
excited virtual states in the three bodies A, B, and C be denoted by |p),
|g), and |r), respectively, with energy Ej, EL, and EL, which may also be
used as state labels. Electric dipole allowed transitions are assumed to
occur between the electronic states of each atom, which are nonvanishing
only when the states have differing parity.

Consider the sequence in which the coupling between A and B occurs
first, followed by the interaction of B and C, with the coupling between C
and A taking place last. With the initial and final states given by (6.2.3),
the two types of intermediate state linking the states of the system before
and after interaction are easily seen to be of the form |I) = |Ej), ES, EY)
and |II) = |E;‘,Eg,E,,C), with energy difference Ejo = Ej+ E4 and
Ejjo = Ejy + E;o, where the superscripts labeling atoms have been omitted
from these two terms. The first intermediate state reflects interaction
between A and B having taken place, with these two particles undergoing
virtual excitation to higher lying states |p) and |q), respectively. The
second intermediate state represents the result of coupling between B and
C, with B returning to the ground state from |g) and C excited to virtual
state |r) from the ground state. This contribution to the energy shift is
calculated from

(E§E E§ |H |y EG EY ) (ESEG By \HGE|Ey  Ey EG)EG Ef E, |Hig? | EG EG L EG)

int int int

Z (EPO +EqO)(EpO +Er0)

I

(6.2.8)

Substituting the respective ground and intermediate states, inserting the
appropriate form of the perturbation operator (6.2.6), and evaluating the
matrix elements produces

1 1 0 0, 0 0 r
(P R R > @A) W)l (B (B (O (€)
50 AB"*BC " CA pq,r

X (5ik—3RfBRQB) (5,m—3RfCRBC) ((S_,n—31§f*‘ie,f")

m

><(EpO +Eq0)_l(Ep0 +Er0)_l- (629)

The contributions to the energy shift from the five remaining sequences
of excitation events gives terms identical to (6.2.9) except for the energy
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denominators. There are in fact three different energy denominator products.
Hence, the total interaction energy is

2 0 O 0 0
A e Rk e R AN AL B (B (R (C)
0)” Kaslschca pgr

m

(5,k 3RABR23) (5,m 3RVR BC) (5 3RCARCA>

1 1
X +
[ (Epo+Eg)(Epo+Exn)  (Epo+Eqp)(Eqp+En)

1

+ .
(Ep() + ErO) (EqO +Er0) :|

(6.2.10)

Summing the energy denominators yields

1 1 1
+ +
(EPO +Eq0) (EPO +Er0) (Epo +Et10) (EqO +Er0) (EpO +Er0) (EqO +Ei‘0)

_ 2(Ep0+Eq+En) (6.2.11)
(EpO +Eq0) (EpO +Er0) (EqO ‘l‘ErO)

Replacing the sum of energy denominators in (6.2.10) by the right-hand form
of (6.2.11) produces the recognizable expression for the triple-dipole inter-
action energy between oriented systems

1

AE = B OqB rOC OrC
1677 R%R&R&% K B B (C)ny (C)

BC BC CA ~ CA

x <5k 3RABR23) (51m—3R, m)(a,n—ye R )

% (EPO + EqO + Er())
( p0 T+ qu)( 0 T EIO)(E(IO + ErO)

(6.2.12)

For a collection of three isotropic species, a rotational average must be
performed on the result (6.2.12). This may be carried out as three indepen-
dent orientational averages using result (B.4) from Appendix B, with the
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molecular part factored according to

(2 (A (A) il (B) ) (B0 (C) i (C))

= (" (A)" ()l (B)wy" (B)) (a (C) iy (©))

3
1 - - >0r
B <§> WP B) PR (C)Poydudm. (62.13)

Contracting the tensors of (6.2.13) with the orientational factors appearing
in (6.2.12) results in the averaged energy shift becoming

1 . o o
Y E” Q)1 (B) 5" (O)

1
AE = 3R3.R3 R
16(3men)” RapRpcRea 577

y (Epo + Ego + En)
(EPO + EqO) (EpO + EVO) (EqO + ErO)

~ ~ 2 ~ ~ 2 N N 2
x {—6+9[(RBC-RCA) + (RR) (R R ]

27 (R R (R R (R R } (6.2.14)

A much-studied configuration of three bodies is when they form a
triangular geometry. To simplify the notation, it is convenient to introduce

the unit vectors a = IAQB—IAQC, b= RC—RA, and ¢ = RA —kB and the internal
angles 64, 65, and O opposite sides BC, CA, and AB, respectively.
The direction cosines appearing in braces in expression (6.2.14) can be
written as

{—6+9[(a.z3)2+(3-2:)2+ (- a) 47(@!3)(!3-2:)(@&)}, (6.2.15)
with cosf, = b- ¢, and so on. Using the identity for internal angles of a
triangle,

cos%0, + cos?0p + cosz()c = 1—2c0s6,4 cosfp cosOc, (6.2.16)
(6.2.15) simplifies to

3[1 4 3cosf, cosbp cosbc]. (6.2.17)
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Hence, the energy shift for a triangular arrangement of three interacting

atoms is
1 . L .
Z!O” ) EY(B)PE” (O)

1447r363 a3b3 Ve

E E E.
% ( p0 + Ego + ’0) [1 + 3cosf4 cosfp COS@C}.
(Ep() =+ Eq()) (Epo + ErO) (EqO + Er())
(6.2.18)
It is instructive to examine the geometrical factor
[1+ 3cosf, cosbp cosOc] (6.2.19)

asb3c3 ’

appearing in the result (6.2.18) for particular configurations of the atoms.
For an equilateral triangular arrangement, the lengths are all equal, a=»5
¢=R, say, and 64 = g = 0c = 60°; the term within square brackets
simplifies to 11/8 and (6.2.19) to 11/8R° and the energy shift is positive
and therefore repulsive. For a right triangle in which 64 = 90°, say, the
trigonometric factor in square brackets of the geometrical term (6.2.19)
vanishes leaving unity and the energy shift is again repulsive. When the
three atoms are collinear, 64, = 8 = 0°, and 6. = 180°, the term within
square brackets above simplifies to —2, giving rise to an attractive inter-
action energy.

It is interesting to note that the energy shift (6.2.18) can be expressed in
terms of the dynamic electric dipole polarizability at imaginary frequency
for each atom analogously to expression (5.3.11) for the London dispersion
energy. Thus,

o0

37
AE = Fnisg J duo(A; iu)o(B; iu)o(Cs iu)

—00

[1 4+ 3cosf, cosOp cosfc]
B33

(6.2.20)

Like formula (5.3.8), it is common to express the near-zone dispersion
energy shift in terms of static polarizabilities. This may be achieved by
carrying out an average energy or Unsold approximation. Alternatively, a
two-level coupling scheme may be chosen in which the static polariz-
abilites are taken to be dependent only on the single, lowest energy
transition within particle ¢ at an energy, Eg, with transition electric
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dipole moment fi(&). In such a situation, the static electric dipole
polarizability is given by

2(&0) = 21T (6.2.21)

Redefining the energy as

2E\EgEc(Es+Ep+Ec)
(Ex+Eg)(Eg+Ec)(Ea+Ec)’

E= (6.2.22)

and using (6.2.21), the triple-dipole dispersion energy (6.2.18) can be
approximated as

3 [1 4+ 3cosf, cosfp cosfc] B

AE ~ ———0(A;0)a(B;0)a(C; 0
2567’[38(3)a( 3 )O(( ’ )O(( ) ) a3h3c3

(6.2.23)

6.3 RETARDED TRIPLE-DIPOLE DISPERSION POTENTIAL:
PERTURBATION THEORY

In the previous section, the Axilrod—Teller—Muto triple-dipole dispersion
energy shift was computed. Since the potentials coupling each of the
species were taken to be of the static dipolar variety, the effect of the finite
speed of propagation of light signals was not properly accounted for.
Including retardation effects will modify the form of the nonadditive inter-
action energy, as was seen to occur in the comparison of the Casimir—Polder
energy shift with the London dispersion formula. In this section, the com-
putation of the retarded triple-dipole dispersion potential is carried out
using time-dependent perturbation theory. The calculation is similar to that
given by Axilrod and Teller, but instead of employing a static electric dipole
form of coupling as the perturbation operator, the electrodynamic multi-
polar coupling operator in electric dipole approximation is used as the
interaction Hamiltonian. Instead of employing third-order perturbation
theory, now the energy shift is calculated via the sixth-order term when the
interaction Hamiltonian is linear in the electric displacement field. Con-
siderable simplification of the calculation is found to occur if an effective
two-photonqillteqraction Hamiltonian is employed instead of the usual
—&5'i(&) -d (R:) form. This was also the case in the calculation of the
Casimir—Polder shift as shown in Section 5.4 and details applicable to the
present situation are given in the next section.
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As for the Axilrod—Teller calculation, the triple-dipole dispersion
potential is viewed as arising from the exchange of a single virtual photon
between A and B, between B and C, and between C and A. Again each
species undergoes two virtual photon emission/absorption events so that
each body can return by a downward transition to the ground electronic
state. The total Hamiltonian for the three-particle system, including the
effect of a radiation field, is given by

H = Hmol (A) +Hmol (B) +Hmol(c> +Hrad +Hint(A) +Hint(B) +Hint(c)‘
(6.3.1)

In the electric dipole approximation, the interaction Hamiltonian is of the
form

—

Hin(&) = 5" i(¢)-d (R), (63.2)

where [i(£) is the electric dipole moment operator of species ¢ = A, B, C and

—1

d (7) is the transverse electric displacement field operator evaluated at the
field point 7. The leading term of the energy shift is of sixth order and is
calculated from

AE — — Z <O|Hinl‘v><V|Hint|IV> <IV|Hinl|III> <III|Hint|II> <II|Him|I> <I‘Hint|0>

yanr EvoEwvoEmoEnoErn

(6.3.3)

Evaluation of the energy shift is facilitated by drawing Feynman diagrams
depicting the possible time orderings of the interaction vertices. The initial
and final states of the system are specified by

0) = |EA, EB ES; 0(ky, A1), 0(ka, 22),0(K3, 43)), (6.3.4)

corresponding to all three species in the electronic ground state and the
radiation field in the vacuum state. For the present problem, 360 graphs
contribute to the 3-body interaction energy. One such graph corresponds to
the sequence in which virtual photon labeled 1 with mode characteristics
(k1,21) is emitted by A and absorbed by B first of all followed by B emitting
a virtual photon denoted by 2 of mode (k», 4,) and which is absorbed by C
with finally the third virtual photon designated 3 and of mode (k3,43)
emitted by C and absorbed by A. As before, let the intermediate states of A,
B, and Cbe labeled p, ¢, and r, respectively. Evaluating in the familiar way,
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the contribution to the energy shift due to this specific time ordering is

2 i CkV) (jkv> @kv) ) (el (e (ko)

K1, Ka k3 2022, 4305457

x elf2) (Ka)el) (k3)el™ (K3) i (A) P (A) il (B) ) (B2 (C)

% ng(c)eikl : (RB*RA)eikz : (RC*RB)CUQ “(Ra—Rc¢)

% [(Epo + fieky) (Epo + Eqo) (Epo + ficka) (Epo + Eno) (Eypo + frcks)] ™
(6.3.5)

The remaining 359 graphs may be computed similarly, noting that because

the labels on the virtual photons are arbitrary, they must be permuted also.

. . . . . L =B =C
Defining the interatomic separation distance vectors ¢ =R —R ,

- -C oA . A =B . . i
b=R —R ,and ¢ =R —R and carrying out the polarization sum, the
energy shift can be written as

AE =— hckl thz hck3 0 Or
. Z Z #i?O MJOP :“ZO M?q 1010
K1k k3Pt \ 260V | \ 260V ) \ 269V

x (0wt ) (ol ) (o= ke, ) deie Bt ey mpt

m

where D! is the denominator associated with graph (a); the molecular
labels have been removed from the transition electric dipoles since the
intermediate-state labels are sufficient to identify each species and icf'”,
n=1, 2, 3 denotes the ith component of the unit wavevector of virtual

photon of mode n. Converting the wavevector sums to integrals and
performing the angular averages produces

3 000000
he 1
_ PO 0p 40 Oq r0 O
AE = — Z <4n30> 3 My g Hy :“:n:un’ J J Jdkldkzdk3
000

p7q‘rr
) -~ - \ sinkja ) -~ o \ sink,b
x [(—v 5l~k+vivk> (—v 5lm+vlvm> ; ]
) ~ -\ sinkse| &
X (—V 5JH+VJ-V”> C3 D' (6.3.7)
a=1




TRIPLE-DIPOLE DISPERSION ENERGY SHIFT VIA CRAIG-POWER HAMILTONIAN 269
Performing orientational averages for each particle and carrying out the

wavevector integrals results in the following formula for the retarded
three-body energy shift (Power and Thirunamachandran, 1994),

AE:‘m( ) S IEP ()P IEB)PIE (O)

Payr
< (P99 (Pt 9T (Pt B9) L

( qukrO

f[k 0(a+b—|—c)}
(2o ) (Ko=)
krOpr
+ flkg(a+b+c)]
N (k) (k) !
kpok g0
+ f[kﬂ)(d"i‘b‘"é‘)]
CROICED) (635)
where
f(x) = ci(x) sin(x)—si(x) cos(x), (6.3.9)

and the superscripts on the gradient operators indicate the object on which
the operator acts. Before going on to discuss the implications of the re-
sult (6.3.8), its asymptotic limits, and specialization to particular geome-
tries, it is shown in the following section how the retarded triple-dipole
dispersion energy shift may be obtained with significantly less labor using
perturbation theory methods.

6.4 TRIPLE-DIPOLE DISPERSION ENERGY SHIFT
VIA CRAIG-POWER HAMILTONIAN

The three-body dispersion energy shift may be obtained in a relatively
facile manner using perturbation theory techniques by employing the
Craig—Power interaction Hamiltonian (Craig and Power, 1969) instead of
the coupling operator linear in the electric displacement field equa-
tion (6.3.2). Such a replacement was made in Section 5.4, where it was
shown that the perturbation operator quadratic in the electric displacement
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field allowed the far-zone 2-body dispersion potential to be evaluated by
summing over 2 time-ordered graphs instead of the 4 diagrams appropriate
at this limit obtained from the full set of 12 graphs with each of the
2 diagrams now containing an effective 2-photon interaction vertex at
each center. If the dynamic property of the electric dipole polarizability
is correctly accounted for, use of the Craig—Power coupling operator
—(1/265)o(&; k)i (E)dH (&), & # & = A, Bleads to the Casimir—Polder
potential valid for all separation distances in the case of two interacting
bodies. Application of the effective 2-photon interaction Hamiltonian in the
perturbation theory calculation of the 3-body dispersion energy shift now
involves summation over only 6 diagrams rather than 360 (Passante et al.,
1998). Another major advantage gained by the use of collapsed two-photon
interaction vertices is that the order of perturbation theory required for the
calculation is now the third rather than the sixth. Details of the calculation
follow.

The total Hamiltonian for the three-particle system is again given
by (6.3.1), but the interaction Hamiltonian is of the form

Hin(€) = 622 (&R (Re, &R, 0 (Re, 83K, 7). (6.4.1)

0 modes

where o(&; k) is the isotropic frequency dependent polarizability of species
¢=A,B,Candd (R:, &, K, /) is the transverse electric displacement field
due to species &', evaluated at the position of body & and of mode (k 1). The
initial and final states |0) are the same as (6.3.4), corresponding to all three
molecules in the ground state |EC>, with no virtual photons present.
Notation identical to that used in the previous section to denote excited
electronic states of each species and the mode characteristics of the three
virtual photons that are exchanged between any two of the three centers is
again adopted.

Permutations of the three two-photon coupling vertices—with one inter-
action operator acting at each site, results in six possible time orderings. As
before, the virtual photon exchanged between A and B is of mode (k1, 41),
bgtween Band Cis of mode (k», 4>), and that traversing A and C is of mode
(k3,23). In one time ordering, species A first emits spontaneously two
virtual photons. One of these is then absorbed by B, which then emits
spontaneously a virtual photon. The two virtual photons now in transit, that
emitted by A and B, are then finally absorbed by C. Ina second diagram, two
virtual photon emission first occurs at B—one photon of mode (k, 4) that
propagates to A and a second photon of mode (kj,/2), which is first
absorbed by C, which then simultaneously emits a (k3, A3) mode virtual
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photon. Molecule A then finally absorbs the (k1,/4;) and (k3,43) mode
photons. In the third graph, species C first emits two virtual photons—of
modes (K3, ;) and (k3,i ). Next, A absorbs the (k3,/3) photon and
simultaneously emits a (ki, ;) photon to B. Finally, B simultaneously
absorbs this virtual photon and the (k,, ) photon first emitted by C
The three remaining diagrams are obtained from the first three on reflection.
The contribution from the first graph described above is now evaluated.

On making use of the interaction Hamiltonian (6.4.1), the product of the
electric displacement fields describing two different modes at the same field
point 7, is

e 1/2
ko3 () (14

=/

x e (el (K )a (f)a™) (k) ® 507

J
_ (l?)é]m(l_c’/)a()') (,-C’)aﬂ;.’)(];/)ei(/?—/?’) 7
—e k)l (K )a D (k)a ) (K )e )7

4 él(_i) (;‘C’)é(i’> (,;’)am) (]_C’)aT(A/) (]-C*’)e_i(/z +%) .7} ’
(6.4.2)

which when used in the expression for the third-order perturbation theory
energy shift (6.2.7), results in the contribution from the first time-ordered
graph described above being

3
hck hck hcks
. G) z Z 2 (2;:&) <2goé> (280{/> [0 (A k) + 05(As ks )|

ki,ka ks 2,22, 23

X [Ofkl(B§ kl) + oy (B; kZ)] [amn(c; kZ) + Ocmn(c; k3)]
% égil)(l_('l)el(cll)(l_c’l)egﬂz (k )e(ﬂz)(kz) (/L3)(k2)éj/13)(k3) ik1 - (Rp—Ry)

x ek (Re=Ro)giks -(Re=Ra) (e, + heks) (heky + Teks)] ™!
(6.4.3)

The contributions from the other five graphs may be computed similarly. On
using the definitions of the distance vectors d, b, and ¢ given in the previous
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section, the energy shift is

hck kok
Z Z <3czl%x2/33> Lo (As k) + 00 (As s

X [ockl(B ki )—l—ock;(B k)] [0t (C5 k) + ot (C k3)] (kl)
« el((/l])(]_c' ) (I_C’ ) /Lz)(]_(' ) (73) (k3) (43 (ks)e—il;'1~ﬁe—ik2~&eik3~g

1 1 1
+ + .
(ki +k3)(ky+k3) (ki +ka)(ki+k3) (ko +ks) (ki +k2)
(6.4.4)
Performing an orientational average using the relation
(o0 (A) otk (B)etnn (C)) = (0135(A)) (ks (B)) {0tnn (C))
= a(A)o(B)a(C)0ijOk1Omn, (6.4.5)

where a factor of 1/3 has been absorbed into each of the isotropic
polarizabilities, carrying out the polarization sums and converting the
summations over wavevector to integrals yields

fic 1

AE=— = Bk B3k d3 ks [a(A: k Ak
3233(27T)9J 1d°k» 3[06( ski) +o(A; 3)}

U tha) ket k) T et k(s tha) | (ko k) k)|
(6.4.6)

Transforming to spherical polar coordinates via &’k = k*dkdQ and
performing the angular integrations produces

he

AE=——"__
2567‘5688

(0,499 (-F0u+9,9:) (-F o0 9:7)

XLJ J Jdkldkzdlqsinklcsinkzasink3b [oc(A;kl)+o¢(A;k3)]
000

aoc
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x [o(Bsky ) +0(B;ka) ] [2(Cika) +a(Ciks) |
1 1 1
(k1+k3)(k2+k3)+(k1+k2)(k1+k3)+(k2+k3)(k1+k2) '

(6.4.7)

Since each of the transitions from the ground state is purely virtual, the
transition energies or wavevectors appearing in the energy denominator
factor are all positive. To facilitate evaluation of the integrals, the wave-
vectors can be separated according to the following integral representation
in terms of the parameter u,

1 1 1
[(k1+k3)(k2+k3>+<kl+k2)<k1+k3)+(k2+k3>(k1+k2>

_4k1k2k3T du
oo (k3+u2) (k3 +u?) (k3+u?)
0

(6.4.8)

Hence, (6.4.7) becomes

AE:_JT;%(_% $99) (T 9,90 (T 07

[ee]e oleelee)

“ael]

X [0t (A,k1)+<x(A;k3)] o(B; k1) +(B; k)|
1
(k3 +u?) (k3 +u?) (k3 +u?)

dudlq dkrdks ki kokssink; csink,asinksb

o%
S —

x [a(C;ka) +a(C;k3))
(6.4.9)

On noting that

k 1 1 1
1l 2 (k—l—iu+k—iu>’ (64.10)
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the wavevector integrals may be evaluated using the result

Jdkoc(k)ksmkx ! J dkor(k)e™ (—1 + ! > :Eoc(iu)efux,
0

R 4 ki k—iu) 2

—00
(6.4.11)
where o(iu) is the isotropic polarizability at imaginary frequency icu.

Therefore, the energy shift is

AE:_L?)(_%M %)) (- 0+ 9,9) (-Fou+ 9.7

1

- Al B:i e~ latbtau

xachduoc( siu)o(B;iu)o(Ciiu)e
0

(6.4.12)

The interaction energy (6.4.12) holds for all separations a, b, and ¢ beyond
overlap of charge distributions associated with the three isotropic bodies
A, B, and C with arbitrary geometry. An alternative form may be written on
evaluating the gradient operators (Power and Thirunamachandran, 1985).
Defining

C(x)=14x+x? (6.4.13a)
and
D(x)=3+3x+x%, (6.4.13b)

expression (6.4.12) becomes

x [=3C(au)C(bu)C(cu)+C(au)C(bu)D(cu)+C(bu)C(cu)D(au)

(6.4.14)



TRIPLE-DIPOLE DISPERSION ENERGY SHIFT VIA CRAIG-POWER HAMILTONIAN 275

Explicitly in terms of transition dipole moments, the energy shift is
1 2 \
AE=—— | Z k ok s0k —»Op Oq —0r
TR <3>Z pokokio 2 (4) % (B) 2 (C)
x [abc(a+b+c)]” [Ny +Ny (E

2)(¢-a)(a-b)+Nm(a)(b-¢)*
+Nm (b)(¢-a)* +N(c)(a-b)?

B
(6.4.15)

where

Ny=

b 3 N, (a+b+c)u
a+ —i—cJ ( (u)e” (64.16)

4a2h?c? ) k2 —i—uz)(kzo—l—uz)(k,zo—i—uz)

Ni(u) :% [—9C(au)C(bu)C(cu)+3C(au)C(bu)D(cu)
+3C(bu)C(cu)D(au)+3C(cu)C(au)D(bu)—C(au)D(bu)D(cu)
—C(bu)D(cu)D(au)—C(cu)D(au)D(bu)],

(6.4.17)
Ny (u) :% [3D(au)D(bu)D(cu)—2C(au)D(bu)D(cu)
—2C(bu)D(cu)D(au)—2C(cu)D(au)D(bu)], (6.4.18)
and
Nu(a,u) :% [—2C(au)D(bu)D(cu)+ C(bu)D(cu)D(au)
+C(cu)D(au)D(bu)], (6.4.19)

for x=1,11,111. The asymptotic limits are readily obtained from the result
applicable for all separation distances. To obtain the far-zone asymptote, u*
in the denominator of (6.4.16) is discarded, from which it is seen that the
molecular part of (6.4.15) reduces to static isotropic polarizabilities. For an
equilateral triangle in which ¢ = b = ¢ =R, the far-zone limit is (Aub and
Zienau,1960)

24 x 719%c

W“(A;O)“(B;O)aw;o)' (6.4.20)

AEr; =
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For alinear arrangement of three bodies with 2a = 2b = ¢ = R, the potential
has the asymptotic form in the far zone

93%¢

AEp;=————F—
T R0

2(A;0)2(B;0)a(C;0). (6.4.21)

Both limits (6.4.20) and (6.4.21) exhibit an R~ '° dependence. It is inter-
esting to note that the sign of the potential depends on the geometry.

At the other extreme, the displacements a, b, and ¢ are all small relative to
characteristic transition wavelengths k', k', and k;'. Hence, the near-
zone potential is found by letting a,b,c — 0 in the integral (6.4.16). Making
use of the identity

du
J o Hu?) (koo +u?) (ki +u?)

_ E (kpo + qu + krO) 1 (6 4 22)
2 (pr + qu) (qu + kr())(kro =+ kp()) prqukrO ’ o
equations (6.4.17)—(6.4.19) reduce to
_ 3(a+b+o)
9(a+b+c)
=" yopa b (6.4.24)
and
N = 0, (6.4.25)

giving the near-zone result,

3 e (kpo + kg + kro) kpok gokro
2 (47’580)3 (kp() + kq()) (qu + krO) (krO + pr)
1—3(2,.2:)(6-&)(&.2;)]

a3bh3c3 ’

AENz =

a(A;0)a(B;0)

%(C;0) [ (6.4.26)

whichis the Axilrod—Teller—Muto triple-dipole dispersion potential derived
in Section 6.2. As expected, the form of the potential obtained via static
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multipolar coupling coincides with the near-zone limit of the general form of
the retarded energy shift derived via quantum electrodynamical theory.

Finally, it is worth noting that the Casimir—Polder potential can be
written as

he ) - o \R/ L2 N |
T (=V705+ Vivy) (-V7o5+ ViV )R -
X Jdu o(A; iu)ou(B; in)e “RHR), (6.4.27)
0

with R set equal to R after carrying out the differentiations. Compar-
ing (6.4.27) with the form of the retarded three-body dispersion poten-
tial (6.4.12), it is easy to see how a generalized formula may be written
down for the dispersion energy shift between N bodies. A derivation
of this result using the alternative response theory method is given in
Section 6.6.

6.5 TRIPLE-DIPOLE DISPERSION POTENTIAL VIA
CORRELATIONS OF THE DRESSED VACUUM FIELD

In this section, an alternative physical viewpoint and calculational method
are presented for the retarded three-body dispersion energy shift. It is
similar to the induced moment method introduced in the previous chapter to
calculate two-body dispersion forces between systems in both ground and
excited electronic states. In obtaining the Casimir—Polder potential using
that approach, the picture was one in which electric dipole moments were
induced at each center by correlations of vacuum field fluctuations, with the
potential given by the expectation value over the ground state of the
quantum mechanical analogue of the expression for the classical interac-
tion energy of the correlated dipoles. In a variation to be given below, the
dressed spatial correlations of the zero-point field due to one atom are first
calculated, followed by the evaluation of the correlation of dipole moments
induced in two other atoms by this source dressed vacuum field, with the
three-body potential emanating from the coupling of these induced mo-
ments (Cirone and Passante, 1997). This technique will be seen to offer a
number of advantages over the conventional diagrammatic perturbation
theory computation presented in the previous two sections.

Consideran atom A, in the ground electronic state and located at R4.Inthe
electric dipole approximation, the quantum electrodynamical multipolar
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Hamiltonian for such a system is

21—

H = Hmol(A) +Hrad_galﬁ(A) -d (RA)> (651)

where [i(A) is the electric dipole moment operator of species A and i (7)
is the transverse electric displacement field operator. Correct to second
order in the interaction Hamiltonian—the third term on the right-hand
side of (6.5.1), the unnormalized perturbed wavefunction for the ground
state of the system (Power and Thirunamachandran, 1993a), commonly
termed a dressed state, is

L (K, 2; p|Hind|0; O(K, 2))|p: &, 2)
10) = [0; 0(K, 2)) 2;;; et
HEAPS %>
ppkﬂkm

% (K205 K s p! | Him|pi K AV (R, 25 p| Hi|0; 06, M) |p's K, 25K L 2
(k +kpo)(k 4+ k' + ko) ’

(6.5.2)

where |0; 0(k, 1)) = |0Y]0(k, 7)) represents the product state comprised of
unperturbed ground state of atomA |0) and bare vacuum field state, |0(k, 1)),
with p and p’ denoting complete sets of energy levels of atom A. The dressed
state (6.5.2) is used to calculate the expectation value of the spatial correlation
function for two differing modes of the electric displacement field denoted by
k,2 and K , A" due to the presence of atom A. It is given by
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(6.5.3)
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The first term of (6.5.3) is the expectation value of the field-field spatial
correlation function over the unperturbed ground state of the system, namely,
the ground state of atom A and the vacuum state of the electromagnetic field. It
is independent of species A and does not contribute to the three-body
dispersion potential. Its contribution is ignored henceforth.

To leading order, the moment induced in a polarizable body by an
electric displacement field is the electric dipole,

-

@ (k) = &5 a(k)d (7 &, 1), (6.5.4)

where o(k) is the isotropic dynamic electric dipole polarizability. Con-
sider two other atoms B and C that are identical to A and both in their
ground electronic states and located at Rp and Rc, respectively. The
interaction energy between the electric dipole moments induced in atoms
B and Cis

A4 in 7\ ,,in 7'\ 1A )
AEge =y > (07 |w" (Bs k)i (C; & )|07)ReVy(k, ks Ry, Re)
Kk

—/

=57 ) a(B;k)a(C; K)(0" | (R &, A (Res k (0"
kR X

x ReV;i(k,k'; Rg, R¢), (6.5.5)

where the expectation value is taken over the dressed state (6.5.2) and
implicitly depends on atom A. In expression (6.5.5), the two-wavevector
resonant dipole interaction tensor due to two oscillating dipoles has the
form

L 1 - L
ReV(k, k3R, R) = ——> [k3ReF,~j(k|R—R’\) +k’3ReFij(k’|R—R/])},

ey 2
(6.5.6)
where
1 -2 o o \ReR ) - - \RcoskR
ReFjj(kR) =Re3 (—V 51_-,-+V,-V,~) R :E(_v (3,_-,-+V,-V_,-> R

~ ~ . COSkR P sinkR coskR
_{(5,,._&1@) xR <W+W)}

(6.5.7)
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Substituting (6.5.3) and (6.5.6) into (6.5.5) produces, for isotropic source
atom A,

—'O 2
e =g S
P 0

x [k*ReF;;(ka) + k’3ReF](k’a)]ImF,k(kc)Ika(k’b)
o 1 1
(k+k,,0)(k’+kp0) (k+k,,0)(k+k’) (k’+kp0)(k+k') ’

(6.5.8)

dkdk kK" a(B; k) (C; K)

(S ——

after performing polarization sums and angular averages, where
R eikR 1
R i3

.\ sinkR ~ ~ [coskR sinkR
R) g+ (05 —3RiER) <W‘W>}

RsinkR

-2

ImF,-j(kR):Im%< 5,4+ 66)

:{(51

In expression (6.5.8), the familiar lengths a = \ﬁg—ﬁd, b= |ﬁc—ﬁA |, and
c= |§B—§A| have been reintroduced. It should be noted that including
the contribution from the first term of (6.5.3), simply gives rise to the
Casimir—Polder potential between atoms B and C as demonstrated in
Section 5.8. To evaluate one of the wavevector integrals in (6.5.8), the
wavevector partial fractions are rewritten as

1 1 1
htho0) (K 1 hoo) | (kHhe) (k1K) (K ) (k1K)

(-V7oy+V:%)

w>

(6.5.9)

1 1 PV 1 1 PV
"kt ((k+k’) a (k—k’)) * k' + ey ((k+k’) a (k’—k))’
(6.5.10)

where PV denotes the principal value. Inserting (6.5.10) into (6.5.8) and
using (6.5.7) and (6.5.9), AEg¢c becomes

1

Afbe = 3 x 2575

(90, +99) L (-F 0+ 9,90 5

X (—6251@ + ﬁkﬁi) c%
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\

Jdk'cx(C;k’) sink’b
0

ee]

x | dka(B;k) [sink(c+a)+sink(c—a)]

0

e
P

+ | dka(B; k) sinkc

0

x | dk'a(C; k') [sink(b+a) +sink’ (b—a)]

J
0

X

1 1 PV 1 1 PV
Ktk \ (k1 k) (k) ) K tho \ (k1 k) (K—K) ) |
(6.5.11)

One type of integral occurring in (6.5.11) may be evaluated in the complex
plane on making use of a(&; k) = a(&; —k), and yields

T , 1PV
J Oﬂ(é,k) Slnkx<m—m>dk =PV
0

= msgn(x)a(& k') cos k'x,
(6.5.12)

dka(S; k) —

T sin kx
k+ Kk

where sgn(x) is the signum of x. Substituting (6.5.12) into (6.5.11)
produces integrals of the type

J dkoc(B; k)a(C; k) sinkx

k—i—kp()
0

it . . ihx . . —ikx
:l. Jdkcx(B,k)oc(C,k)e _Jdkoc(B,k)oc(C,k)e .
2i k+kp0 k+kp0

0 0

(6.5.13)
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This may also be evaluated in the complex plane by inserting k = i in the
first integral and k = —iu in the second, for x >0, to give

Tdk“(B;k) a(C;k)e ikex T koc(B;k)oc(C;k)e*"kx

k—l-kpo k+kp0
0 0

9

_ Z_Tduoc(B; iu)oc(C;.iu)e*”X _deu(x(B; iu)oc(C;‘ iu)e "*
kpo +iu kpo—iu
0 0
(6.5.14)

with the x <0 case evaluated similarly. Integral expression (6.5.13)
therefore becomes

00 oc(B;k)O!(C; k) sin kx . OC(B; iu)oc(C; iu)e_”M
J dk k + pr o Sgn(x)kpo J du k;o n 2 3
0 0

(6.5.15)

where in the last two relations a(&; i) is the isotropic polarizability of species
¢ at the imaginary frequency icu. Energy shift expression (6.5.11) becomes
he

-2 o > \a] 2 oo b1
M =~z (<Y 099 2 (V0 9V
i NS |
G TRANE
2Jduoc (A; iu)ou(B; iu)or(C; iu)e M@ +b+¢)
0

+

1 1
1+ Esgn(b—a) + Esgn(c—a)]

00
X X Jdua(A;iu)a(B;iu)a(C; l'u)efu(bJrcfa)
0
_1 1_ o . . . *M((l+cfb)
+ Esgn(b_a)__ dua(A7lu)O((B7lu)o((C7 lu)e

duoi(A; iu)o(B; iu) o C; iu)e @ +b=¢)

1
|
N | -
SR e L ) —

(6.5.16)
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Because the three atoms are identical, permutation of the atom labels
along with separation distance vectors readily generates contributions to
the three-body energy shift from the interaction of atoms A and C in the
presence of B, AE,¢, which is obtained from (6.5.16) on changing B to A
and b to a and from the interaction between A and B in the presence of C,
AEg4, which follows from (6.5.16) on changing C to A and ¢ to a. The
overall three-body dispersion potential is finally arrived at by averaging out
the three contributions described above and accounting for all possible
pairings giving

2
AE = g (AEAB +AEBC +AECA)

he 52 o o NG S/ o2 Y Nb/ n L
:_m<_v 5ij+Viv‘i) (-V 5Jk+vjvk> <—V 5ki+Vsz’>
0
1 oo
><%Jdud(A;iu)oc(B;iu)oc(C;iu)e(a+b+c>u’
0

(6.5.17)

in agreement with result (6.4.12).

6.6 N-BODY DISPERSION POTENTIAL

A physically transparent and calculationally efficient method for the
evaluation of the dispersion interaction due to N neutral polarizable
molecules is response theory (Power and Thirunamachandran, 1985). The
computation is a generalization of the approach presented in Section 5.7,
where the response of one species through its dynamic electric dipole
polarizability to the electric displacement field of a second source molecule
was shown to lead to the Casimir—Polder potential. In the present case, the
time-dependent Maxwell field operators for a collection of molecules is
calculated, from which the response of one molecule to the fields produced
by all of the others is then evaluated, leading directly to the N-body energy
shift.

A characteristic of the response formalism is that molecules couple to
the field via their frequency dependent polarizability. A convenient
starting point in the calculation of the many-body interaction energy is
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the Craig— Power form of the Hamiltonian density,

N
#F = grad + Zgint(é)

=1
1 (=12 ) - o= B
_ 2_80{¢f (7) + 2% (7) } 2%;% (& k)d-(7)d ()3 (F—R:),

(6.6.1)

which is appropriate for the situation in which the molecules are con-
sidered sources of the radiation field. The electromagnetic fields them-
selves must, of course, satisfy Maxwell operator equations. The first two
microscopic Maxwell equations are clearly obeyed since the dynamical
fields—electric displacement and magnetic—are purely transverse.
Meanwhile, use of the transverse vector potential as the canonical field
variable ensures that the third Maxwell equation is satisfied. Finally, the
fourth Maxwell equation is obtained from (6.6.1) as follows. Variation of
the Hamiltonian density with the vector potential yields the negative time
derivative of the conjugate momentum field, as in

-, O - o

(7) = a6 - —60c?V x V x d(7). (6.6.2)
Noting that in the multipolar framework (7 = —c_l"L(?) (equation
(1.7.5)) and b=V x d(7), it is seen that

1 0-1

V x b(7) =
which is a special case of equation (1.6.34) applicable when spatial
variation of the vector potential is neglected. Similarly, variation of #
with respect to T1(7) results in

() = o it SER) T IR, (664)

a\r) = =0 —80 0 OC r— £ .0.
oI1(7) =

Recalling that d@(7) = —&*(7), relation (6.6.4) can be written as

eH(F) = g [T-3 5(E k)R | -d (7). (6.6.5)

&=1
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Defining the transverse polarization field distribution, 7 (), in terms of
the electric dipole polarizability

N 1 -
) =Y d(&k) - d (7)d(F-R:), (6.6.6)
é=1

the constitutive relation between fields &= (7) and a (¥) is obtained,

d"(7) = e (7) + p (7). (6.6.7)

The next step is to derive the homogeneous equations for the components
of the electric displacement field in terms of the sources. Evaluating the
time derivative of (6.6.7) and substituting in (6.6.3) produces

- - loetF) 1 0., . 1 9-1

Effecting the vector cross product operator tw1ce on (6.6.7) and using the
third microscopic Maxwell equation V x 2 (¥) = —(0/01)b(F) yields

— — — a - — —
vaXdﬂw:—%a(va®)+vaXﬁHm, (6.6.9)

where the order of temporal and spatial derivatives has been interchanged
in achieving the first term on the right-hand side of the last equation.
Inserting (6.6.3) for V x b( ), employing the identity

V x Vx :—624—66', (6.6.10)
and noting that the divergence of the transverse displacement field

vanishes outside the sources for a neutral system, (6.6.9) produces the
following for the wave equation for the displacement field,

22 1 9% -1, S o
or, explicitly in terms of the polarization field (6.6.6),

-2 197 -
<V _Eﬁ) dl Z“U glmpg/mnvlv d ( )5(V—R§).

(6.6.12)
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To proceed further, the transverse displacement field is expanded as a sum
of normal modes,

I 7 o i G
dj@)::Z(WO) {ey>(k)F,,q(k,r)a(0)e ’—H.C.}, (6.6.13)

where o(0) is the initial time boson annihilation operator and H.C. is the
Hermitian conjugate. In the absence of sources, the mode function for the
free radiation field is of the form

FOK,7) = 6, 7. (6.6.14)
Inserting (6.6.14) into (6.6.12), for the spatial part of the mode function

N
(VK2 oy (B 7) = = 3 ay(EK) (=¥ 0+ V9, ) Fiy (. 7)0 (F—Ro).
=1

(6.6.15)

Solutions to (6.6.15) may be obtained via Fourier transformation. Both
sides of the last relation are multiplied by e?” " on the left and integrated
over all space to yield

N 53 - -
(271)3(—p2+k2)qu(k,ﬁ) == ZO‘ij(@k)(Pzéjp_pjpp)elp'RiFiq(kvRé)a

=1
(6.6.16)
where
R 1 T - o
Gpg(k,P) =—— J P TF,,(k,7)dF. (6.6.17)
(2m)

The inverse of (6.6.17) is
oo
@25117—19ij) —ip-(7-R:)
> 22 ©
p J—

=Fp (k.7)+ ) (—v ip+V; p)
N emip () L
XD J g (CGR)Fig(k Re)dp. (6.6.18)
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Since (6.6.14) is an appropriate solution for the free field situation, it
makes sense to adopt it as the complementary function. Performing the
angular average using

o I (O
e P FRIgQ = ——— (ginlF—Rel _g—iplF-R:| 6.6.19
4nJ 2ipii—R o el

and carrying out the p-integral on (6.6.18) with the pole displaced to favor
outgoing waves gives

. o)/ 1 X R ik|F—R¢|
Fpgll.F) = FlY) (. F) - o5(&) (=V70,

=1

Higher order terms of the mode function dependent on increasing powers
of the polarizability may therefore be obtained on iteration,

Fpg=F +F)+ - (6.6.21)
with
N N-1 ik|F—R¢|
- 1 =2 - = \ e : -
(D) (K 7) = — (EIN =Y. v ) — f® .
Fpg (K, 7) ;(471) “U(@M( \Y 5Jp+vjvp> F—R.| Fig (k,R).
(6.6.22)

The series expansion for the electric displacement field is then obtained on
substituting (6.6.22) into (6.6.13).

The response of each molecule taken in turn, to the field of all of the
others gives an expression from which the N-body energy shift may be
found. It is given by

1 o ~
AE = —Wzailﬁ (P17k)<0|dzjl_(RP1)céjl_(RP2)|0>a (6623)
& 7P

where the ground-state polarizability appears and the expectation value
of the product of radiation fields is taken over the vacuum state of the
electromagnetic field. In formula (6.6.23), >, denotes the summations
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over all permutations corresponding to

[t 2 3 ... N
P=\p b by Pyl (6.6.24)

where in the top line, the objects to be permuted are written in their natural
order, while the bottom line signifies the order that results on carrying out
the prescribed permutation (Wigner, 1959). Substituting for the dis-
placement field from (6.6.13) and executing the polarization sum, (6.6.23)
becomes

zNgNZZ(h‘”‘) o1 (PriK) sk ) iy (K. R, ) (R R

1 1 hck .
:_2N80 (47‘580> ZZ < )a’l]l (P1;k) <5rs_krks>

ZF<" k.Rp ) EN V(K Rp), (6.6.25)

1|r /15

where in the second line, summation over 7 is carried out of the product of F
functions to ensure that the polarizability of each molecule appears only
once as necessitated by the final form of the expression for the N-body
energy shift. Let

eikRPan

-2 5 S
Vig, (k) = (‘V Oy +Vian,,> : (6.6.26)

RPuPb

where the gradients acton Rp,p, = |I_é Py -R p,|- With the relevant effective

contributions to F (k R, ) and F N D) (E,ﬁp,) being given by

Haiqulj(Hrl(Pa+1;k)'Yi«j“+1(k) z,,+1r(k RPn+1)7 (6627)
a=1

and

N—1
_ © =
IT @i Pas iV, (RFY (K. Rp, ), (6.6.28)

a=n+1
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respectively, where jy. 1 = ji, the energy shift from (6.6.25) is

1 1 hck -
AE = 2N8() <4n£0> Z Z ( )alm Plak)(am_krks)

XZFln+1r k n+l j(njzs(k R n+2)

an

X H H Ocia+1ja+l (Pa+1; k)aih+L/h+l (Pb+ 1’ k)’Ylﬁ]}pﬂ (k)’yib+1j[,+2(k)'

a=1b=n+1

(6.6.29)

Inserting the zeroth-order mode function from (6.6.14), converting the
mode sum to an integral and performing the angular average produces

N
1 1 e~ [ =2 Y.
AE:_E (E) ?zp: Eﬁ (—V 5l'n+1jn+z + vin+lv]n+2)

s1nkRp P
Jdkalljl Pl, o S
R
Pn+]Pn+2
0
n N-1
X H H aia+lja+l(Pa+l;k)aib+ljh+l(Pb+l;k)Yia/a+l(k)’Yl'b+1jb+2(k)'
a=1b=n+1

(6.6.30)
Making use of the fact that

+V,..V;

Jn+2

) R e - i (Yin+l_jn+2 (K)=Yi,. vin (k)) )

)
vy}

( v RPn+1Pn+2 21
(6.6.31)

Int1Jn+2 In+1

(6.6.30) becomes

00

1 1

AE = _W <4TE80) 27_” Jdkalljl Pl 0512/'2 (Pz;k)"‘aiNjN(PN;k)
0

X[Yi]]z( )’le];( ) YIN]] (k) YI]/Z( ),le/g(k)"‘?ile (k)]
(6.6.32)

Inserting the y;, (k) tensor from (6.6.26) and converting the integral over
k to an imaginary wavevector k = + iu, the dispersion energy shift between
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N bodies can be written as

X Jduociljl(Pl i) oy, (Pa3itd) ..o, (P iua)e " ReipatReopstReye,),
0 (6.6.33)

This result holds for N molecules with anisotropic polarizabilities for all
pair separation distance permutations beyond the region of overlap of
electronic charge distributions.

From the general formula (6.6.33), it is a simple matter to extract results
for N=2 and 3 and compare with previously obtained formulas. For the
pair interaction energy,

he 1 ) =~ = \Repr 1
@ (2 R vaF o)
AE (4n> (167‘[28(2)) 2 < V O+ v”v,z) Rp,p,

P
) > = \Rpr 1
X(—V 5i2f1 +V, jl) o R
PPy
X Jduociljl (Py; itd) iy, (P iu)e ™" Reira o) (6.6.34)

0

which is identical to the Casimir—Polder potential (6.4.27) once the sum
over permutations in (6.6.34) is carried out, which introduces a factor of 2!.
Similarly, for the three-body energy shift,

3
fic 1 ) - = \Repr, 1
AE(%) =—\|— -— — 5,’ ; i Vi
<6TE> <4TL’80> XP: ( v 2 t v 1vjz> Rplp2

=2 o o
X (=V 8y, + Vi, V) 72r . (
PyP3

1

Rpyp,

) -

- Rp,p,
-V 5i3j1 +vi3vjl)

00
X Jduocl-ljl (Pl ; iu)O(iij (Pz; iu)oci3j3 (P3; iu)eiu(RPIPZ +Rpypy +Rpyp, )’
0 (6.6.35)
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which is seen to be equivalent to the expression derived in Section 6.4 for
the retarded triple-dipole dispersion potential and given by equa-
tion (6.4.12), once a factor of 3! is accounted for on performing the sum
over _pernlutations in (6.6.35), where a = |I32—1§3|, b= |§3—ﬁ1|, and
c = ’R 1 —Rz‘.

The form of the asymptotic N-body dispersion potentials is easily
obtained from the result applicable to all ranges of pair intermolecular
separation distance (6.6.33). In the far-zone limit, all separations are much
larger than characteristic reduced transition wavelengths. Hence, the polar-
izabilities are all static and independent of u and they can be factored
outside of the integral. The resulting u-integral is elementary, leading to the
result

N
N he 1
AED) = — (H\f o ZP: %ijy (P15 0)0tiy, (P23 0) . . . iy (Pyv; 0)

) - = \Rep,
X (_v 5i1j2 + vil vjz)

) - = \Reyp =2 - = \Reyp
X (—V Oirj +Vz‘zvja) T (—V dinjy +vajl) .
y 1
RP|P2RP2P3 s ‘RPNP] (RP1P2 +RP2P3 + o +RPNP1) ’

(6.6.36)

or in terms of the displacements a, b, ¢, and so on,

N
hc 1
N
AEI(:Z) = — (ﬁ) <F£O> XP: O(,'Ijl (Pl;o)aiziz (Pz; 0) . O(iNjN (PN; O)

><abc...n(cH—b—i—c—l— e +n)’ (6.6.37)

At the opposite extreme, the separation distances are very much less than
molecular transition wavelengths. Setting the exponential in (6.6.33) to
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unity leads to

(N) fic =3 Rpp,
Abnz = (277:N> <47Z80> zP: < 5”]2 +vl‘v 2)
s o

) Rp, ps ) = \Reyr
X <—V vlz j3) 3 <—V 51'le +vz’ijl> NP1
x 1 Td (Pys ), (P ) ..oty (P )
uol SIu) o, ; Siu) .. 0 iU
RPIPZRPng B -RPNPJ i1 1 ija \ 12 injn \I' N )
(6.6.38)
which can be written as
(N N hC 1
AENZ) =—(-1) (ﬁ) <4n80> ZP: ivp— 3, j,)
1
X e =30y G
X Jduocil]l (Pl;iu)ocizjz(Pz;iu) ...oc,-NjN(PN;iu), (6 6 39)
0

which is the N-body generalization of the Axilrod-Teller result. The long-
and short-range forms of the energy shift for N=2 and 3, obtained from
limits (6.6.37) and (6.6.39), agree with formulas derived from explicit
evaluation of the pair and three-body potential valid for all separations.

6.7 FOUR-BODY RETARDED DISPERSION POTENTIAL

In the previous section, a general formula was obtained for the retarded
N-body dispersion interaction energy by calculating the response of one
molecule at a time to the electric displacement field produced by the
remaining N — 1 atoms or molecules. Expressions for N-body dispersion
potentials applicable at short- and long-range asymptotic limits were
readily extracted and all three formulas were tested for N=2 and 3 and
found to agree with results derived directly for two and three interacting
bodies. In this section, the general formula is applied to calculate the
quantum electrodynamical dispersion potential between four bodies
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(Power and Thirunamachandran, 1994) by inserting N =4 into formu-
la (6.6.33). This produces the energy shift expression

4

fic 1 -2 - o \Rep, 1
we= (2 () S (¥4 9,9,)

<16TC> (47‘[80) ; v /2 + v IVJZ RPIPZ

-2 - = Rp P; 1 -2 - = RP.P 1
X (—V 51'2]‘3 + Vi2Vj3) o <_v 5i3j4 + vi3vj4) o
PP Rp,p,
) > = \Rpp 1
X (-V 5i4j1 +vi4vj1) o R
X Jduociljl (Pl; iu)oc,-zjz (Pz; iu)ocish (P3; l'l/l)OC,;u'4 (P4; iu)
0
Xe_“(Rl’]Pz +Rpypy +Reypy + Reypy) .
(6.7.1)

From the general formula applicable to N bodies in mutual interaction,
it is seen that there are N!/(2N) distinct contributions, the denominator
arising when cyclic permutations and reversals are not distinguished in the
ordering of particles. It is convenient to label the distinct contributions in
such a case by defining a class as containing an ordering given by the ratio
above and differing only by cyclic permutations and reverse ordering. For
four bodies A, B, C, and D, there are three classes that are labeled ABCD,
ABDC, and ACBD. These three groups, along with the cyclic and reverse
ordering associated with them, comprise the full set of 4! =24 possible
permutations of the four bodies. The three orderings listed above form the
representative labels of the three classes. Let the six displacements between
the four species be defined according to ¢ = |[Rg—R4|, a = |[Rc—Rp|,
b= ‘RA—Rc‘, d= ’RA—RD|, e = ‘RB—RD ,and f = |Rc—RD|‘ For the
three classes ABCD, ABDC, and ACBD, the ordered interobject dis-
tances are (¢, a, f, d) (i.e., A=B=c¢, B—C=a, C—D=f,and D—A =d),
(c, e, f, b), and (b, a, e, d), respectively.

In the far zone, the potential from equation (6.6.37) after orientational
averaging is given by

he

T

AEr; = —( ) (}) (A2 0)(B:0)a(C: ) D: )

x [D(cafd) + D(cefb) + D(baed)], (6.7.2)
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where the geometric factors are defined by

c

Dlabed) = (<3, +9:9,) (~F 00+ 9,9:) (-F 0+ 9.5))
d
) abed(a +1b +c+d) (6.7.3)

X <—625[,‘ + 6[6,'

For an arrangement in which the four bodies are located at the corners of
a regular tetrahedron with side length R, the dispersion potential in the far
zone is

fic 1 \*/3x41x2689
AEFz=—<nR13> <4n80> < o >oc(A;O)a(B;O)oc(C;O)oc(D;O),

(6.7.4)

exhibiting an inverse thirteenth power dependence on separation distance.
On the other hand, in the near zone, the potential takes the form

ABng — — (E) (L)4[F(cafd) + F(cefb) + F(baed))

T dmeg

X J duo(A; iu)o(B; iu)o(C; iu)o(D; iu), (6.7.5)
0

¢

ab33d?
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and the molecular factor is

Jduoc(A; iu)o(B; iu)o(C; iu)o(D; iu)
0

4

T 2 — — = =S

=2 (ﬁ) > 1E APl (B) Pl ()Pl (D)
paquvs

([ [(kpo + kg0 + ko + ko) (Kpokgo + kpokro + kpokso + kgokro
+ kgokyo + krokyo)

x { —(kpokqokro + kpokgokso + kpokiokso + kqokiokso)]

X [(kpo + kego) (kpo + ko) (kpo + keso) (Kgo + ko)

X (qu + ksO)(krO + ksO)]_l

(6.7.7)

with expression (6.7.5) the four-body equivalent of the Axilrod-Teller
triple-dipole dispersion potential.

6.8 THREE-BODY DISPERSION INTERACTION INVOLVING
ONE EXCITED MOLECULE

In Chapter 5, three different approaches were given for the calculation of
dispersion energy shifts between two molecules. Each of the methods
allowed for one or both of the interacting molecules to be in electronically
excited states although the degree of difficulty of the calculation varied
according to the viewpoint adopted even though the final results obtained
were the same in all cases. It was found that response theory and the method
of induced moments greatly simplified the calculation of pair dispersion
potentials when real photon emission and absorption processes occur
in addition to transitions that are purely virtual in origin, as is the case
when one or both species is excited. Before going on to show how a
combination of the coupling of induced moments of two of the three bodies
to the displacement field of an excited third molecule leads straightfor-
wardly to the dispersion interaction between two ground-state molecules
and one excited-state molecule, a time-dependent perturbation theory
treatment is presented first (Power and Thirunamachandran, 1995b).
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6.8.1 Time-Dependent Perturbation Theory

In Section 5.6, diagrammatic time-dependent perturbation theory was used
to calculate the retarded two-body dispersion interaction between a ground-
state molecule and an electronically excited species. As for the calculation
between two ground-state molecules, the contribution from 12 time-
ordered graphs were summed over with care being taken to account for
emission of a real photon by the excited molecule when undergoing a
downward transition to a lower lying state. This was dealt with by including
damping factors in the energy denominator products and including pole
contributions in addition to the principal value part of the integral over
photon wavevector. A similar approach is now carried out for three inter-
acting molecules, only one of which is excited.

Consider three neutral, nonpolar molecules A, B, and C situated at R As
Rp,and R, respectively. Initially, let species A be in electronically excited
state |m), while both B and C are in the ground electronic state. Both upward
and downward transitions to an intermediate-state |[p) are allowed in A,
while B and C both undergo upward transitions to excited-state |¢) and |r),
respectively. In the electric dipole approximation of the multipolar Ha-
miltonian of molecular quantum electrodynamics, the total Hamiltonian for
the system is given by

H = Hmol(A) +Hmol(B) +Hmol(c) +Hrad +Hinta (681)

where the interaction Hamiltonian is written as

Huo=—ey' > H(E)-d (Ry). (6.8.2)

E=A,B,C

When this form of coupling Hamiltonian was adopted in Section 6.3 for the
computation of the triple-dipole dispersion potential between three ground-
state species, summation over contributions arising from 360 time orderings
were necessary. Considerable simplification of the calculation was achieved
by adopting an effective 2-photon interaction Hamiltonian at each center,
reducing the evaluation of the energy shift to summation over 12 diagrams. A
similar approach is taken in the present problem, with one important differ-
ence being that because A is excited, the linear in the electric displacement
field type of coupling Hamiltonian (6.8.2) is retained for molecule A. Thus,

R -1 1 -12 o 1 ~12 o
Hi = —&, 'i(A) - d (RA)—FOC(B)CI (Rp)—=>5(C)d  (Rc).
b 2¢e;

(6.8.3)
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With the use of this form of interaction Hamiltonian, the leading order of
perturbation theory necessary for evaluation of the energy shift is now no
longer the sixth but is the fourth. When time reversals are adumbrated, 24
possible time-ordered sequences may be drawn to represent the process. The
initial and final states of the system are written as

0) = |E,

m?

EoBaEg;O(El>)“1)vO(E27/12)70(E37/13)>7 (684)

where, as for the ground-state case, the photon labeled by mode (l?l A1) 18
exchanged between A and B, that characterized by mode (k2, Z2) propagates
between B and C, while that denoted by (k3, A3) traverses between A and C.
Evaluating the individual contributions in the usual way and adding gives, for
three isotropic molecules, the expression

1

1 1
3 (4mep)’

SO~V 05+ 6,-6,)“& (ot ﬁ,-%)b%
p

< (<0 + i)

X 1 J o(B; k)o(C; k)sin kya sin kzb sin kchDgldkldkzd/Q +c.c.,

3 ;
g=i
(6.8.5)

where a, b, and c are the pair separation distances defined in Section 6.3, D; s
the energy denominator product from graph g, and c.c. denotes the complex
conjugate term. Since A is excited and can make downward as well as upward
transitions, some of the energy denominators can vanish due to resonant
excitation. It is therefore convenient to consider only downward transitions
from |m) in A, say, to the ground-state |0™), with wavevector k,,o. While
upward transitions clearly contribute, in this case, none of the energy
denominators vanish and the contribution is identical to the ground-state
triple-dipole dispersion potential (6.4.12), but with excited-state polarizabil-
ity of A appearing in the expression instead of the ground-state one. As in the
analogous two-body case, the poles in the denominators are handled by adding
+7y using incoming and outgoing wave criteria for the choice of sign and
employing the identities (5.6.5) and (5.6.7) to evaluate the wavevector
integrals. Since the potential (6.8.5) is real, for denominators containing a
single pole, only the principal value of (5.6.5) contributes, while for terms with
two poles, both the principal value product and the contribution from the two
deltafunctionsin (5.6.7) remain. Like the situation occurring in Section 5.6 for
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the interaction between a ground-state molecule and an excited-state mole-
cule, only two graphs give rise to a contribution involving a product of two
delta functions, which is

2 1

3 (47‘680)3

—m -2 > > \al
I °(A>|2a(B;kmo)a(c;kmo>( 0+ vv) 1

a

JE AN

( V Ori + VkV ) —c0s koa sin kb sin k,oc. (6.8.6)

Evaluating the principal value product terms from these 2 graphs along with
the 10 other graphs produces a contribution, which can be written as 2 terms.
One is trigonometric and similar to (6.8.6) in that it depends only on the
transition frequency of molecule A, ¢k,

-2 - - \a1
!“’”O(A)Izoc(B;kmo)oc(C;kmo)( V o+ vv) -

2 1
3 (47‘680)

X (—6251'1( - ﬁjﬁk)b%

( v 5k,+VkV) —c08 koa cos k,ob cos k,gc. (6.8.7)

The other is similar to the familiar u-integral expression as found for three
interacting molecules in the ground state and is

he va oo\l (a2 ==\l =2 NS |
—(-V'5; V,-V) —(_v S, V-V) —(—V PR V;) 1
7'5(47758())3( i+ i) g ik + ViV 5 ki + Vi ;
X Jduoc(A; iu)ou(B; iu)ou(C; iu)e @ P+
0

21 o g2 (S L oaNal s 2 Lo \b1
= o "™ (A)] ( Vo + vv) a( v5,,¢+v,vk) -
T
5 ; B:i C:i —((l+b+c)u'
( va k—i—VkV) J k,zno"‘”z a(B;iu)a(C; iu)e

(6.8.8)
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The total three-body dispersion potential between an excited molecule A and
two ground-state species B and C is given by the sum of the last three
expressions. Before examining the form of this energy shift in greater detail, it
is shown how the result may be obtained using coupling of induced dipoles to
their fields.

6.8.2 Coupling of Induced Dipoles

It was shown in Chapter 5 how the induced multipole moment method
provided an alternative approach to the computation of dispersion pair
potentials between ground- and excited-state molecules. This viewpoint is
now used to calculate the dispersion interaction between three bodies, one
of which, A, is excited. The physical picture is one in which A is viewed as
giving rise to a dipole field, which induces dipole moments in each of B and
C. These induced moments couple to the resonant dipole-dipole interaction
tensor at the transition frequency of excited molecule A, resulting in an
energy shift (Power and Thirunamachandran, 1995b).

As in the last subsection, let A initially be in excited electronic state |m1),
from which it makes an electric dipole allowed downward transition to the
ground state with frequency ck,,,o. In Section 2.6, the electric displacement
field of such an oscillating dipole was calculated to be (equation (2.6.21))

w7 1o =2 o o\ etkmo(r=ct)
1 (a)
1 A A
= 3 KA [(05=Fiy)hepor?
+ (0537 (#opor—1)]e"=0).(6.8.9)

The electric dipole moments induced in ground-state polarizable mo-
lecules B and C by this field are

—in _ =L ., =

i™(B) = ey 'o(B; ko)d (fi; Rpa, 1) (6.8.10a)
and

i Sl =

i(C) = &5 ' a(C; ko) (fi; Rea, 1), (6.8.10b)

where o(&; k) is the isotropic electric dipole polarizability of molecule ¢ at
frequency w = ck. The moments induced at B and C couple to each other
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via the dipole-dipole interaction tensor at the frequency of the downward
transition in A, Vji(k0, Rpc) where from Chapter 4 and work relating to
resonant transfer of energy between an excited and unexcited pair,
. 1 ) oo ikR
ReVi(k,R)= ——Re(—V 0ii + V-V-)
i(k,R) — ij Vi) R
1
0y
477:80R3 [(

—3R; R ) (cos kR + kR sin kR)
—(8;—3R:R;)k*R*cos kR). (6.8.11)

Thus, one part of the downward transition contribution to the three-body
energy shift is computed from

1 (B) ™ (C)ReVy (kimo, Rpc) +c.c. (6.8.12)

Substituting (6.8.10) and (6.8.11) produces for (6.8.12) the expression

2
1" (A" (A)(B; Kino)o(C: Kio)

 (4mep)’
X Re < (—6251-/( + ﬁ,ﬁk) cetne ( V 0j1 + V Vz)b ?] )
X Re ( A 0 + ﬁﬁ)aelkamoa]- (6.8.13)

For isotropic A, the contribution to the energy shift is

1 —0m 2 =2 N
B Po(B; ko) (C ko) (=N 85+ ViV
S T P B en)a(Cilen) (97054 ¥9,)
E R AN RIS A
jk JjVk b ki kVi c

x {cos|kyo(a+b—c)] + cos[kmo(a—b+ )] }. (6.8.14)

The other factor contributing to the energy shift when A is excited has the
structure of a u-integral, as occurs in the ground-state interaction between
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three molecules. For upward transitions in A, it has the same form and sign
as the triple-dipole dispersion potential (6.4.12), but containing excited
state polarizability of A. For downward transitions in A, the u-integral is of

opposite sign to that found for upward transitions when A is excited. This
last contribution is given by

A N3 32 o Ky —»mO k k, =0r
(477580 nh2c2<> Z ol | ‘10|:“ ‘(B )| ol (C )|

w
< (~Fo,+99) L (~For T%)

x (-9 5kl+vkv) J

efu(a +b+c)

(ko + 1) (kg + %) (ko +u?)

du,

(6.8.15)

for transitions to the ground state in A, recalling that transitions in B and C
are upward from the ground state to |¢) and |r), respectively. Hence, the
total energy shift is given by the sum of (6.8.14) and (6.8.15),

1

- - -\al
AE = — |1 (A) o B o)t (C: o) (¥ 05+ V,9;)
it B P28 o) Cin) (9054 9

b
x{cos[kpo(a+b—c)] + cos[kyo(a—b + )]}

e NG
———— | = kol B AP =V 8+ ViV, ) =
+ T <3> ol () (~V70y+V¥)) ~

B AN E S A

X <—§25jk + 6]'61()})1 <—625ki + ﬁkﬁi)cé

N e—ula+b+e)
[y sy Cinpa (6:8.16)
m0

The result (6.8.16) is easily extended to the case where A may make both
upward and downward transitions from initial excited-state |m) to state |p).
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Note that only downward transitions in A contribute to (6.8.14) with |0)
replaced by [p). In contrast, all transitions contribute in the u-integral
term, the sign depending on whether k,,, > 0 or k,,, <0 Hence, for
multilevel A, the dispersion potential is

) > o \a]
[ —’pm . _
AE — 4n803p21 20(B; k)t (c,k,,m>( Vo + vv) ;

) m>E],_‘ ) . .
X (—Vzéjk + V_/Vk> b ( V Oki + Vkv ) -
x{cos[kym(a+b—c)] + cos|kpm(a—b+c)]}

hc =2 SN I - = \b1
+ (~Vo5+V:%) - (=¥ o+ V%) .

) Loonel [ . . -\ o—u(a+b+c)
X (—V 5ki+Vle-> - a(A; iu)o(B; iu)a(C; iu)e du,

0 (6.8.17)

where excited-state polarizability of A and ground-state polarizabilities of
B and C appear, which is identical to the result obtained via diagrammatic
perturbation theory at the end of the previous subsection.

From the result (6.8.17) applicable to all separation distances, the
asymptotically limiting forms are obtained after the usual approximations
are made for the near and far zones, namely, that characteristic transition
wavelengths are greater than or less than interparticle separations distances,
respectively. To simplify the structure of the limiting energy shifts, a two-
level model is adopted for the three molecules, with the downward
transition in A having wavevector k4 and upward transitions in B and C,
kB and kc.

In the near zone, both real and virtual photon contributions must be
included in the limiting potential. The second term of (6.8.17) gives rise to
an Axilrod-Teller-type contribution

_%‘Tfﬁm(f‘ﬂzlﬁ(mlzlﬁ(of
% ks + Ky + ) [1-3(b-¢)(¢-a)(a-b)]
(kg +kc)(kc +ka) (ka + k) prip ’

(6.8.18)
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while the first term of (6.8.17) produces

8 1 — 2= 2= 2
S FAFIRBFI(C)
(kake) — [1=3(b-2)(e-a)(a-b)
MRk k) @b

(6.8.19)

The addition of these two terms yields, for the near-zone energy shift,
the limiting form

4

— - 2= 2= 2
Abnz = 9(dnen) (7o)’ [E(A)[*E(B)["|E(C)]
o (kp +kc—ka) [1-3(b-¢)(e-a)(a- b))
(kg +ke)(kc—ka)(kg—ka) ab3c3 '
(6.8.20)

It is interesting to note that (6.8.20) is the result obtained using third-
order perturbation theory and static dipolar coupling potentials with
molecule A excited. Moreover, result (6.8.20) is obtained by changing the
sign of k4 in (6.8.18) noting that the overall sign is due to the fact that
the transition being considered in A is downward.

At large separations, the first term of (6.8.17), due to downward
transitions, dominates the energy shift, giving

4 = N2 Ry (2] 2
TG HA B IRC)

kS kpkc
(kg—k3) (ke—k3)
[1+(b-2&)(¢-a)(a-b))
abc '

AEp7 = —

x [cos(kala+b—c]) + cos(kala—b + c])]

(6.8.21)

When a=b = c=R, corresponding to an equilateral triangle, the far-
zone limit (6.8.21) reduces to
7
27(4ney)’ (he)*R3
kSkpkc
kg—kx) (kg —k3)

AEg7 = —

X ( cos(kaR), (6.8.22)

exhibiting a modulated inverse cubic dependence on R.
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6.9 MEDIATION OF RESONANCE ENERGY TRANSFER
BY A THIRD BODY

While the retarded dispersion energy shift formula for two-, three-, and so
on, N bodies has many similar features, for example, in each case, it can be
written as an integral over an imaginary frequency icu of the product of
the complex dynamic polarizabilities of each molecule and a geometric
factor involving distinct pair separation distances, the ultimate dependence
on interatomic displacements for the entire range of separations, or at the
near- and far-zone asymptotic limits, varies with the number of interacting
species. A similar situation applies to the resonant migration of energy,
which was examined in Chapter 4 by considering the exchange of excitation
between a pair of molecules. Even though pair-transfer rates may now be
measured using recent advances in single- and few-body spectroscopy,
transfer of energy occurs more commonly in a medium in which numerous
other particles are present in addition to donor and acceptor species. In
a solution, for example, the medium is comprised of solvent particles.
If transfer is taking place in the gaseous phase, however, other identical
systems may be present in very low concentration, but undergoing transi-
tions nonresonant with the frequency of radiation exchanged between the
donor-acceptor pair. In this section, the mediation of the resonant transfer
of energy between two molecules due to the presence of a third molecule
is studied (Craig and Thirunamachandran, 1989). This corresponds to
the situation in which the third body is a constituent of a medium of low
density and provides the leading correction to the modification of the pair-
transfer rate due to the effect of many other molecules, the latter more
commonly treated as a medium of uniform dielectric constant in the
macroscopic limit.

Let A and B be two identical molecules positioned at R 4 and R B, between
which energy is transferred resonantly. Let C, located at R be a polarizable
molecule that mediates the exchange of energy between A and B. The total
quantum electrodynamical Hamiltonian for the system is written as

H = Hpq (A) + Hpol (B) + Hmol(C) + Hpq + Hinta (69 1)

where, in the electric dipole approximation, the interaction Hamiltonian
coupling radiation and matter is

-1 - -
Hin = —¢y 'fi(A) -d " (Ra)—¢, 'fi(B) -d
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For the problem at hand, the initial and final states of the system are
specified as

iy = |E* ES ES;0(F, ¢)) (6.9.3a)
and

) = |Ey. Ey EG0(5, ). (6.9.3b)

corresponding to an initial state in which species A is pre-excited to
electronic state [n*) of energy EX, B is in the ground electronic state |0”)
with energy E5. After transfer of energy resonantly, A returns to the
ground state while B becomes excited to electronic state [n”). Species C
remains in the electronic ground state throughout and there is no change
in the state of the radiation field, there being no photons present before
and after interaction. Because transfer between A and B is mediated by C,
it is appropriate to refer to this mechanism as an indirect one and insert
the superscript ““in”” on the matrix element. Time-dependent perturbation
theory may be used to evaluate the matrix element. Twenty-four time-
ordered diagrams in which the virtual photon is exchanged between A
and C and between B and C are found to contribute. Their sum gives
rise to

My = 42V222u Bl (Ci)el” (Be)” 7)

e (@) (7 '

e—iﬁ-ieeip’-k’ e—iﬂfee—iﬁ’-ﬁ/ eiﬁ-keiﬁ’-k’ eiﬁ-ﬁe—iﬁ’ﬁ/
Pk RETR Gk prR@Th)|
(6.9.4)

where the virtual photons are of modes (7, ¢) and (7, ¢'), and o (C; k) is
the dynamic electric dipole polarizability tensor of molecule C. Species
C is taken to be situated at the origin, with relatlve separation distance
vectors with respect to A and B, R = Rc—Ry, and R = Rc—Rp; ck is the
resonant frequency E,o/7, and C undergoes virtual transitions to state |r)
with energy E,y = %ick,. Performing the polarization and wavevector
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sums and carrying out the angular integrations produces

in 1 n =2 AR
M =~ i N (Boaa(Cik) (V61 49,9

(P9 %)"

T = . 1 1 1 1 !
X E)[ldpdp sin pRsin p'R ((p—k) + (p—l—k))((p’—k) + (p’—l—k)>'
(6.9.5)

The integrations over p and p’ are independent. They are identical to that
occurring in the evaluation of the matrix element for resonant transfer of
excitation between two molecules. Thus, (6.9.5) becomes

M = 0" (A) (B (C: )V (k, R) Vi (k, B ), (69.6)
where
. 1 eikR
V,j(k,R> = 47‘580 ( V 511 —I-VZV]) R
1 N . R p
= m [(5,/—3R,Rj)(1—lkR)—(él/—R,Rj)kZRz]e kR.
(6.9.7)
Substituting (6.9.7) into (6.9.6) yields for the matrix element
. 1 : /
MlI} — On A o C,k elk(R-‘rR)
=~ G A B3 (CR)
><[(5i[—3RiR1)(l—ikR)—(éil—leel)szz]
x[(04—3R ;R 1) (1—ikR')— (05 —R ;R ) K*R). (6.9.8)

The near-zone form of the matrix element (6.9.8) is easily obtained on
noting that at this asymptotic limit kR and kR’ are both significantly less
than unity giving

~ 1
MNNZ -, 0n A n() o C7k
NE) = — g A (B €3k

X (0u—3RR)) (3 —3R R ), (6.9.9)
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and corresponds to static dipolar coupling between A and C and between
B and C. It is applicable to the situation in which species C is close to
both A and B.

Recalling from (4.2.18) that the near-zone matrix element for resonant
transfer of energy between A and B, commonly termed the direct mechan-
ism, is

M;"(NZ) = 31" (A)° (B)(35=3p:p;), (6.9.10)

4re|p|

where 7 is the A—B separation, p = Rg—R, = R —R. The total matrix
element in the near zone is therefore the sum of the direct and in-
direct mechanism matrix elements (6.9.10) and (6.9.9), respectively. The
total rate in the near zone may be evaluated using the Fermi golden
rule (1.9.33),

2n . ) . . .
™Y(NZ) = % IM{"(NZ) + M} (NZ)|* =T (NZ) + T (NZ) + T"(NZ),
(6.9.11)

and is a sum direct, interference, and indirect near-zone transfer rates with
py the density of final states. The direct contribution is obtained straight-
forwardly from expression (6.9.10) and corresponds to the near-zone limit
of the two-body transfer rate (4.2.21). For isotropic A and B, it is given by

. 27p ; 2 p . 2= 2
M (NZ) = SE MNP = S B WP B)F. - (6.9.12)

Near-zone matrix elements (6.9.9) and (6.9.10) are used to calculate the
interference contribution to the rate,

rint(NZ —@R MY(NZ)M™ (NZ 6.9.13
()—h e(M;"(NZ)M; (NZ)). (6.9.13)

Thus,

1

M (NZ)M(NZ) = — ———————
Ji (NZ) fl( ) (47‘[80)3R3R’3p3

" (A (A)" (B)R; (B)

NN

X o (C; k) (5ij—3f)if)j) (5,-11—31%,-1&;) (5j/k—3R R k)
(6.9.14)
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Carrying out a rotational average of the molecular factors using the result
(" (A (A) " (B’ (B)otwa (C )

L n —0n
= 5 [ (A |2 (B) Po(C5 k)i 0y b, (6.9.15)

where a factor of 1/3 has been included in the definition of the isotropic
polarizability of C. Contracting the tensors produces for (6.9.13) the
expression

. 47mp 1
int _ i
T (NZ) - 3hp3R3Rl3 (47‘680)

x {2=3[(R-R) +(p- R+ (p- R | +9R-R)(p-R)(p- R}
(6.9.16)

5[ (A) | (B) P C; k)

Finally, the contribution to the total transfer rate from the indirect term is
obtained from (6.9.9). Thus,

i 1
MOYNZ)? =——— oA @A) " (B (B
M) = s A " (B (B)
X Otk](C; k)&k/p(C; k)(5[1—3R[k1)(5[/]/—3R,'/R1/)

X (0 —3R R 1) (3,0 —3R ;R 1), (6.9.17)

which applies for the three molecules in fixed relative orientation to each
other. The rotational averages for A and B are straightforward and are
obtained via (u (&)@ (¢)) = (1/3)|E"(€)[*8;. The product of polariz-
ability of C, however, requires fourth-rank Cartesian tensor averaging and
is evaluated using result (B.7) of Appendix B. Hence,

Sudr N /4 —1 —1

(oua(C: R (C:R)) = 55 | duedn | | —1 4
O] \—1 —1 4
0,u0vn

x| Ondun | 22u(Cik)n(Cs k),
0,70 v

(6.9.18)

where Greek subscripts denote tensor components in the molecule-fixed
frame and T designates the transpose. Evaluating the matrix product, on



MEDIATION OF RESONANCE ENERGY TRANSFER BY A THIRD BODY 309

making use of the symmetry properties of the electric dipole polarizability
tensor, produces

1
(o1 (C; k)ouer (Cs k) = 30 {01010 [400:7(C3 k) (C )

—ZOCZH(C; k)&w(c; k)]

+ (Sie O + SprOger) [— 002 (C; ) (C5 K)

+30€m(c; k)&iu(c;k)]}. (6.9.19)
Substituting (6.9.19) into (6.9.17), performing the averages over species A

and B and contracting yields, for the third term of (6.9.11), the near-zone
rate

Ty 1 |
 15HROR"® (47eg)*

i 2npr
r(Nz) = = M (NZ) P

A" (AP (B)P

X (=14 3(R- K)o C; )8y C; )
134 (R R))ou(C3 )3, (C: )}
(6.9.20)

When a large number of molecules of type C is present, the indirect
mechanism with rate given by the last expression dominates the total rate,
with the latter given by the sum of (6.9.12), (6.9.16), and (6.9.20). At the
other extreme, when no C is present, the Forster rate limit corresponding
to direct transfer between A and B dominates the overall rate in the near
zone.

From the treatment given above, useful insight may be gained into the
effect of one or more additional particles on the pair-transfer rate. From the
microscopic point of view, all distinct couplings with the molecules of
medium C are accounted for, with the result containing the permittivity of
the vacuum, &. In the near zone, the direct interaction is equivalent to static
coupling of permanent electric dipole moments. When the pair is in an
isotropic medium, expression (6.9.10) still applies, but now the vacuum
permittivity is replaced by the permittivity of the medium, ¢. This is the
common picture on the macroscopic scale, in which only direct coupling is
present along with the permittivity of the medium, which is frequency
dependent. The effect of the medium, therefore, is to relay energy between
A and B via transfer mediated by one, two, three, and N molecules of type C,
via the frequency dependent polarizability of species C. In this section, the
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leading medium correction term has been evaluated by accounting ex-
plicitly for the effect of one molecule C of the medium. Clearly, as the
number of C molecules rises, the contribution of the indirect mechanism
increases, with the effects of higher order terms becoming more important,
while the direct A—B contribution becomes less significant.



CHAPTER 7

INTERMOLECULAR INTERACTIONS
IN A RADIATION FIELD

Tom’s photons are not the same as Dick’s photons—and as for Harry’s,. . .\.
—E. A. Power, The natural line shape, in Physics and Probability: Essays
in Honour of Edwin T. Jaynes, W. T. Grandy Jr. and P. W. Milonni (Eds),

Cambridge University Press, Cambridge, 1993, p. 101.

7.1 INTRODUCTION

In Chapter 1, the classical and quantum electrodynamical theory of the
interaction of a nonrelativistic charged particle with a radiation field was
formulated while in Chapter 2, a completely field theoretic viewpoint
was adopted and the techniques of second quantization were employed in
the development. In both cases, the total Hamiltonian operator for the
coupled radiation—matter system was obtained in the minimal- and multi-
polar-coupling schemes. It was shown in Chapters 4 and 5 how molecular
quantum electrodynamics could be successfully applied to calculate and
to understand the physical origin of, two fundamental intermolecular
processes—the rate of resonant energy transfer and the van der Waals

Molecular Quantum Electrodynamics, by Akbar Salam
Copyright © 2010 John Wiley & Sons, Inc.
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dispersion energy shift, respectively. It should not be forgotten, however,
that the theoretical foundations detailed in the first two chapters allow
processes involving the interaction of one or more photons with electrons
associated with a single atomic or molecular center to be studied rigor-
ously, forming a large part of the field known as theoretical spectroscopy.
In this and allied areas, transition rates have been computed for a variety
of single- and multiphoton absorption and emission processes, and cross
sections calculated for a number of elastic and inelastic scattering phe-
nomena (Mukamel, 1995; Craig and Thirunamachandran, 1998a; Andrews
and Allcock, 2002). Each particular application is begun by writing down
the total Hamiltonian for the system comprising the Hamiltonian for the
single species, the Hamiltonian for the radiation field, and the operator
coupling the two and solved for specific quantum mechanical observable
quantities.

With continuing advances being made in the generation of coherent
and incoherent sources of laser light, novel and esoteric experiments are
being performed that confirm theoretical predictions or require theore-
tical interpretation and explanation. This is witnessed by the emergence
of single molecule spectroscopy, development in nonlinear and quantum
optics, and progress in ultracold spectroscopy. It is now possible to not
only trap small particles using optomechanical forces but also control and
manipulate them. In general, this relies on a particle of matter undergoing
radiative attraction toward the high-intensity focal area of a laser beam.
When two or more particles are present, however, the modification by
light of intermolecular forces has to be reckoned with. Such phenomena
are the subject of the present chapter. Firstly, time-dependent perturba-
tion theory is employed to evaluate the change in energy shift when a
pair of interacting molecules is in the presence of an intense beam of
laser light. If one or both entities are polar, two terms are found to
contribute to AE. One term is proportional to the polarizability of each
body. A second depends on the product of the permanent dipole moment
of one body and the molecular first hyperpolarizability of the other. It is
then demonstrated how the induced multipole moment method leads
straightforwardly to an expression for the radiation modified pair inter-
action energy. Both calculational techniques are then utilized in the
computation of radiation-induced chiral discrimination. For consistency,
magnetic dipole and electric quadrupole coupling terms are accounted
for. The final section is devoted to higher order radiation-induced chiral
discrimination in which the pair of molecules is coupled via two virtual
photon exchange.
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7.2 RADIATION-INDUCED DISPERSION FORCE:
PERTURBATION THEORY

It is well known that the application of a constant or time-varying radiation
field causes a shift in the energy levels of atomic or molecular systems. In
the case in which the external field is electric, the familiar static or dynamic
Stark shift ensues, while if the incident field is magnetic, the Zeeman effect
results. For a free molecule subject to an oscillating electric field, the
change in energy levels is easily calculated using second-order perturbation
theory together with diagrams of the form shown in Fig. 7.1, which
illustrate the two possible time orderings associated with scattering of a
real photon of mode (k, 1) by a molecule in state |E;). Making use of the
interaction Hamiltonian in electric dipole approximation,

o —— R (7.2.1)

the energy shift for a nonpolar molecule whose energy levels are non-
degenerate, is

I R,
AE = ——¢¥ (k)i/('ﬂ)(k)ocs.f‘(w, —0), (7.2.2)

where the dynamic polarizability is given by

W e
(4 ,+ — J J 7.2.3
o (£, o) Zr: {Em o + E.Thol (7.2.3)
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FIGURE 7.1 Time-ordered graphs illustrating dynamic Stark shift.
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and the irradiance I = N#ic*k/V, where N specifies the number of photons
in the radiation field.

Similarly, an applied field causes a change in the mutual energy of
interaction between a pair of atoms or molecules (Thirunamachandran,
1980). While this interaction energy vanishes for two coupled molecules
that are randomly oriented with respect to each other in the presence of
an applied static electric field, it remains during the action of an oscillating
field even when the pair is randomly oriented.

Consider two molecules A and B situated at R4 and Rj, respectively,
with internuclear separation distance R = |ﬁ s—Ry |. Let both molecules be
in ground electronic states |E5 y EB) initially and finally, with the radiation
field represented by a state [N(k, 1)), corresponding to N photons of mode
(k, ). To leading order, the change in energy shift is given by the dynamic
Stark shift (7.2.2). Since this is independent of R, it is excluded. The first
contributing term to the radiation-induced intermolecular energy shift is
of fourth order in perturbation theory. It corresponds to the scattering of
a real photon by the molecular pair, which in turn is coupled by single
virtual photon exchange.

The fourth-order contribution itself is composed of two types of terms
depending on whether the real photon is scattered by the same or different
centers. As these two terms have different physical origins, it is convenient
to consider them separately. This is done in the following two sections.
In both cases, the total Hamiltonian for the system is given by

H = Hmol(A) +Hmol(B) + Hiag +Hint(A) +Hint(B)a (724)

comprising a sum of molecular Hamiltonians for each entity, the radiation
field Hamiltonian, and the electric dipole approximated form for the
interaction between matter and electromagnetic field at each center,

Hin(A) + Hin(B) = —¢, ' [i(A) -C?L(R‘A)—salﬁ(B) -JL(I?B). (7.2.5)

Since there is no overall change in the state of the radiation field and with
both molecules remaining in the ground electronic state, identical initial
and final states are used to represent the system

i) = |f) = |E§, E§; N(k, 7). (7.2.6)

Fourth-order perturbation theory for the energy shift, given by formula
(5.2.4), may then be employed together with time-ordered or state sequence
diagrams to calculate the change in mutual interaction energy between a
pair of molecules subject to the action of an intense radiation field.
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7.3 DYNAMIC MECHANISM

When the real photon of mode (12, /.) from the incident beam is absorbed at
A and emitted at B or absorbed at B and emitted at A and a single virtual
photon of mode (7, ¢) propagates between the pair, the contribution to AE
for reasons that will become apparent is commonly termed the ““dynamic™
mechanism. It is described completely by 48 time-ordered diagrams,
which may be grouped into 4 sets of 12 graphs. One set of 12 time
orderings in which absorption of a real photon occurs at A, emission at B,
with the virtual photon traversing from A to B is illustrated in Fig. 7.2.
From each of the 4 sets of 12 diagrams, 1 representative graph is shown in
Fig. 7.3.

Concentrating for the moment on the first graph, labeled (i) from the set
of 12 graphs classified as (a) and depicted in Fig. 7.2, using coupling
Hamiltonian (7.2.5) and the mode expansion for the electric displacement
field (1.7.17) with the initial and final states given by (7.2.6), determining
the intermediate states and energy denominators from the time-ordered
diagram, and substituting into the expression for AE from fourth-order
perturbation theory (5.2.4) the contribution to the energy shift from this
graph is

Nhck \ [ ep \ ) 7\ (3) /72y (&) = () =
ﬁzgrz; <280V) (280‘/)6,- (k)ej (k)e,” (P)e;” (P)
X (A) 2 (A) i (B) 10 (B)
x ek Reib R[(Eq 4 hep)(Eyo + Eo) (Eo—hek)] ™, (7.3.1)

where r and s denote the intermediate electronic states of A and B,
respectively. The remaining 11 graphs may be evaluated similarly and
added to (7.3.1) to yield

Ntick e \ () 7y ()7 () o (e) =
pZZ <2sov> (2801/)6" (k)e;” (k)ei (P)e;” (P)

X1 (A) (A (B (B) e ReP Ky " E,T, (7.32)
a=i

where E,, ! is the energy denominator product arising from graphs a = i~xii.
They are given explicitly in Table 7.1.
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FIGURE7.2 One setof 12 time-ordered diagrams that contribute to the dynamic
mechanism of radiation-induced intermolecular energy shift. Collectively these
graphs are labeled class (a).
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FIGURE 7.3 (a)-(d) Representative time orderings from each of the 4 sets of
12 graphs featuring in the dynamic mechanism.

To facilitate simplification of the molecular part of the energy shift, the
12 energy denominators listed in Table 7.1 may be added as follows:

+ EZ} = [(Exo + Tep) (Eg + Tick) (Eo + hicp)] . (7.3.3)

xii

-1
Eviii

Adding E;! to the right-hand side of (7.3.3) gives
[(Evo + Tep)(Eyo + hick) (hep—tek)] ™, (7.3.4)

E;' 4+ ES' = [(Epo + fick) (Evo + hep) (Eyo + Tick)]) ™", (7.3.5)

and

E;' 4+ E;} = [(Eo—hck)(Eg + hek) (Eq + hep)] ™. (7.3.6)
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TABLE 7.1 Energy Denominator Products Corresponding to Diagrams
(i)—(xii) of Fig. 7.2

Graph Denominator

(@) (ErO + hcp)( 0+ EsO)( th)

(ii) (Eo + ficp) (hep—tick) (Eqo—hck)

(iii) (Evo + ficp) (hep—tck) (Ego + ficp)

@iv) (Eqo—Tick)(ficp—nck)(Eso + Ticp)

(v) (E,o—nhck)(ficp—hck)(Eso—Tick)

(vi) (ErO_th)( 0+ EsO) (ESO + th)

(vii) (Eso + fick) (E,o + Eso) (Eso + Ticp)

(viii) (Eyo + hick)(E,o + Ey + hick + ficp) (Ego + Ticp)
(ix) (Eyo + hick)(E,o + Eyo + hick + ficp) (Eyo + Tick)
(x) (ErO + hcp)( 0+ ESO)( 0 1 th)

(xi) (Eo + hep) (Exo + Eso + fick + Ticp) (Eyo + hick)
(xii) (Eo + hep) (Eyo + Eso + Tick + Ticp) (Ego + icp)

Adding E;! to the right-hand side of (7.3.6) produces
[(E,o—Tck)(Ey + hick)(hep—Thek)) ™. (7.3.7)

Now,

E7'+ ECN = [(Ep 4 hick) (Exo + hep) (Eqp—Tick)] ™. (7.3.8)
Adding E;! to the right-hand side of (7.3.8) yields

[(Eyo + hek)(Egg—hck) (hep—hek)] ™! (7.3.9)
Adding (7.3.4) and (7.3.5) gives
[(Eyo + Tick) (Eyo + fick) (hep—tck)]) ™! (7.3.10)
The denominator from graph (v) remains as
E; ' = [(Ejo—hck)(Eq—Thck) (hep—hek)] ™. (7.3.11)

The four terms (7.3.7), (7.3.9), (7.3.10), and (7.3.11) may be factored as

1 1 1 1 1
(Eyo + Tick) * (E,o—hck)] [(Eyo—i-flck) * (Eqo—Tick)| hep—hek
(7.3.12)
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Hence, (7.3.2) becomes

_ Z Z <I;ZC§> (280V> e, (k )ej(').) (k )eﬁ(ﬁ)é;s) #)

pf‘ LS

X " (A) 0 (A) u (B) 1 (B)
1 1 ] (7.3.13)

(Ero + 7ick) | (Er—ick)

X

1 1 1
(Ego + Tick) * (Eso—hck)] hep—hek”

Recognizing that the molecular polarizability of A is defined as

1 1
(A k) = Z w0 [(Ero+hck)+(E,,o—hck)] (7.3.14)

with an analogous formula for the corresponding quantity of species
B, (7.3.13) can be written as

3 (o) (e Yoty el 1 el e )

TR 5B 1
xe KR K ____ 7.3.15
© © fiecp—Tick ( )
The remaining 3 sets of 12 diagrams can be evaluated similarly and added
to (7.3.15) to give, for the change in energy shift, the expression

Ntick ) (e ()L
AEqyn = <2 0V>OCJI(A k)aix (B; ke )e; (k)e-/())(k)m
oik R P R e 7R
z thek el ) [_hck_hcp + th—th
o el R e 7R
ik - R thpek (p)el )(P) [hck hcp —Tfick— fle]

(7.3.16)

The summation over virtual photon (7, ¢) appearing in (7.3.16) is identical
to that carried out in Section 4.2 in the context of resonant transfer of
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excitation. Its result may be written down immediately in terms of the
retarded coupling tensor V;;(k,R) (4.2.17), as in

hcp (6) f=n=(8) /= eiﬁ'k eﬂ.ﬁ'k -
( ( — V;(k,R).
Z <280V> e (P)e (P hck—Tep * —hck—hep Vii(k.K)

De

(7.3.17)

Hence, the energy shift (7.3.16) between a pair of molecules in fixed
relative orientation to each other and to the wavevector of the incident
radiation beam is

Niick ) (D)7 3N ik - —ik-R
AE gy = <m>aj,(A;k)a,-k(B;k)eg’)(k)g}”(k)Revk,(k,R)(e’ Rpe k),

(7.3.18)

which is seen to be proportional to the polarizability of each molecule. The
designation of this contribution as being dynamic is now clear in that a
definite amount of energy migrates between the pair accompanying the
exchange of a single virtual photon. This is manifested through the
appearance in AE of the coupling tensor Vj;(k, R) whose real part is taken
since the energy shift is real.

A state sequence representation of the dynamic contribution to the
radiation-induced intermolecular energy shift may also be effected. It bears
a close resemblance to the depiction of the Casimir—Polder potential via
state sequences and leads to the expression (7.3.16) for the energy shift.
In the present case, the hyperspace dimension # is also four since there are
four distinct photon creation—destruction events. For the contribution being
considered, they correspond to emission and absorption of a real photon at
different centers and single virtual photon exchange. The 48 possible time
orderings map onto two state sequence diagrams illustrated in Figs. 7.4
and 7.5, each containing 24 unique paths due to the 4! possible permutations
of the four unique interaction vertices or vector coefficients used to depict
them. Therefore, the basis set used for the construction of the state sequence
diagram for the retarded dispersion potential, / = {1?17 172, 173, 1?4}, can
be used in the present problem. A consequence of this identification is that
the structure coefficients calculated using (1.10.14) are the binomial
coefficients 1 4 6 4 1 as occurred in Section 5.5. In Fig. 7.4, the state
sequences represent time orderings in which absorption of a real photon at
either center occurs before emission of the real photon with the virtual
photon propagating in either direction. Meanwhile in Fig. 7.5, the 24
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FIGURE 7.4 One of the two state sequence diagrams used in the calculation of
the dynamic mechanism of the radiation-induced intermolecular interaction. This
set is associated with the absorption of the real photon (k A)occurring before its
time-ordered emission at the other center.

pathways depicted in the state sequences correspond to time orderings in
which emission of a real photon, at either site, takes place before absorption
of the real photon at the other species, with the virtual photon again
traversing from A to B or from B to A. Hence, in each of the two state
sequence diagrams, six pathways come from each of the 4 sets of 12
diagrams shown in Fig. 7.3a—d. The superscript appearing on the virtual
photon label inside of a state sequence box denotes the site of virtual
emission. Furthermore, a k or a p appearing in the upper right-hand corner
of a cell signifies the type of photon that has already been emitted and
absorbed in some order.

7.4 STATIC MECHANISM

When either one or both of the species is polar, there is an additional
contribution to the radiation-induced intermolecular energy shift
(Bradshaw and Andrews, 2005). It is also of fourth order in perturbation
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FIGURE 7.5 One of the two state sequence diagrams used in the calculation
of the dynamic mechanism of the radiation-induced intermolecular interaction.
This set is associated with the emission of the real photon occurring before the
time-ordered absorption of the real photon at the other interaction site.

theory with initial and final states that are identical to one another and equal
to those used to represent the dynamic mechanism and given by (7.2.6). As
in the dynamic mechanism, the two molecules interact via the exchange of
a single virtual photon, but unlike the dynamic contribution, the real photon
is scattered by the same molecular center. This extra contribution to AE is
termed as the ““static”” mechanism as no net energy is relayed between the
pair on migration of a virtual photon. Pictorially, this process may be
represented by 48 time-ordered diagrams, which may also be grouped into
4 sets of 12 graphs. A representative graph from each of the four sets is
illustrated in Fig. 7.6. As for the dynamic mechanism, a state sequence
diagram may be drawn to depict the process and used to compute the
energy shift. Because there are again four unique photonic processes,
corresponding to emission and absorption of a real photon at one site, either
A or B, and single virtual photon exchange, the hyperspace dimension
n=4. Two state sequence diagrams each containing 24 pathways are
generated with structure coefficients given by the fourth row of Pascal’s
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FIGURE 7.6 (a)—(d) Representative time-ordered diagrams from each of the 4
sets of 12 graphs that contribute to the static mechanism of the radiation-induced
energy shift.

triangle. One of them is shown in Fig. 7.7 in which scattering of the real
photon occurs at molecule A. The other diagram is easily obtained on
interchanging A and B.

Again the starting point for the computation is the total Hamilto-
nian (7.2.4), with electric dipole coupling Hamiltonian (7.2.5). It is now
shown how the first set of 12 time-ordered diagrams, explicitly drawn
in Fig. 7.8, of the type shown in Fig. 7.6a, are added and simplified.
Listed in Table 7.2 are the energy denominator products corresponding
to the 12 graphs of Fig. 7.8. Adding the contribution from the 12
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FIGURE 7.7 One of the two state sequence diagrams representing the static
contribution to the radiation-induced intermolecular interaction energy. In this
picture, scattering of a real photon occurs at molecule A. The other diagram is
obtained on interchanging A and B.
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FIGURE 7.8 Twelve time-ordered graphs contributing to the static mechanism
in which scattering of a real photon occurs at A with virtual photon traveling from

A to B.
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TABLE 7.2 Energy Denominators Corresponding to Time-Ordered
Diagrams of Fig. 7.8

Graph Energy Denominator

()] E; = (E,o—Tck)Eghep

(ii) E;; = (Eq—"Tck)(Eqo—hck + icp)ficp

(iif) Eji = (Eyo—hck)(Eso—hck + hcp)( —hck)
(iv) Ezv = ( 0+ th)( th)

™) E, = (E;o + hicp)(Eqo—hck + hcp)( —hck)
(vi) Ew - ( 0+ th)( s0— hek + th)h

(vii) E,i; = (E,0 + hck)Eghcp

(viii) E.iii = (Eq0 + hck)(Eg + fick + ficp) fiep

(ix) Eix = (Evo + Tick)(Eg + fick + Ticp) (Ego + Tick)
(x) E, = (E,o+ hep)(Eg + fick)Ey

(xi) EYI - ( r0+th)( Y0+th+th)( s0+h6k)
(xii) E.ii = (Exo + hep)(Ego + hick + hicp) hep

In the expression above, ,u 0(¢&) is the ground-state permanent electric
dipole moment of species &, (Eg|1;(¢)|Eg), and E,, o = i—xii, are the energy
denominators displayed in Table 7.2. It is now shown how the terms within
braces, including the sums over r and s, may be simplified considerably.
Adding the fifth and sixth terms gives

1 1 Iu(')s,usr'uro
Os , sr 10 J
7.4.2
e e e e T

which when added to the fourth term results in

#Os,usr,uro 1 + L — 'ujos‘ufl'uzo )

7k (Exo+hep)(Eqo—hck)hep  Ejy (Eso—Tick)Ehicp
(7.4.3)

Addition of second and third terms produces
1 1 IuOY‘u]sCr‘urO
Os , sr 10 J !

— | = . 7.4.4
W et (E * Em-> (Eq—hek) (Ex—hek) hiep (7:44)

Terms eight and nine sum to

11 ey
Os , sr 10 d L
Ly . 7.4.5
Hi bk (Eviii * Eix) (Ero+Thek)(Eso + hick)hicp ( )
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Meanwhile, adding the tenth term to the sum of terms 11 and 12
yields

1 1
1w <—+ +—>

Exi Exii Ex

Os  sr 10 1 1 M?S'ujruzo
= W; Wl += )= .
J (E;o+ Ticp)(Eo+ hick)hep — Ey (Ego + fick)E,oficp
(7.4.6)

Terms one and seven remain unaltered. Adding these six terms,
namely, equations (7.4.3)—(7.4.6) to l—i—ﬁ, results in

E;
W (A (A (A) N 1 (A (A)(A)
(Eso + ick)Eyo (Eqo+ fick)(Eg + fick)

1 PP (A (AP (A) 1 (Al (A (A)
h—cp; (Eso—hck)Ero (E,‘()—hck) (Eso—hck) (7 4 7)
1 (A (AP (A) (A (A)u(A) -

Eotick)Eo T (Ero—Tick)Exo

1
:—ﬂz’jk(A;k)a

hep
which is defined to be (7icp) ' multiplied by the molecular first hyperpolar-
izability of molecule A. This enables the energy shift (7.4.1) to be written as

Nhck 1 () (7\a(2) (N(8) 2\ (8) 2y iR .7,,00
_Z<280V> <280V)€i (k)e;” (k)ey (Pley” (P)e” ™ B (As k)1 (B).
r (7.4.8)

For the second set of 12 graphs, one of which is shown in Fig. 7.6b, the virtual
photon propagates from B to A. The contribution to the energy shift from this
setof diagrams is then identical to (7.4.8) except for replacement of the factor
e? R by e=7K_ The molecular factor can again be summed to yield the
hyperpolarizability tensor (7.4.7). The contribution from the remaining
24 graphs is then easily obtained from the expression calculated from the
first 24 diagrams by interchanging A < B. Hence, the contribution to the
energy shift due to the static mechanism is

_ Nack\ [ 1\ @) 2y (71,0 350 (5
AEstat—_Z (260V> (M)ei (k)ej (k)ek )el (P)

2

=i

X [ B (As k)i (B) + 10 (A) By (B; )] (e R +ePR). (7.4.9)
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To proceed further, the virtual photon polarization sum is executed using the
identity

Zek = Or—PiD) (7.4.10)

and the p-sum converted to an integral via
1 1
Zvﬁ 3Jd3ﬁ. (7.4.11)
7 (27)

Equation (7.4.9) therefore becomes

hek\ ()= (),
AEqq = — (Z—V> e (k)2 () [B (A k)i (B) + 1 (A) By (B: )]

1 A AN\ DR 3=
X Wj(ékz—pkpz)e” Ka'p, (7.4.12)

on noting that the right-hand side of (7.4.10) is even in p. Since for j #£0
(Power, 1964),

1
(2713)380

1

4megR - 4negR3 (O =3RR1)

J (Sri—pipr)e? R’ =V, ¥
= —Vu(0,R), (7.4.13)

AEgy can be written in terms of the static coupling tensor Vkl(O,ﬁ) as
(Bradshaw and Andrews, 2005)

B = (s ) i ) [ 4504878 + 487 ) B0 Vi O, R

(7.4.14)
The total modification in intermolecular energy shift due to the action of

an intense laser field is then given by the sum of dynamic and static terms,
equations (7.3.18) and (7.4.14), respectively,

AE = AEdyn + AEga
I o - - o -
= (k)e, (k){ocﬂ(A;k)ocik(B;k)cos(k~R)Rer,(k,R)

806

+ % B (A3 1) (B) + 1°(A) By (B; k) | Via (0, R) } (7.4.15)
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where /is the irradiance of the incident beam. It is worth pointing out that the
first term of (7.4.15) permits A and B to be transposed, as evident by i,j- and &,
[-index symmetry. In contrast, A and B are distinct species in the second,
static contribution. Further, both the permanent moment and the linear
hyperpolarizability are equal to zero if either A or B is centrosymmertric
resulting in the AE;, contribution vanishing.

It should, of course, not be forgotten that the dominant contribution to the
interaction energy between two polar species is the electrostatic interaction
between two permanent dipoles, which is larger than both AEyy, and AE,,.
In the multipolar formalism, this energy shift is calculated using second-
order perturbation theory via the formula

(O Hint 1) (1| Hint 0)
AE = — : 7.4.16

The total and interaction Hamiltonians are once again given by (7.2.4)
and (7.2.5), with the initial and final states given by the ground state of the
total system,

10) = |Eg, Eg; 0(F,€)).- (7.4.17)

Two time-ordered diagrams represent the coupling and they are depicted in
Fig. 7.9 in which a single virtual photon propagates between the two sites.

(p.8)
(p.€)

(a) (b}
FIGURE 7.9 Electrostatic Coulomb interaction.
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Standard evaluation leads directly to

1 —(&) /= €) /=
&? (e (7)

AECoul = —m i
0" B

x{ U AN (BYT 0 (A (B)e 7R (7.4.18)

Carrying out the polarization sum using (7.4.10), taking advantage of
i, j-index symmetry, and converting the j-sum to an integral using (7.4.11)
yields

1
(27) e

Comparing (7.4.19) with expression (7.4.12) for AEy,, it is seen that the
p—dependent partisidentical in both cases. Hence, using the result (7.4.13),
the interaction energy between two ground-state permanent dipoles is

AEco = — 1O (A)(B) J(ai,-—pipj)efﬁ RP5. (7.4.19)

AE Coul =

00 00 B
yr—-s U (A),uj (B)(0;—3RiR;), (7.4.20)
which is the familiar static dipolar coupling energy. It is interesting to note
that use of multipolar coupling that involves the emission and absorption
of transverse photons contains the static interaction term.

7.5 MOLECULAR AND PAIR ORIENTATIONAL AVERAGING

The result (7.4.15) for the radiation-induced energy shift between two
interacting molecules obtained in the previous section applies to an A—B
pair in which the internuclear separation R is fixed relative to the wave-
vector k of the impinging laser and with the orientation of each species
fixed relative to each other. For a molecular pair in the gaseous or liquid
state, an average over all R relative to k and over the relative orientations
of A and B is required. The former is called the pair orientational average
while the latter is known as the molecular average. Carrying out this second
average on AFEy, (7.4.14), results in this contribution vanishing. This is
easy to see since an orientational average of the first hyperpolarizability
using result (B.5) from Appendix B introduces a factor (f;;(¢;k)) =
é &jjkeu B (&5 k), where Latin subscripts refer to Cartesian components in
the space-fixed frame, while Greek suffixes refer to molecule-fixed frame
axes. When contracting this factor with other tensor components featuring
in AEgy,, it is evident that the product of polarization factors is symmetric
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in the indices 7 and j, while the alternating tensor & is antisymmetric in this
pair. Hence, (AE,) = 0, where the angular brackets denote an averaged
result. Performing a similar molecular average on the dynamic term (7.3.18)
using the result (o;; (A; k) o (B; k)) = 0:040.(A; k)ou(B; k) where a factor of
1/3 has been included in each of the isotropic polarizabilities leads to

I

AEgy, = (so_c> el(}‘) (l_c‘)é](.;“) (kK)o(A; k)ou(B; ke )cos (k -R)ReVj(k, R).

(7.5.1)

A pair orientational average is now carried out on the dynamic term (7.5.1).

Replacing the polarization vector product el@ (E)é;)') (k) by 1 (8—kik;),
and rewriting cos(k - R) in exponential form produces

I . o o
AEd)’n = <—>OC(A;/C)O((B;k)(éij—kikj)ReVij(k7R)(e’k'R —Feilk'R).
0

4epe
(7.5.2)
The tumbling average is performed using the result
. - 1 IR oy 1 ) - - sinkR
((05—kikj)e*F) :EJ((S@,—k,-kj)eik Q=5 (=V70;+ViV)) —
. . sin kR . o [coskR sinkR
- {@l‘f—RfRf) kx v 3KiK) (W‘W)}
(7.5.3)

Inserting the right-hand most side of (7.5.3) along with ReV,j(k,ﬁ) from
expression (4.2.17) into (7.5.2), contracting the tensors and expressing the
trigonometric factors in terms of double angles produces, for the dynamic
term contributing to the change in mutual interaction energy caused by an
external radiation field, the result for a freely tumbling pair

1

AEgy,) =——F—
(ABay) 8melcR

o(Ask)o(B;k)
sin2kR_ cosZkR+ sin2kR
kR k2R2 3R3
(7.5.4)

X | kR sin 2kR+2 cos 2kR—5

The energy shift is seen to be linearly proportional to the laser irradiance,
and to the polarizability of each molecule, and is independent of the
polarization characteristics of the incident field. From the expression valid



332 INTERMOLECULAR INTERACTIONS IN A RADIATION FIELD

for all R beyond wavefunction overlap (7.5.4), it is a simple matter to obtain
the asymptotic form of the energy shift in the limit of far and near zones.
For the former, in which AR > 1,

Ik

AEFZ A
(AL qyn) = 8ns%cR2

a(A;k)o(B;k)sin 2kR, (7.5.5)
exhibiting a modulated inverse square law behavior. In the near zone, where
kR < 1, expanding the sine and cosine functions as McLaurin series leads
to the limiting form

(AEN?) — 111k?

A;k)o(Bsk 7.5.6
dyn 607758(2)CROC( ’ )O(( ’ )’ ( )

which has R™' dependence on separation distance. Comparing with the
London dispersion energy (5.2.22), which has inverse sixth power depen-
dence and a much more rapid falloff, (7.5.6) can be appreciable for a large
number of pairs as in a molecular assembly. Another method by which
<AEdNyZn) may be increased in magnitude is if the frequency of the incident
laser is tuned to near resonance with an atomic or molecular transition
frequency, thereby resonantly enhancing the dynamic polarizability.

7.6 POLARIZATION ANALYSIS

It is instructive to return to the result (7.5.1) when the orientation of the
molecular pair is kept fixed relative to the direction of propagation of the
incident beam and examine the polarization characteristics of the applied
radiation field and its effect on the energy shift. The incoming beam is
taken to have one of the two different polarizations—either linear
polarization or circular (left-hand/right-hand) polarization. Moreover,
the incident laser is taken to propagate in one of the two different
directions with respect to the intermolecular separation distance vector,
R, being either parallel (Il) or perpendicular (_L). Expression (7.5.1) is to be
analyzed in detail for each of the four possible combinations (Thiruna-
machandran, 1980), on making use of the fact that €, b, and k form a right-
handed set of vectors.

7.6.1 Parallel Propagation

When the incident field travels parallel to R, namely, k||R then € is
perpendicular to R, that is, & L R, and cos(k R) = cos kR. Substituting
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for ReVy(k,ﬁ) in (7.5.1) produces
1

ARl =
M0 4neZeR3 é
x [(8;5—3R;R;)(cos kR+kRsin kR)—(8;—R;R;)k*R*cos kR] cos (kR).

(7.6.1)

W (ke (k)o(Ask)au(Bsk)

7.6.1.1 Linear Polarization Noting that for linearly polarized light,
oje l(ﬂ)(k) (A)(k) lande( )(k) (* )(k)RR = 0, equation (7.6.1) becomes

|| (1in) I
AE =
dyn 4718%CR3

X [cossz + kR sin kR cos kR)—k*R? cos* kR]. (7.6.2)

a(A; k)o(B; k)

In the far zone, kR > 1 so that (7.6.2) tends to

in Ik2
AE"™(Fz) =

. . 2
dyn 4na%cR o(A; k)o(B; k) cos” kR, (7.6.3)

while in the near zone, after expanding all three terms within square brackets
of (7.6.2), which approximates to unity,
1

AEN™(NZ) = prrc ok
TEHC.

dyn

2(A; k)o(B; k). (7.6.4)

7.6.1.2 Circular Polarization When the incident radiation field is
circularly polarized, the energy shift (7.5.1) is

AEJLR — 80_6 el N (K)el™™ (YA k)ou(B; k)ReVy(k, R) cos kR.
(7.6.5)

Using the identity

- -1 . s o
el(L/R) (k>éj(L/R) (k) = 3 (8 — kik;) F igijkkk:| , (7.6.6)

where the upper and lower signs refer to L- and R-circular polarization,
respectively, and noting that V;;(k, R) is symmetric in i, j so that only the
i, j-symmetric part of (7.6.6) contributes, (7.6.5) becomes

jwmwy 1
AEdy“ - 8nelcR?

x [(8;—3R;R;)(cos’kR + kR sin kR cos kR)
—(54'/—R[R/‘)k2R2 COS2 kR], (767)

o(A; K)ou(B; k) (05— hik)
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on 1nsert1ng ReVji(k, R? Contracting the tensors and making use of the fact
that k k R R =1, AE‘( /R) is found to be identical to the result (7.6.2)
obtalned for hnear polarlza‘uon, that is,

AESR) = AELY. (7.6.8)
Identical limiting forms (7.6.3) and (7.6.4) therefore follow.

7.6.2 Perpendicular Propagation

If the incident field travels in a direction orthogonal to R, that is, kL R,
then &||R, and cos k - R = 1. Thus, (7.5.1) can be written as

AEg, = e (k)2 (kK )ou(A; k)ou(B; )

X [(6;—3RiR;)(cos kR + kR sin kR)—(3,;—R;R;)k>R* cos kR).
(7.6.9)

7.6.2.1 Linear Polarization Contracting the tensor products for
linearly polarized li ht in 57 .6.9), for which (J; —3RiR))e; ¢ )(k)éj(.ﬂ)(k) =
—2 and (6;—RiR; ) k)e (k) =0, yields

J
AR _ 1

an = W&(A; k)o(B; k)[cos kR + kR sin kR].  (7.6.10)

The asymptotic limits of this result are

lin Ik )
AEy,," (FZ) = _W“(A;k)fx(&k) sin kR (7.6.11)
and
lin 1
AE " (NZ) = =5 s s a(As k)3 (BsK). (7.6.12)

7.6.2.2 Circular Polarization For circularly polarized radiation
propagating perpendicularly to R, substituting the first term of (7.6.6)
and cosk - R = 1 into (7.5.1) gives

twmry 1 ' . o
Mg = 87med RS (A; k)o(B; k) (05—Fik))
x [(8;—3R;R;)(coskR + kR sin kR)—(8;—R:R;)k*R? cos kR)|.
(7.6.13)
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With tensor contraction producing (05— feik;)(0;—3RiR;) = —1 and
(8;—kik;)(3;—RiR;) = 1 since now kik;R;R; = 0, (7 6.13) becomes
1
AEiy(nL/R) 8ns%cR3 o(A; k)ou(B; k) [cos kR + kR sin kR + k*R?* cos kR].
(7.6.14)
In the far zone, (7.6.14) reduces to
2
LUR) K . .

AEdyl’l (FZ) = —WO((A7]C)&(B,IC) COS kR, (7615)

while at small separations, the limit is
LIL/R) (N7 — ! . :

7.7 COLLAPSED GRAPHS AND EFFECTIVE
INTERACTION HAMILTONIAN

In Section 5.4, it was shown how second-order perturbation theory together
with an effective coupling Hamiltonian that is quadratic in the electric
displacement field, could be used to calculate the far-zone limit of the
Casimir-Polder potential more efficiently than using an interaction
Hamiltonian that is first order in d (7). Pictorially, this amounted to
collapsing the linear interaction vertices occurring at each center to a
two-photon coupling vertex. This reduced the number of time-ordered
graphs to be summed over from four to two. A similar approach may be
adopted for the computation of the change in intermolecular interaction
energy caused by an applied radiation field. It is again convenient to
consider the two contributions to the energy shift, the dynamic and static
mechanisms, separately. Beginning with the former term, the 48 Feynman
diagrams used to visualize the interaction, with representatives shown
in Figs. 7.2 and 7.3, may be reduced to four time orderings with each
containing collapsed two-photon interaction vertices at each site. They are
illustrated in Fig. 7.10, the respective classes representing 12 time orderings
are shown in Fig. 7.10a—d.

Instead of the interaction Hamiltonian (7.2.5), the effective coupling

operator (5.4.12) is employed,
Hogn ™ = —e5 (A k)i, 23 Ra) it (B Ra) i
&g 2051 (By k)di- (K, 2 Ry)d} (B, e R), N

which is proportional to the molecular polarizability, o;(&;k), and is
bilinear in the electric displacement field, with real and virtual photons
characterized by modes (k, 1) and (7, ¢), respectively. Hence, the effective
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FIGURE 7.10 Time-ordered diagrams for dynamic mechanism containing

collapsed interaction vertices.

two-photon interaction Hamiltonian can be interpreted as each molecule
responding to the incident field via its frequency dependent polarizability
and radiating a virtual photon. The product of the displacement field is
easily written as

N\ 12 v 1/2
RQUILES (Z’;) (hz’y)
[ 7

A

K)e”

) (k)a' (F)ei* )
kel (7)at? (K)a® (B)e R 16D (K)el? (5)
DE)a" F)e
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The energy shift is calculated using the second-order perturbation theory
formula (5.4.13). Because there is no overall change in the state of the
radiation field, only the second and third terms in the field operator
expansion (7.7.2) are needed in the evaluation of matrix elements. With
initial and final states given by (7.2.6), the sum of the contributions from the
four graphs of Fig. 7.10 is found to be

Nhck\ o), = o)~
AEqy, = (—") el (ke (Yo (A; K)o (Bs )

€

Y (&) (35 (33
\ X [ek (p)el (p) th—th +ek (p)el (p) —th—th] )

(7.7.3)

on letting N + 1 equal N, which is appropriate for an intense laser.
Expression (7.7.3) is identical to result (7.3.16).

Asdetailed in Section 7.4 and illustrated in Fig. 7.6, an extra contribution
to the radiation-induced intermolecular energy shift occurs if A and B are
polar, which according to perturbation theory is understood as arising from
traversal of a virtual photon between the pair and scattering of a real
incident photon exclusively at one center or the other. As in the computation
of AE4yn, the evaluation of the static contribution to the energy shift can be
simplified considerably by collapsing the interaction vertices at the site at
which the real photon is first absorbed/emitted and then emitted/absorbed
and employing an effective nonlinear interaction Hamiltonian. Again, the
48 time-ordered diagrams that are required to be summed over when field
operators that can only change the number of photons by one are used are
reduced by a factor of 12 on collapsing interaction vertices. The 4 graphs,
each of which represents the 12 time orderings exemplified by diagrams
shown in Fig. 7.6a—d, are now drawn as in Fig. 7.11 and feature a 3-photon
interaction vertex.
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FIGURE 7.11 Static mechanism graphs containing collapsed interaction
vertices.

It is sufficient to use second-order perturbation theory to compute the
energy shift via formula (5.4.13). The appropriate effective interaction
Hamiltonian takes the form

Hey ™ (&) =—¢5 ' w(&)d (B, & Re)
—&o B (& k)i (k, 2 Re)d (B, & Re)dyt (k, 43 Re),
{=A,B. (7.7.4)

The second term of (7.7.4) represents the three-photon coupling and is
interpreted as molecule & responding to the incident radiation field of mode
(l?, /) through its hyperpolarizability tensor, 5 (&; k), by elastic scattering
of a photon in the forward direction and by the radiation of a virtual photon
of mode (7, ¢). An identical coupling term has been used to treat optical
rotation in the two-group model (Craig and Thirunamachandran, 1998a,
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Section 8.10). Computation of the energy shift is facilitated by calculating
the trilinear field product

dl(k A )dL(p & r)dL(k 25 F)
1/2

_ 3 fickeg \ [ ficpeg

2V 2V

<[ (3)a B)e? T~ (7)) (7)o
X [e;(f) (B)a) () 7 (R)a ) (]_é)e—ﬂ??]' (775)

With the initial and final states given by (7.2.6), the sum of the contributions
from the four graphs of Fig. 7.11 is found to be

- Nhck\ (1 )y 700 (51
AESI&t__%(”O") (280\/) e (k) (F)e” (P’ 7)
X [H(A) By (Bs k) + By (As k) 1O (B)) (€7 R 7P R),
(7.7.6)

which is equivalent to expression (7.4.9) and leads to the result (7.4.14) for
the static contribution to the energy shift.

7.8 RADIATION-INDUCED INTERMOLECULAR
INTERACTION VIA THE METHOD OF INDUCED MOMENTS

In Section 5.8, the induced multipole moment approach was introduced as
an alternative physical viewpoint and calculational method for the evalua-
tion of dispersion energy shifts. Not only the interactions between ground-
state species were easily obtained but also coupling energies involving
molecules in electronically excited states were derived more readily
relative to diagrammatic perturbation theory techniques. The versatility
of the method is now demonstrated by applying it to the computation of the
radiation-induced change in intermolecular interaction energy (Craig and
Thirunamachandran, 1999).

As in the calculation of dispersion forces, the central concept remains
that fluctuations in the electromagnetic field induce multipole moments in
polarizable molecules, which in turn couple via the resonant interaction
tensor. Instead of calculating the expectation value of the interaction
energy over the vacuum state of the radiation field, as was done for both
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ground- and excited-state contributions to the dispersion potential, for the
computation of the modification of AE for an interacting molecular pair by
electromagnetic radiation, the radiation field is now represented by the state
IN(K, 7)) corresponding to an intense laser containing N photons. Apart
from a few subtle changes, the formulas presented in Section 5.8
are applicable to the current problem. In this section, it is shown how the
induced moment approach enables AEgy, and AE,, to be calculated in a
facile manner (Salam, 2006b, 2007). .

Let the incident laser be of mode (k, 4). In a polarizable species ¢, the
leading contribution to the induced electric dipole moment is given by

W) = a5 oy (& k) (R, 43 R, (7.8.1)

where «;(&; k) is the anisotropic frequency dependent electric dipole
polarizability, defined by (5.8.2). Coupling of the moments induced at
each site through the resonant interaction tensor Vj;(k, I_é), the latter given
by (5.8.3), gives rise to the dynamic contribution to the energy shift,

AEdyn - :uind (A):umd( )RCVU( 5 )
= &y 2ok (A; K)oy (B; k) di-(k, 2 A)df(k,/l;RB)ReVy(k,R),
(7.8.2)

where the second line of (7.8.2) has been obtained on inserting (7 8.1). The
expectation value of (7.8.2) is taken over the state [0, 0% N(k,1)). A

earlier, the molecular part results in the ground-state electric dlpole polarlz—
ability of each species. In contrast to the calculation of the dispersion
interaction, where for the radiation field, the expectation value was taken
over the spatial correlation function of the vacuum field, the product of
transverse electric displacement fields at spatially different points is eval-
uated over a state of the field containing N photons in the present case. This
quantity was evaluated previously and is given by expression (5.9.38). For
an intense beam of laser light, N 4+ 1 ~ N. After making this approximation
and inserting (5.9.38) into (7.8.2), the change in energy shift is found to be

(7.8.3)

which is identical to result (7.3.18) obtained using diagrammatic perturba-
tion theory for a pair of anisotropic molecules in fixed relative orientation
with respect to the incoming laser.
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When either one or both of A and B are polar, it was shown in Section 7.4
that there is a contribution to the change in mutual interaction energy
for oriented systems that depends on static intermolecular coupling. To
calculate this term using the induced moment method, additional multipole
moments induced by the external radiation field have to be accounted for.
These extra terms are

HP(E) = () + 5 (& ) (K, 4 Ry)
60 By k) (K, s R)dy (ks Re),  (1.8.4)

where (&) is the ith Cartesian component of the static electric dipole
moment operator of molecule ¢ and f3;;; (&; k) is the first hyperpolarizability
tensor. Substituting formula (7.8.4) for the induced dipole moment of each
species into the expression for the interaction energy, retaining terms
appropriate for the static contribution to the energy shift, namely, the
contributions involving 4 and 8, and neglecting the term proportional to
the molecular polarizability since this contribution was already accounted
for in the computation of the dynamic term of the energy shift, AEy,, is
obtained from

AEg = [:u;(A) +862ﬁipq(A; k)dpL(l_éa Avl_éA)qu(l_év ;°;RA)]
X [5(B) + 69> By (Bs ) d- (K, 2: Rp)di- (K, 2: Rg) Vi (0, R).
(7.8.5)

Since no energy is transferred between centers in the static mechanism, the
® — 0 limit of the resonant coupling tensor, Vji(k,R), (5.8.3)

- 1 P

Vij(ov R) = W (51'/'_3R1R./')’ (7.8.6)
appears in expression (7.8.5). As expected, taking the expectation value
over the ground state of the first term of (7.8.5) yields the Coulomb
interaction energy between two ground-state permanent moments (7.4.20),
evaluatedin Section 7.4 using diagrammatic perturbation theory techniques.
To derive the field-induced energy shift, the expectation value of the

cross terms in (7.8.5) is evaluated over the state |0, 0%; N(k, 1)),

Mg = (N, 2);0%, 071 ™ (1 () BB ) (. s o) (R, s i)

+ Bipg (A5 k)3 (B)d- (K, 25 Ra)di- (K, 7 Ra) } Vi (0,R) |07, 045 N (K, 7).
(7.8.7)
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Index symmetry introduces the factor of one-half and enables the
identity of A and B, which may be identical or different, to be distinguished.
Interestingly, the average value for the radiation field part of the energy
shift (7.8.7) involves the product of the electric displacement field at the
same point in space. Using the mode representation for d;- (k A;7), this
expectation value is easily calculated to be

(N(k, A)di(k, 4 Ry)di- (e, 75 RN (K, 2))
(hckso)[ PR E) + N (e 4(/}‘)]. (7.8.8)

Comparison of (7.8.8) with the field—field spatial correlation function
(5.9.38) shows that the former may be obtained from the latter on letting
the two points in space coincide. For an intense beam of incident laser light,
itis justifiable to assume that N 4+ 1 ~ N. In that case, the two terms within
square brackets of (7.8.8) are seen to be complex conjugates of each other.
After evaluating the expectation value of the molecular part using the
matter states, (7.8.7) becomes

A = el I ) [y B: ) + By (4 K0 (B)] V3 0,),
(7.8.9)

where the definition of the irradiance of the laser I = N7ic*k/V has been
used, u9%(&) is the ground-state permanent electric dipole moment, and the
hyperpolarizability tensor is given explicitly by (7.4.7). Expression (7.8.9)
is in agreement with the perturbative result (7.4.14).

7.9 DISCRIMINATORY INTERMOLECULAR INTERACTION
IN A RADIATION FIELD: PERTURBATION THEORY

Intermolecular interactions between optically active species are discrimi-
natory. They are dependent on the handedness of each molecule, chromo-
phore or functional group. Examples were given of two such fundamental
interactions between chiral entities in each of Chapters 4 and 5. One was the
resonant transfer of electronic excitation energy, which was understood to
arise from single virtual photon exchange between the pair of molecules.
A second was the retarded van der Waals dispersion potential, which
according to perturbation theory, was interpreted as arising from the
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exchange of two virtual photons. In each of these cases, the source of
discrimination was due to inclusion of magnetic dipole coupling to the
radiation field and the resulting interference of this interaction term with the
leading electric dipole contribution to coupling. Thus far, the treatment of
the change in intermolecular interaction due to the presence of an external
radiation field has been restricted to the electric dipole approximation and
the resulting modification of the energy shift—both static and dynamic
terms—are independent of the chirality of either molecule. By taking
account of the effects of magnetic dipole coupling, the shift in interaction
energy between a pair of coupled chiral molecules when subject to an
applied electromagnetic field is evaluated in this and the following two
sections. This is first carried out using the techniques of diagrammatic time-
dependent perturbation theory. Next, it is demonstrated how an identical
result may be obtained with significantly reduced labor and technical
sophistication by using the method of induced multipole moments. The
approach is a straightforward extension of the calculation performed in
the electric dipole approximation and presented in the previous section,
and the application of this method to the computation of the chiral
discrimination dispersion potential detailed in Section 5.9.3. A complete
polarization analysis is then carried out for circularly polarized incoming
radiation.

To evaluate the leading contribution to the change in interaction energy
between optically active systems, the electric dipole coupling terms of the
interaction Hamiltonian (7.2.5) are no longer sufficient. Magnetic dipole
interaction terms must be added to give

Sl

Hin =~ H(4) -d " (Ra)~m(4)

' [i(B)-d (Rp)—in(B) -

(Ra) (7.9.1)

Sl

(Rp)

and the contribution proportional to the product of electric and magnetic
dipole moments at each molecule is extracted. Again, the process involves
scattering of a real photon at different centers and single virtual photon
exchange. The initial and final states of the total matter—field system are
given by (7.2.6), and the energy shift is computed using the expression for
the fourth-order perturbation theory correction. Evaluation is aided by
drawing of time-ordered diagrams. In total, 192 graphs contribute to AE.
They may be grouped into 4 sets of 48 diagrams. The four sets of diagrams
are identical to those that feature in the dynamic mechanism to the laser-
induced intermolecular energy shift when working in the electric dipole
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FIGURE 7.12 One of the 192 graphs for single virtual photon radiation-induced
chiral discrimination.

approximation, with representatives of the quartet displayed in Figs. 7.2
and 7.3. The fourfold increase in the number of time orderings in the present
case is due to replacement of one electric dipole interaction vertex by a
magnetic dipole one simultaneously at each center. A typical graph is
depicted in Fig. 7.12, one of the four possible time orderings associated
with graph (i) of Fig. 7.2.

Evaluating in the usual way, the four contributions associated with
permuting electric and magnetic interaction vertices in Fig. 7.12 whose
energy denominator in each case is given by the entry for graph (i) in
Table 7.1 produces the term

2.2 (12\25) (280V> W Am (A (Bmi°(B)e* Fe F

p} r,s

x|l (yel) (R)py (Bpy (3)—el ()b (K
&/ (k) (ye (p)ey” () + by (k)b ()l (B)e)” ()|
x[(Ey + hep) (Ero + Exo) (Eo—hek)] ™,

(7.9.2)
where use has been made of the relations m{ u® = —pum}? and
m® = —*m}°. The remaining 44 graphs of this set, obtained from

the 11 time orderings illustrated by graphs (ii)—(xii) of Fig. 7.2, with
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denominators given in Table 7.1 may be computed similarly and added
to (7.9.2) to give

-2 (zNh@ (zgov> W (A (A (B (Bl FeP ¥

pg LS

<[B ()51 k) (Bef? (5) + e (e (k

—eD &by (k) (5)B (7)) (k)b (K )e

=
\_/
%\
SN—

=

=
S
N—

ettt —
E; E; E; E, E, E,; E; E; E;\

(7.9.3)

where E, !, a = i - xiirefer to energy denominators corresponding to graphs
()—(xii) of Fig. 7.2 and listed in Table 7.1. It is now shown how the
denominator sum may be simplified.

1 1 1 1
E‘+E—x+E_iz‘:( Eyo + hek)(Eqo—Tek)(Ey + Ticp)
1
+ (Eo + Ticp) (icp—nhek) (Eqo—Tick)
1
" (Eyo + hek) (Esy—hek) (hep—hek) (7.9.4)

1 1 1
AR (795
<Eix +Exi> B T hek) Bt Ak Bgtiep). U0

1 1 1 1
a (Eviii * Evi * E_m> T (Evo + ficp) (Eso + hck)(Ego + hicp)
- 1
(Ero + fiep)(hep—tick ) (Eso + Ticp)
1
 (Exo + hep) (Eg + hek) (hep—thek)

(7.9.6)
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1 1 1 1
E_+E_W+E_ (Evo—Tck)(Eg + hck)(Eg + icp)
. 1
(Exo—nhck)(hep—hek)(Es + ficp)
1

"~ (E,o—nhck)(Ey + hick)(hep—hek) (7.9.7)

Adding the right-hand side of (7.9.6) to the right-hand side of (7.9.5) gives
B 1

(Exo + hek)(Eg + hick) (hep—hick)

Finally, adding (7.9.4), (7.9.7), and (7.9.8) to —Ev results in the sum of
energy denominators being given by
1 1 1
(hck—nhep) |(Eqo—nck)(Ey—nhck)  (Eo—hck)(Ey + hick)

(7.9.8)

1 1
 (Exo + hek)(Eq—hck) * (Eyo + hick)(Eyo + hick) } '
(7.9.9)

From the definition of the anisotropic dynamic mixed electric-magnetic
dipole polarizability tensor G;(&; k)(5.9.16), multiplying the molecular
factor appearing in (7.9.3) by (7.9.9) yields

r e s o 1 1
rZ W (A)m (A) " (B)ymi° (B) { (Eo—hck)  (Eq+ hck)}

1 1 1
"N Ex—hck) ~ (Eyo+ hek) { (hck—hep)
= Gi(A; k)Gy(B; k) (hek—hep) ™. (7.9.10)

Hence, (7.9.3) can be written as

Nhk —ik R _ip-R 1

(
_65’~><12>zs," (k)eﬁ(ﬁ) ><p> é )< 3 <k>éf’<ﬁ>b5”<ﬁ>]-
(7.9.11)
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The contribution from the remaining 3 sets of 48 graphs may be similarly
evaluated and summed and then added to (7.9.11) to give

Nak \ [ #p
aE= =3 (22 (T2 ) Gu(as ) G(Bi &
Z(zg()v) (280V)G1< )G (B k)

P&
A) /TN A7 —(€) /= &)= ) rn=(1) ,7\7 () /= &)=
<[ )by () Bl (7) + e el ()b (B)b)” ()
) NTA) 7N (8) ronT(€) poy =(A) N1 (A) = (8) o 1. (8) f =
e R R)e” 36 B)—e K)o (R @by ()

[efk-feeiﬁ-ﬁ ok -Re=ip R o—ik-Rgip-R eik»ﬁezﬁﬁ]
X .

—hck—hcp+ fick—Tep + fick—thep + —Thick—Tep

(7.9.12)

To proceed further, the familiar steps associated with the summation of
virtual photon variables are carried out. The various polarization sums are
executed with the aid of identities (1.4.56) to (1.4.58). After converting the
wavevector sum to an integral, the angular averages are performed using
relations (4.2.12) and (4.4.7). The ensuing p-integrals are evaluated using
the results

o0

1 p LS . . (cospR sinpR
27#80] (kz—pz){(éy_RiRj) PR + (Oy=3Ry )<p2R2 “or ) [P
0

= —ReVj(k,R), (7.9.13)

and

o0

k R 1 p*cospR  psinpR o
X R _ dp = ImU; (k, R),
2n28068Uk k J (k2—p?) < R R? p = ImUy(k, K)
0

(7.9.14)

where Vj;(k, I_é) and Uy (k, ﬁ) are defined by (4.2.17) and (4.4.11), respec-
tively. In the last two relations, the 4 superscripts have been dropped from
the interaction tensors as the operators preceding V;(k, R) and Uy(k, R)
render the distinction in signs superfluous. The resulting change in energy
shift between a pair of interacting oriented chiral molecules due to the
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presence of an intense electromagnetic field is

AE = <N—hvk) G (A: k)G (B; k) {[b/‘f) (k)by”) (k) ReVy(ke, R)

—eP () () Tm Uy (k, R’)} } cos(k - R). (7.9.15)

Before going on to derive results for randomly oriented and freely tumbling
molecular species and carrying out a polarization analysis, it is shown
how the energy shift (7.9.15) may be obtained using the method of induced
multipole moments.

7.10 RADIATION-INDUCED CHIRAL DISCRIMINATION:
INDUCED MOMENT METHOD

In Section 5.9.3, it was shown how the method of induced multipole
moments could be applied to calculate the discriminatory retarded disper-
sion potential between a pair of optically active molecules. To correctly
account for higher multipole allowed transitions in such systems, the
electric dipole approximation was relaxed and magnetic dipole moments
induced by fluctuating electromagnetic fields were included in the form-
alism, a consequence of the fact that the leading electric dipole polariz-
ability is no longer sufficient to describe the characteristics of chiral
species. It was shown that discriminatory effects in the energy shift for
isotropic systems arose from electric dipole-dipole and magnetic dipo-
le—dipole terms, as well as from the interference of electric dipole-mag-
netic dipole couplings. On taking the expectation value of the ground state
of the matter—field system of the interaction of these moments with the
appropriate resonant coupling tensor, the dispersion energy shift resulted.
The method is now extended to treat the change in the mutual energy
of interaction of a pair of chiral molecules when subject to an external
radiation field (Salam, 2006a). As demonstrated in Section 7.8, the
computation of the leading contribution to the laser-induced intermolecular
energy shift via the method of induced moments involves evaluating
the expectation value of the dipole—dipole coupling term over a state of
the radiation field containing N(k, 1) photons with both molecules in the
electronic ground state. This method is now applied to a pair of chiral
molecules.
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Consider two interacting optically active molecules each possessing
mixed electric—-magnetic dipole polarizability G;(&; k), ¢ =A, B given by
(5.9.16). Application of an electromagnetic field induces both electric and
magnetic dipole moments as expressed in relations (5.9.32) and (5.9.33),
respectively. If fluctuations of the field are in the same mode, the interaction
between the moments induced at each center occurs in resonance, enabling
the energy shift to be written as

i i L i B
AE = u}“d(A),u}“d(B)+C—zmi"d(A)mj“d(B) ReV;(k,R)

+ [1"d(A)miM (B) + mi™(A) 1™ (B)ImUy (k, R), ~ (7-10.1)

where the resonant coupling tensors V,j(k,l_é) and Uij(k,l_é) are given by
(4.2.17) and (4.4.11), respectively. An expression for the energy shift in
terms of G;;(&; k) may be obtained by substituting for the induced moments
(5.9.32) and (5.9.33) producing

AE = [Gy(A; k)G (B; k)b (Ra)bi(Rp)

1 - ~ o
+ 5 GualA K)Gy (B k)i (Ra)d (R ReVy(, B)
0

+ 65 ' [Gir(A; k) Gyj(B; k) by (Ra ) di- (R )
+ Gri(A; k) Gy (B; k)di- (Ra )by (Rp) | ImUy (k, R). (7.10.2)

Next, the_’ expectation value is taken of (7.10.2) for the state
|04,08,N(k, A)). As previously, the molecular part results in ground-state
mixed electric-magnetic dipole dynamic polarizabilities. For the radiation
field part, use is made of the expectation value over the field state |N(k, 1))
of the four combinations of field—field spatial correlation functions given
by (5.9.38) to (5.9.41). Examining, for instance, the second term occurring
within the first set of square brackets in (7.10.2), its expectation value on
using (5.9.38) and assuming high photon occupation number is

(N(Kk, 2); EB; EAeg 2 2Gri(A; k) Gy (B; k)di- (R4 )di (R )
xReV;(k, R)|EA; EB;N(k, )

Ntk
= (2806‘/) Gri(A; k)Gjj(B; k)

x {653) (Ryel (k)e=F R g (R)el? (ke & }Rev,.,.(k, R).

(7.10.3)
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Noting that the term within braces are complex conjugates of each other,
allowing twice the real part to be taken, (7.10.3) becomes

(N hk

>le(A k)G (B; kel (K)el) (K )ReV; (k, R)cos(k - R). (7.10.4)
&oC %

Similar evaluation of the three remaining terms of (7.10.2) when added
to (7.10.4) results in the energy shift

AE = (N—h‘]ﬁ> {[ i (A k) Gi(B; k)b (K)by” (k)

&oC
+ Gui(4; K) Gy (B: K)el!) (k)" ()| Revi(k, R)
+¢|GilA; k)G (B k)b<’>(/2) } (%)

+ Gri(A; k)Gji(B; k) ek ]ImU,, }cos(l? ‘R),

>

(7.10.5)

which holds for A and B oriented relative to each other and to the direction
of the incident laser. Expression (7.10.5), after index manipulation, is seen
to be identical to the result (7.9.15) obtained using perturbative techniques.
Carrying out the pair orientational average via

(Git(A; k)Gji(B; k)) = 00G(A; k)G (B; k) (7.10.6)

produces for the energy shift the formula

AE = (N hk) G(A; k)G(B; k){ [b“ (Kb (k) + M (kyel” (1‘5)}

ecV

xReV;(k, R) +c[b (el (k) +e§">(1}’)‘_§*>(1}’)}
xImUi,-(k,R')} cos(k -R), (7.10.7)

which holds for isotropic A and B. The energy shift is dependent on the
chirality of each molecule through the polarizability G(&;k), which
changes sign when one molecule is replaced by its enantiomer. Expres-
sion (7.10.7) forms a convenient starting point for carrying out a polariza-
tion analysis of the incident laser and its effect on the energy shift. As in the
case of the energy shift within the electric dipole approximation when
an identical analysis was performed, the incoming field is taken to be
either linearly or circularly polarized and propagating either parallel or
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—

perpendicular to R. When IR, b LR, and cos(]é -R) = cos kR while if
k L R, thenb||R andcosk - R = 1 with &, b, and k forming a right-handed
frame of vectors.

7.10.1 Linearly Polarized Radiation
For k||R, inserting ReVji(k, R) and Im Uj(k, R) into (7.10.7) produces for

the energy shift

Nk D) ()
AE}, = (m) G<A;k>G<B;k>{ B )b () + e (el ()|

X [(5 —3R; R ) (cos kR + kR sin kR) — (5i/—f€i1?j)k2R2 cos kR]

+ gk el (R)B (K) + b7 (R)e” ()]

X [kR cos kR + k*R? sin kR} } cos kR. (7.10.8)

Using b; = (k X e) = 8jmnfcmen in the second term within braces with
&iki€jmn = OkmOin— 5;{,,(3”” and contracting results in
I !

b= m G(A; k)G(B; k)[cos kR + kR(cos kR + sin kR)

+ k*R*(sin kR—cos kR)] cos kR, (7.10.9)

on using the definition of the irradiance I = N#ic*k/V. In the far zone,
kR > 1 and the limiting form is

k2

AEH
27e Oc3R

lin

(FZ) =

G(A; k)G(B; k)(sin kR—cos kR) cos kR,

(7.10.10)
having an R~' dependence on separation distance. At short distances,
kR < 1 and the energy shift (7.10.9) exhibits inverse cube behavior,

AE!

in(NZ) = G(A;k)G(B;k). (7.10.11)

e 2 3 R3
Fork 1 R,cosk -R = landthe energy shiftis givenby (7.10.7) oninserting
cosk -R = 1. Since sjk,sjmne,eanRm = 0 for this particular configuration,
the energy shift is

ABfy = 7 G(A K)G(B: K) (cos kR + kR sin kR).  (7.10.12)
€0
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Its asymptotic limits are

Ik

AE; ——
 1edAR?

L (Fz) = G(A; k)G(B; k) sin kR, (7.10.13)

which has a modulated inverse square dependence on R and
I

AEL- —_—
na%c3R3

in(NZ) = G(A; k)G(B; k) (7.10.14)

exhibiting R~ behavior.

7.10.2 Circularly Polarized Radiation

To examine the effect of circular polarization on the energy shift, use is
made of identity (7.6.6) involving the product of circularly polarized
electric polarization vectors. Also required are magnetic-magnetic and
electric-magnetic combinations. These are derived from (7.6.6) together
with use of the relation b(L/ R) (k) = +ie®) (k). Hence,

1

bl(.L/R)(k)b (L/R) (E) {:Fiel(»L/R)(/_é)] * [iié}L/R)(%)]
(7.10.15)

1 o
:E[(é kk):Flgijkkk]
and
— — - 1 A oA ~
eI )y () = el (Ryef " () = 3 [i(0y—kiky) + el
(7.10.16)

From (7.10.7), for k||R for which cos(k - R) = cos kR,

AE) o = (N—h@ G(A;k)G(B;k)

&oC
x{ [b R E)BN (&) + €MD (K e L/R)(k)} ReVj;(k,R)

+c[e§L/R> (K)B™ (&) + b (k)™ (k)} ImUy(k,ﬁ)}cos(kR).

(7.10.17)

Noting that the first term within braces of (7.10.17) is symmetric in the
indices i and j, while the second term is i,j-antisymmetric, only the i,j-
symmetric parts of identities (7.6.6) and (7.10.15) and the i, j-antisymmetric
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part of (7.10.16) contribute, respectively. On tensor contraction, after
substituting for the resonant coupling tensors and using the relation
&ijk&jl = 20y, it is found that the energy shift is equal to the express10n
obtained when linearly polarized light propagates parallel to R,
equation (7.10.9), that is, AEH L/R —AEl‘m

For perpendicular propagation of circularly polarized light, k L R, the
energy shift is given by (7.10.17) on inserting cos kR = 1. After substitut-
ing the appropriate identities involving circular polarization vectors and
contracting, with the second term within braces of (7.10.17) vanishing, the
interaction energy is given by

1

AE; ——
LR = 7 4ne2 3R

G(A; k)G(B; k) |cos kR + kR sin kR + k*R* cos kR)| .

(7.10.18)
The limiting forms at the extremes of intermolecular separation are

Ik

AR R(FZ) = = 4 g

G(A; k)G(B; k) cos kR (7.10.19)

and

1

AEL/ r(NZ) = = 4ned R

G(A; k)G(B; k). (7.10.20)
A common feature in all of the results obtained involving interacting chiral
molecules is the discriminatory nature of the energy shift for chemically
identical species, changing sign when one of the pairs is exchanged for its
optical isomer. Also worthy of remark is that the inspection of results shows
that for both types of polarization, the energy shift is repulsive for parallel
propagation but is attractive for a perpendicular arrangement of k and R.

7.11 FREELY TUMBLING CHIRAL PAIR IN THE
PRESENCE OF CIRCULARLY POLARIZED LIGHT

For a pair of coupled chiral molecules subject to circularly polarized
radiation in the fluid phase, not only are the orientations of the two species
relative to each other random but also all possible directions of the A-B
separation distance vector R are allowed relative to the laser propagation
direction, k. An exact expression for the energy shift can be calculated for
the molecular and tumble averaged situations without having to make the
high photon occupation number approximation.
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Substituting the field—field spatial correlation functions (5.9.38) to

(5.9.41) for circularly polarized radiation into the energy shift expres-
sion (7.10.2) yields

AE = ( ik >{ G (A5 K) Gy (B e) | (N -+ 1)p/™) ()b (Rye - F

280CV
+ N ()b (k)R | 4 Gua(As k) Gy (Bs )
o[V 1) (el (e R 1 NG (el </?>e"’?'ﬁ]}

hk
m) {Gik(A, k)Gy;(B; k)

% [(N+ l)b/(CL/R)(l‘C’)égL/R)(I‘C’) —ik R +Nb(L/R)(E)e§L/R)(l_c’)ei/z,k‘]

xReV;(k, R) +
+ GulAs k)G (B: ) [(N+ el &b (K)o kR

Concentrating on the second term present within the first set of braces
above, carrying out the molecular average via (7.10.6) and substituting the
relation (7.6.6) produces

X [(N+ 1)eik-R +Ne"’3'ﬂ ReV;(k, R). (7.11.2)

Judicious use is again made of index symmetry: since Vl-j(k,l_é) is 7,j-
symmetric, while the Levi-Civita tensor is antisymmetric in this pair of
suffixes, only the first term within braces of (7.11.2) survives. Carrying out
the pair orientational average using formula (7.5.3) and substituting for
V;i(k,R) gives

hk
16me3cVR?

—(8;—RiR;)k*R? cos kR

. sinkR - kR sinkR
x | (35—RiR) 2= 4 (5;—3RiR)) (ﬁ—&)] (7.11.3)

(2N + 1)G(A; k)G(B; k) [(;—3RiR;)(cos kR + kR sin kR)

k2 R2 k3 R3
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which on tensor reduction results in

1
————G(A: k)G(B; k
. sin2kR  cos 2kR sin 2kR
X | kR sin 2kR + 2 cos 2kR—5 R -6 R +3 ek
(7.11.4)

the irradiance of the incoming field now being defined as
I = (2N + 1)hc*k /V. Due to the equality of identities (7.6.6) and (7.10.15),
the first term within the first set of braces of expression (7.11.1) produces
a contribution identical to equation (7.11.4). Going back to expres-
sion (7.11.1) and examining the second term appearing within the second
set of braces, substituting (7.10.16) gives

1( #hk ) . R Y
2 <280V> G(A;k)G(B; k){ [il(éij—kikj) + Sg/sks] (N+1)e

+ [ F i(éy—l}il%j)—Sysl}‘s]Nei’:'k} ImUy(k,ﬁ),

(7.11.5)

for isotropic A and B. Since Uj;(k, ﬁ) is antisymmetric in 7 and j, only the
ij-antisymmetric part of (7.11.5) remains. With the tumbling average
given by

<i€keiil_€.k'> _ %Ji{keii}z.]‘édg _ $l,(cos kR sinkR> .

and substituting for U;;(k, R), (7.11.5) becomes

1
16melc3R?

G(A; k)G(B; k) [kR sin 2kR + 2 cos 2kR— SmkikR] L (7.11.7)

An identical contribution to (7.11.7) arises from the first term in the
second set of braces of (7.11.1). Hence, the pair averaged energy shift is
obtained from twice the sum of (7.11.4) and (7.11.7),

1

AE=—
87rs%c3R3

R PTRR T RR
(7.11.8)

G(A: K)G(B: k) [ 4 sin 2kR cos2kR _sin 2kR]
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The energy shift is linearly dependent on the irradiance of the incident
beam, but is independent of its polarization. Circular polarization does not
produce discriminatory effects. The latter arises solely from the mixed
electric-magnetic polarizability G(¢; k). In the far zone, the energy shift
exhibits a modulated inverse fourth power dependence on R,

1

AE(FZ) = ————
(FZ) 27‘68(2)63kR4

G(A; k)G(B; k) sin 2kR, (7.11.9)

while having inverse R dependence at short range,

4Tk>

AE(NZ) = — ————
(NZ) 157633 R

G(A; k)G(B; k). (7.11.10)

7.12 RADIATION-INDUCED INTERMOLECULAR ENERGY
SHIFTS INVOLVING MAGNETIC DIPOLE AND ELECTRIC
QUADRUPOLE POLARIZABLE MOLECULES

The change in mutual interaction energy between a pair of chiral molecules
in the presence of an intense electromagnetic field was shown to be
proportional to the chiroptical response tensor G;(¢; ), the dynamic
mixed electric-magnetic dipole polarizability, which is equal and opposite
for two identical optical isomers. For the sake of consistency, the change
in energy shift between an electric dipole polarizable molecule and a
magnetically susceptible molecule due to external radiation should also be
computed, it being the same order of magnitude as the radiation-induced
discriminatory interaction, containing two electric dipole and two magnetic
dipole interaction vertices overall, but each now occurring at the same
molecular center. Since the electric quadrupole is of comparable order of
magnitude to the magnetic dipole, the field modified energy shift between
an electric dipole polarizable molecule and an electric quadrupole polariz-
able molecule is also evaluated (Salam, 2006b). Neglected is the interaction
between two electric dipole—quadrupole polarizable molecules in a radia-
tion field, also of a similar order, but which vanishes for isotropic A and B.
Due to the calculational simplicity of the induced moment approach, this
method will be employed in the work of this section.

Consider an electric dipole polarizable molecule A and a magnetically
susceptible one B. Application of an electromagnetic field induces electric
and magnetic dipole moments, respectively,

U (A) = ey o (A K)diE (Ry), (7.12.1)
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and
m™(B) = y;(B; k)bi(Rp), (7.12.2)

where o (A; k) and y;(B; k) are dynamic electric dipole and magnetic

dipole polarizability tensors. The two induced moments interact via the

resonant coupling tensor, Uj;(k, R), giving rise to an interaction energy
AE = Imy™(A)m™ (B)Uy(k, R)

1

1 [ . (7.12.3)
= 86 ImOC,k(A,k>X]l(B,k)dk (RA)bl(RB)U,](k,R)

The expectation value of (7.12.3) is taken over the state |Ejj, E5; N (k, 7)),
the molecular part resulting in ground-state polarizability tensors of A and
B. For the radiation field factor, use is made of the expectation value of the
field—field spatial correlation function (5.9.40). Hence,

fik
AE = Im <280V> i (A; k) (B; k)

X [(N+ el ()b (k)e %k 1 Nel) (E)b§’~>(1}‘>ef’?-ﬂ U;(k, ).

(7.12.4)

For a pair of isotropic molecules, rotational averaging can be carried out
using

(et (As k) 21 (B3 k) = 0ucdjron(As k) 3 (B k). (7.12.5)

Next, a pair orientational average is performed. Assuming the incident

laser is circularly polarized, the product of polarization vectors may be

re-expressed via the identity (7.10.16). Since Uji(k,R) is antisymmetric

in Zj, only the ij-antisymmetric part of (7.10.16) contributes. Utiliz-
ing (7.12.5), the energy shift (7.12.4) becomes

>oc(A;k);5(B;k)8,_~,~ki€k (N + l)e_ilz‘R—Ne”z'R U;i(k,R).

hk
AE = Im < 22,

(7.12.6)

With the tumbling average calculated using (7.11.6), the relevant terms
in (7.12.6) yield

R oo N 7o kR sin kR -
Dok Ry_ iRy _ COS KR S ik
(N +1)kye )—(Nkie™ ™) = i(2N + 1)< R ETAG

(7.12.7)



358 INTERMOLECULAR INTERACTIONS IN A RADIATION FIELD

so that the energy shift becomes

. ((2N+1)hk ' . & (COSKR sinkR\ =~ =
AE_Iml<4£0V o(A; k) x(B; k) &Ry R 2R Uj(k,R).

(7.12.8)

Substituting for Uj;(k, R), defining the irradiance as I = (2N + 1):ic’k/V,
and contracting results in

i ) sin 2kR
AE = WM(A; k)y(B;k) [kR sin 2kR + 2 cos 2kR— R } )
(7.12.9)

which holds for all R outside the charge overlap region. In the far zone,
the dominant term is given by the first in square brackets resulting in a
modulated R~? asymptote

Ik

AEgy = —
Fz 1677:8(2)63R2

o(A; k) y(B; k) sin 2kR, (7.12.10)

while at very close range, McLaurin series expansion of all trigonometric
terms produces

Ik>

ABng = ——% 4
Nz 24nelc3R

(A; k) x(B; k), (7.12.11)

having an inverse dependence on separation distance and with sign opposite
to that found in expression (7.12.9) and (7.12.10).

If molecule B is electric quadrupole polarizable, an electric quadrupole
moment is induced by an electric field as in

O (B) = &5 ©pyrs (Bi )V d (R), (7.12.12)
where the dynamic electric quadrupole polarizability tensor is defined as

0. (B)OR(B)  Q%(B)Qn(B)
{ EtO—th T Et0+th ) (71213)

®pqrs (B ; k) = Z

t

where Q?,; (B) is the Orth matrix element of the electric quadrupole moment
operator,

01wy (B)[1) = <0l—%(?1—133)p(c7—1?3)q|t>. (7.12.14)
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The induced electric dipole moment (7.12.1) and Q;,r;d (B) interact via the
resonant electric dipole—quadrupole coupling tensor, V;y,(k, R), resulting
in an energy shift

AE = " (A) Q" (B) ReVyyy (k, R)

1

= 65201 (A; k)© s (B; k) d- (R4) Vi d- (R ) ReVipy (K, R), (7.12.15)

where
1 ) Lo eikR
Vipg I R) = = (=0, + V¥, )V,
1 ik k?

Using the mode expansion for the electric displacement field and its
gradient, the expectation value of the field gradient—field spatial correlation
function for an N-photon state is

(N(K, )| (Ra)Vid* (Rp)IN(K, 7))

_ ficke (A (2N B (N ik - B 2 =) T ik R
_z< Sy )kk[Nei (k)e” (k)e* K—(N +1)e;” (ke (ke ]
(7.12.17)

When inserted in the right-hand side of (7.12.15), the energy shift is

AE = l(ﬂ> ik (A3 k) Opgrs (B; k) ke

280V
x [N (Ryef” (k)e R~ (N + Delf) ()l (Rye ]
x ReVip, (K, R). (7.12.18)

To examine the effect of linearly polarized incident light on the energy shift,
use is made of the relation e,(f) (k)éw (k) = % (oxr—kik,). For freely
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tumbling molecules, a pair orientational average is required. This is carried
out via

<(5,-j—l},-;;j)kkeﬂ/?§> :ij(éij_kik/)kkeiiﬁ-ﬁdg
(& - o\ SinkR
= :Fé (_v25,j + VZVJ) Vi s

(7.12.19)

Substituting for Re Vi, (k, ﬁ) from (7.12.16) and using (7.12.19) gives for
the energy shift

1 1 ) -~ -\ = sinkR
AE = — <Wg%c) Ak (A, k)@pqys(B, k) |:F (—V 5ky + Vkvr> Vs :|
. TN kR
X [(—vzal-,, + VY, )V, ] . (7.12.20)

The first factor in square brackets is readily obtained from (7.12.16), being
(—4ney/k?) ImVy,s(k, R), while the second term in square brackets is
simply —4meg ReVjy,(k, R). Thus,

1
AE = — | ——— | ik (4; rs(B;
(mneg(;)“k( 98y (5:4)

<0 —RR)R coskRisinkR
kr Y ZAVRAN R kR2

+ (5kr'R.\‘ + 5k.YRr + 5r‘ka_5RlcRrRx) <_ kR2 - k2R3 + k3R4

3 o 2
" l(é,p —RiRy)R, (— k*sinkR k" cos kR)

sinkR 3coskR 3sin kR)

R R?

R R . PP k*cos kR 3ksinkR 3coskR
+ (5,‘qu + 51‘qu + 5qui*5RiRqu) - R2 + R3 + R*

(7.12.21)

Finally, the molecular average is performed. This is done using the tensor
quantity for the average of a second-rank tensor (electric dipole polariz-
ability) multiplied by the average of a fourth-rank tensor (electric quadru-
pole polarizability) on making use of the fact that the electric quadrupole
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moment is symmetric in its component indices and is traceless. The
pertinent results are given in Appendix B by equations (B.4) and (B.7).
Hence, contracting (7.12.21) with
1
(oik (A; k)qurS(B§ k)) = 10 5ik(5pr5qs + 5ps§qr‘)o‘(A§ k)giuiu (B; k)
(7.12.22)
results in the energy shift applicable to a pair of isotropic and freely

tumbling electric dipole and quadrupole polarizable molecules in the
presence of a laser field,

1 .
AE = WOC(A7 k)@}uA”(B, k) k3R3 sin2kR +6k2R2 cos2kR
. sin2kR cos2kR sin2kR
—27kRsin2kR—84 cos2kR+ 162 R +180 R -90 R
(7.12.23)
Asymptotically, energy shift (7.12.23) tends to
AE(FZ) =K Ask)@sin(BK) sin 24R (7.12.24)
 80medeR? A o
in the far zone and tends to
AENZ) = —— K A k)@s(BK) (7.12.25)
- 1400718(2)CROC N o

in the near zone, exhibiting modulated R~ and R~' behavior, respectively.

7.13 HIGHER ORDER RADIATION-INDUCED
DISCRIMINATORY INTERMOLECULAR INTERACTION

In Section 7.9, it was shown that the action of circularly polarized
electromagnetic radiation on a pair of interacting optically active molecules
resulted in a change in the energy shift relative to the absence of light
and that this modification of the interaction energy was discriminatory.
The source of the discrimination was the handedness of the individual
molecules as characterized by the molecular chiroptical response tensor,
Gji(&; o), which is bilinear in the transition electric and magnetic dipole
moments. Interestingly, in this case, the field-induced intermolecular
energy shift is, in fact, independent of the chirality of the incident radiation.
Thus far, in this chapter, the effect of an intense source of external radiation
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on a pair of molecules coupled via single virtual photon exchange has been
examined. When perturbative techniques have been used to solve this
problem, it has required implementation of fourth-order theory. For a pair of
neutral, polar electric dipole polarizable molecules, two distinct mechan-
isms were identified as contributing to the field modified energy shift.
One was a dynamic mechanism, proportional to the electric dipole polar-
izability of each molecule. A second was a static mechanism that depended
on the product of the permanent electric dipole moment of one species
and the molecular first hyperpolarizability of another. Both terms were
nondiscriminatory.

Energy shifts between interacting molecules that are induced by a
radiation field, which exhibit discriminatory behavior even within the
electric dipole approximation can occur in higher order. This first manifests
itself when molecules are coupled via two- virtual photon exchange. A full
treatment therefore necessitates the use of sixth-order theory in a perturba-
tion calculation. Considerable simplification is possible, without loss of the
essential features of the phenomenon, if the interacting pair of molecules
are taken to be in proximity to one another. This enables the coupling
occurring between the two molecules to be static in origin. As a conse-
quence, fourth-order perturbation theory can be used to evaluate
the change in mutual interaction energy in the near zone (Taylor and
Thirunamachandran, 1983). Details of the calculation are as follows.

Consider two neutral molecules A and B, situated at RA and ﬁg,
respectively, with internuclear separation distance, R = \ﬁg—ﬁAl. In the
near zone, the two entities are coupled via the static dipolar interaction
potential V;(R) = (47‘(80)71%-(14)#](3)(5ij-—3k[i€j)R_3. In the higher
order approximation being considered, two such couplings take place
between A and B. In the electric dipole approximation, the interaction
Hamiltonian used to describe the effect of external radiation on the system
is the familiar —&5 ' p1;()d:- (R ;) coupling. Let the applied field be of mode
(k,2). As for the case, when only one virtual photon was exchanged
between the pair, two types of contributions are found in the present
situation. They correspond to the scattering of a real photon occurring at the
same site or at different centers. Each contribution is examined separately.
The initial and final states are equal to each other and are identical for

—

both types of contributions. They are represented by |E5, EB; N(k, 1)),
corresponding to both molecules in the ground electronic state [0¢), with
energy E:, & =A, Band the incident field containing N real photons of mode
(k, 7). Incidentally, the initial- and final-state specifications of the system
are identical to (7.2.6), the state used when the pairs are coupled via single

virtual photon exchange.
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In the case where absorption and emission of a real photon takes place at
species A, 12 distinct time orderings of the pertinent interactions are
possible. Another 12 diagrams may be drawn when scattering of the real
photon occurs exclusively at B. Taken together, these two sets give rise to
one type of contribution. Ultimately, this contribution will be proportional
to the product of a fourth-rank hyperpolarizability tensor of one molecule
and the polarizability of the other, the former containing four transition
electric dipole moments, and the latter two. Due to the even number of
couplings at each site, the parity of the transitions imposes no restrictions
on selection rules so that the interaction energy holds for both centrosym-
metric and noncentrosymmetric systems. Evaluating in the usual way, the
sum of the 24 graphs gives rise to

Niick
280 VRO

Y [0 e 2 ) [ ]
(Epo—Tick)(Eno + Eo—Tick)(Emno—Tick)

mnp 1

(5k1 _3Rkkl) (5mn —3&,”]%,,)81(/1) (E)é('i) (lz)

AE = — !

nm , ,;m0

[0 1" g g [y 170
(EPO —+ ErO) (En() —+ ErQ—th) (Em()—th)

) W s )

(Ep() + ErO) (Em()fhck)Eno (Ep()*hck) (En() —+ E,.ofhck) (Em() —+ ErO)
n v Op pn nm, n o

N [ 1 g ) 17 L1 1" e 1 (1) 14y

(Epo + Ev0) (Eno + Evo—Tick)(Emo + Evo) — (Epo—Tick)(Epo + Ex0)Eno
0 n ., nm , m LA

N [ g g 1 [ 170
(Epo + Tick) (Eno + Evo + Tick) (Emo + Tick)

N (b 1" " ) () 147

(EpO + EI‘O)(EI’IO +Eo+ th) (Em() + th)

[ " e (1) 1) [ 1 ) [ ]

(EpO + Er()) (EmO + 7‘;le)En() (Ep() + th) (EnO + ErO + th) (Em() + EI‘O)

[ " O [y 11y

(EpO + ErO)(EnO + ErO + th) (EmO + ErO)

0 nm , ,m I
[ 1" g g () 17

(Epo + Tick) (Epo + Ero)Eno

}+AH3. (7.13.1)
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As written in expression (7.13.1), the intermediate states of the species at
which scattering of a real photon occurs are designated by m, n, and p, while
those of the other molecule are labeled by 7. This is further emphasized by
placing square brackets around the product of transition electric dipole
moments, one factor containing four such moments, the other two, with the
former reflecting the two additional electric dipole couplings associated
with absorption and emission of the (k, 1) mode photon. Also, apparent
from (7.13.1) are the symmetry properties of Cartesian tensor components.
The geometric factor is invariant to interchange of m < k and n < [ when
taken in conjunction. Noting that p9" ,ufo remains the same on interchanging
n <« [, it is clear that only the k,m-symmetric part of the molecular term
in (7.13.1) will contribute to the energy shift.

To proceed further, the energy denominators are separated into integral
products of one center terms. A similar step was carried out when the
London dispersion energy was expressed in terms of dynamic polariz-
abilities at imaginary frequency using the identity (5.2.21). Its general-
ization to an arbitrary number of factors in the denominator each of which
contains a common term is

1
(a+b)(c+b) - (n+b)

1 1 1
T on J (a+iu)(c+iu) - (n+ iu) + (a—iu)(c—iu) --- (n—iu)
b
de% a,b,c,...,n>0. (7.13.2)

To be able to apply relation (7.13.2), the approximation is made in (7.13.1)
that the frequency of the incident radiation field is less than molecular
transition frequencies. Thus, (7.13.1) becomes

280 VRO

o0

AE = — ( i ) (5/‘1_3]A3kje1)(5mn_3kmkn)egm (l_é)é/(;) (l_é)

h
X . J {Tijkm(A; w; icu) + Ty (A; @5 icu) Yoy (B; icu)du + A — B.
T i

—00

(7.13.3)

Appearing in (7.13.3) are the familiar dynamic electric dipole polarizability
tensor at imaginary frequency o,(&;icu) and the fourth-rank
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hyperpolarizability tensor Ty, (w; icu). The latter is defined as

:u Mpn 'unm 'umO
1
Tijom (03 icu) = — g J
h o (@po—w)(wuo—w—icu)(wuo—w)

'ujol’ 'u:tm 'umO
(wpo—) (wuo——icu)(wmuo—icu)

Op pnnm , m0 Op pn nm
:uj i Hoy By Hi ,u] Hon luk

(0po—)(Wmo—ict)wny — (Wpo + ) (@mo—icu)wyo

pn - nm , m0 nm

T N T TATELT
(wpo—icu)(wuo—w—icu)(wmo—w)  (wpo—icu)(wmo—w—icu)(wmo—icu)

H 'ul lu;un‘umo ILLI 'u’{;?u;lﬂ‘lum

. — + .
(a)po—lcu) (@no + w—icu) (wmo—zcu) (@po + ) (W + w—icu)(wmp—icu)

m 'uk /“t;”nﬂl 'uk 'uflmlu/
(wpo—icu)(wmo—w)wno (wpo—lcu)(wmoer)wno

" N 1 b i
(wpo—icu) (w0 + w—icu)(wmo + @) (wpo + ©)(Wno+ w—ict)(wmo+ @)

+ terms from k < mand u — —u.

(7.13.4)

Making use of k, m-index symmetry and the invariance to simultaneous
exchange of virtual-state labels, it is seen that the molecular part of (7.13.3)
is i,j~symmetric. Hence, only the ij-symmetric part of the polarization
factor contributes. Inserting identity (7.6.6) into (7.13.3) results in

AE = ( o ) (05—kik;) (31—3RicRy) (On—3RRy)

480VR6
h o0
X o J {Tijem(A; 0 icu) + Tijmi (A; @5 icu) Yoy (B; icu)du +A — B.

(7.13.5)

Energy shift (7.13.5) is independent of the helicity of the incident radiation
as well as being independent of the chirality of each molecule.
Hence, (7.13.5) is nondiscriminatory.

In the second possible mechanism, the two molecules are again coupled
by the exchange of two virtual photons—which are taken to propagate
instantaneously in the near zone, but scattering of the real photon occurs
at different centers. Thus, if A absorbs a (k, 4)-mode photon, B emits one
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and vice versa. As in the case where scattering of the real photon occurs at
the same center, 24 distinct time orderings of the photonic creation and
destruction events are possible when both A and B are associated with three
electric dipole coupling vertices. This contribution to the interaction energy
clearly holds only for noncentrosymmetric molecules. Summing over the
24 terms produces

Nh k A A A A /1 — /1 —
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Square brackets are again used to enclose molecular moments associated
with each molecule whose intermediate states are labeled by m and n and
r and s. Because the potential coupling the two bodies is applicable to
the near zone, the exponential factor in (7.13.6) may be taken to be unity
since kR < 1. Employing identity (7.13.2) after choosing the frequency of
the incident field to be lower than that of molecular transition frequencies
enables (7.13.6) to be written as

Niick . e ) a(d)
h T . .7 . . ’
X E {ﬁikm(Av w; lcu)ﬂjln(Ba —w; —lCl/l)
+ ﬁjln(A; —; _icu)ﬁikm(B; w; icu)}du’ (7137)

which is seen to be proportional to the product of one hyperpolarizability
tensor of rank three from each molecule. This tensor is given explicitly by

1" g
iom (5 ictt)
P hzz{ (Wmo + icu) (wn0 + o)

//LOn ‘u7m Mgo ‘ugn Mz:n 'u710
(Wmo + icu)(Wpo— +icu) — (Opo—)(wo— + icu)
w1 g Hom "™
(Wmo + o—icu)(wu + @) (@mo + w—icu)(wyo—icu)
m0
+ k1 5. (7.13.8)
(Wmo—)(wpo—icu)

A more compact expression of (7.13.7) is possible by interchanging
intermediate-state labels of the hyperpolarizability tensor to give

ﬁikm(_w; _lcu) = ﬁikm(w; lCM) (7139)
so that
Nhick P .
AE = — O11—3RiR;) (0, —3R,,R,
(280VR6>( a=3ReRs)( )

Bitem(A; @5 icu) B, (B; —; —icu)du. (7.13.10)

X
Il= - )
g —3
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Since [ is a polar vector, the molecular hyperpolarizability changes sign
when one molecule is substituted by its mirror image form. Hence, the
energy shift (7.13.10) is discriminatory in contrast to result (7.13.5) arising
from the first mechanism. Recalling that the irradiance of the incident field
isgivenby/l = thzk/V, energy shifts (7.13.5) and (7.13.10) are seen to be
linearly proportional to /.

The results obtained thus far hold for the situation in which A and B are
in a fixed orientation relative to each other and as a pair in fixed orientation
relative to the wavevector of the incoming beam. If the molecules are held
rigid due to strong intermolecular coupling, but are allowed to rotate
freely as a pair, the energy shifts (7.13.5) and (7.13.10), respectively,
become

I L L
AE = — (W) (011 —3RicR1) (Opn—3RimRn)
o

X 2 J { Tiikm (A; @3 icu) + Tiimi (A; @; icu) Yo (B icu)
n

+ {Tiitem (B; w; icut) + Tiimic (B; w; icu) Yo (A; icu)|du
(7.13.11)

and

1 - PN
AE = — Oxi—3RkR;) (0un—3RnR,) —
<2£QCR6>( kil k l)( mn m n) 61
%
X J Bitm(A; @; icu) fj,(B; —w; —icu)du.  (7.13.12)
—00

For random relative orientations of molecules within the pair, a molecular
average is performed. This corresponds to carrying out a Boltzmann-
weighted average at the limit 7 — oo, where T is the temperature.
Thus, (7.13.11) and (7.13.12) become

I\ n , . .
AE=— <m> 6n J [T (As 0 icu) + Ty (As 0 icu) oty (Bs icu)

—00

+{ T (B; wsicu) + T (B; w5 icu) Yo, (A icu) du
(7.13.13)
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and

I\ 7 T . .
AE = (m) %@wngupa J ﬁivn (A; ;3 lcu)ﬁ,upa(B; —w; _lcu)duﬁ

(7.13.14)

both results being independent of the polarization of the incident beam.
Energy shift (7.13.13) is nondiscriminatory while result (7.13.14) de-
pends on the chirality of each molecule and changes sign when one species
is replaced by its mirror image form.



APPENDIX A

HIGHER MULTIPOLE-DEPENDENT
SECOND-ORDER MAXWELL
FIELD OPERATORS

In Section 2.7, the Maxwell field operators linearly dependent on the
electric dipole, quadrupole, and magnetic dipole moments were obtained,
while Section 2.6 contained results for the quadratic fields within the
electric dipole approximation. Following the procedure outlined in
Chapter 2, the electric displacement and magnetic field operators bilinear
and quadratic in these first three multipole moments can be evaluated.
Explicit expressions are given below. Also included for completeness are
the second-order electric dipole-dependent fields. For all of the fields listed
below, the fermion operators act on the electronic state [m2) and the source is
taken to be situated at the origin, that is, R=0.

Molecular Quantum Electrodynamics, by Akbar Salam
Copyright © 2010 John Wiley & Sons, Inc.
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The tensor fields fj;(kr) and g;;(kr) have been defined in equations (2.9.4)
and (2.9.34), respectively. The new ones appearing in the fields above are
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APPENDIX B

ROTATIONAL AVERAGING
OF CARTESIAN TENSORS

Observable quantities calculated using quantum electrodynamical theory, be
they transition rates as a result of interaction of electromagnetic radiation
with one or more atoms or molecules, or energy shifts arising from species in
mutual interaction, or both, often apply to bodies in fixed orientation relative
toeachotherandtothedirectionof propagationofthe radiationfieldif present.
To calculate expectation values applicable to species in the fluid phase
therefore require performing a rotational average of the molecule or mole-
cules, whichare characterized by amultipole moment of a particular order and
thatare typically expressed in terms of components of a Cartesian tensor. This
is usually followed by contraction with polarization vectors of the radiation
field or some other geometric factors, both of which are also written in terms of
Cartesiantensor components. This Appendix outlines the procedure by which
Cartesiantensors may be orientationally averaged, the results presented being
able to be used to yield measurables for isotropic systems.

Consider a molecular tensorial property T of rank r whose Cartesian
components in a space-fixed frame of reference are 7j;, ; and in a
molecule-fixed frame are 7} ;,. ;.. The components in the two frames are
related through

Tiir.iy = liilivy - 150, o5 s (B.1)

Molecular Quantum Electrodynamics, by Akbar Salam
Copyright © 2010 John Wiley & Sons, Inc.
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where /; ;, is the direction cosine between the space-fixed axis i, and the
molecule-fixed axis 4,. A rotational average of T},;, ; therefore requires
a rotational average of the factor /;,,/;,5, - . . l;.;,, which for convenience is
designated by I1"). This last quantity is expressible as a linear combination
of isotropic tensors, each member being a product of two isotropic
tensors—one for the space-fixed frame, the other for the molecule-fixed
axes. The two fundamental isotropic tensors in three dimensions being the
Kronecker delta 6; and the Levi-Civita epsilon ¢;. Isotropic tensor
products are formed by permuting the indices iy, i, . .., I, in a particular
factor, and are called isomers. Results are given below for 1" applicable
for tensors up to rank six (Andrews and Thirunamachandran, 1977).

19 =1 (B.2)
and
1M =o. (B.3)
For r=2, the sole isomer is J;;, and
1
1(2) = g 51'”'25,11)_2. (B4)

For r=3, there is also a single isomer, ¢;,;;,, and

1

IG) = 6 TR TIVEVES (BS)

When r =4, there are three linearly independent isomers

51'11'251'31‘4; 5:'11'351'21‘4; 51'11'451'21'3 (B-6)
and
| 0ivir Oisiy T4 -1 -1 0117207504
¥ = 20 3100, ~1 4 -1 01110 | (B.7)
0iisOiris -1 -1 4 0717407205

where the superscript T denotes the transpose. Although there are 10 different
isomers for r =35, only 6 are linearly independent. The ones used are

8i1i2i35i4i5, 8:‘.1‘25455315, 8i|i2i55i3i4, 81']1'31'451'2:'5, 8i1i3i55i2i6, 8:‘.1‘45555213,

(B.8)
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resulting in

[ &iiris Oiyis | T3 -1

&iyiiy Oisis -1 3

/5 _ 1 &iyinis Oisiy -1 -1
30 | &40, 000 |

Eiriyis Oty I 0

L&iiisOnin | L O 1

There are 15 distinct isomers for
independent set. I is given by

,<6>,m
Sy0udmn\ " /16 =5 =5 =5 2 2 —5
i OkmOni -5 16 -5 2 -5 2 2
04 SknOim -5 -516 2 2 -5 2
i Gt Spmn -5 2 2 16 =5 -5 =5
i Bjm St 2 -5 2 516 -5 2
0k OjnOim 2 2 -5-5-516 2
0it0jk Opn -5 2 2 -5 2 2 16

X | 8i0jmOrn 2 2 =52 -5 2 -5
3itSjnOkm 2 -5 2 2 2 -5-5
GimjicOni 2 52 2 -5 2 =5
Oim0jiSin 2 2 -5-52 2 2
GimSjnOki -5 2 2 2 2 -52
Gin0Om 2 2 =52 2 -5-5
0in0j1Okm 2 =52 =52 2 2
3in0imdn -5 2 2 2 -52 2

and

0 7 [€422500s5 |
1 €71727407515
=1 | | €132050750
1 €71737405 15

—1 | | €1,03450 004

3 1 L€474350000s |
(B.9)

comprise a linearly

22 =5\ (0,006t
2 -5 2 00y 0pr
-5 2 2 3310vedpo
2 -5 2 01v0up0ot

202 =5 || dndudpm
-5 2 2 30,00
-5 2 2 33pO 0ot
2 2 =5 d:p0usdn

2 -5 2 07p0ut0vs
-5 2 2 0760uv0pr
2 -5 2 0150 pp O
2 2 =5 010ubyy
16 =5 =5 || 0/x0u0ps
-5 16 =5 0,100

-5 =5 16 (5;;;(3;40(5"/)

(B.10)
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Angular integral, 146

Angular integration, 190, 211, 218,
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Asymptotic N-body dispersion
potentials, 291

Atomic field equations, 36

Atomic force microscopy
(AFM), 255, 256

advantage, 255

Axilrod-Teller—-Muto dispersion
energy shift, 260-266

Axilrod-Teller—-Muto triple-dipole
dispersion potential, 276, 295

Bohr radius, 125
Bose-Einstein statistics, 22
Boson annihilation operator, 79, 89,
102
time-dependent, 102

time evolution, 79
Bosons, 23, 26
Boson space, 106

Canonically conjugate
momentum, 24,29,41,72,104
Canonical transformation, 42-47, 61
Cartesian tensor(s), 308, 378
rotational averaging, 378
Casimir-Polder dispersion energy
shift, 111, 184, 266
Casimir—Polder energy, 184, 238, 266
Casimir—Polder force, 254, 255
torque production, 255
Casimir—Polder interaction, See
Casimir effect
Casimir—Polder potential, 176,
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Casimir-Polder potential (Continued )
Feynman graphs, 192
perturbation theory, 178
state sequence diagram, 196
time-ordered diagrams, 180, 201

Casimir effect, 251-253
manifestation of, 253
measurements, 251-256
role, 252

Cauchy principal value, 107, 146, 211

Chiral molecule, 152, 159, 223, 225,

228, 230, 231, 234-237, 347,
348, 353, 356
chiroptical properties, 152
energy shift, 347
magnetic dipole emissions, 159

Chiral systems, 152
energy transfer, 152-157

Circular polarization(s), 16, 159, 161,

333, 334, 352, 353, 356

Circularly polarized light, 160,

353-356
freely tumbling chiral pair, 353
perpendicular propagation, 353
Circularly polarized radiation,
352-353
energy shift, 352

Clamped nuclei approximation, 28

Classical Hamiltonian, 30
function, 7, 21, 26
quantum mechanical analogue, 30

Classical interaction energy, 130, 131

Classical Lagrangian function, 4, 26

Classical mechanics, laws, 5

c-number, 52, 135

Conjugate momentum, 70
field, 284

Coulomb gauge, 14, 47, 82
condition, 18
multipolar Hamiltonian, 47

Coulomb interaction, 75, 121, 186
intra/intermolecular, 75

Coulomb interaction energy, 39, 341

Coulomb potential, 12, 27, 253

Coulomb potential energy, 74
Coupling tensor, 147, 148, 177, 219,
221, 237, 320
Craig-Power Hamiltonian, 192,
269-277
triple-dipole dispersion energy
shift, 269

d’Alembert’s equation, 15
Diagonal matrix element, 103, 105,
170, 210
Diagrammatic perturbation
theory, 142-149, 157, 186,
207, 222, 258, 277, 339, 340
Diamagnetic interaction, 40
Diamagnetic source, 101-104
Maxwell fields of, 101
Diagrammatic time-dependent
perturbation theory, 177
advantage/disadvantage, 177
Dipole-dipole coupling tensor, 147,
162
Dipole-dipole interaction tensor, 259,
299, 300
Dipole moments, 216, 259, 277
correlation, 259, 277
Dirac’s variation of constants, 51
Dirac delta function, 10
Discriminatory dispersion
interactions, 222-243
induced moment approach,
236-243
perturbation theory, 223-230
response theory, 230-236
time-ordered graphs, 225
Discriminatory intermolecular
interaction, 342-348,
361-369
higher order radiation-induced, 361
radiation field, 342
Dispersion energy shift, 134,137,178,
199, 216, 228, 236
single-photon interaction vertex
state sequence diagram, 199



Dispersion force, 136138, 179,
193-199, 207
origin, 136
photon-matter interactions, 194
response theory calculation,
207-216
state sequence diagrams, 193
Dispersion interaction, 198-200, 202
energy denominator products, 202
in one ground and one excited
molecule, 199-207
state sequence diagram, 198, 199
time-dependent perturbation theory
calculation, 200
Dispersion interaction energy, 114,
250
Dispersion potential, 185, 199, 217
calculation, 185
wave-zone asymptote, state
sequence pathways, 199
Displacement field(s), 37, 74, 81, 82,
93,96, 113, 166, 174, 209, 210,
295, 336
Distance vectors, 130, 181, 208, 268,
271, 283, 305, 332, 353
Donor-acceptor model, 141
Dressed state system, 278
Dressed vacuum field
correlations, 277-283
triple-dipole dispersion
potential, 277
Dynamic electric dipole polarizability
tensor, 217, 305, 364
Dynamic polarizability, 190,208,209,
313
Dynamic Stark shift, 313
time-ordered graphs, 313

Effective coupling operator, 335

Effective interaction
Hamiltonian, 335-339

Eigenvalue equation, 122

Einstein causality, 164

Electric dipole, 32, 129
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approximation, 154
Cartesian component, 129
coupling term, 152
interaction vertex, 344
polarization distribution, 33, 41
polarization field, 66
Electric dipole-dependent magnetic
field, 82, 95, 244
Electric dipole-dependent Maxwell
fields, 98
Electric dipole-vector field
operator, 81
Electric dipole moment, 32, 78, 116,
210, 238, 299
operator, 278
Electric dipole polarizability, 209,
230, 265, 270, 340, 348, 360
property, 270
Electric dipole polarizability
tensor, 217, 230, 309, 364
symmetry property, 309
Electric dipole-quadrupole, 224
coupling tensor, 359
polarizability, 136
Electric displacement field, 36,41, 69,
94, 104, 162, 166, 278, 279
Electric energy density, 108, 110
operator, 104
Electric field, 63
operators, 82
Electric moments, 217
Electric-magnetic dipole polarizability
tensor(s), 242, 346, 349,
356
Electric-magnetic dipole response
tensor, 231
Electric polarization field, 32, 45, 67,
75, 83, 104
longitudinal component, 75
vectors, 154
Electric quadrupole, 356
coupling, 100
Electric quadrupole moment, 358
operator, 99, 358
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Electric quadrupole polarizability
tensor, 136, 358, 360
Electric quadrupole polarizable
molecules, 356-361
Electrodynamics, 8-14
Electromagnetic energy, 118
density, 19, 104-115, 247
rate of flow, 118
Electromagnetic field, 14, 15, 18, 21,
47, 65, 209
correlation functions, 239
Euler-Lagrange equations, 18
quantization, 14-26, 47
quantum mechanical
Hamiltonian, 15, 21
Electromagnetic permittivity, 252
frequency-dependent complex,
252
Electron fields, transformation, 73
Electron Fock space, 95, 105
Electronic g-factor, 3
Electronic Hamiltonian, 123
Electronic Schrodinger equation, 123
Electron wavefield(s), 62, 67, 73, 78
Euler—Lagrange equation, 67
Electron-photon coupling
vertices, 144
Electron-photon interactions, 54
Electron-positron pair production, 61
Electrostatic Coulomb
interaction, 329
Electrostatic Coulomb potential, 27
Electrostatic couplings, 133
Electrostatic Hellmann—Feynman
theorem, 126
Electrostatic interaction, 128-133
Electrostatic interaction energy, 128,
130
Electrostatic potential, 129
Emitter-absorber model, 141,
157-161
Energy, 143, 151, 153
bimolecular resonant
migration, 153

perturbation theory
treatment, 153
resonant transfer, 143, 151
state sequence diagram, 151
time-ordered diagrams, 143
Energy denominators, 326
time-ordered diagrams, 326
Energy density, 114, 117
u-integral terms, 109, 113, 114,
117
Energy shift, 124, 182, 185, 190, 192,
197, 203, 206, 210, 212, 213,
217, 219, 225, 227, 233, 238,
239, 246, 247, 262, 264, 265,
268, 269, 272, 274, 289, 290,
293, 300, 301, 303, 314, 327,
329, 337, 343, 349, 350, 359
definition, 124
dynamic, 343
expression, 354
fourth-order perturbation theory,
formula, 197, 314
static mechanism, 327
u-integral term, 246, 247
Energy transfer, 153, 169, 172
causality proof, 172-174
matrix element, 153
time-dependent probability, 169
Equation of motion, 67, 69
Euler—Lagrange equations, 6, 18, 27,
30, 31, 36, 37, 62, 63
Exchange-perturbation theories,
approaches, 127
Exchange-repulsion energy, 5
Excitation energy, 164
resonant transfer, 164
transfer, 148
Exciton, 141

Far-zone asymptote, 109, 113, 185,
249, 275

Far-zone dispersion potential,
189-193

Far-zone energy shift, 249



Fermi golden rule, 118, 149, 158, 160,
307
equation, 119
rate formula, 164
transition rate, 53
Fermion annihilation operator, 78, 102
equations, 99
time-dependent, 78
Fermions, 23
Fermion space, 210
Feynman’s rules, 144
Feynman’s theory, 54
Feynman diagrams, 54, 194, 198, 225,
259, 267, 335
Field-field spatial correlation
function, 218
Field-induced energy shift, 341, 361
Fluorescence-induced decay, 148
Flux density, See Magnetic induction
Fock space, 23, 95, 105, 166, 173
Forster rate limit, 309
Four-body retarded dispersion
potential, 292-295
Fourier amplitudes, 24
Fourier series expansion, 17
Fourth-rank tensor, See Electric
quadrupole polarizability

Green’s function, 146
Ground-state dispersion
interaction, 215, 248
Ground-state dispersion potential, 180
calculation, 180
Ground-state permanent dipoles, 330
interaction energy, 330
Ground-state polarizability
tensors, 357
Ground-state triple-dipole dispersion
potential, 269
Ground-state unperturbed
wavefunctions, 133

Hamiltonian density, 19, 104, 284
Craig-Power form, 284
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Hamiltonian function, 19, 43
Hamiltonian operator, 7
Hamilton’s canonical equations, 7, 20,
29, 42, 43
Hamilton’s principle, 6, 61
Harmonic oscillator Hamiltonian, 20,
23
Heisenberg equation of motion, 43,
46, 60, 61, 84, 89, 91
operator, 73, 101, 167
Heisenberg fields, 111
Heisenberg formalism, 208
Maxwell field operators, 77, 83, 90,
98, 101, 208
Heisenberg picture operators, 60, 61,
92
advantages, 61
Helmholtz equations, 17
Helmholtz’s theorem, 13
Hermitian conjugates, 96, 97
field, 73
Hermitian operator, 116
Higher multipole moment Maxwell
fields, 98—100
Hyperpolarizability tensor, 367
Hyperspace number, 56, 149

Incident laser, 332
parallel propagation, 332-334
circular polarization, 333
linear polarization, 333
perpendicular propagation,
334-335
circular polarization, 334
linear polarization, 334
Induced electric dipole moment, 237,
340
Induced multipole moment
approach, 216-222,
236-243, 259, 299, 312, 339,
340
dispersion potential, 216
versatility, 220
Induction energy, 134-136
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Induction forces, 134-136
Instantaneous Coulomb potential, 12
Interaction energy, 126, 179,200, 208,
220, 244, 248, 257, 259, 263,
274, 279, 290, 356
ground-state, 259
Interaction Hamiltonian, 29, 40, 48,
84, 143, 160, 178, 191, 200,
224,270, 278, 296, 297, 304,
313, 343
vertex representation, 191
Interaction plane networks,
generation, 193
Interaction vertex, 144
Interelectron repulsion, 126
Intermolecular coupling, 158
Intermolecular electrostatic
interaction, 40
Intermolecular energy shift, 124, 328
Intermolecular interaction energy, 39,
339
radiation-induced change, 339
Intermolecular interactions, 139
resonant exchange of energy, 139
Intermolecular polarization

product, 39
Intermolecular processes, 176, 194,
198, 222, 311
resonant energy transfer rate, 147,
311

state sequence technique, 55, 198
van der Waals dispersion energy
shift, 311
Internuclear separation distance, 145
Inverse power law, 96
Isotropic magnetic dipole
susceptibility, 114, 224
Isotropic polarizability, 184, 190, 193,
272, 274, 282, 299, 308, 331
Isotropic tensors, 379
Kronecker delta, 379
Levi—Civita epsilon, 379

Lagrangian density, 36, 63, 68

Lagrangian function, 6, 7, 18, 26, 47,
65

Lagrangian-induced quantum
transformation, 47

Lamb shift, 3

Laser-induced intermolecular energy
shift, 348

Levi—Civita tensor, 26, 65, 354

Linear combination of atomic orbitals-
molecular orbital (LCAO-MO)
approach, 127

Linearly polarized radiation, 16,
351-352

energy shift, 351

London dispersion energy, 188, 332,

364
calculation, 188

London dispersion formula, 185, 250

London-type dispersion potential, 111

Long-range character, resonant
transfer, 128, 148

Long-range forces, 127-128

Long-range interaction energy, 128

Lorentz force law, 28

Lorentz gauge, 14

Magnetically susceptible
molecules, 243-250
Magnetic dipole coupling, 98, 153,

243
Magnetic dipole-dependent electric
displacement field, 163
Magnetic dipole magnetization, 35
Magnetic dipole moments, 99, 223,
229, 237, 238, 348, 370
operator, 99, 223
Magnetic dipole polarizable
molecules, 250
tensors, 357
Magnetic energy density, 113, 248
Magnetic field, 9, 63, 82,95, 113, 237,
239
vacuum field correlation
function, 239



Magnetic field operators, 61, 370
bilinear, 370
quadratic, 370
Magnetic force, 115
Magnetic induction, 8
Magnetic multipole moments, 35
Magnetic polarization vectors, 25,
101, 154
Magnetic quadrupole
magnetization, 35
Magnetic susceptibility tensor, 249
Magnetization, electronic
contribution, 34
Magnetization field, definition, 67
Many-body forces, 257, 258
role, 258
Matrix element, 53, 155, 164, 306,307
electric-magnetic contribution, 155
nonresonant energy, 164
Matter, quantum description, 5-8
Maxwell equations, 8,9, 11, 19
Lorentz force equation, 9
Newton’s second law of motion, 9
Maxwell field, 62, 73, 79, 92, 93, 96,
99, 100, 104, 231-233, 259,
370
operators, 96, 104, 231, 259, 370
Maxwell field operators
multipole-dependent, 77, 90, 98,
370-377
Maxwell-Lorentz equations, 8—15,
27, 37, 69, 284, 285
Minimal-coupling boson
operators, 88
Minimal-coupling framework, 70, 77,
84
Minimal-coupling Hamiltonian, 28,
30, 46, 64, 65, 176
quantum mechanical version, 65
Minimal-coupling Lagrangian, 33, 36,
62, 66
multipolar Lagrangian, 33
Minimal-coupling Maxwell
fields, 83-90

INDEX 395
Minimal-coupling vector potential,
source-dependent, 84
Minimal electromagnetic coupling,
principle, 62
Mixed electric-magnetic dipole
polarizability, 177, 223, 236,
243
tensor, 230, 236
Molecular energy, Born—Oppenheimer
approximation, 124
Molecular-Field Lagrangians, 27
Molecular forces
long-range, 125
short-range, 125
Molecular Hamiltonians, 29, 122, 132
operator, 122
Molecular orbital theory, 127
Molecular orientational
averaging, 147, 330-332,
378-380
Molecular polarizability, 319
Molecular quantum electrodynamics
methods, 176
Molecular quantum electrodynamics
perturbation theory, 47, 194,
296
field theoretic treatment, 60
multipolar Hamiltonian, 39, 77,296
Molecular transitions, 109, 332
frequency, 332
wavelength, 109
Molecule-molecule interactions, 54
Multipolar coupling scheme, 33
Multipolar Hamiltonian, 37-42, 44,
46, 70, 71
Multipolar Lagrangian, 30-37,41, 74,
77
transverse polarization, 41
Multipolar Maxwell fields, 77-83, 90,
161
operators, 161
in vicinity of source, 90-98
Multipolar/minimal-coupling
frameworks, 78, 83, 90
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N-body dispersion interaction

energy, 292
N-body dispersion potential, 283-292
N-body energy shift, 259, 287, 288
Near-zone asymptote, 248
Near-zone energy shift, 187, 189, 303
Near-zone potential, 186—189

London dispersion energy, 186

Net repulsion effect, 126
Neutral electric dipole systems, 143
Newton force law, 37
2N first-order equations, 7
Noninteracting matter-field

system, 27
Nonrelativistic classical dynamics, 9
Nonrelativistic molecular energy, 122
Nonrelativistic quantum field

theory, 62-71
N-photon state, 359
N second-order equations, 7
Nuclear coordinates, function, 124
Nuclear Hamiltonian, 123
Number operator, 22

Occupation number state, 22
One-dimensional harmonic
oscillator, 21

Hamiltonian function, 21
Open shell systems, 126
Operator equations, 22
Optical rotatory strength tensor, 156
Orthogonal unit vectors, 16

Pair averaged energy shift, 355

Pair orientational averaging, 330-332

Partial differential equations, 10

Particle-electromagnetic field

system, 30

Particle-field interaction terms, 48

Particle-radiation field system, 26
interaction, 26-30

Pascal triangle, 196

Pauli exclusion principle, 74

Permanent electric moments, 133

Permittivity, 9, 252, 309
Perturbation operator, 51, 132, 266,
269
Perturbation theory, 47-55, 176, 178,
179, 193, 207, 222-230, 260,
261, 270, 271, 303, 362
energy shift, 271
matrix element calculation, 207
solution, 47-55
third-order, 261
Photoactive devices, 141
organic light-emitting diodes, 141
Photon annihilation operator, time
evolution, 84
Photon creation-destruction
events, 320
Photon field, equation of motion, 68
Photonic events, 149, 195
network map, 195
vertex properties, 149
Photon-matter couplings, 55
Photon operators, time evolution, 89
Photons, 22
Plane wave solutions, 16
polarization vectors, 16
Polarizability, 214,222,287,288,302,
304
Polarization field, 33, 38
Potential energy, 258
Poynting theorem, 115-120
Poynting vector, 115-120, 233

Quadratic fields, 97, 98
characteristic, 98
Quadratic Heisenberg fields, 120
Quadrupole polarization, 32
Quantized electromagnetic field, 61,
90
Quantized Maxwell field operators, 90
Quantized minimal-coupling
Hamiltonian, 61, 64
Quantum canonical
transformation, 43, 71-77
analogue of, 73



application, 43
characteristic feature, 71
Quantum electrodynamical dispersion
potential, 292
Quantum electrodynamical
Hamiltonian, 48, 62, 71, 119,
142, 304
operator, 62, 142
Quantum electrodynamical Maxwell
field operators, 114, 116
Quantum electrodynamics theory,
1-3, 5, 175
characteristic feature, 1
Quantum mechanical Hamiltonian, 4,
8, 21
operator, 4, 8
Quantum mechanical operators, 42,
101
Quantum mechanics, 6, 60
Heisenberg picture, 60
Schrodinger picture, 60

Radiation field Hamiltonian, 20
Radiation field Lagrangian, 27
Radiation field operators, 90, 92
Radiation-induced chiral
discrimination, 312,
348-353
Radiation-induced dispersion force
theory, 313-314
Radiation-induced energy shift, 323,
330
dynamic mechanism, 315-321, 336
time-ordered diagrams, 336
polarization analysis, 332-335
static mechanism, time-ordered
diagrams, 323
Radiation-induced intermolecular
energy shift, 314, 316, 321,
337, 356-361
dynamic mechanism, time-ordered
diagrams, 316
fourth-order contribution, 314
static mechanism, 321-330
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Radiation-induced intermolecular
interaction, 321, 322, 339
dynamic mechanism
calculation, 321, 322
state sequence diagrams, 321,
322
Radiation-induced intermolecular
interaction energy, 324
static contribution, state sequence
diagrams, 324
Radiation-matter couplings, 150, 195
hyperspace/interaction plane
coordinates, 195
interaction plane network, 150
Radiation-matter states, energy, 150
Radiation-molecule interactions, 4
chiroptical spectroscopy, 4
optical activity, 4
Radiation-molecule/molecule-
molecule processes, 65
Rayleigh—Schrodinger perturbation
theory, 125, 132
Resonance energy transfer process, 5,
140, 141, 149, 304-310
mediation, 304
unified theory, 140
Resonant dipole-dipole coupling
tensor, 237
Resonant frequency, 221
Resonant interaction tensor, 147, 155
Response formalism,
characteristic, 283
Response technique, 222
Response theory, 161-164, 177, 216,
230-236, 295
calculation, 161-164
Casimir—Polder potential, 207, 232
Retarded dispersion energy shift,
304
Retarded dispersion forces, 175
Retarded dispersion potential, 320
Retarded resonant multipole—
multipole interaction
tensor, 147, 155, 177
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Retarded triple-dipole dispersion
potential, 266-269, 291

perturbation theory, 266

Rotatory strength tensor, 229

Rydberg fine structure, 253, 254
Coulomb force independence, 254
microwave spectroscopy, 253

Rydberg orbits, 253

Rydberg states, 254

Schrodinger equation, 62, 63,73, 121,
122
Coulomb interaction, 121
molecular Hamiltonians, 121
time-dependent, 50
time-independent, 49
Schrodinger picture, 60, 61
operators, 61
Second-order perturbation
theory, 144, 148, 329
formula, 329
Second-rank tensor, See Electric dipole
polarizability
Semiclassical radiation theory, 1, 133
Short-range forces, 125-127
physical interpretation, 126
Signum function, 118
Single harmonic oscillator, 23
eigenfunctions, 23
eigenvalues, 23
Source-dependent Maxwell-Lorentz
equation, 37
Source-dependent polarization
field, 89
Source-free Maxwell equations, 16
Spatial field-field correlation
function, 218, 238
Spin orbitals, 127
State sequence diagrams, 55-59,
149-152, 199, 314, 322
construction step, 55
representation, 149-152
Static electric dipolar coupling
potential, 187, 229, 260

Static electric dipole moment
operator, 341
Cartesian component, 341
Static electric dipole
polarizability, 109, 136, 188,
249, 266
tensor, 136
Static mechanism graphs, 325, 338
collapsed interaction vertices,
338
String theory, 256
Newton’s universal law of
gravitation prediction, 256
Symmetry adapted perturbation
theories (SAPT), 127

Taylor series expansion, 129
Tensor field, 106, 108, 112, 183
definition, 112
Theoretical spectroscopy, 312
Three-body dispersion
interaction, 295-303
ground states, 266
induced dipoles coupling, 299-303
one excited molecule
involvement, 295
time-dependent perturbation
theory, 296-299
Time-dependent energy transfer,
164-172
Time-dependent magnetic field
operator, 86
Time-dependent Maxwell field
operators, 77-83, 283
Time-dependent perturbation
theory, 158, 185, 191, 223,
230, 235, 259, 305, 312
Time-dependent source electric dipole
moment, 86
Time-dependent vector potential, 61
Time-energy uncertainty, 141, 198
principle, 198
Time evolution operator, 50, 52
matrix elements, 52



Time-ordered diagrams, 54, 57, 144,
180, 188, 192, 225, 313, 315,
318, 322, 323, 329, 335, 337,
343
energy denominator products, 318
dynamic Stark shift, 313
Time orderings map, 320
Time-varying radiation field, 313
Total Hamiltonian, 142, 153
perturbation/unperturbed
Hamiltonians, 142
Transformation theory, 60
Transition electric dipole moment, 91,
93, 181, 208, 209, 275
coupling, 208
matrix elements, 91, 136, 181
operator, 136
Transmitter-receiver model, See
Emitter-absorber model
Transverse current, 14, 63
Transverse displacement field, 81,285
Transverse displacement vector, 116
Transverse electric field, 70, 85
Transverse polarization field, 39, 76,
285
distribution, 285
Triple-dipole dispersion energy, 258,
266
Triple-dipole dispersion
potential, 267, 296, 301
Axilrod-Teller calculation, 267
Triple-dipole energy shift, 258
Triple-dipole interaction energy, 263
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Vacuum electric displacement field
correlation function, 218
Vacuum field, 87, 89, 92, 93, 210,
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