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Abstract—Photorealistic image rendering consists in simulating
light transport in 3D environments. It relies on estimating inte-
grals with numerical methods such as Monte Carlo integration.
Multiple Importance Sampling is a basic technique for improving
the robustness of Monte Carlo estimators. A recent work in
collaboration with the Chaos Czech research department has
proposed an optimal solution for Multiple Importance Sampling
that can significantly reduces the noise in rendered images. In this
report, we present a way to integrate this new optimal method
in a Bidirectional Path Tracer.

Index Terms—Light Transport, Monte Carlo Integration, Op-
timal Multiple Importance Sampling, Rendering, Bidirectional
Path Tracing

I. INTRODUCTION

The creation of photorealistic images, almost impossible to
distinguish from real photographs, is a complex task since it
involves simulating the dispersion of light in the environment.
Some algorithms have been proposed to simulate this process
based on physical equations that describe how light propagates
in scenes.

Simulation of light transport can be reduced to solving
multi-dimensional integrals. Given the complexity of solving
these integrals, state of the art methods generally use Monte
Carlo estimators. Such estimators use random sampling of
the integration domain to evaluate complex integrals. These
estimators converge to the exact result with the number of
samples taken. One of the key problems is improving the
convergence rate of these estimators. This can be achieved by
reducing the variance of the estimators. In image rendering,
the variance of the estimators can be seen as the noise in
the estimated image. Hence, reducing the variance of Monte
Carlo estimators will result in less noise in the computed
image and a greater visual quality.

One of the most used technique to improve these estimators
is Multiple Importance Sampling (MIS). MIS is a method

that combines multiple sampling techniques by weighting the
samples given by each technique.

Recently, Kondapaneni et al. [1] have proposed an optimal
solution for MIS, Optimal MIS, that provably minimizes the
variance of MIS Monte Carlo estimators. Optimal MIS has
shown great results on direct lighting evaluation, but has not
yet been implemented in a full light transport algorithm such
as Bidirectional Path Tracing.

Bidirectional Path Tracing [2] (BDPT) is a complex and
robust rendering algorithm particularly suitable to render
lighting effects such as caustics or mirror reflections. The
rendering quality of this algorithm is largely due to the use
of Multiple Importance Sampling.

The project has been proposed by the research department
of Chaos Czech company and aims at implementing Optimal
Multiple Importance Sampling [1] in a Bidirectional Path
Tracing algorithm. The project follows the internship of
Ronan Cailleau that took place in summer 2019.

II. PRESENTATION OF CHAOS CZECH AND THE PROJECT

Chaos Czech is a company specialized in 3D computer
graphics software based in Czech Republic. The company,
formerly named Render Legion, became part of Chaos Group
in 2017. Today, the team is composed of about fifty people.
Corona Renderer is the main software of the company. It
can render perfectly photorealistic images, as well as biased
images, but faster. Corona Renderer also handles a wide
variety of materials and lighting techniques while showing
good performance.

The philosophy of the company is to provide easy to use
tools for artists and designers, allowing them to create great
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imagery and animation. The software embeds lots of ready-
made content, movement effects, physical simulation and is
frequently updated with new features. Lots of improvements
have been made on rendering quality thanks to the research
department. Ronan Cailleau’s internship, supervised by
Jaroslav Křivánek and Petr Vévoda, took place in this
philosophy of research and continuous improvement, and so
does this project.

III. ORGANIZATION OF THE PROJECT

During the project, we worked in direct communication
with Chaos Czech. Our main interlocutor was Petr Vévoda,
who greatly contributed to the original Optimal Multiple
Importance Sampling publication. We organized meetings
with him every two weeks to present our work and to expose
the problems we were facing. He gave us some advice and
helped us to schedule the different tasks related to the project.

In the team, we started by catching up on the Bidirectional
Path Tracing algorithm and MIS. It was a key part of
the project in order to understand the theory behind MIS
and Bidirectional Path Tracing. During the project, we
organized the tasks by importance and split them among the
team members. During each meeting with Petr Vévoda we
discussed about our results and the tasks to be prioritized.

As a research project, it was difficult to anticipate the
problems and the time required to solve them. Moreover,
in the beginning, Ronan Cailleau was the only one who
had enough knowledge on the subject. We thus relied on
his predictions and the ones of the project supervisors, Petr
Vévoda, Jaroslav Křivánek and Fabrice Lamarche.

IV. PREVIOUS WORK

In the field of computer graphics, rendering is the process
of automatically transforming 3D numerical models into
images. This report focuses on physically based rendering
which aims at accurately modeling the flow of light in the
real world, and solving as correctly as possible the equation
describing it.

The corner stone of physically based rendering is the phys-
ical equation of radiance equilibrium or rendering equation
[3]. This fundamental equation (1) describes the evaluation of
radiance leaving a surface given an incoming illumination.

L(x −→ y) = Le(x −→ y)+∫
M

fs(z −→ x −→ y)G(x↔ z)L(z −→ x)dA(z) (1)

With L(x→ y) the radiance leaving the surface at the point
x in the direction x→ y, Le(x→ y) the radiance at the point
x in the direction x→ y if the surface supporting x is a light
source. fs(y → x→ z) is the ratio of reflected, transmitted or

absorbed radiance in x from the direction x→ z to the direc-
tion x → y , also called Bidirectional Scattering Distribution
Function (BSDF). G(x ↔ y) = V (x ↔ y) cos(θi)cos(θi′ )||x−y||2 is
the geometric term between x and y, V (x ↔ y) stands for
the mutual visibility between x and y, and θi and θi′ are the
polar angles at x and y with the direction x ↔ y. M is the
set of all points of the scene.

A. Monte Carlo integration

In practice, the integral (1) has no closed form but can be
estimated using numerical integration such as Monte Carlo
integration. This method consists in sampling random values
in the domain of the integral and evaluating the function for
these values. A weighted sum of these evaluations is then used
as an estimator of the integral. A Monte Carlo estimator 〈F 〉
is given by the following formula:

〈F 〉 = 1

N

N∑
i=1

f(Xi)

p(Xi)
(2)

With f the function to integrate over the domain D, N the
number of samples taken and p(Xi) the probability density
of producing the sample Xi ∈ D. It can easily be shown
that such an estimator converges to the correct integral, i.e.
E[〈F 〉] =

∫
D
f(x)dx if f(X) 6= 0⇒ p(X) 6= 0 holds true.

However, a Monte Carlo estimator can show very high
variance depending of the shape on the probability density
function (pdf) used for sampling the domain. The more the
pdf has the same shape of the absolute value of the integrand
i.e. the more they are positively correlated, the lesser is the
variance.

In the field of rendering, it is almost impossible to model a
pdf that has the same shape as the function to integrate. This
results in possibly high variance that leads to unwanted noise
in the computed images. Thus, reducing noise is equivalent
to reducing the variance of the estimator. Hence, one way to
reduce variance is to focus sampling in the parts of the domain
where the function to integrate has high absolute values. This
process, called Importance Sampling, is the fist step to achieve
variance reduction. Good sampling techniques will naturally
lead to lower variance.

B. Multiple Importance Sampling and balance heuristic

Multiple Importance Sampling (MIS) is a method that
aims at reducing variance and making more robust estimators
by combining different sampling techniques. It is achieved
by computing a weighted sum of the result of the different
sampling techniques.

A MIS Monte Carlo estimator 〈F 〉∗ is given by :

〈F 〉∗ =
N∑
i=1

ni∑
j=1

wi(Xij)
f(Xij)

nipi(Xij)
(3)
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Figure 1. Particular regions of a scene (a) rendered in 64 samples per pixel using different sampling techniques : Light sampling (b), BSDF sampling (c)
and Multiple Importance Sampling using BSDF and Light sampling combined with the balance heuristic (d). Notice the superior robustness of MIS.

With Xij the jth sample of the technique i, wi(X) a
weighting function such that f(X) 6= 0 ⇒

∑N
i=1 wi(X) = 1

and pi(X) = 0 ⇒ wi(X) = 0. N is the number of sampling
techniques, ni the number of samples generated by the
sampling technique i.

The variance of a Monte Carlo estimator using MIS,
V [〈F 〉∗], has the following form [4]:

V [〈F 〉∗] =
N∑
i=1

∫
D

wi(x)
2f(x)2

nipi(x)
dx−

N∑
i=1

1

ni
〈wi, f〉2 (4)

This equation is crucial in the goal of reducing the noise
in rendered images. It is also the basis of the most common
MIS heuristic: the balance heuristic [4]. This heuristic sets the
weight of the samples from each techniques as follows:

wi(X) =
nipi(X)∑N
k=1 nkpk(X)

(5)

Eric Veach has shown that the balance heuristic is nearly
optimal. Indeed, the balance weights provided in formula (5)
minimize the first term of the estimator variance given by the
formula (4). In most of the cases, this minimization term is
close to optimal but not in every situation.

An example of the impact of MIS in rendering is depicted
in Figure 1. The figure compares two sampling techniques
and their combinations using MIS with balance heuristic
in two particular regions of the reference image. For direct
illumination, the light sampling technique (sampling a point
directly on a light source) is well suited for diffuse reflections
but fails to render glossy reflections. For the BSDF sampling
technique (sampling a scattering direction and see if there is
a light in this direction), it is the opposite. MIS with balance
heuristic offers a much more robust solution by trying to
exploit the strengths of each technique.

C. Optimal Multiple Importance Sampling

Recent research has shown that the MIS balance heuristic
can be far less optimal than what was previously thought in
some cases. Eric Veach has shown that the balance heuristic
was a good heuristic and also that minimizing the second
term of the variance (4) could lead to slightly lower variance.
Kondapaneni et al. [1] have shown that Eric Veach actually
made the (common) hidden assumption that the weighting
functions should be positive. This constraint is not necessary
for a MIS estimator to be unbiased.

By fully minimizing the variance of the MIS estimator (4)
and relieving the constraints of having only positive weights,
the variance can actually be lowered much more than with the
state of the art balance heuristic. Hence, the optimal weighting
functions woi are deduced by analytically minimizing the
functional (4):

woi (X) = αi
pi(X)

f(X)
+

nipi(X)∑N
j=1 njpj(X)

(
1−

∑N
j=1 αjpj(X)

f(X)

)
(6)

With α solving the linear system:

Aα = b

with A the technique matrix and
b the contribution vector defined such as

ai,k = 〈pi,
pk∑N

j=1 njpj
〉 and bj = 〈f,

pi∑N
j=1 njpj

〉

with ai,k the elements of the matrix A

(7)

The main difference with the balance heuristic is that the
integrand is used in the computation of the weights. This is
due to the fact that the variance is minimized when the pdf
and the integrand have a similar shape, which is not taken
into account by the balance heuristic. Another important
difference with the balance heuristic is the handling of zero
contribution samples (i.e. f(X) = 0 but pi(X) 6= 0). These
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samples now have a contribution to the optimal result. Indeed,
they have a non-null pdf of being sampled and hence will
contribute to the estimation of the technique matrix. The
consequence is that their pdf have to be correctly computed
which is not necessarily the case in rendering engines to save
rendering time.

Using this new estimator in rendering can lead to a
significant noise reduction as shown in [1] and [5].

D. Bidirectional Path Tracing

Bidirectional Path Tracing [2], [6] is an algorithm used to
solve the rendering equation (1). This particular algorithm
relies on several sampling techniques, which are combined
using MIS. Bidirectional Path Tracing evaluates the rendering
equation over pixel p by generating paths the light could take
connecting the camera and a light source. A path x of length
n is a sequence of vertices (x1, ..., xn) such as each vertex
belongs to a surface. Also, the depth of a path is defined as
d = n− 2. A path has to connect a camera and a light source
to contribute to the rendered image. The image is generated by
evaluating the radiance flux value Ip at pixel p of the image
expressed as :

Ip =∫
M2

Le(x1 → x0)G(x0 ↔ x1)Wp(x0 → x1)dA(x0)dA(x1)

+

∫
M3

Le(x2 → x1)G(x0 ↔ x1)fs(x0 → x1 → x2)

G(x1 ↔ x2)Wp(x1 → x2)dA(x0)dA(x1)dA(x3)

+ ... (8)

With Wp(x → x′) the importance of the camera at pixel
p between x and x′ which can be seen as the opposite of
the radiance, that creates a contribution in the camera sensor
when meeting radiance. xi is a point on the surfaces of the
scene and ↔ symbolizes the symmetry of the functions.
This equation is equivalent to evaluating every paths of
every length between cameras and lights. Notice that the
equation (8) is a global extension of the rendering equation 1).

In practice, the paths connecting the lights and the camera
are constructed by randomly generating two sub-paths,
one starting from the camera and one from a light source.
Vertices from the camera sub-path are labeled xi and vertices
from the light sub-path are labeled yi. Then, every possible
combination of connections between the two are computed
as shown in Figure 2.

In the Figure 2, connecting the vertices x2 and y0 creates
a path of length 4 (x0, x1, x2, y0). All ways to connect the
sub-paths are the samples used to evaluate the equation (8)

Figure 2. All possible paths that can be generated with 2 sub-paths of length
3. Image courtesy of Mikel Adamsen.

with Monte Carlo integration.

As a result, every combinations of vertices of same length
contributes to the same integral. The different combinations
of vertices of a length n are the samples used for the MIS.

In a BDPT, a sampling technique corresponds to a specific
connection (s, t) between a light sub path of length s and
camera sub path of length t, making a full path of length
s+ t. For example, a path of length 4 can be generated with
3 vertices from the light sub-path and 1 from the camera
sub-path. It can also be created with 2 vertices from the light
sub-path and 2 from the camera sub-path. We can evaluate
the throughput and probability density of the sample in order
to compute the Monte Carlo integration for the rendering
equation (8).

V. OUR SOLUTIONS

This section develops the implementation of Optimal MIS
in a BDPT engine named Physically Based Ray Tracing
(PBRT) [7]. This renderer, based on [8], is one on the most
commonly used in research projects. PBRT is an open source
engine that handles many different rendering techniques,
materials, lights and cameras. Our main contributions are the
implementation of the optimal MIS solver, the correction of
materials issues and some special case handling.

A. Optimal Multiple importance sampling implementation

The implementation of Optimal MIS in a BDPT is a non
trivial task. It led us to modify the algorithm initially presented
in [1] to make it simpler to apply and also to solve some of
the special cases related to BDPT. Our new solver formulation
is defined in Algorithm 1. We proved that this new version
of the optimal MIS solver is equivalent to the previous one.
In the algorithm, the balance weights of the jth sample of the
technique i with every technique are stored in the vector Wi,j .
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Algorithm 1 Optimal Multiple Importance Sampling solver
1: 〈A〉 ← 0N×N , 〈 b〉 ← 0N×1

2: for iteration← 0 to maxIteration− 1 do
3: for i← 1 to N do
4: {Xi,j}ni

j=1 ← draw ni samples from technique pi
5: end for
6: 〈A〉 ← 〈A〉+

∑N
i=1

∑ni

j=1 Wi,jW
T
i,j

7: 〈b〉 ← 〈b〉+
∑N
i=1

∑ni

j=1 f(Xi,j)Wi,j/
∑
k nkpk(Xi,j)

8: end for
9: 〈α〉 ← solve linear system 〈A〉〈α〉 = 〈b〉

10: return
∑N
i=1〈α〉ni

In practice, a matrix and vector is associated to each pixel
of the image and for each depth. For all samples generated
at each pixel, the technique matrix A and the contribution
vector b (section IV-C) are updated (lines 2-8).

Once all the samples have been generated, the linear system
is solved to obtain the α vector (line 9). Each coefficient of
this vector corresponds to the contribution of one technique.
Each contribution is then multiplied by the number of samples
of the technique that produced it. The result returned by this
solver is the amount of radiance captured by the pixel for all
the generated paths.

The algorithm (1) is also called the direct estimator. It relies
on the property that the sum of the vector α is a biased
estimator of the computed integral. Its bias has been measured
to be in O(n−1), while the variance of Monte Carlo estimators
are in O(n−

1
2 ). So the bias could be visible for low samples

count, but will be drowned under the variance at some point.
Another algorithm, called the progressive estimator performs
far worse than the direct one, but is unbiased. We also have
a partial implementation of it, but it will not be discussed in
this work.

Even if optimal weights are mathematically better than any
other heuristic for equal sample count, in practice they are not
always the best. Indeed, the computation time needed to update
the solvers and solve the linear system makes the computation
of optimal weights slower than the computation of balance
weights. This is why we have added the possibility to choose
which weighting method to use for each path depth. This way,
it is possible to use only the optimal weight while they are
faster than the balance heuristic.

B. Light tracing samples handling

Light tracing samples in Bidirectional Path Tracing are
the light paths created with only one vertex in the camera
sub-path (the camera vertex). An example that represents this
case is shown in Figure 3.

The particularity of these samples is that the pixel
intersected by the path cannot be predicted. Hence, these
samples actually contribute to every pixel of the image with
a zero contribution except for the pixel intersected by the

Figure 3. Schema of a light tracing sample

path that will get the contribution. In the case of the balance
heuristic, the zero contribution does not have to be taken into
account for the whole image.

However, the method used to compute the optimal weights
requires to update the technique matrix A associated with
every pixel and to update the contribution vector for the
intersected pixel. Updating all solvers for zero contributions
would have an extremely high computational cost. For the
pixel intersected by the path, all techniques have a non-zero
pdf of producing this sample. Thus, the system will be
updated normally. For all the other pixels, only the light
tracing technique has been able to produce this sample. This
gives a balance weight of 1 for the light tracing technique
and 0 for all the others. Since the weights are the same
regardless of the pixel, the update will be the same. So we
only store for each pixel the number of light tracing samples
that actually made it through the pixel. We can then use this
number right before solving the system to account for all the
zero contribution light tracing samples that have not been
added to the matrix. This is much faster and requires almost
no extra memory.

Another issue with the light tracer is its much higher number
of samples than the other techniques. It was the motivation to
design our own version of the direct estimator.

C. Zero contribution samples special case

Another special case is for the zero contribution samples. It
is constituted of the samples that have a zero contribution to
the estimator but a non-zero pdf of being sampled. These zero
contribution samples are paths that do not transport radiance
from the light to the camera. When using the balance weights,
these cases were not taken into account since they had no
impact on the weighted sum of the estimator equation (3).
But now, they are necessary for the calculation of the Optimal
weights.

There are different cases that result in zero contribution
samples, some of them are depicted in Figure 4. The first
example of the figure (top left) is the case of non visibility
between the vertices when connecting the camera sub-path
and the light sub-path. The second one (top right) shows
the case where the path leaves the scene without making
a connection between the 2 sub-paths. Then, the third one
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Figure 4. Examples of some zero contribution samples

(bottom left) shows the particular case where we only consider
the path created by the camera sub-path and that does not
end on a light source. Finally, the fourth case (bottom right)
is when one of the BSDF (and equivalent) is zero (here, the
BSDF on x3 is zero since the material is not transparent).

Another case of zero contribution paths we call unsampled
samples. It happens when a technique does not manage to
produce a path. In this case, we assumed that a null special
path was actually generated by the technique, and only the
technique could produce it.

Finally, the choice to work with balance weights rather
than sample pdf’s in the optimal weight solver makes the
handling of these particular contributions much simpler.

D. Materials correction

Some of the materials that were already implemented in
PBRT have to be adapted to the new integrator.

Firstly, PBRT does not compute the pdf in some very spe-
cific cases for some transmitting materials. If the contribution
is zero, the pdf is not necessarily computed to save some
rendering time. This may lead to errors in the computation of
the optimal weights, which would result in a bias in rendered
images. This was specifically the case in specular transmitting
materials.

Fixing this did not lead to less bias. Nevertheless, it
improved the robustness of the engine which is primordial
for an unbiased renderer.

Secondly, some microfact models in PBRT happen to
sometimes compute a small negative pdf when sampling a
direction. This situation is exceptional, happening about once
per tens of millions of samples. However, it can lead to a
crash of the engine or a huge bias due to the smallness and
the negativeness of the pdf value (≈ −10−6 with double
precision). This problem is due to the normal distribution of
the microfacet models used in PBRT. It happens in very rare
conditions that the incident ray is not in the same hemisphere
of the microfacet’s normal which is calculated according

to the distribution. This phenomenon leads the computation
of a small negative cosinus, and then a small negative pdf.
We decided to consider this case as a flaw of the normal
distribution model and to correct it by retrieving the original
normal of the primitive. This allows to keep the contribution
and saves computing time while preventing from errors.

VI. RESULTS

This section shows the various evaluation methods used to
benchmark our implementation of Optimal MIS weights in
a Bidirectional Path Tracer. It will with the classic balance
weights in different scenarios. The metric used to compare
images is the mean relative squared error (MRSE) that allows
to highlight the relative variance compared to a reference.
This metric is computed by dividing the squared difference
between the image and the reference by the reference
value. Compared to a classic mean squared error, the result is
less dominated by the high values of radiance in some images.

A. Bidirectional Path Tracing

In order to successfully perform physically based rendering,
the implementation must remain unbiased. It means the results
should not contain any statistical error in the radiance estimate.
An algorithm bias can be estimated by comparing its results
with these from an algorithm proven to be unbiased as in
the Figure 5. If the error of the image is not uniformly
distributed, it is very likely that there is a bias. The more
samples there are, the more reliable this indicator is, although
it does not explicitly prove the absence of bias.

Figure 5. Visualization of the error distribution between a biased image and
the reference (left) and between our implementation’s image and the reference
(right). The red and green colors represent a positive and a negative error
respectively. Notice the red-dominant areas with the biased image

We compared results of the implementation of Optimal
MIS with the ones produced by PBRT’s Path Tracer and
Bidirectional Path Tracer with balance heuristic on several
scenes. It appears that the error is uniformly distributed over
the images as the number of samples increases, indicating
the absence of bias in our implementation of Optimal MIS in
PBRT’s Bidirectional Path Tracer.
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B. Comparison to balance weights
As seen in IV-C, the optimal MIS weights analytically

minimize the variance of the Monte Carlo estimators which
should reduce the noise in rendered images. More importantly,
the results obtained with the optimal MIS weights must be
at least as good as these obtained using the balance heuristic
for an equal number of samples.

Figure 6. Comparison of BDPT with balance heuristic and Optimal MIS for
a same number of samples on scenes GLASS (top) and STAIRCASE (bottom).
The noise is significantly reduced for direct illumination on diffuse surfaces
with optimal weights compared to balance weights.

Figure 6 compares the new optimal weights with the state
of the art balance heuristic on different scenes. These images
have been generated with the same number of samples.
Zooming allows to see the noise in the images on small
regions.

In both images, the noise reduction is clearly visible on
diffuse surfaces in direct lighting. For the same number
of samples, the optimal weights allow a large reduction
in the variance of the estimators. This noise reduction is
particularly important in areas where many techniques feature
a high probability density of producing a sample but are not
very good, but one technique is actually better than the others.

However, when only one technique is good and features a
high probability density of producing a sample, there are no
great improvements over the balance heuristic, meaning the
balance heuristic is already almost optimal in this situation.
This is the case of the caustic created in GLASS scene (top
image, red zoom), since the light tracing technique is the
only one able to render it. Here, the noise reduction between

the balance heuristic and Optimal MIS is barely visible.
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Figure 7. MRSE of balance and optimal weights versus the number of
samples.

Figure 7 shows the evolution of the MRSE of the balance
weights and the optimal MIS weights versus the number
of samples. In this example, for every number of samples,
the optimal weights lead to better results than the balance
weights in terms of MRSE. In the worst cases, Optimal MIS
is equivalent to the balance heuristic. There is an exception:
if the number of samples is too low (usually under 4 from
our observations), then some systems are estimated with too
much noise, resulting in unstable resolution and a salt and
pepper noise, leading to extra variance. Also, the bias is
clearly visible in the computed images at these low number
of samples. This is why in the previous curves, the MRSE of
the optimal result is higher than the balance at the beginning.

C. Efficiency of the optimal weights

Optimal MIS has been proven better than balance heuristic
for a same number of samples, but it is also more expensive
in terms of computing time and memory consumption. When
evaluating optimal weights, the size of the largest matrices
of the linear system is proportional to the square of the
maximum path length. Thus, the longer the paths are, the
more expensive and time-consuming it is to store and update
the matrices.
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Figure 8. Gain of MSE versus path depth in the CORNELL scene.
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We can see in figure 8 that the gain of variance immediately
drops after depth 1 (path length 3). It is still noticeable at depth
2, and not noticeable after.
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Figure 9. Comparison of the rendering time of the same scenes between
balance heuristic and Optimal MIS. CORNELL scene is a closed box with the
front wall open, some paths are not traced up to their maximum depth. The
staircase is completely closed, so all path are completely traced. VEACH-MIS
scene is widely open, so almost no paths are traced after depth 5.

Computing the optimal weights necessarily takes more
time than the balance heuristic as shown in Figure 9. The
extra time for computing the optimal weights could be used
to compute more samples with the balance heuristic, and the
later could end up with a lower variance.

The extra rendering time can vary greatly depending on
the openness of the scene. The overall cost of computing
Optimal MIS is acceptable for small depths. For long paths
though, it is a waste of time to compute the optimal weights
and it is better to use the regular balance heuristic.

The memory consumption also has to be addressed. We
have to store a technique matrix and a contribution vector for
each pixel and for each path depth. Storing a linear system of
n techniques requires n(n+1)

2 floats for the technique matrix
by exploiting the symmetry of the matrix and 3n floats for
the contribution vector as we store a different vector for each
color channel. Since there is a linear system for each path
depth, the memory consumption increases with the cube of
the maximum path depth as illustrated in Figure 10.

0 5 10 15 20
0

0.5

1

1.5

2

2.5
·109

number of techniques

si
ze

(b
yt

e)

Size of a system

0 5 10 15 20
0

0.5

1

1.5

·1010

number of techniques

si
ze

(b
yt

e)

Cumulative size of all systems

Figure 10. Theoretical size and theoretical cumulative size of storing the
linear systems for each depth.

The overall memory cost of storing all the linear systems
is another strong arguments in favor of not using the optimal
weights for long paths. Without taking into account that some
memory is also required to store the scene and other data
structures for the ray tracing.

A solution is that with the implementation proposed, it is
possible to switch from the optimal weights to the regular
balance weights for any path length. As optimal weights
are more efficient for short path lengths, we propose to
switch back to balance weights for the paths of length 6 or
more. In this manner, the engine benefits from the variance
reduction of the optimal weights for the short paths and the
computation performance of the balance weights for longer
ones. We believe there is still room for improvement in the
technical performance of our implementation.

D. Discussion and future work

The quality of the sampling techniques has a huge impact
on the variance reduction, especially with Optimal MIS.
Using other tools that lead to better techniques such as path
guiding [9] that learns the best way to generate samples for
each scene and scene specialized sampling techniques with
pre-calculated sampling techniques. Also, Optimal MIS can
be used in other algorithms using MIS like Vertex Connection
and Merging [10] or Multiplexed Metropolis Light Transport
[11].

A new sub optimal MIS heuristic has been proposed at
the end of 2019. This new heuristic is the Variance aware
MIS [5] that shows better result than the balance heuristic
for a same computation time. This new heuristic allows less
variance reduction than optimal MIS on simple cases but is
faster. In a renderer such as a Bidirectional Path Tracer, it
could be interesting to compare the performance of this two
approaches and combine them in order to keep their strengths.

We will make an article from this project describing
in detail the solution proposed for light tracing and zero
contribution sample handling. We will also write a PBRT-style
chapter detailing how to integrate and how works the optimal
MIS in complex rendering engine.

VII. CONCLUSION

We managed to implement Optimal Multiple Importance
Sampling in a Bidirectional Path Tracing rendering engine.
To achieve this, we pointed out specific problems regarding
Optimal MIS integration, and proposed effective solutions.
Beyond that, we have proposed a practical way to calculate
the optimal weights directly from the state of the art balance
weights. Then, we were able to benchmark the improvements
brought by this new approach compared to the state of the art
balance heuristic. Finally, we brought to light the performance
limitations of our implementation and proposed a number of
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recommendations related to its use.

Doing so, we achieved the main objective of the project and
our work provides a methodological basis for the integration
of Optimal MIS in other contexts. In addition to the technical
success, this project allowed us to develop important skills in
photo-realistic rendering. This is a field of research that we
are particularly interested in, and we will be able to re-use
the knowledge we have acquired.
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APPENDIX

APPENDIX A
EQUIVALENCE OF OUR DIRECT ESTIMATOR

The technique matrix A and contribution vector b are
defined by:

ai,k =

∫
D

pipk∑
j njpj

(9)

bi =

∫
D

fpi∑
j njpj

(10)

Then the vector α that solves the system is an estimator of
F .

Aα = b (11)

Let’s define an alternative version of the system:

A∗α∗ = b∗ (12)

with:
a∗i,k =

∫
D

nipinkpk∑
j njpj

(13)

b∗i =

∫
D

fnipi∑
j njpj

(14)

We will now prove that the alternative system is equivalent
to the previous one.

Let’s define the N the sample count matrix:

N =


n1 0

n2
. . .

0 nN

 (15)

Then, the system (11) is equivalent to:

NANN−1α =Nb (16)

Then, we can see that:

A∗ =NAN (17)

b∗ =Nb (18)

α∗ =N−1α (19)

So by solving the alternative system, we can get the α∗ vector,
and then deduce α =Nα. Then:

〈F o〉 =
∑
i

αi =
∑
i

α∗i ni (20)

Which is what is implemented in our algorithm 1.
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