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Quantum devices made from van der Waals (vdW) heterostructures of two dimensional (2D)
materials may herald a new frontier in designer materials that exhibit novel electronic prop-
erties and unusual electronic phases. However, due to the complexity of layered atomic
structures and the physics that emerges, experimental realization of devices with tailored
physical properties will require comprehensive measurements across a large domain of mate-
rial and device parameters. Such multi-parameter measurements require new strategies that
combine data-intensive techniques - often applied in astronomy and high energy physics -
with the experimental tools of solid state physics and materials science. We discuss the chal-
lenges of comprehensive experimental science and present a technique, called Multi-Parameter
Dynamic Photoresponse Microscopy (MPDPM), that utilizes ultrafast lasers, diffraction lim-
ited scanning beam optics, and hardware automation to characterize the photoresponse of
2D heterostructures in a time efficient manner. Using comprehensive methods on vdW het-
erostructures results in large and complicated data sets; in the case of MPDPM, we measure
a large set of images requiring advanced image analysis to extract the underlying physics.
We discuss how to approach such data sets in general, and in the specific case of a graphene
- boron nitride - graphite heterostructure photocell.

I. INTRODUCTION

Since the discovery of graphene, nanotechnologists
have developed rapidly evolving techniques to engineer
novel quantum devices from atomically thin materials
such as hexagonal boron nitride (hBN) and transition
metal dichalcogenides (TMDs).1–3 These materials can
be stacked vertically into van der Waals (vdW) het-
erostructures that combine the electronic properties of
the constituent materials in unusual ways.4,5 Much recent
research has focused on combining and engineering 2D
materials to create designer properties that result from
length scale engineering - tuning the electronic properties
by structuring the critical device length scales at or below
the electron wavelength.6–10 In loose analogy to optical
metamaterials, engineering sub-wavelength structure in
these quantum metamaterials may give unprecedented
access to quantum material properties, allowing us to
engineer custom unit cells, topological bands and altered
excited states. Intriguingly, length scale engineering of
these materials may also allow us to tune interactions
between charge carriers in the materials, creating novel
correlated electronic phases.11–16

The proliferation of available 2D materials, the means
to assemble high quality heterostructures, and theoretical
proposals of emergent phenomena have led to a remark-
able growth in the complexity of vdW heterostructure
stacks. From these innovations, diverse research avenues
have been initiated, yet many challenges lie ahead. The
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new materials and metamaterials are increasingly com-
plex, and understanding their behavior involves probing
large multi-variable parameter spaces. Individual elec-
tronic transport or optical probes of solid-state physics
may not be sufficient for comprehensive understanding
of emergent complex behavior. In this work, we iden-
tify the challenges involved in measuring complex quan-
tum materials (Section I), present a combined optical
and electronic transport technique, MPDPM, to over-
come these challenges (Section II), and discuss how to
analyze MPDPM data and draw conclusions from an ex-
ample MPDPM measurement (Section III).

A. Challenge: Complex Behavior Involving Multiple

Parameters

As nanotechnologists and materials scientists, how do
we systematically assess complex electronic behavior that
may arise in new material systems, particularly those
with unusual synthetic properties? In solid-state physics,
the answer has traditionally been to set up a single-
parameter experiment that aims to cut through the com-
plexity and capture quantum phenomena in as concise
a measurement as possible. Typical experiments consist
of well-established transport or spectroscopic measure-
ments sampling over a single independent variable. Of-
ten, these measurements use commercially available in-
struments. Implicit in this approach is the assumption
that all other experimental parameters have negligible ef-
fect on the variable of interest. In 2D materials, many
properties are the result of atomic thinness, which also
makes them sensitive to external conditions, defying the
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FIG. 1. (a) Represents the phase space of a hypotheti-
cal phenomena that depends on two independent variables,
with the observable value represented by a color scale. Single
variable measurements are represented as dashed white lines
with Y held constant. (b) Represents the phase space of a
hypothetical phenomena that depends on three independent
variables, each point in three-dimensional space has an ob-
servable value represented by color. The green cube in the
upper left represents a single voxel.

assumption that other independent variables do not con-
tribute to the electronic behavior. Truly comprehensive
characterization using standard measurement approaches
would require prohibitively long times, due in part to the
measurement rate and the numerous trials required to
address variations across many material parameters. As
the complexity of 2D systems increases, new data inten-
sive approaches - taking inspiration from astrophysics,
high-energy physics, and biomedical imaging - must be
developed.
In this section, we lay out an elementary assessment

of the most restrictive experimental parameter - exper-
imental time - and discuss how multi-variable searches

can be optimized to improve the search for correlations
across experimental variables. Fundamentally, experi-
mental time T is the dominant limiting factor in mea-
suring complex device behavior. Simply stated, the total
time of a measurement combines the hardware-limited
time per point th with the sample response time ts, mul-
tiplied by the total number of data points to be measured.
To illustrate how the total time can be evaluated for a

simple experimental system, Figure 1(a) shows a generic
phenomenological response that depends on two experi-
mental parameter dimensions, measured with single vari-
able measurements. The experiment sweeps the X vari-
able at constant Y, taking a series of line cuts through
the experimental phase space. The time of such an ex-
periment is given by T = (th + ts)

∆X
rx

∆Y
ry

, where ∆X

and ∆Y are the ranges of X and Y defining the parame-
ter space, and rx and ry are the resolutions of the X and
Y variables. Generalizing to an N dimensional parameter
space spanned by N independent variables, (e1, ..., eN ):

T = (th + ts)

N∏

i=1

∆ei

ri
(1)

Here, Equation 1 can be understood intuitively as the
time spent per voxel multiplied by the volume of the
parameter space,

∏
i∆ei, divided by the voxel volume,∏

i ri. For a fixed parameter space volume, as the voxel
volume decreases (i.e. the resolution increases), the total
experimental time will increase.
Increasing the dimension N of a parameter space en-

forces greater limitations on total experimental time. To
see this, Figure 1(b) illustrates the same phenomena as
Figure 1(a) but in a 3D parameter space (N = 3), rep-
resenting observables as colored points, and showing a
voxel as a small green cube. Measurements of complex
systems - those where non-trivial correlations exist be-
tween N > 1 independent variables - require significant
values of ∆e and r to obtain sufficient data for meaningful
statistical analysis. In Figure 1(b), we see that due to the
dimensionality of the phase space, the number of voxels
is exponentially larger than for a two-dimensional exper-
iment. Comprehensive measurements in a N-dimensional
parameter space thus require exponentially more time.
High dimensional experimental phase spaces require

making careful choices to minimize T while acquiring suf-
ficient data for robust statistical analysis. Assume that,
in general, T is large and constant, limited by experi-
menter (i.e., graduate student) time, sample lifetime or
other resources. Optimizing high dimensional measure-
ments involves optimizing the hardware, which decreases
th, or optimizing the search of parameter space by mak-
ing tradeoffs in ∆ei and ri. However, the intrinsic sample
response time ts limits how fast a measurement can pro-
ceed, and if ts >> th, hardware optimization does little
to increase measurement efficiency. Hardware optimiza-
tion is application specific, we discuss it for heterostruc-
tures of 2D materials in Section IIA.
The greatest gains in efficiency come from tradeoffs in

resolution. Ideally, the experimenter can reduce excessive
resolution in one parameter to gain resolution in another
parameter. Less ideally, the experimenter can choose to
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restrict the range of one or more parameter(s) ∆ei, or
neglect certain parameters, resulting in a narrower but
better resolved measurement. The latter is the conven-
tional strategy, which has greater likelihood of missing or
misrepresenting phenomena occurring within a complex
parameter space.
In the large T limit, conventional single variable mea-

surements are fundamentally inefficient. By their nature,
single variable measurements explore one parameter, for
example the X variable in Figure 1(a), with high res-
olution, and all other variables held constant, meaning
rx << ry, rz , ..., rN . With hardware heavily optimized
for only one variable it is difficult to effectively trade res-
olution in X for resolution in another variable and exper-
imenters often deal with finite time by restricting the do-
mains or omitting parameters. Single variable measure-
ments become increasingly ineffective in identifying cross
correlations between multiple parameters as the complex-
ity of a measurement increases (i.e., as N increases), as
higher resolution is needed, or as the relevant ranges be-
come larger.
Does a better understanding of multi-parameter mea-

surement science translate into accelerated discovery?
While it is beyond the scope of this work, we posit
that experimentalists using only standard techniques
risk falling prey to a version of the availability heuris-
tic. By focusing on measurements that are easy to per-
form with off-the-shelf or commercial equipment, com-
plex phenomena that correlate across multiple param-
eters are missed or misinterpreted. Expectation bias
is a danger when choosing parameters for new materi-
als: an experimenter may unconsciously select the pa-
rameters that are most likely to conform to expecta-
tions or established models.17–20 Choosing which vari-
ables to hold constant can easily introduce selection bias
that leads to compelling, yet incomplete, phenomeno-
logical knowledge complicating realistic interpretation.
Comprehensive methods are therefore significantly ad-
vantageous in the search for new phenomena, particularly
when a unique target system is probed using multiple
non-standard experimental techniques.

B. Challenge: Optoelectronic Measurements of 2D

Materials

In optoelectronic materials, photo-excited electrons
are promoted to high energies, leaving behind short-
lived charge vacancies, or holes. In this way, electrons
promoted across a semiconductor band gap result in
long-lived electron-hole pairs, while those excited in a
semimetal may result in short-lived excitations. The
timescale over which the electron-hole pairs recover to
equilibrium is determined by energy and momentum re-
laxation processes in the material, which in turn de-
pend on electronic band structure, electronic interaction
strength, and electron-phonon coupling.
In 2D semiconductors and semimetals, photoexcited

electron-hole pairs may interact in unusual ways, giv-
ing rise to many body correlations that persist even
at room temperature. In TMDs, charge carriers form
hydrogen-like bound states with well-defined orbital and

Graphene
hBN

Graphite

I

FIG. 2. Schematic of a vdW heterostructure made of
graphene on top of hexagonal Boron Nitride (hBN) on top
of ultra-thin graphite. The heterostructure is excited with a
1200 nm ultrafast pulsed laser and interlayer photocurrent, I ,
can be measured as a function of laser parameters (beamspot
position, laser power, etc.) and bias voltage applied to the
graphene, Vb.

spin angular momentum.21,22 Depending on the struc-
ture of the material, these strongly bound excitons may
be influenced by non-trivial bands such as topological or
moiré bands, or have additional quantum numbers such
as valley index or pseudospin.6 In graphene, the electron-
hole pairs form a rapidly evolving hot carrier distribu-
tion exhibiting unusual cooling pathways, with electron-
electron and electron-phonon scattering processes com-
peting to relax excess energy. Combining 2D semiconduc-
tors, 2D insulators, or semimetals into vdW heterostruc-
tures (such as the example graphene - boron nitride het-
erostructure, shown schematically in Figure 2) introduces
additional degrees of freedom, for instance allowing ex-
citons to form with the electron and hole in different
materials.7 All of these unique properties contribute to
energy and momentum relaxation, giving rise to highly
complex behavior over a large range of time scales (from
femtosecond electron-electron scattering to nanosecond
exciton recombination).
These unusual electron-hole interactions in vdW meta-

materials result in part from reduced dimensionality,
which increases the energy scales of electronic states
and interactions (e.g., increasing the binding energy of
excitons).23 Due to electron confinement, 2D materials
allow correlated or interacting phases to exist at higher
temperatures than in conventional materials. Such ef-
fects are less accessible in 3D materials, which exhibit
high symmetry due to translation invariance of the unit
cell in all three spatial dimensions. Not only does high
symmetry constrain the possible phenomena in many
ways, it also allows the experimenter to make several
assumptions about the behavior based on the unit cell.
2D materials inherently break several exploitable sym-
metries, expanding the space of possible phenomena and
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increasing the phase space for electronic states and inter-
actions.
In multiple respects the properties that make vdW het-

erostructure metamaterials interesting also make them
difficult to measure and understand. Understanding
electron-hole pair dynamics in 2D systems presents nu-
merous experimental challenges since observable quan-
tities - such as current, voltage, reflectivity or photolu-
minescence - are averaged in space and time. Purely
electronic measurements only access low energy dynam-
ics near the Fermi surface and average the electron dy-
namics over the spatial extent of the device. In the time
domain, dynamics occur on timescales of femtoseconds
to hundreds of picoseconds, and if an excitation per-
sists significantly longer than those timescales, it will
give only steady state equilibrium values. Gaining ex-
perimental information about the dynamics and testing
theoretical models requires optical techniques with high
spatial and/or temporal resolution.24 Moreover, in vdW
heterostructures, multiple unusual electronic effects may
overlap. Though individual effects could be exploited for
manipulating electronic behavior, experiments must take
into account and carefully control for all overlapping ef-
fects. Separating out individual properties requires mul-
tiple experimental variables, so that the property of in-
terest can be uniquely accessed.

II. MULTI-PARAMETER DYNAMIC PHOTORESPONSE

MICROSCOPY

We describe a technique, called Multi-Parameter Dy-
namic Photoresponse Microscopy (MPDPM), that effi-
ciently measures the optoelectronic response of vdW het-
erostructures. Utilizing diffraction limited optics, ultra-
fast lasers and scanning mirror optics, MPDPM excites
the sample with a high intensity optical probe that drives
the sample away from equilibrium, thus accessing corre-
lated states, resolving short timescales, and producing
high signal-to-noise photoresponse. The optical compo-
nents are automated and controlled by an integrated,
fully automated Data Acquisition (DAQ) program that
simultaneously controls all other experimental parame-
ters (such as applied voltage, magnetic field, temperature
etc.). Such centralized control allows for efficient trade-
offs between parameters when exploring a large sam-
ple phase space. This technique acquires data rapidly,
densely and systematically with respect to many exper-
imental variables, resulting in high dimensional data ar-
rays. The end result of MPDPM is a large set of photore-
sponse images spanning all relevant experimental vari-
ables that ideally capture all the complexity of device’s
phase space. Although the data sets are more complex
than in conventional measurements, these large and com-
plex data sets can be efficiently handled through careful
data analysis, described in Section III.
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FIG. 3. Schematic of the optical setup (a) A diagram of the
optics showing all the major optical components. (b) A cross
sectional diagram of the optical setup and optical cryostat
detailing the optics coupling into the GRIN lens.

A. Diffraction Limited Ultrafast Optics

MPDPM uses a local ultrafast optical probe to per-
form space-time resolved photocurrent and reflectance
measurements. Incident light focused to the diffrac-
tion limit can resolve micron sized in-plane features, and
the high incident intensity under a diffraction limited
beamspot increases the signal and can drive the system
well out of equilibrium. Using a scanning diffraction lim-
ited beamspot also allows light reflected back through
the optics to be focused onto a single pixel detector, with
much higher signal to noise than a CCD. The dynamics
of charge carries often occur on timescales of order fem-
toseconds to picoseconds, so excitation by a continuous
wave laser gives only equilibrium, steady state values,
washing out the dynamics. Therefore, the optical probe
must be localized in time as well as space. Ultrafast
pulsed lasers can generate pulses on the order of the dy-
namics, giving access to phenomena that occur on those
relevant timescales. In addition, the high peak pulse in-
tensity increases the fluence of incident light, driving the
system harder and increasing the signal.
To generate an optical probe that is local in space and

time, we combine the techniques of scanning beam pho-
tocurrent and reflectance microscopy with ultrafast opti-
cal two-pulse measurements.25,26 A schematic of the op-
tical system is shown in Figure 3(a). We use a MIRA 900
OPO ultrafast laser which generates 150 fs pulses with
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FIG. 4. Characterization of the ultrafast pulsed beam in the
optical cryostat under vacuum. (A) Measured photoresponse
of an absorber smaller than the diffraction limit. Black line is
a fit to a Gaussian function with a full width at half max of
1.67 µm. (B) Two pulse autocorrelation as a function of the
delay between two subsequent pulses, ∆t.

controllable wavelength from 1150 nm to 1550 nm at a
76 MHz repetition rate. The output of the laser is split
into two paths by a 50/50 beamsplitter and a translation
stage is used to controllably introduce a path length dif-
ference. The two beams are then recombined, and the
path length difference splits a single laser pulse into two
sub-pulses separated by a time delay, ∆t.
The recombined beam is fed into scanning beam op-

tics which consist of rotating mirrors and a system of
two lenses that focus the beam onto the back of an ob-
jective lens. The objective lens is set at the focal length
of the second lens such that, as the scanning mirror ro-
tates the beam is still focused onto the same position on
the back of the objective, but arriving at different an-
gles. The objective lens focuses the light down into a
diffraction limited beamspot where the position of the
beamspot depends on the incident angle. As the scan-
ning mirror rotates, the beamspot moves over a large
area of the sample without aberration, allowing for quick
high-resolution scanning. Many conventional optoelec-
tronic measurements keep the optics fixed and translate

the sample. While simple, this technique is too slow to
sample phase space in a time efficient way. When focused,
the laser beamspot spatial profile is an Airy disk, which
can be approximated using a Gaussian point spread func-
tion. Figure 4(a) shows the measured photoresponse of
an absorber smaller than 1 µm using a wavelength of
1200 nm. The data is fit well by a Gaussian function
(black line) with full width at half maximum of 1.67 µm,
indicating that our system is at the diffraction limit.
Figure 3(b) details our specific scanning optics and the

customized Janis Research ST-3T-2 optical cryostat that
we use in our experiments. The sample sits in vacuum
on a sample stage, which can controllably vary the tem-
perature from 4 K to 420 K. The sample stage is in the
center of a 3 Tesla superconducting magnet. The sample
is electronically probed using four probe needles which
contact conductive pads on quartz chip carriers that are
wire-bonded to fabricated titanium-gold contacts on the
sample. We then amplify the electrical signal and mea-
sure the current resulting from the incident laser light,
or photocurrent. We also measure the reflectance of the
sample by measuring the intensity of the light that is re-
flected from the sample with a near-infrared photodiode.
To fully enclose our focusing optics inside the vacuum

chamber, we use a Gradient Index of Refraction (GRIN)
lens as an objective. A GRIN lens is a single small cylin-
der of glass with the index of refraction varied radially.
Lacking the many interfaces of a conventional objective, a
GRIN lens does not disperse laser pulses as dramatically
as a traditional objective. Figure 4(b) shows the autocor-
relation of the reflected intensity due to two overlapping
laser pulses, near ∆t = 0. The autocorrelation width is
approximately three times the pulse width. Our autocor-
relation pattern is 570 fs wide, indicating that our pulses
are 190 fs long at the sample, only 27% off the 150 fs laser
specification. Low dispersion allows us to measure short
timescales and gives high peak pulse intensity. However,
a GRIN lens also has downsides compared to a traditional
objective lens. When well aligned, the power throughput
of the GRIN lens is very high, however the process of
aligning the optic over the sample under vacuum intro-
duces systematic uncertainty into the laser power. Also,
the field of view for a GRIN lens is typically smaller than
a traditional objective lens, which is no problem for mi-
cron sized samples, but can limit applications in some
large area samples. MPDPM can be performed using a
traditional objective lens at the cost of increased pulse
dispersion and therefore decreased time resolution and
peak pulse intensity.

B. Integrated Data Acquisition System

The goal of MPDPM is to time-efficiently sample as
large of a parameter space as possible, using as many
experimental parameters as are relevant and practical.
To do this efficiently requires the ability to optimize the
measurement time, as described in equation 1. The optics
described in Section IIA are designed to allow fast scan-
ning and other hardware components to be optimized
to work as rapidly as possible, decreasing th to a lower
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FIG. 5. Experimental data flowchart, schematically showing the flow of data between hardware and software components as
well as the feedback involved in controlling the experiment.

bound given by maximum hardware speed and amplifier
time constants. Furthermore, the high signal-to-noise ra-
tios can minimize ts to its intrinsic limit. Well-designed
optics improve the time efficiency of the experiment “for
free.” However, the largest increases in efficiency come
from the ability to made tradeoffs in resolution. Optimal
utilization of the optics and effective tradeoffs requires
an integrated Data Acquisition (DAQ) system that au-
tomates all hardware components through one program.
Such an integrated DAQ can control all hardware compo-
nents at their optimum, in parallel, with minimal human
input. The software allows the experimenter to choose
the ranges and resolutions of various parameters in a scan
in an intelligent manner, making appropriate tradeoffs.
Finally, such a DAQ system allows data to be gathered
densely, systematically, and repeatably, in a format that
allows advanced data analysis.
We developed an integrated DAQ program using a

set of python modules that interface with equipment
drivers and control all hardware components simultane-
ously with the maximum amount of automation possi-
ble. Our experimental setup can scan a beam in two
dimensions, while applying voltages to the sample un-
der various optical conditions. In addition, the optical
cryostat that contains our samples can control the tem-
perature of the sample and apply a magnetic field. Each
of these components requires specialized hardware, which
were designed and selected to allow for full automation.
The flow of data is shown schematically in Figure 5. The
main hardware components of the optics and controllers,
shown in the upper left, are controlled with feedback to
the DAQ software, which is represented in the lower left.

From the user interface, any of the hardware components
can be changed or scanned, varying some output over a
given range. If one or two of the components is set to
scan, the rest will be held constant.
From the user interface the experimenter can define

which parameters form the axes of a two dimensional
scan, and define the scan’s resolution in those parame-
ters. The result is an array of data, or “data plane.”
The experimenter can select a third parameter to scan
over and the software will take successive 2D scans as
a function of that parameter, constructing a 3D “data
cube” out of many data planes stacked along the third
axis. These data planes or data cubes form a “run,” the
discrete unit of MPDPM image data. In addition to the
data, each run saves all possible control parameters, 125
in total, of the hardware and software to ensure consis-
tency and repeatability. Each run is assigned a unique
run number and the files for that run are saved to disk in a
data archive. To efficiently take many runs, the software
allows the user to repeat a run varying another param-
eter, taking data cubes as a function of this fourth pa-
rameter. Put together, the runs form a four dimensional
“data hypercube,” sampling a large volume of parameter
space. This allows the experimenter to, with full control
over the ranges and resolutions of all parameters, effi-
ciently sample a four-dimensional parameter space fully
automatically. These fully automatic measurements can
run for hours or days, collecting data with no human
input needed.
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C. Data Taking for 2D Materials

Typically, a sample will require hundreds of runs to
fully examine its parameter space. The most common
scan is a rectangular scan of the 2D scanning mirrors,
which moves the laser beamspot spatially over the sur-
face of the sample, observing the photoresponse. These
spatial scans are designed to be high resolution with vari-
able speed, so that resolution in space can be traded-off
for resolution in other variables when needed, while still
spatially imaging. Depending on the measurement, the
laser can be scanned in two dimensions, made to scan
along a line in a single spatial dimension or held at a
fixed position on the sample. Normally, when measur-
ing begins on a new sample a set of low resolution runs
are taken to determine the relevant parameters and the
ranges that they vary over. Then a high resolution set of
data cubes is taken to densely sample the full parameter
space, commonly spatial scans as a function of two pa-
rameters, generating a large set of images that is usually
the main result. Finally, if any unusual or interesting
features are seen in that data set, some high resolution
scans are taken to finely characterize those features, of-
ten continuing until the sample dies or degrades beyond
usefulness.

III. HIERARCHICAL ANALYSIS OF

MULTI-PARAMETER DATA SETS

MPDPM generates large sets of images varying across
several experimental variables, requiring sophisticated
analysis to extract and visualize results. While the anal-
ysis of these sets will vary based on the specific sample,
in this section we will give a general procedure to hier-
archically exploit data geometry in order to condense a
multivariate data set down to a manageable amount of
processed data. Figure 6 illustrates this process for a hy-
pothetical four dimensional (hypercubic) data set. The
raw data is a set of datacubes spanning three dimen-
sions (e1, e2, e3), incremented along a fourth dimension
e4. Each datacube is processed to map out a dynamical
parameter that represents the behavior of the datacube
along one axis (in this case e2). There are multiple possi-
ble projections and representations, although not all are
useful the possibility space should be explored. Image
analysis is used on the dynamical maps to identify key
features that are then collected into a single visualization.
In this hypothetical case ellipses enclosing the “bright”
photoresponse are visualized as contours. Ideally, this vi-
sualization will represent the evolution of some physically
interesting quantity within the four-dimensional param-
eter space.
To illustrate this process in a vdW heterostructure

device, Figure 7 presents data and analysis from a
graphene on boron nitride on graphite (GBNGr) stacked
heterostructure photocell, shown schematically in Fig-
ure 2. The component materials were exfoliated from
high quality bulk crystals onto Si/SiO2 substrates. The
heterostructure was assembled in a custom built trans-
fer microscope using a well know dry transfer tech-

nique developed by Gomez et al.27 Polydimethylsiloxane
(PDMS)/polypropylene carbonate (PPC) stamps were
used to pick up and controllably deposits the exfoliated
flakes on top of each other. Titanium-gold (Ti/Au) elec-
trical contacts were fabricated onto the device using elec-
tron beam lithography to provide electrical connection to
the graphene (on the top) and graphite (on the bottom).
When photoexcited, a Fermi-Dirac distribution of hot
carriers rapidly forms in the graphene layer and the ex-
ponential tail of this hot distribution may extend into the
valence band of the boron nitride, resulting in interlayer
photocurrent between the graphene and graphite.28 To
measure this interlayer photocurrent, the graphene con-
tacts were set at a fixed voltage, and current was collected
on the graphite and measured with a lock-in amplifier.
Using MPDPM on the GBNGr sample, we obtain our

main data set: photocurrent data cubes composed of 25
spatial scans at varying laser power, repeated as a func-
tion of voltage (applied to the top graphene) in 2 mV
increments from -20 mV to 30 mV, for a total of 625 spa-
tial photocurrent images, sampling a four dimensional
parameter space (two spatial dimensions, laser power
and voltage). Following the general procedure, we will
condense the data by fitting it to a phenomenological
power law that describes the sample’s behavior, iden-
tify a physically interesting nodal feature in the resulting
non-linearity maps, and visualize the sample’s behavior
by tracking that node as a function of space. The GBNGr
data is instructive because it has very distinct features in
the non-linearity dynamical parameter, making analysis
straightforward, but this approach can easily be adapted
to other experiments and MPDPM data sets.

A. Data Processing and Dynamical Fitting

Data processing systematically prepares the raw
MPDPM data and extracts dynamical variables that in-
dicate changes in behavior. We use a set of custom
python modules, together forming a “toolbox” to han-
dle data runs in a systematic manner. The lower right
section of Figure 5 shows the main functions of the tool-
box. Given a run number, the code retrieves the relevant
calibration data and returns the calibrated data along
with all the experimental parameters. The next step is
to combine the two dimensional images into a larger data
set, such as constructing a three-dimensional data cube
from a series of images. For spatial images, the image
processing must account for the physical drift in the im-
ages, or other similar distortions, to spatially correlate
the images.
The next step is to extract fitting parameters that can

represent the dynamics occurring in the system. Once
the data cube is spatially correlated, the data points are
fit to a phenomenological law using a non-linear least
squares fitting algorithm. The phenomenological law can
be any function that parameterizes the data well. For
photocurrent systems, we most commonly we use equa-
tions I ∝ P γ and I ∝ e−∆t/τ , for the photocurrent (I),
versus laser power (P ) or versus two pulse delay ∆t, re-
spectively. Phenomenological parameters, such as γ and
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Visualization
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FIG. 6. A schematic of the analysis of a hypothetical four dimensional (hypercubic) data set, going from raw data to processed
dynamical maps to a compact visualization.

FIG. 7. (a) Shows an example photocurrent map from the GBNGr data set, and (b) shows an example γ map that can be
obtained by fitting data cubes of photocurrent images. Scale bars are 3 µm. (c) Schematic showing how the photocurrent data
is condensed down into a set of γ maps, which can then be further analyzed and collected into a visualization.

τ , are extracted from these curve fits. These parameters
should be dynamical quantities, so that they can rep-
resent changes in the underlying physics. For example,
γ is related to the non-linearity of the photoresponse,
similarly τ is the characteristic timescale of a process.
Changes to γ or τ indicate a change to the character of
the photoresponse, not simply a re-scaling of the data,
making these parameters very useful proxies for the un-
derlying physical phenomena.
The dynamical fitting parameters are used to condense

the data. For the GBNGr sample the raw data consists
of a set of photocurrent images as a function of power,
one such image is shown as a colormap in Figure 7(a).
These images are correlated together, then the data at
each point in space is curve fit along the power axis to
the power law I ∝ P γ . This power law describes the
data well in this case, and the parameter γ, acts as a
index of the non-linearity, a useful dynamical quantity.
The fitting gives a map of the fit parameter γ as a func-
tion of space, such as that shown in Figure 7(b). The
processed γ image condenses the dynamics of the whole
three dimensional set of photocurrent images into a two

dimensional map. The entire GBNGr data set is four di-
mensional, with data cubes taken as a function of laser
power at various values of applied voltage. Figure 7(c)
shows how the data set is processed, all of the data cubes
in the set are processed into γ images, giving a three di-
mensional set of γ images representing the sample non-
linearity as a function of voltage. The resulting set of
γ maps can then be analyzed using image analysis to
condense them into a single visualization.

B. Image Analysis

Once processed, image analysis is used to identify,
and algorithmically extract, physically interesting fea-
tures from the processed images. Identified features can
be projected onto the spatial axes (or taken as a func-
tion of some other variable). This further reduces the
dimensionality, usually giving a result that is visualiz-
able as data mapped in space, or even as a function of a
single variable, which human intuition is more suited to
handle. The algorithm used to perform image analysis
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is the most application specific component of the pro-
cess, as the ability to quantitatively pick a feature out of
an image depends highly on what features are present.
However, there are many well established image process-
ing algorithms, and a researcher with a solid foundation
in programming and signal processing should be able to
find a solution without much trouble. In the author’s
experience, image filtration and basic optimization algo-
rithms are usually all that is needed.
The GBNGr data provides a clear example of how to

use image analysis to identify interesting features from
image data. In the processed γ maps there are distinct
regions with different γ values. The higher values of γ,
(the green and yellow areas on Figure 7(b)) are separated
from the lower values of γ and the background (blue and
dark purple areas) by a sharp boundary. The boundary
is a physically interesting feature, because it indicates
a node in the photocurrent versus power, which evolves
as a function of applied voltage due to the internal elec-
tronic properties of the sample. We use a Laplace filter,
a common image processing filter used for edge detec-
tion, to identify this feature. This is performed on each
γ map at different values of applied voltage. The image
analysis process is shown schematically in Figure 8(a),
the raw datacubes yield maps of γ condensing the four
dimensional data set down into a three dimensional data
set. Then the edge feature is extracted from each γ map,
forming a highly condensed set of images showing only
the feature of interest.
From the condensed data, which can be correlated to

physical features of the sample, we can now develop an in-
terpretation of the MPDPM data set. Figure 8(b) shows
the node versus applied voltage overlaid on an optical
image of the GBNGr heterostructure sample. The edge
is a node in the photocurrent, implying that charges ex-
cited at that location do not experience any force that
would drive a current. This means that, on the node,
the internal electrochemical potential of the sample is
zero. Figure 8(b) shows how the internal electrochemical
potential of the sample is modified by an externally ap-
plied electric field. Of particular note, is the dipole-like
feature in the top center of the nodal pattern which lies
on top of an electrically floating metal contact. It has
been predicted that a floating contact would modify the
internal potential of graphene in a dipole pattern.29

It would have been difficult to observe this data with-
out using MPDPM. No single image, or dependence of a
single parameter, contains a clear experimental signature
of changing electrochemical potential. Only by sampling
several experimental variables, observing the changing
dynamics, and picking the right feature out of the com-
plex photoresponse, could we identify this. In addition,
there is no reason that the γ node was the only interest-
ing feature in the data set. In other studies, the authors
have examined MPDPM sets with multiple different im-
age analysis approaches, gleaning multiple physics results
from a single MPDPM data set.

FIG. 8. (a) Schematic of the hierarchical analysis; process-
ing data cubes into single dynamical γ images, then picking
out the key edge feature from the dynamical images. (b) The
result of hierarchical analysis, overlaid on a high contrast op-
tical image of the GBNGr sample. Physics can be determined
from this visualization by interpreting the node as the zero
point in the electrochemical potential of the sample.

C. Visualization

Consistent and well considered visualization is impor-
tant throughout the data analysis process. Developing
a consistent way to visualize the data can prevent a re-
searcher from becoming overwhelmed by the volume of
data, and provide a platform for deeper forms of data
analysis, but care must be taken as some visualizations
can inhibit understanding. The use of colorscales in
MPDPM is a good example of this, as colorscales are
important when working with images but for some col-
orscales the non-uniformity of human color perception
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leads to perceived differences where there are none.30,31

If this happens, a researcher combing through a large
set of images they may waste time pursuing differences
in contrast that appear to be significant, but aren’t. A
better way would be to utilize perceptually uniform col-
orscales, which are designed such that equal steps in data
are perceived as equal color differences. In this work, we
always use the matplotlib plasma colorscale to represent
photocurrent and the viridis colorscale to represent γ and
other dynamical quantities.
More generally, visualizing data sets of more than

two dimensions requires careful consideration, especially
when it influences choices made in the analysis pro-
cess. MPDPM data processing requires the choice of
a fit function with a significant dynamical parameter,
and MPDPM image analysis requires identifying an in-
teresting feature to track. Intermediate visualizations of
the data are needed to make these choices. To find the
appropriate fit function we developed a set of python
scripts that can consistently visualize cuts through the
data sets looking for non-trivial functional dependence of
the data. Once the fitting function is identified and dy-
namical parameter maps are calculated the (often three-
dimensional) processed data must be visualized to iden-
tify key features for image analysis. While 3D renderings
of the data, such as that shown in Figure 1(b), can be
useful, they are heavily influenced by perspective, which
can obscure details. In the author’s experience it is best
to examine three-dimensional data as a movie, a series of
two-dimensional dynamical images with time represent-
ing the third axis. In this representation human percep-
tion is good at noticing changes, which lends itself well
to identifying features that evolve as a function of time.
Without consistent and well considered visualization it
would be difficult to pick the right feature and results
could be missed.

IV. CONCLUSIONS

MPDPM is an efficient way to explore the complex be-
havior of 2D vdW Heterostructures and quantum meta-
materials in general. MPDPM combines optical tech-
niques that can excite complex and correlated behavior
in 2D systems with an integrated data acquisition system
that can make efficient tradeoffs between the resolution of
parameters in order to sample a multivariate parameter
space in a reasonable amount of time. Rather than sam-
pling a single part of the parameter space, MPDPM takes
a comprehensive approach, which means that complex-
ity in the sample’s photoresponse becomes complexity in
the data. Therefore, advanced data analysis techniques
are crucial to making MPDPM work. Fortunately, the
high density and data geometry allow the data to be con-
densed and physically interesting features to be extracted
and visualized.
The number of different 2D materials and quan-

tum metamaterials that can be fabricated is increas-
ing rapidly, and so is the diversity of phenomena that
they involve. As the field expands, it is important
that researchers be able to comprehensively character-

ize their nanodevices, and as the complexity of those
devices increases, the need for data intensive methods
becomes greater. The general technique of MPDPM can
be adapted to many other kinds of optical experiment be-
yond photocurrent, including, but not limited to, trans-
mittance, photoluminescence, or photovoltage. The gen-
eral idea of comprehensively and efficiently searching a
parameter space is important for the discovery of new
physics in these materials. Developing automated exper-
imental systems reduces some of the burden and time
limitations on researchers that would normally prohibit
comprehensive characterization. In the future it may be
possible to expand this further, developing search algo-
rithms to explore sample parameter space and identify
new phenomena with minimal human input.
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