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Abstract. We study the numerical approximation and analysis of two different time
dependent Nonlinear Schrödinger equations (NLS) : the “Schrödinger-Poisson-Xα” equa-
tion, which plays a role in the modeling of quantum particle dynamics, and the Davey-
Stewartson system, which is a 2-d equation modeling unidirectional water surface waves.
For both equations we use a Time Splitting Spectral scheme, which had previously shown
to be a good tool for numerical simulation of cubic NLS. This scheme is particularly use-
ful for calculations in the “semi-classical regime”, where the scaled Planck constant is
taken to be small. Extensive numerical results of position density and Wigner measures
in 1d, 2d and 3d for the S-P-Xα model with/without an external potential are presented.
These results give an insight to understand the interplay between the nonlocal (“weak”)
and the local (“strong”) nonlinearity.

For the Davey-Stewartson system, we give a convergence analysis for the semi-discrete
version of the scheme. Numerical results are presented for various blow-up phenomena of
the equation, including blow-up of defocusing, elliptic-elliptic Davey-Stewartson systems
and simultaneous blow-up at multiple locations in the focusing elliptic-elliptic system.
Also the modeling of exact soliton type solutions for the hyperbolic-elliptic (DS2) system
is studied.

1. Introduction

In the recent mathematics literature the name “Nonlinear Schrödinger equation”
(NLS) mostly refers to the following class of Schrödinger equations with a partic-
ular “local nonlinearity” :

iε∂tu+
ε2

2
∆u = ± εα|u|pu, x ∈ IRd, t ∈ IR. (1.1)

Here u is the (complex valued) “wave function” and ε is the scaled Planck constant.
The equation is called “focusing NLS” for the minus sign in front of the nonlinear
term and “defocusing NLS” for the plus sign. Existence and uniqueness results on
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the initial value problem (IVP) have first been obtained by Ginibre and Vélo [19].
Much work has been done on this equation since, for an extensive coverage of the
subject we refer to [14] and [37]. For short times, existence and uniqueness of a
solution in the energy space H1 holds if p < 4/(d− 2) if d ≥ 3, and for all p <∞
for d = 1, 2. The long term behaviour depends on whether the nonlinearity has
focusing or defocusing sign. For defocusing NLS, the short time solution extends
to all times. For the focusing NLS, this is true only if the power p is below the
critical value 4/d; for p at or above this value, finite time blowup can occur.

A quite difficult and mostly open question is the “(semi-)classical” limit of
nonlinear Schrödinger equations, i.e. the passage to the limit when the “scaled
Planck constant” tends to zero (ε → 0). For the NLS (1.1), some results on
particular cases are known. For for one dimensional defocusing cubic NLS (p = 2),
Levermore, D. McLaughlin and Jin obtained that limit by using inverse scattering
theory [22], which works for integrable systems only. Kamvissis, K. McLaughlin
and Miller obtained the limit for the focusing cubic NLS by the same method
[23]. Carles used a geometric argument to obtain the limit in cases where the scale
exponent α is large enough and a particular geometry is given e.g. by a harmonic
potential [15]. For other cases, the semiclassical limit is an open problem.

The first model we investigate is the “Schrödinger-Poisson-Xα” (S-P-Xα) equa-
tion, which is proposed as a “local one particle approximation” of the time de-
pendent Hartree-Fock equations. It describes the time evolution of electrons in a
quantum model respecting the Pauli principle in an approximate fashion [28]. It
reads

iε∂tψ = −ε
2

2
∆ψ + CVHartreeψ − α|ψ|2/dψ, x ∈ IRd, t ∈ IR , (1.2)

∆VHartree = −|ψ|2 (1.3)

It is an NLS with two nonlinear terms of different nature: the nonlocal Hartree
potential and a local power term, with focusing sign and an exponent that is
subcritical for finite time blowup. Such “time dependent density functional the-
ory” models yield approximations of the time-dependent Hartree-Fock (TDHF)
equations that are much easier to solve numerically: firstly, for large number of
particles N the system of coupled NLS of the TDHF system becomes too large,
and secondly, the exchange terms are very costly to calculate. We will discuss the
derivation of this equation in section 1.1.

The “semiclassical limit” for equation (1.2) is mostly an open problem, rigorous
results have recently been given by Carles, Mauser, Stimming for a model with
quadratic confinement potential only in the case of a scaling where α is o(ε) [16].

Our numerical approximations yield interesting insight in the behaviour of the
solution in the limit, in particular they indicate the critical relative scaling of the
2 nonlinearities.
In the regime of “small” ε, it would be desirable that a numerical scheme permits
a choice of discretization steps that is independent of the scale ε. Studies on finite
difference discretizations of linear Schrödinger equations [29], [30] show that in
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this case this is not possible, on the contrary the scale ε has to be over-resolved,
which means discretization steps have to be of order o(ε) to guarantee a correct
approximation. On the other hand, for a scheme like ours, the work of Bao et
al. [13] shows that it is possible to choose the time-step independent of ε while
the space discretization step can be O(ε). This scheme has proven to be a quite
efficient method and hence is the method of choice for the problem. We have
developed a parallel version of the scheme that also allows for 3-d semiclassical
simulations of time dependent NLS.

The second model equation treated here is the Davey-Stewartson (DS) system,
which is a 2-dimensional Nonlinear Schrödinger equation coupled to a potential
equation. It reads, in dimensionless form,

i∂tu+ λ∂2
xu+ ∂2

yu = ν|u|2u+ u ∂xφ ,

α∂2
xφ+ ∂2

yφ = χ∂x(|u|2) , (x, y) ∈ IR2 ; t ∈ IR.
(1.4)

Here u is the (complex) amplitude of the wave and φ the (real) potential which
is generated by the mean velocity. The parameters α and λ can have both signs,
according to which the system can be classified as elliptic-elliptic (E-E), elliptic-
hyperbolic (E-H), hyperbolic-elliptic (H-E) and hyperbolic-hyperbolic (H-H). This
system is a model for a surface wave of a fluid over a flat ground which is prop-
agating mostly in one direction. It is valid in a situation where both gravity and
the surface tension of the fluid influence the motion.

The equations can be viewed as a generalization of the cubic NLS (1.1) (p = 2
in (1.1)). Like the 1-d cubic NLS, the 2-d Davey-Stewartson system is (for specific
values of the parameters) integrable by inverse scattering methods ([1], [2]). With
respect to finite time blowup, the focusing cubic NLS is the critical case in 2 space
dimensions, and hence an interesting question is given by the blowup behaviour
of (focusing) DS equations and its relations to the NLS case.

We use the same time-splitting spectral scheme as before. In the present work
we show numerical results for the blowup of focusing E-E equations and for exact
soliton type solutions of the H-E system. We add a study of multi-focusing of the
E-E system and an investigation of blowup in the H-E system, which are treated
for the first time in this work (to our knowledge).

1.1. The Schrödinger-Poisson-Xα equation : a NLS for

one-particle quantum dynamics of electrons

The (nonrelativistic) quantum dynamics of a system of N electrons is given by
the linear N particle Schrödinger equation with Coulomb interaction. However,
even for moderate N a numerical solution of this equation is out of question. A
successful method to rigorously derive ”mean field approximations” and other non-
local ”one particle” Schrödinger equations from a (linear) many-particle equation
is “weak interaction limits” (see e.g. [4], [6]), i.e. a limit where the number of
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particles N tends to infinity and the interaction potential among the particles is
rescaled with 1/N . Depending on the “ansatz” for the (initial) N particle wave
function, different asymptotic limits of the linear N particle Schrödinger equation
are obtained. For the Hartree ansatz, the case of a bounded interaction poten-
tials has been solved as well as the Coulomb interaction case which leads to the
Schrödinger-Poisson equation [4], [6].

By the Hartree-Fock ansatz, in which the antisymmetrized wave function of N
fermions is taken as a “Slater determinant”, a minimization of total energy yields
the Hartree-Fock (HF) equations for the time-independent case. For a rigorous
analysis of this stationary Hartree-Fock system and references see e.g. [27].

For the time-dependent case, the rigorous derivation of the HF equations, by
means of ”mean field limits”, is given in [5] for the bounded potential case.

The HF exchange potential, which is the key part of this equation (system)
presents a problem in numerical simulations since it is very costly to calculate,
especially if the number of particles in the model becomes large. An approximation
of the exchange potential is due to Slater [36] who replaces it by the local density
taken to the power 1/3. This expression was first given implicitly by Dirac in the
context of the exchange energy as a correction in the Thomas-Fermi model. It is
also named after Gaspar and Kohn-Sham [25] where it appears with a difference
of 2/3 in the factor in front. By the name “Xα method” [17, 35], these expressions
are summarized in the sense that the value of the factor is named α and taken as
parameter tunable in a certain range.

Despite the successful use of this kind of local approximations of the HF ex-
change potential, rigorous derivations are still missing. In a particular setting of
a high density limit on the torus a rigorous version of Slater’s heuristic arguments
to derive the Xα exchange potential was given in [10],[11].

In order to take into account exchange effects in a time-dependent one-particle
approximation, we can most simply take the more or less rigorously derived ex-
pression of the stationary case and hence add the “Xα” term, with t as addi-
tional variable, to the effective potential in the Schrödinger-Poisson model. This
corresponds to ”time dependent density functional theory”, where the energy is
expressed in terms of the local density n(x, t). This yields a NLS with a “weak”
nonlocal nonlinearity, and a “strong” local nonlinearity with a potential that is a
power of the local density.

In a model with d space dimensions, the approximated exchange term is pro-
portional to n1/d, according to the derivation in [10]. In 1d, i.e. d = 1 in (1.5),
the Xα term is exactly what is called the ”focusing cubic NLS”, i.e. −α |ψ|2ψ.

We call the equations (1.5), (1.6) the “Schrödinger-Poisson-Xα” (S-P-Xα)
model :

iε∂tψ = −ε
2

2
∆ψ + C VHartreeψ − α|ψ|2/dψ + Vextψ, x∈IRd, t∈IR, (1.5)

∆VHartree = −|ψ|2, (1.6)

ψ(x, t = 0) = ψI(x), x ∈ IRd ; (1.7)
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where C > 0 is a fixed constant, α > 0 a parameter and Vext is a given external
potential, for example a confining potential.

Since C > 0 and α > 0, we have a repulsive Hartree interaction and a fo-
cusing local nonlinearity. The wave function ψ is used to compute the physical
observables, e.g. the position density

n(x, t) = |ψ(x, t)|2, x ∈ IRd, t ≥ 0. (1.8)

At ε fixed, the analysis of equation (1.5)-(1.7) in 3-d can be done by a straight-
forward application of standard results on NLS [14], [19], [24].

For the 1-d case, the existence and uniqueness analysis of the S-P-Xα equation
is given in [39]. For the case of 2 space dimensions, the analysis of the S-P-Xα
equation is open.

1.2. Davey-Stewartson systems : NLS for surface waves

Davey-Stewartson equations model free surface waves subject to the effects of both
gravity and capillarity (“Gravity-Capillary waves”). In dimensionless form, they
read

i∂tu+ λ∂2
xu+ ∂2

yu = ν|u|2u+ u ∂xφ ,

α∂2
xφ+ ∂2

yφ = χ∂x(|u|2) , (x, y) ∈ IR2 ; t ∈ IR.
(1.9)

u is the (complex) amplitude of the wave and φ the (real) potential which is
generated by the mean velocity. The parameters α and λ can have both signs,
according to which the system can be classified as elliptic-elliptic (E-E), elliptic-
hyperbolic (E-H), hyperbolic-elliptic (H-E) and hyperbolic-hyperbolic (H-H).

The equations can be viewed as a generalization of the cubic Nonlinear Schrödinger
equation (NLS)

i∂tu+ ∆u = ν|u|2u. (1.10)

The 2-d Davey-Stewartson (DS) system is (for specific values of the parameters)
integrable by inverse scattering methods ([2]), as is the cubic NLS in 1-d. Therefore
it generalizes the inverse Scattering theory in 2 dimensions [1]. With respect to
finite time blowup, the focusing cubic NLS is the critical case in 2 space dimensions,
and an interesting question is the blowup behaviour of (focusing) DS equations
and its relations to the NLS case.

For the following invariance properties to hold we need to assume that the
solution (u, φ) of (1.9) is sufficiently smooth and decaying at infinity. This restricts
the result to the case α > 0 where the equation for φ is of elliptic type. If this
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assumption is satisfied, then the following functionals are independent of time:

N(u) =

∫

IR2

|u|2dxdy (1.11)

Jx(u) =

∫

IR2

(u∂xu− u∂xu)dxdy (1.12)

Jy(u) =

∫

IR2

(u∂yu− u∂yu)dxdy (1.13)

H(u) =

∫

IR2

µ|∂xu|2 + λ|∂yu|2 +
1

2
(ν|u|4 − ν1β(∂xφ

2 + α∂yφ
2))dxdy(1.14)

The (straightforward) proof is omitted here and can be found for example in [37].
For the derivation from a physical model and an overview of existence results

by Ghidaglia et al. and Hayashi et al. we refer to [9], [18], [20].

The paper is organized as follows: in section 2, we will discuss the time splitting
scheme and give a convergence proof for the DS equations for the Strang splitting
method. In section 1.1, we consider the S-P-Xα model and present numerical re-
sults of position density and Wigner measures with/without an external potential.
Section 1.2 deals with the DS system, where we present numerical results on H-E
DS and focusing and defocusing E-E DS.

2. Time splitting spectral methods for Nonlinear
Schrödinger equations

In order to approximate (1.2) and (1.4) numerically, we adapt the time-splitting
spectral code of [13] (”Fourier split-step method” [40]). The method goes back to
the ’70 s ([21]) and was recently used and studied for NLS in the semi-classical
regime. It showed much better spatial and temporal resolution than finite differ-
ence methods [29], [30]. It is hence also the method of choice for the equations
treated here. White and Weideman [41] applied it for the first time to DS systems
in the E-H and H-E cases.

The semi-discrete version of the splitting method was recently proved conver-
gent for Nonlinear Schrödinger equations with local Lipschitz nonlinearities [7].
In [34], Papanicolaou et al. studied the self-focusing of E-E DS equations by a
numeric resolution of the blowup. Besse and Bruneau [8] have successfully applied
a finite difference method with time relaxation to the general DS equations.

The idea behind the time-splitting method is to decouple the nonlinear system
into a linear PDE with constant coefficients, which can be discretized in space
by a spectral method or by a classical finite difference method, and a nonlinear
equation which can be solved exactly.
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Let us consider a very general form of the NLS, which allows to summarize
both models we consider, i.e. (1.5) and (1.9):

{
iε∂tu+ ε2Lλu = F (u), x ∈ IRd, t > 0,

u(x, 0) = u0(x), x ∈ IRd,
(2.1)

Here, Lλ = ∆ in case of (1.2) or Lλ = λ∂2
x + ∂2

y , with λ = ±1, for (1.4). ε is set
to one in (1.4), and F (u) denotes the nonlinear terns in the respective equations.
The split-step method is based on a decomposition of the flow of (2.1).

Indeed, let us define the flow X t of the linear Schrödinger equation
{
iε∂tv + ε2Lλv = 0, x ∈ IR2, t > 0,
v(x, 0) = v0(x), x ∈ IR2,

(2.2)

and Y t as the flow of the nonlinear differential equation
{
iε∂tw = F (w) x ∈ IR2, t > 0,
w(x, 0) = w0(x), x ∈ IR2.

(2.3)

Then, the splitting method consists of combining the two flows X t and Y t. The
best known methods are the following: the most simple “Lie formula” given by
Zt

L1
= XtY t (or Zt

L2
= Y tXt) and the “Strang splitting” Zt

S = Y t/2XtY t/2 (or

Xt/2Y tXt/2), which usually yields a higher order of convergence.

2.1. Convergence of the split-step method for DS systems

In this section, we are concerned with equation (1.9) (so ε is set to 1) in the case
of a subsonic wave packet, that is the E-E or H-E versions of the DS system.
This system can then be written as a single equation for u (see [18]). We set
φx = E(|u|2), where the singular integral operator E is defined in Fourier variables
by

Ê(f)(ξ1, ξ2) =
ξ21

ξ21 + ξ22
f̂(ξ1, ξ2). (2.4)

Therefore, the E-E or H-E DS system reduces to a nonlinear, non-local Schrödinger
equation

i∂tu+ Lλu = ν|u|2u+ ν1E(|u|2)u = F (u) (2.5)

where Lλ = λ∂2
x + ∂2

y with λ = ±1.

We use the first Strang formulation Zt
S = Y t/2XtY t/2. For a general nonlinear

Schrödinger equation, the convergence proof for this method has been done in [7].
Note that there Besse et al. actually prove the convergence result only for initial
data belonging to H4, which does not work for E-E or H-E versions of DS. Hence
the proof must be adapted for initial data belonging to H2.
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To state the convergence result, we define a new flow St which gives the solution
of (2.5) as

u(x, t) = Stu0(x) = Xtu0(x) − i

∫ t

0

Xt−sF (u(x, s))ds. (2.6)

The result, proven in [9], is:

Theorem 2.1. For all u0 in H2 and for all 0 < T < T ∗, there exists C and h0

such that for all h ∈ (0, h0], for all n such that nh ≤ T
∥∥∥
(
Zh

S

)n
u0 − Snhu0

∥∥∥ ≤ C(‖u0‖H2)h‖u0‖H2 . (2.7)

Here ‖ · ‖ denotes the L2 norm. We will give a sketch of the proof which is
done in [9].

The key of the proof is to prove that the nonlinearity F (u) is Lipschitz, and an
applicatoin of the following estimates of the separated flows:

2.1.1. Estimates on the flows X t and Y t From the definition of the Schrödinger
flow, we first have

Ẋt = iLλX
t = iXtLλ. (2.8)

As the flow Xt is a unitary group on H2, we have

‖Xtu0‖H2 = ‖u0‖H2 (2.9)

For the nonlinear flow Y t, by a simple calculation ([13]), it follows from (2.3)
and the explicit form of F that

|Y tw| = |w|,
and with this result, an alternative way to define it is

Y tw = e−i(ν|w|2+ν1E(|w|2))tw. (2.10)

We immediately get for all t ∈ [0, T ]

‖Y tw‖H2 ≤ ‖w‖H2 . (2.11)

By a Gronwall argument and the above results, the error for a single step of
length t of the Lie method Lν can be bounded by a O(t2) term. From this the
same can be deduced for the Strang splitting.

Next it is shown that the Strang method Zt
S is Lipschitz, with a Lipschitz

constant 1 + C0t. By an expansion via the triangle inequality, the error term in
(2.7) is expressed by the single step error which gives the result.

2.2. The time splitting spectral scheme for DS Systems

The crucial advantages of the time-splitting spectral method are that it is fully
explicit, unconditionally stable, time reversible, and time-transverse invariant [13].
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We use the Strang splitting method, Zt
S = Y t/2XtY t/2. The linear flow Xt is

solved by a spectral Fourier method and the nonlinear flow Y t by exact integration
via formula (2.4).

We choose a square domain [a, b]2 and the same grid size in x- and y-direction,
∆x = ∆y = (b − a)/M for an even, positive integer M . The time step is ∆t and
the grid points are (xj , yk) = (a+ j∆x, a+ k∆x), tn = n∆t. The approximation
of u(xj , yk, tn) is denoted un

jk, and un is the solution matrix at time tn with
components un

jk. We impose periodic boundary conditions for a sufficiently fast
decaying u in order to apply the spectral method.

In detail, the method is:

u
∗
jk =

1

M2

M/2−1∑

l=−M/2

M/2−1∑

m=−M/2

e−i(αµ2
l +µ2

m) ∆t/2 (̂un)lm ei(µl(xj−a)+µm(xk−a)),

j, k = 0, 1, 2, · · · ,M − 1,

E∗
jk =

1

M2

∑

−M/2≤l,m≤M/2−1,(l,m)6=(0,0)

βν1µ
2
l

µ2
l + µ2

m

(̂|u∗|2)lm ei(µl(xj−a)+µm(xk−a)),

j, k = 0, 1, 2, · · · ,M − 1,

u∗∗jk = e−i(E∗
jk+ν|u∗

jk|
2) ∆t u∗jk, j, k = 0, 1, 2, · · · ,M − 1,

u
n+1
jk =

1

M2

M/2−1∑

l=−M/2

M/2−1∑

m=−M/2

e−i(αµ2
l +µ2

m) ∆t/2 (̂u∗∗)lm ei(µl(xj−a)+µm(xk−a)),

j, k = 0, 1, 2, · · · ,M − 1.

Here Ûl,m (l,m = −M/2, · · · ,M/2− 1) is the 2-D discrete Fourier transform of a
(periodic) matrix U :

Ûl,m =

M−1∑

j=0

M−1∑

k=0

Ujk e
−i(µl(xj−a)+µm(xk−a)), µl =

2π

b− a
l, l,m = −M

2
, · · · , M

2
−1.

2.3. Time-splitting spectral scheme for the

Schrödinger-Poisson-Xα equation

As for the previous equation, we impose periodic boundary conditions for con-
venience to use the spectral method. By choosing a sufficiently large domain of
computation we can avoid spurious effects for the time regime we regard.

For simplicity of notation we introduce the method in one space dimension
(d = 1). Generalizations to d > 1 are immediate for tensor product grids.

We choose the spatial mesh size h = ∆x = (b − a)/M > 0 with M an even
positive integer, the time step k = ∆t > 0, and denote xj = a+jh (j = 0, . . . ,M),
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tn = nk (n = 0, 1, . . .) the grid points. Let un
j be the approximation of u(xj , tn)

and un be the solution vector with components un
j .

The linear flow Xt will be discretized in space by the Fourier spectral method
due to the periodic boundary conditions and integrated in time exactly. For t ∈
[tn, tn+1], the nonlinear flow Y t leaves |u| invariant in t [13] and therefore becomes

∂xxVHartree = −|u(x, tn)|2, (2.12)

iε∂tu(x, t) = CVHartree u(x, t) − α|u(x, tn)|2/du(x, t) + Vextu(x, t).(2.13)

Equation (2.12) will be discretized by the Fourier spectral method when |u| is
given and (2.13) can be integrated exactly. From time t = tn to t = tn+1, we use
the Strang splitting formula:

u∗j =
1

M

M/2−1∑

l=−M/2

e−iεµ2
l k/4 (̂un)l e

iµl(xj−a), j = 0, 1, 2, · · · ,M − 1,

(VHartree)
∗
j =

1

M

∑

−M/2≤l≤M/2−1, l 6=0

(̂|u∗|2)l/µ
2
l eiµl(xj−a),

j = 0, 1, 2, · · · ,M − 1,

u∗∗j = e−i[C (VHartree)
∗
j +Vext(xj)−α|u∗

j |
2/d]k/ε u∗j , j = 0, 1, 2, · · · ,M − 1,

un+1
j =

1

M

M/2−1∑

l=−M/2

e−iεµ2
l k/4 (̂u∗∗)l e

iµl(xj−a), j = 0, 1, 2, · · · ,M − 1;

where Ûl (l = −M/2, · · · ,M/2 − 1), the Fourier coefficients of a vector U =
(U0, U1, · · · , UM )T with U0 = UM , are defined as

µl =
2πl

b− a
, Ûl =

M−1∑

j=0

Uj e
−iµl(xj−a), l = −M

2
, · · · , M

2
− 1. (2.14)

2.4. Realization on a parallel machine

For simulations in 3 space dimensions with a satisfactory space resolution a large
amount of memory is needed, exceeding the limitations of standard single processor
computers. For such simulations parallel computers are very appropriate. This
requires of course an adaptation of the code which can not be done automatically.

We are using the cluster “Schrödinger 2” of the University of Vienna, which cur-
rently features 192 Pentium IV processors, with about 1 GB memory each, linked
by a switched gigabit network. The machine’s LINPACK performance ranges
among the fastest available.

As the above table shows, 64 nodes of this parallel machine are sufficient for
3-d simulations with a resolution with about 1000 points in each space dimension.
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Table 1: Memory requirement for 3-d calculation

Resolution Memory requirement
256 points per dimension 8 · 108 byte = 768 MB
512 points per dimension 6.4 · 109 byte = 6.4 GB
1024 points per dimension 5.1 · 1010 byte = 48 GB
16 byte numbers (type ’double complex’), 3 instances needed

We use the MPI parallelization interface to adapt the code for distributed
memory parallelization and compile it with “ifc”, a Fortran compiler made by
Intel. Hence both the compiler and the processor hardware come from the same
manufacturer, which made it relatively easy to generate code optimized specifically
for the used processor type and to obtain a quite good performance.

The main workload of the scheme, and the only part of the actual algorithm
which needs to be adapted for parallelization, consists of Fast Fourier transforms.
We implemented a parallel version FFT code on the cluster “Schrödinger 2” and
test the performance of the parallelization which is listed in Table 2.

We see from table 2 that the code has a good degree of parallelization in the
sense that most of the work seems to be evenly distributed among the nodes and
calculation time decreases linearly with the number of nodes used. (The final
version of the machine is actually faster than in table 2, reducing the required
CPU time once more.)

Table 2: Performance
2563 grid points, walltime

Number of nodes 50 time steps 500 time steps
2 1527 s 14760 s
4 812 s 7860 s
8 432 s 4020 s

In all our 3d simulations, we use the parallel code of the time-splitting spectral
method (TSSP) to compute our numerical results. We also used the parallel
version of the scheme for the study of blow-up in E-E DS systems.

3. Numerical results

3.1. Numerical results for S-P-Xα
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In this section, we will present 1-d and 3-d numerical results of the S-P-Xα model
(1.2) by using the time-splitting spectral discretization.

In our computations, the initial condition (1.7) for (1.5) is always chosen in
WKB form:

ψ(x, t = 0) = ψI(x) = AI(x)ei SI(x)/ε, x ∈ IRd, (3.1)

with AI and SI real valued, regular and with AI decaying to zero sufficiently fast as
|x| → ∞. We always compute on a domain which is large enough (as controlled by
the initial data and how long in time to compute) such that the periodic boundary
conditions do not introduce a significant aliasing error relative to the whole space
problem. To visualize our numerical results, we consistently present the position
density n(x, t) which is defined as

n(x, t) = |ψ(x, t)|2, x ∈ IRd.

Example 1. 1-d S-P-Xα model, i.e. we choose d = 1, Vext ≡ 0, C = 1
in (1.5). Note that the local interaction term in (1.5) is the ”focusing cubic NLS
interaction” in the case d = 1. The initial condition (3.1) is hence taken the same
as in the simulations of [32]:

AI = e−x2

,
d

dx
SI(x) = − tanh(x), −∞ < x <∞. (3.2)

Note that SI is such that the initial phase is “compressive”. This means that even
the linear evolution develops caustics in finite time. We solve this problem either
on the interval x ∈ [−4, 4] or on x ∈ [−8, 8] depending on the time for which the
solution is calculated.

We present numerical results for four different regimes of α:

Case I. α = 0, i.e Schrödinger-Poisson regime;
Case II. α = ε, i.e. Schrödinger-Poisson equation with O(ε) cubic nonlinearity;
Case III. α =

√
ε, i.e. Schrödinger-Poisson equation with O (

√
ε) cubic nonlinear-

ity;
Case IV. α = 1, i.e. Schrödinger-Poisson equation with O(1) cubic nonlinearity.

Figure 1 displays comparisons of the position density n(x, t) at fixed time for
the above four different parameter regimes with different ε. Figure 2 plots the
evolution of the position density and the Wigner transforms of the wave function
for α = 1 and ε = 0.025. Figure 3 shows the analogous results for attractive
Hartree interaction, i.e. C = −1, α = 0.5 and ε = 0.025.

From Figure 1, we can see that before the break (part a) and b)), the result is
essentially independent of ε. After the break the behavior of the position density
changes substantially with respect to the different regimes of α. For α = 0 the
solution stays smooth. For α = ε it stays also smooth, but it concentrates at the
origin. For α =

√
ε a pronounced structure of peaks develop, that look like the
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Figure 1: Numerical results for different scales of the Xα term, i.e. α = 1,
√
ε, ε, 0.

a) and b): small time t = 0.25, pre-break, a) for ε = 0.05, b) for ε = 0.0125. c)
- e): large time, t = 4.0, post-break. c) for ε = 0.1, d) for ε = 0.05, e) for ε = 0.025.
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Figure 2: Numerical results for Xα term at O(1), i.e. α = 0.5, with ε = 0.025,
h = 1/512 and k = 0.0005. a). Time evolution of the position density
n(x, t) = |ψ(x, t)|2: Left: surface plot; Right: pseudocolor plot. b). Wigner
function W [ψ(x, t)] at different times.
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Figure 3: Time evolution of the position density for attractive Hartree interaction,
i.e. C = −1, α = 0.5, ε = 0.025, ∆t = 0.00015. Left: surface plot; right:
pseudocolor plot.
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soliton structure typical for the NLS [23]. The number of peaks is doubled when
ε is halved. For α = 1, the number of peaks increases again and they occur at
different locations than for α =

√
ε.

We can see that the scaling α = O(
√
ε) is critical in the sense that the solution

has a substantially different behavior than for the smaller scales of α. Beyond this
scaling, the semiclassical limit cannot be obtained by naive numerics.

Figure 2 b) shows how the Wigner function completely changes its qualitative
behaviour after the “break time” (“caustic”) and develops a rich structure of
oscillations.

Figure 3 is a test to see what happens if the Hartree potential is attractive
instead of repulsive, with all other parameters kept the same, i.e. Figure 2 a)
and Figure 3 differ only by the sign of C. The resulting effect corresponds to the
physical intuition that the pattern of caustics that is typical for the focusing NLS
would be enhanced and focused in physical space by an additional attractive force.

Example 2. 3-d S-P-Xα model, i.e. we choose d = 3, Vext ≡ 0, C = 1 in
(1.5). We consider the following initial data with nonzero phase:

AI(x, y, z) = e−(x2+y2+z2), SI(x, y, z) = − ln cosh
(√

x2 + y2 + z2
)
. (3.3)

We solve this problem on the box [−8, 8]3. We present numerical results for
four different regimes of α:

Case I. α = 0, i.e Schrödinger-Poisson regime;
Case II. α = ε, i.e. Schrödinger-Poisson equation with Xα nonlinearity at O(ε) ;
Case III. α =

√
ε, i.e. Schrödinger-Poisson equation with Xα nonlinearity at

O (
√
ε);

Case IV. α = 1, i.e. Schrödinger-Poisson equation with Xα nonlinearity at O(1).

Figure 4 displays comparisons of the position density n(x, y, z = 0, t = 4) and
evolution of the position density n(x, 0, 0, t) for the 4 different parameter regimes
case I to IV, with ε = 0.1.

The simulations of figure 4 show again that the critical scaling is at α = O(
√
ε)

- a careful examination of figure b) shows also a less regular behaviour than for c)
and d). For α = O(ε2) the figure is virtually the same as for α = 0, so we skipped
that plot. Hence in some physical situations, we can conclude that in case that
the “local exchange term” occurs only at O(ε2) the effect of the Pauli principle
can be neglected and the Schrödinger-Poisson model is sufficiently precise.
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a).

b).

c).

d).

Figure 4: Numerical results for 3d S-P-Xα model in example 3 with C = 1, ε = 0.1,
Vext ≡ 0 for different regime of the parameter α. Left: Evolution of position
density on y = z = 0, i.e. n(x, 0, 0, t); Right: Position density at time t = 4 on
z = 0, i.e. n(x, y, 0, t = 4). a). α = 1 ; b). α =

√
ε; c). α = ε; d). α = 0.
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3.2. Numerical Results for Davey-Stewartson systems

3.2.1. Hyperbolic-Elliptic DS System

Exact solutions In the long wavelength limit, the system (1.9) becomes

i∂tψ − σ1∂
2
ξψ + ∂2

ηψ = σ1|ψ|2ψ + ψ∂ξφ , (3.1)

σ1∂
2
ξφ+ ∂2

ηφ = ∂ξ(|ψ|2) , x ∈ IRd ; t ∈ IR. (3.2)

where σ1 = ±1. This system has the remarkable property of being integrable by
inverse scattering and is called “DS1” or “DS2” system according to the value of
σ1.

The Hyperbolic-Elliptic system (3.1)-(3.2) with σ1 = 1, is called “DS2”. Arkadiev
et al. [2] proved, by inverse scattering methods, the existence of a class of exact
solutions. These show localized structures getting displaced without dispersion
and for this reason are said to be of “Soliton type”. To formulate these solutions
we first rewrite the equation as

iut + ∂2
xu− ∂2

yu = −2χ|u|2u− uφx

∆φ = −4χ(|u|2)x.

Then the exact solution is

u(x, y, t) =
2ν̄ exp(x(λ− λ̄) + iy(λ+ λ̄) + 2it(λ2 + λ̄2))

|x+ iy + µ− 2iλt|2 − χ|ν|2 .

where ν, µ, λ ∈ CI are parameters. We choose χ = −1 and ν = µ = λ = 1. With
this choice the expression of the solution is

u(x, y, t) =
4 exp(iy + 2it)

(x+ 1)2 + (y − 2t)2 + 1
.

Figure 5 shows the initial data at t0 = −3.5, it is a hump centered at x = −1,
y = −7 = 2 · t0. This solution has only geometric decay towards infinity, which
poses a problem for our scheme which needs to rely on a rapid decay of solutions
to prevent errors from the artificial periodic boundary conditions. To prevent such
errors we need to take a rather large domain, we choose Ω = [−16, 16]2. Figure 6
shows contour plots of |u| at different times during the evolution. We can see that
the “soliton structure” is traveling in y-direction at speed 2 as required. Also the
shape of the solution is preserved accurately.

Blowup of H-E System The next test case for the DS2 equation is the case of
a finite time blowup studied by Ozawa [33], where an exact solution is constructed

which blows up at a given time. The initial data are u0(x, y) = exp(i(x2−y2))
1+x2+y2 ,

which is a localized lump with algebraic decay ( as in the previous case ). By the
construction we know that the blowup time is t∗ = 0.25 and ‖u(t)‖L∞

= 1/(1−4t)
holds for he exact solution.
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Figure 5: Exact solution at time t0 = −3.5.

In this test we found the code to be very sensitive to cutoff errors from the
artificial boundary conditions. We need to calculate on the domain [−40, 40]2 to
get reasonable results. Figure 7 shows the blowup for three different choices of
the resolutions (upper line ∆x = 0.01953, ∆t = 10−4, middle line ∆x = 0.039,
∆t = 2.5 · 10−4, lower line ∆x = 0.0781, ∆t = 5 · 10−4), and the exact rate stated
above as a dashed line. We can see that, if the discretization is chosen fine enough,
we can recover the correct blowup rate. Figure 8 shows the position density close
to the blowup time.

3.2.2. Elliptic-Elliptic DS System

Finite time blowup In this section we treat the elliptic - elliptic DS system

iut + ∆u = χ|u|2u+ uφx

∆φ = −γ(|u|2)x.
(3.3)

Finite time blowup of this system was studied by Ghidaglia and Saut [18]. As
mentioned in section 1, (3.3) always leads to blow-up either if χ = −1, for any γ,
or if χ = 1 and γ > χ. We choose the initial data profile

uI(x, y) = 4 exp

(−x2 − y2

4

)
.

First we investigate the case χ = −1 (focusing nonlinearity) and set χ = −1,
γ = 1. This case is analogous to the focusing NLS, since for γ = 0, (3.3) reduces
to the focusing cubic NLS, which in two space dimensions is the critical case for
finite-time blowup. We expect the blowup mechanism to be similar to the one of
that equation. We find that the solution blows up at time t = 0.1311. Figure 9
shows the L∞-norm of u. Papanicolaou et al. ([34]) analytically found that the
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Figure 6: Traveling “soliton” at times t = −3.5, 0, 3.5.
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Figure 8: Position density close to blowup.
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Figure 9: L∞ norm of |Ψ| and analytical blowup rate.

solution blows up at the rate

L(t) ≈ (t∗ − t)
1
2

(
ln ln

1

t∗ − t

)− 1
2

.

This rate is the same as the one for the critical NLS (Landman et al. [26], see
also [37]). In figure 9, we added as a dashed line the analytic blowup by the above
formula, with t∗ at the value we found for our computation. It can be observed
that the rate of blowup is recovered quite accurately.

Figure 10 shows contours of |u|2 near the focus. A distinct anisotropy can be
observed.

Next we investigate the case χ = 1 (defocusing nonlinearity) and choose χ =
1, γ = 5. In this case the second nonlinear term is causing the blowup. The
corresponding L∞-norm of u is shown in figure 11. In this case the blowup is
more complicated, there is a first concentration at t = 0.1 before the blowup at
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Figure 10: Contour plot of position densities: a) before blowup, at t = 0.12,
t = 0.124, t = 0.128, b) close to blowup, at t = 0.1298, t = 0.1304, t = 0.1308.
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Figure 11: Blowup of defocusing ell.-ell. system (ν = 1, β = 5). L∞ norm of |Ψ|
for different time discretization steps. blue: ∆t = 5 · 10−5 ; red: ∆t = 2.5 · 10−5,

t = 0.1115. A much finer time and space resolution is needed to capture this
blowup correctly. Figure 12 shows the maximum values of |u|2 around the blowup
time for several resolutions.

Figure 13 shows contours of |u|2 close to the blowup, figure 14 shows surface
plots. We can see that there is more anisotropy in the results for this case than in
the previous, NLS-dominated case.

Multi-Focusing For the focusing critical NLS, according to a result of Merle [31]
it is possible to construct a solution which blows up exactly at a prescribed set of
points. We will state his result. Let, in IRd with a general dimension d, R0, R1, . . .
be the infinite sequence of radial solutions to the equation

∆R−R+R
4
d +1 = 0
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Figure 13: a) Contour plot of position densities before blowup. t = 0.099, t =
0.1045. b) Contour plot of position densities close to blowup. t = 0.1091, t =
0.1101, t = 0.111.
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a) b)

c) d)

Figure 14: Position density at several times close to blowup. a) t = 0.1109, b)
t = 0.111, c) t = 0.1111, d) t = 0.1112
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such that Rk has exactly k nodes as a function of r and decreases exponentially
at infinity.

Theorem 3.1 ([31]). Let x1, . . . ,xk be given in IRd. There is a constant ω0 such
that for any constants ω1, . . . , ωk all strictly larger than ω0, there exists a solution
ψ of the critical (focusing) NLS that blows up in a finite time t∗ such that:

1. The set of blowup points in L2+4/d and H1 is {x1, . . . ,xk}

2. For i = 1, . . . , k and all A such that the balls Bi = B(xi, A) are disjoint,
limt→t∗ ‖ψ(t)‖L2(Bi) = ‖Ri‖L2

3. limt→t∗ ‖ψ(t)‖L2(B) = 0, where B = IRd \ ∪i=1,...,kBi.

In addition, there is a constant γ > 0 such that on [0, t∗),
∥∥∥∥∥ψ(t) −

k∑

i=1

1

|(t∗ − t)ωi|d/2
e

−i

(t∗−t)ω2
i

+
i|x|2

4(t∗−t)Ri

(
x − xi

ωi(t∗ − t)

)∥∥∥∥∥
L2+4/d

≤ e−
γ

t∗−t .

Papanicolaou et al. [34] proved that there is a ground state solution to the
focusing E-E DS system (3.3). Since there is only one ground state, we decide
instead of calculating with the exact ground-state profile to choose a test profile
Q(x) = exp(−|x|2), which is radial and decaying sufficiently fast. In order to
realize the asymptotics described by the above result, we take the initial data as

uI =

k∑

j=1

1

t̃ω
e−

i
t̃ω2 +i

|x|2

4t̃ Q

(
x − xj

t̃ω

)

where t̃ is an estimate of the blowup time and ω a constant (and x = (x, y) ∈ IR2).
We solve the equation on the domain [−10, 10]2, and choose the focus points
x1 = (4, 4), x2 = (−4, 4), x3 = (−4,−4), x4 = (4,−4) and the constants t̃ = 0.03,
ω = 13.3. We find that blowup occurs at t∗ = 0.032. Figure 15 shows the position
densities at initial time and at the blowup. We can see that the solution blows up
exactly at the four chosen points.

3.3. Conclusion

We show that the “time splitting spectral method” is a very appropriate numerical
method for a large class of time dependent nonlinear Schrödinger equations and
that precise numerical simulations, even in 3 space dimensions and in the semi-
classical regime are possible using modern parallel machines. The range of models
we consider goes from the standard “cubic” NLS with its strong local nonlinearity
to weakly nonlinear NLS of the Schrödinger-Poisson type and mixed versions of
these two types, as well as generalizations like the different types of the Davey
Stewartson system were the NLS structure as such is modified.
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a) b)

Figure 15: Multi-focusing solution. a) Initial data, b) result shortly after blowup
time.

Key properties of this numerical method are that it is explicit, unconditionally
stable, time reversible and time transverse invariant. We use the code written by
Bao et al that we have adapted for parallel computation. The adaption of this
numerical code to the different types of NLS is relatively straightforward.

We present a first numerical study of the Schrödinger-Poisson-Xα (S-P-Xα)
equation as a “local effective one particle approximation” of the time dependent
Hartree-Fock equations. This particular NLS is the simplest model for quantum
dynamics of electrons that respects the Pauli principle.

Thanks to ‘good’ ε-resolution of the numerical scheme we can study the S-P-
Xα model in the semi-classical regime in 3 - d.
Extensive numerical results of position density and Wigner measures in and 3
space dimensions with/without an external potential are presented.

The interplay of the smoothing nonlocal nonlinearity - i.e. the repulsive ”direct
Coulomb interaction” (”Hartree potential”) - with the strong local nonlinearity
- i.e. the local approximation of the exchange interaction (”Xα potential”)- is
systematically studied by varying the scaling of the 2 nonlinearities between the
Schrödinger-Poisson equation and an ”exchange only” model. A critical scaling
occurs when the Hartree term is O(1) and the Xα term is O(ε).

In all simulations a critical time, the ”break time”, can be clearly distinguished
and its ”semiclassical limit” can be numerically estimated by comparing simula-
tions with decreasing ε. Such simulations require a fine discretization which could
be achieved also in 3-d by implementing the numerical code on a parallel machine.

The results in 1-d show a similarity to simulations of the ”focusing cubic” NLS,
with the smoothing effect of the additional Poisson equation nonlinearity. The well
known ”soliton” structure of the NLS (see e.g. [32]) is preserved in the S-P-Xα
model when the cubic nonlinearity is dominant.

In 3-d, our simulations show a similarity with simulations of Bose-Einstein-
Condensates modeled by the time dependent Gross-Pitaevski equation, where the
third root of the density of the S-P-Xα model is replaced by the density itself
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[12], i.e. a cubic NLS. In both cases, the local nonlinearity has the ”focusing
sign”. However, the additional smoothing effect of the Hartree potential and the
lower exponent of the local nonlinearity show a somewhat ”smoother” structure
of the solution unless the Xα term and the Hartree term are of the same order of
magnitude.

We have shown that the S − P − Xα model allows for simulations of quan-
tum dynamics in 3 dimensions, also in the semiclassical regime. The inclusion of
the exchange interaction to the widely used Schrödinger-Poisson model leads to
qualitative changes in the transient behaviour of the solution that become very
pronounced beyond a relative scaling of O(ε) and change the behaviour completely
towards the typical ”soliton-like structures” of the focusing cubic NLS beyond a
relative scaling of O(

√
ε).

The second model we study numerically by the “time splitting spectral method”
is the Davey-Stewartson (DS) system. The method was first used for the hyperbolic-
elliptic (H-E) DS equations by White, Weideman [41] ten years ago. The new code
we use has been developed independently of this previous work.

We not only study H-E DS systems, like White/Weideman, but also E-E DS
systems. Exact soliton type solutions of H-E DS can be recovered accurately, elim-
inating numerical dispersion effects which appear in earlier results of [41] and [8].
For the finite time blowup solution of H-E DS, the blowup rate can be recovered.

For the E-E DS systems, we study finite time blowup of the focusing and
defocusing equations. In the focusing case the analytic blowup rate is recovered
accurately and blowup profiles are presented, in full agreement to the results in [8].
The blowup mechanism in this case is very similar to the one of critical focusing
NLS. In the defocusing case, however, a resolution fine enough to approximate
the blowup is new. High numerical resolution in the results admits a detailed
representation of blowup profiles in both cases.

For the first time, we investigate the phenomenon of simultaneous blowup at a
predefined, exact number of points. This is known for focusing NLS; we find that
focusing E-E DS can show the same behaviour.

Continuation of the solution after the blowup time is a very demanding chal-
lenge for numerical simulations. Further work in this direction based on our code
will be performed.

References

[1] Ablowitz, M.J., Clarkson, P.A., “Solitons, nonlinear evolution equations and in-
verse scattering”, London Math. Soc. Lect. Note Series No. 149, Cambridge Uni-
versity Press, 1991

[2] Arkadiev, V.A., Pogrebkov, A.K., and Polivanov, M.C., “Inverse scattering trans-
form method and soliton solutions for the Davey-Stewartson II equation”, Phys-
ica D 36, (1989) 189-196



27

[3] W. Bao, N. J. Mauser and H. P. Stimming, “Effective one particle quantum
dynamics of electrons : a numerical study of the Schrödinger-Poisson-Xα model”
CMS 1 No. 4 (2003), 809–831

[4] C. Bardos, F. Golse and N.J. Mauser, ”Weak coupling limit of the N -particle
Schrödinger equation”, Mathematical Analysis and Applications 7 (2) (2000)
275–293

[5] C. Bardos, F. Golse, A. Gottlieb and N.J. Mauser, ”Mean field dynamics of
fermions and the time-dependent Hartree-Fock equation”, J. d. Mathematiques
Pures et Appl. 82 (6) (2003) 665–683

[6] C.Bardos, L. Erdös, F. Golse, N.J. Mauser and H.-T. Yau, “Derivation of the
Schrödinger-Poisson equation from the quantum N -particle Coulomb problem”,
C. R. Acad. Sci., t. 334 (6), Série I Math., (2002) 515–520
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