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One of Feynman’s early applications of path integrals was to superfluid “He. He showed that
the thermodynamic properties of Bose systems are exactly equivalent to those of a peculiar type
of interacting classical “ring polymer.” Using this mapping, one can generalize Monte Carlo
simulation techniques commonly used for classical systems to simulate boson systems. In this
review, the author introduces this picture of a boson superfluid and shows how superfluidity and
Bose condensation manifest themselves. He shows the excellent agreement between simulations and
experimental measurements on liquid and solid helium for such quantities as pair correlations, the
superfluid density, the energy, and the momentum distribution. Major aspects of computational
techniques developed for a boson superfluid are discussed: the construction of more accurate
approximate density matrices to reduce the number of points on the path integral, sampling
techniques to move through the space of exchanges and paths quickly, and the construction of
estimators for various properties such as the energy, the momentum distribution, the superfluid
density, and the exchange frequency in a quantum crystal. Finally the path-integral Monte Carlo
method is compared to other quantum Monte Carlo methods.
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The quantum mechanics of many-body systems is usu-
ally presented as a difficult subject, and the phenomena
of Bose condensation and superfluidity are often charac-
*Electronic address: ceperley@ncsa.uiuc.edu terized as ill understood. One of Feynman’s early suc-
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cesses (1953) with path integrals is often neglected, his
mapping with path integrals of a quantum system onto
a classical model of interacting “polymers.” The poly-
mers are ring exchanges of bosons in imaginary time.
This gives us a simple classical picture for a superfluid.
Not only is it simple, but it is exact for all thermody-
namic properties. Feynman showed that, even though
the atomic interaction between helium atoms is strong,
Bose condensation still occurs at a lower temperature
than the free-particle transition. This review article is
an update of Feynman’s imaginary-time paths applied to
low-temperature helium.

Besides providing a physical picture, the path-integral
approach translates directly into a computational tech-
nique that allows us to compute all sorts of detailed mi-
croscopic properties of helium: the energy, the pressure,
the momentum distribution, the superfluid density, and
the interatomic correlations, all without any essential ap-
proximations. While the intuitive picture of path inte-
grals helps us to understand superfluidity, it also makes
path integrals into a powerful computational tool. With
recent advances in computer hardware and algorithms,
it is now possible to do respectable exact simulations of
Bose superfluids on modest work stations. In this intro-
ductory review, we hope to convince the reader of the
simplicity and elegance of the approach and to explain
the details of how the method is used.

First, let us digress a bit to review the basic facts con-
cerning helium. In the realm of low-temperature physics,
a helium atom can be considered an elementary particle.
The lowest electronic excitation of a helium atom has an
energy of 2.3 x 10° K above the ground state. Hence,
for temperatures on the order of 1 K, where quantum
effects of the atoms are important, it is a very good ap-
proximation to assume that the helium atoms are in their
electronic ground state and, except for nuclear spin, we
can ignore the fact that a helium atom is made of a nu-
cleus and two electrons. A *He atom has the statistical
properties of a boson, in contrast to a 3He atom, which
is a spin—% fermion.

The interaction between helium atoms is well described
by a nonrelativistic Hamiltonian of atoms interacting by
a pair potential,

N
H= —/\EV? + > v(lr —x3), (L.1)

1<j

where N is the number of particles and A = A2/2m =
6.0596 A2K for *He. The pair interaction v(r) is known
(Aziz et al., 1992) both from theoretical calculations and
from interpretation of experiments in the gas phase and
is shown in Fig. 1. The salient features are a very strong
repulsion for distances less than 2.5 A and a very weak
van der Waals attraction at larger distances, with a well
depth of 10.9 K+0.1 K. Also shown is the “standard”
Lennard-Jones potential. Contributions to the potential
of explicit three-body and higher-order interactions are
non-negligible, particularly as the density is increased.
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FIG. 1. The semiempirical pair potential between two helium
atoms: solid line, Aziz et al. (1992); dashed line, Lennard-
Jones 6-12 potential with € = 10.22 K and o = 2.556 A.

To judge the accuracy of these potentials we might
consider how the calculations of the ground-state energy
at zero pressure have evolved in time. The experimen-
tal binding energy at zero temperature and zero pres-
sure is —7.17 K/atom. This relatively small binding en-
ergy is a result of a cancellation between a kinetic energy
of about 14.5 K/atom and a potential energy of —21.7
K/atom. Green’s-function quantum Monte Carlo cal-
culations with the Aziz-79 potential (Aziz et al, 1979)
give a binding energy of —7.12 K/atom (Kalos et al.,
1981), while calculations with the Aziz-87 potential (Aziz
et al., 1987) which is based on better scattering experi-
ments and quantum chemistry calculations, give a bind-
ing energy of —7.27 K/atom (Boronat and Casulleras,
1994). This 1% overbinding (i.e, 0.15 K out of 15 K) is
probably due to the neglect of a weak repulsion coming
from the overlaps of triplets of atoms. At high densi-
ties, many-body forces give rise to a significant attraction
(Boninsegni, Pierleoni, and Ceperley, 1994). However,
these many-body forces are almost entirely a density-
dependent background energy; they shift the pressure
and energy but do not affect any microscopic properties
in a homogeneous system substantially.

In this article we shall take the point of view that,
even though the helium potential is not exactly known,
an empirical pair potential is close enough to the true po-
tential that the physical properties we consider should be
predicted correctly by the model. The helium-helium po-
tential is better known than almost any other atomic or
molecular potential. The numerical work that we shall re-
port here has used various semiempirical potentials (Aziz
et al.,, 1979, 1992). The differences between these poten-
tials are not significant for our purposes. In fact, many
of the properties of helium can be understood by treating
the potential as a hard-sphere interaction with a radius
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of 2.14 A (Kalos, Levesque, and Verlet, 1974). We shall
occasionally use the term “hard-sphere” interaction, but
we do not mean to imply that the calculations have used
this approximation.

Helium, under its own vapor pressure, is a liquid down
to the absolute zero of temperature because the potential
is so weak that the zero-point motion of the atoms dis-
rupts the formation of a crystal; see Fig. 2. It does form
a solid if it is pressurized to 25.3 bars (*He) and 34.4 bars
(3He). The fact that it is liquid down to zero tempera-
ture makes it a nearly perfect system for studying macro-
scopic quantum effects. Since the atoms are delocalized,
the indistinguishability of the particles becomes very im-
portant. The most dramatic effect is superfluidity, which
occurs when “He is cooled below 2.17 K. If a cylinder
containing helium at sufficiently low temperature is ro-
tated slowly, the helium inside will remain at rest, or in
whatever state it was initially prepared. There are other
related properties: superfluid helium can flow through
capillaries without apparent friction, its thermal conduc-
tivity is effectively infinite, and so forth. The reader can
consult Wilks (1967) for details of the experimental mea-
surements and for the basic theoretical models describing
superfluidity.

The properties of helium are among the best-measured
in "experimental physics. Liquid helium has a natural
ability to clean itself of impurities, so that one does not
have the material complications of superconductivity, for
example. Since helium has two isotopes, 3He and “He,
one can experimentally distinguish the effects of correla-
tion from those of statistics. One can see that the phase
diagram of bulk “He has gas, normal-liquid, superfluid,
and several crystal phases. Many additional phases oc-
cur with *He on substrates. The phase diagram of 3He
is even richer; there are several types of superfluids and
magnetically ordered solid phases.

In this review, we shall concentrate on calculations
of liquid “He. We want to understand what happens
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FIG. 2. The phase diagram of “He.

Rev. Mod. Phys., Vol. 67, No. 2, April 1995

to a box of “hard-sphere” bosons at a temperature low
enough that quantum effects are important. Liquid “He
is a prototypic Bose system, the only simple bosonic su-
perfluid, and is one of the basic models of condensed-
matter physics, only slightly less ubiquitous than a mag-
netic model like the Hubbard model or the Ising model.
It is one of the simplest examples of a phase transi-
tion involving broken symmetry. Bose superfluids are a
model related to the quantum Hall effect (Zhang, Hans-
son, and Kivelson, 1989) and to the melting of vortices
in high-temperature superconductors (Nelson, 1988) and
are closely related to models of magnets (Matsubara and
Matsuda, 1956). They are also a model for preformed
bosons in high-temperature superconductors (Alder and
Peters, 1989; Mott, 1991). Understanding a Bose super-
fluid to the point where we can calculate detailed prop-
erties is probably a necessary first step to being able to
do the same thing for fermion superfluids.

Feynman’s path integrals, which map quantum me-
chanics onto a peculiar type of classical “polymers,” pro-
vide a direct way of calculating its properties. These
classical systems can be simulated with either path-
integral Monte Carlo (PIMC) or path-integral molecular-
dynamics (PIMD) techniques and can be understood
with methods from classical statistical mechanics. This
implies that the thermodynamic properties of a Bose su-
perfluid can be calculated, without approximation, on a
computer.

One might ask why simulation, as opposed to other
theoretical techniques, is called for. To answer this ques-
tion, consider the following syllogism. General classical
systems can be calculated rigorously only by simulation
techniques. (We do not mean to imply that high-quality
classical simulations are easy to do, just that it is possible
to get very good results given enough effort.) Much of the
progress in classical statistical mechanics, such as our im-
proved understanding of critical properties, has been cru-
cially aided by numerical experiments. But quantum sys-
tems reduce to classical systems in the high-temperature
limit. In addition, as we shall see, bosons at any tem-
perature are isomorphic to a classical system of “poly-
mers.” Thus, accepting the premise, we conclude that
exact properties of general Bose systems at nonzero tem-
perature can only be calculated by simulation.

Although one may develop accurate approximate
methods for classes of quantum systems, and nice the-
oretical models to understand the relationship between
various properties, it seems almost certain that simula-
tions are needed for high-accuracy calculations on general
quantum systems and to provide the same sort of sup-
port for theory and experiment as simulation does for
classical systems. One finds, in general, that the more
complex a system is, the more one needs simulation as a
tool. Although this article will discuss mainly bulk he-
lium, frankly simulations for bulk systems are not crucial,
since they are well characterized experimentally. But for
more complicated systems, for example, multicomponent
or inhomogeneous systems, quantum simulation methods



282 D. M. Ceperley: Path integrals in the theory of condensed helium

can be very useful. While other theoretical treatments
become much more complicated and approximate, and
those systems are harder to characterize experimentally,
PIMC simulation is essentially no more difficult or ap-
proximate for complex systems.

It has taken forty years for simulation methods and
computational resources to be developed to the point
where calculations of Bose superfluids are routine. Com-
monly available work stations are sufficient to do most
of the calculations we shall discuss here. Among the re-
sults that have been calculated are the energy, the spe-
cific heat, the radial distribution function, the momen-
tum distribution, the condensate fraction, and the super-
fluid density of bulk liquid “He through the superfluid
transition in both two and three dimensions; properties
of solid *He; atomic exchange frequencies in solid 3He
and on graphite substrates; superfluid densities and en-
ergies of “He droplets; and energies and superfluid den-
sities in two-dimensional charged Bose liquids. We are
not going to review all of the results of those calculations
here. Other reviews are available (Schmidt and Ceperley,
1992).

There are many other theoretical approaches to un-
derstanding superfluidity. The best known are field the-
ory and the two-fluid model. We shall also not review
the enormous literature on the theory of, and experi-
ments on, liquid helium, except where necessary to relate
this literature to the path-integral description. It would
be desirable if the PIMC method could determine when
these theories are applicable and estimate their parame-
ters, but to date there has been little work on that sub-
ject. Since PIMC is an exact method, its predictions do
not necessarily fall out of simple equations. Therefore it
is complementary to other theoretical approaches, which
will lead to more simplified models. PIMC is unique in
being able to make quantitative predictions about quan-
tities such as the superfluid transition temperature, the
condensate fraction, the superfluid density, the freezing
density, and detailed properties of helium films on sub-
strates. All of this can be done with only the assumption
of the interatomic potential.

On the other hand, path integrals do not naturally de-
scribe the quasiparticle picture of liquid helium, as a gas
of interacting phonons and rotons. Feynman switched
away from the path-integral theory of helium in favor
of the excitation picture: phonons, rotons, and vortices.
How to go reliably, efficiently, and simply from the imag-
inary time of path integrals into the real time necessary
to describe excitations is an area of active research.

There are other computational methods by which to
calculate the properties of liquid *He. McMillan (1965)
introduced the variational Monte Carlo method, calcu-
lating energies and condensate fractions using a pair
product or Jastrow trial wave function. Later Kalos,
Levesque, and Verlet (1974) used the Green’s-function
Monte Carlo (GFMC) method to calculate exact energies
for a system of hard-sphere bosons. This was extended
to continuous potentials by Kalos et al. (1981). The
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Green’s-function Monte Carlo method is closely related
to PIMC simulation but is restricted to zero temperature.
In practice, path integrals give more insight and physi-
cal intuition, while being about equally efficient numeri-
cally, even for calculating ground-state properties. As an
example, it is not easy to calculate the superfluid den-
sity in the Green’s-function Monte Carlo method, since
particle statistics do not enter directly, but it is quite
straightforward in the PIMC method. We shall return to
a comparison between these methods at the end of the
paper.

There has been an enormous amount of work using
PIMC for lattice models. When applied to lattice mod-
els, PIMC is called the “world-line” method. Applica-
tions have been in the lattice gauge theory of particle
physics or for models of high-temperature superconduc-
tors. This review will discuss only continuum models,
since the techniques for lattice models, although mathe-
matically related, appear rather different. Most of the
methods discussed here are applicable to bosonic lat-
tice models with straightforward modifications (Krauth,
Trivedi, and Ceperley, 1991). In addition, there are very
efficient “cluster” algorithms (Kawashima and Guber-
natis, 1995) for lattice models that we shall not discuss
here since they have not yet been applied to continuum
models.

There have also been many PIMC calculations for con-
tinuum systems in which particle statistics are not impor-
tant. Examples are electron transfer in liquids and quan-
tum corrections to classical liquids (Berne and Thiru-
malai, 1986). We shall not specifically talk about these
applications but concentrate on the cases in which many-
body exchange can be important. However, the discus-
sion of PIMC techniques applies to simulation of single
quantum particles.

A brief account of this work has appeared in Ceperley
and Pollock (1990). The techniques for classical liquids
are discussed in the book by Allen and Tildesly (1987).
Two general reviews of Monte Carlo methods in statisti-
cal physics have been provided by Binder (1979, 1992).
A general description of path integrals may be found in
Feynman and Hibbs (1965), Schulman (1981), and Klein-
ert (1990). Applications to polymers and to quantum
systems are discussed by Wiegel (1986).

This review explores in detail the path-integral picture,
how it relates to experiments and other ways of thinking
about quantum systems, and how one can use it in prac-
tice to calculate properties of quantum systems. Most of
the paper will be at a very elementary level. Only the
basics of quantum mechanics, probability theory, and sta-
tistical mechanics will be assumed. We shall try to pro-
vide clear, practical guidelines for developing, judging,
and testing new algorithms for path integrals.

The first part of this paper discusses the mathemati-
cal basis of path integrals and the relationship between
path integrals and physical properties. We then make ex-
plicit comparisons between experimental measurements
of liquid helium and path-integral calculations, particu-
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larly those that characterize the microscopic structure.
Hopefully we shall convince the reader that path inte-
grals truly are a reliable way of calculating properties
of superfluids, so that the methods can be applied to
more complex systems with confidence. We shall indi-
cate which kinds of physical properties have been calcu-
lated or could be calculated with the path-integral Monte
Carlo method and the accuracies that can be obtained.
We also show how path integrals can calculate the ex-
change frequencies in solid helium and how these results
compare with experimental measurements on solid 3He.

The rest of this review is concerned with the details
of the path-integral Monte Carlo approach. The com-
putational task of simulating a quantum system can be
broken into three parts. First, it is necessary to opti-
mize the high-temperature action to reduce the number
of time steps needed to reach superfluid temperatures,
as discussed in Sec. IV. Second, it is necessary to move
quickly through “path space.” The Metropolis Monte
Carlo method is used for this, but specialized techniques
are needed to move the paths, since atomic paths must
be exchanged many times to achieve reliable results when
quantum statistics are important. A straightforward ap-
proach can run into difficulty, since the time scales for re-
laxation of the entangled “polymers” can become exceed-
ingly long. This happens when the thermal de Broglie
wavelength is comparable to the interparticle spacing,
which is precisely when quantum many-body effects are
important. Sampling methods are discussed in Sec. V.
We discuss these aspects in some detail, since they are
expected to have applicability far beyond the physics of
helium and many of the issues have not been previously
reviewed. Third, it is not always obvious how best to cal-
culate a given quantum property from a well-converged
path. We discuss the calculation of properties such as
the energy and momentum distribution in Sec. VI. Fi-
nally we compare PIMC with other methods of simu-
lating quantum systems and discuss the computational
complexity of quantum simulations.

Il. IMAGINARY-TIME PATH INTEGRALS

All static properties and, in principle, dynamical prop-
erties of a quantum system in thermal equilibrium are ob-
tainable from the thermal density matrix. If this sounds
unfamiliar, the reader might wish to review the material
in Feynman (1972). In this section, we detail the basic
mathematical properties of the density matrix, give the
relationship between the density matrix, path integrals,
and the statistical mechanics of classical “polymers,” ex-
plain how Bose symmetry is expressed with path inte-
grals, and fix the notation and terminology of our de-
scription.

A. The thermal density matrix

Suppose the exact eigenvalues and eigenfunctions of
a Hamiltonian # are ¢; and E;. In thermal equilib-
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rium, the probability of a given state i being occupied
is e~ Fi/*8T with T the temperature. Hence the equilib-
rium value of an operator O is

(0) =271 Z<¢,-|0|¢,->e-ﬂEi (2.1)

where the partition function is
z=y en
i

and 8 = 1/kpT. In operator notation we write these
equations more simply as Z = tr(e %) and (O) =
tr(Oe™P%)/Z. The operator e A is the density matrix.
In this article 8 will always be real, by density matriz
we shall always mean e A% and the density matrix will
not be normalized by the partition function. For simplic-
ity, our statistical-mechanical ensemble always has fixed
particle number N, temperature 7', and volume §.

Although the above traces can be carried out in any
complete basis, we shall work exclusively in a position
basis where the particles are labeled. We work in a po-
sition basis because then all of the elements of the den-
sity matrix are non-negative and can be interpreted as a
probability. Monte Carlo methods are usually much less
efficient in a basis where some of the matrix elements
are negative. It will become apparent at the end of this
section why the particles are labeled. The position-space
density matrix is

(2.2)

p(R,R'; B) = (Rle™P¥|R)

= S BsR)ePE, (2:3)

where R = {r1,...,rn} and r; is the position of the ith
particle. Assuming space has dimension d = 3 (just to
simplify notation, everything that we discuss can be done
in any dimension), then p(R, R’; 8) is, in general, a func-
tion of 6 N + 1 variables. In the position representation,
the expectation of O becomes

(0)= 27" [dRIRp(R.RIB)(RIOR)  (24)
and the partition function is given by
Z= / dRp(R, R; B). (2.5)

The following simple, exact property of density matri-
ces is the basis of the path-integral method. The product

of two density matrices is a density matrix:
e~ BritB)H _ —BrH —B2H (2.6)

Written for positions, one has a convolution,

p(R1, Rs; B + B2) = / dRap(Ry, Ra; B1)p(Ra, Ra; B).

(2.7)



284 D. M. Ceperley: Path integrals in the theory of condensed helium

B. Discrete path integrals

The path-integral formula for the many-body density
matrix is arrived at by using the product property M
times, giving an expression for the density matrix at a
temperature 7', in terms of density matrices at a temper-

ature MT. In operators,

e PH = (e”"u)M, (2.8)

where the time step is 7 = 3/M. Written in the position
representation,

p(Ro, Rt B) = /"'/dedRz"'dRM—lp(Rle;T)P(Rl,Rz;T)"'P(RM—uRM;T)- (2.9)

If M is finite we have a discrete-time path. If the limit
M — oo is taken, one has a continuous path {R,;} where
0 <t < B. But note that Eq. (2.9) is exact for any
M > 1.

The second property that is needed by path integrals
is that, for MT large enough, we can write down a suf-
ficiently accurate approximation to the density matrix.
Thus we shall be able to write down an explicit form
for the low-temperature density matrix which, however,
involves many additional integrals. Suppose the Hamil-
tonian is split into two pieces, X = T +V, where T and V
are the kinetic and potential operators. Recall the exact
operator identity,

e—T(T+V)+§[T,V] — e—‘r'Te—‘rV‘ (210)
As 7 — 0 the commutator term on the left-hand side,
which is of order 72, becomes smaller than the other
terms and thus can be neglected. This is known as the
primitive approximation:

eTTTHV) e Te ™V, (2.11)
Hence we can approximate the exact density matrix by
the product of the density matrices for 7 and V alone.
One might worry that this will lead to an error in the
limit as M — oo, with small errors building up to a finite
error. According to the Trotter (1959) formula, one does
not have to worry:

M
e BT+Y) = 1im [e_TTe_"v] .
M—o00

(2.12)

The Trotter formula holds if the three operators 7, V,
and 7 + V are self-adjoint and make sense separately,
for example, if their spectrum is bounded below (Simon,
1979). This is the case for the Hamiltonian describing
helium.

Let us now write the primitive approximation in posi-
tion space,

p(Ro, Rz;’T) ~ /dR1 <R0i€_TT|R1> <R1|6_TV|R2> ,
(2.13)

and evaluate the kinetic and potential density matrices.
Since the potential operator is diagonal in the position
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[

representation, its matrix elements are trivial:

(Rile”™|R;) = e "V (B)§(R, — Ry). (2.14)

The kinetic matrix can be evaluated using the eigen-
function expansion of 7. For the moment, consider the
case of distinguishable particles in a cube of side L with
periodic boundary conditions. Then the exact eigenfunc-
tions and eigenvalues of 7 are L™3N/2¢iKnR and AK2,
with K, = 27mn/L and n a 3N-dimensional integer vec-
tor. Then

(Role™™T|Ry) = Y L3N T Kn—iKn(Ro—R1) (3 15)
Ry — R;)?

= (47T —3N/2 _( 0 1 .

(47 A7) exXp |~

(2.16)

Equation (2.16) is obtained by approximating the sum
by an integral. This is appropriate only if the thermal
wavelength of one step is much less than the size of the
box,

At < L2, (2.17)

In some special situations this condition could be vio-
lated, in which case one should use Eq. (2.15) or add
periodic “images” to Eq. (2.16). The exact kinetic den-
sity matrix in periodic boundary conditions is a theta
function, 03(z, q), where z = néz/L and q = e~ AT(m/L)?
See Abramowitz and Stegan (1964), Chapter 16, for its
properties. Just to simplify the equations we shall always
assume Eq. (2.17) holds.

Using Egs. (2.9), (2.13), (2.14), and (2.16) we arrive
at the discrete path-integral expression for the density
matrix in the primitive approximation:

p(Ro, Rp; B) = /de...dRM_1(47r,\7-)——3NM/2

L [ (Rm_1 — Rpn)?
ool f [

m=1

+¢V(Rm)] ) .

This expression relates the quantum density matrix at

(2.18)
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any temperature to integrals over the path Ry --- Rpar_1
of something that is like a classical Maxwell-Boltzmann
distribution function. This is the famous mapping from
a quantum system to a classical system. The Feynman-
Kacs formula, to be used later, is obtained by taking the
limit M — oo, making a continuous path.

Of particular importance for the Monte Carlo evalua-
tion is the following corollary of the convolution property:
if the density matrix is non-negative for any time step 7,
by which we mean p(R1, R2;7) > 0V (R, R2), then the
density matrix is non-negative for all positive multiples
of 7. But we see that the density matrix in the primi-
tive approximation is non-negative, so that the density
matrix at all temperatures must be non-negative.

Let us recap the various restrictions and approxima-
tions that have been made along the way in deriving the
final result:

(i) The Hamiltonian is the sum of a nonrelativistic ki-
netic energy (without a magnetic field) and a real poten-
tial energy that depends only on position.

(ii) We can neglect the commutator between the ki-
netic and potential operators. Trotter showed that this
is mathematically rigorous in the limit of large M. In
Sec. IV we shall explore approximations that converge
faster to the limit. .

(iii) We neglected the periodic boundary conditions in
evaluating the kinetic operator. This was only to keep the
formulas simple. To get rid of this approximation one can
either use the exact periodic density matrix or estimate
errors with an image expansion. Errors from ignoring
the boundary conditions are O(q), exponentially small
at large M. Other boundary conditions, for example,
hard walls, are easy to use.

(iv) We assumed distinguishable particles. We shall
get rid of this assumption in the next subsection by sym-
metrizing over particle labels.

All the approximations are controllable. The price
we have to pay for having an explicit expression for
the density matrix is additional integrations; altogether
3N(M — 1). Without techniques for multidimensional
integration, nothing would have been gained by expand-
ing the density matrix in a path. Fortunately, simulation
methods can accurately treat such integrands. Since we
have a non-negative integrand [see Eq. (2.18)], the time
to do a Monte Carlo calculation (with a predefined error)
will scale roughly linearly with the number of integrals.
It is feasible to make M rather large, say in the hun-
dreds or thousands, and thereby systematically reduce
the time-step error. We shall discuss this in more detail
in Sec. VIII.

C. Our path-integral notation

Before we further develop the ideas of path integrals,
let us specify the notation that we shall use in the rest
of the article.

The time step is defined as
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T = f[/M, (2.19)
and a single Ry is referred to as the kth time slice.
Again Ry, represents the 3V positions of the IV particles:
Ry = {rik,.-. TNk} and r; , a bead, is the position of
the ith particle in the kth time slice. The path is the
sequence of points {Ro,Ry,...,Rpm—1,Rm}. The time
associated with the point Ry is defined as t, = k7. We
occasionally use a space-time notation where we define
Ri = (Rk,tr). Then we can drop the time argument of
the density matrix, p(R1,Rz2) = p(R1, Rz; |t1 — t2]).

A link m is a pair of time slices (R,,—1, R,,) separated
by time 7. The action of a link is defined as minus the
logarithm of the ezact density matrix:

S™ = S(Rm—1,Rm;7) = —In[p(Rpm—1, Rm; 7)]- (2.20)

Then the (exact) path-integral expression becomes

M
p(Ro, R B) = /de --+dRp_1 exp [— Z Sm} .
m=1

(2.21)

There will be contributions to S™ coming from each term
of the Hamiltonian. It is convenient to separate out the
kinetic action from the rest of the action. The exact
kinetic action for link m will be denoted K™,

(Rm——l - Rm)2

m 3N
The inter-action is then defined as what is left:
U™ =U(Rm-1,Rm;7) =S™ - K™ (2.23)

We shall frequently refer to U as the action, but of course
the complete action also includes the kinetic action.

The approximation [Eq. (2.13)] of allowing the kinetic
and potential energies to commute will be called the
primitive approximation. In the primitive approxima-
tion, the inter-action is

[V(Rm-1) + V(Bm)]-

r
We have symmetrized Uj* with respect to R, and R,,_1,
since one knows the exact density matrix is symmetric
and thus the symmetrized form is more accurate. If a
subscript is present on the inter-action, it indicates the
order of approximation; the primitive approximation is
only correct to order 7. No subscript implies the exact
action.

A capital letter U refers to the total link inter-action,
while a small letter u(r;, r;; 7) refers to a contribution to
the action from a single atom or pair of particles (i, 5).
One should not think of the exact U as being strictly
the potential action. That is true for the primitive ac-
tion but, in general, is only correct in the small-7 limit.
The exact U also contains kinetic contributions of higher
order in .

(2.24)
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D. The classical isomorphism

We can interpret the path-integral expression, Eq.
(2.18), as a classical configuration integral; the action is
analogous to a classical potential-energy function divided
by kgT. In the classical analog, the kinetic link action
corresponds to a spring potential connecting beads repre-
senting the same atom in successive time slices. The clas-
sical system is a chain of beads connected with springs.
We call such a chain a polymer. In fact, the bead-spring
model of real-life polymers has had a long and useful
history. The potential action represents forces between
beads of different atoms, keeping the polymers out of
each other’s way (for a repulsive potential). The poten-
tial is represented by an interpolymeric potential, which
is peculiar from the classical point of view in that it in-
teracts only at the same “time” and only between beads
on different chains.

Thermodynamical properties, or static properties diag-
onal in configuration space, are determined by the trace
of the density matrix, i.e., the integral of Eq. (2.18) over
R, with Ry = Rjps. The formula for diagonal elements of
the density matrix then involves a path that returns to
its starting place after M steps: a ring polymer.

We cannot overemphasize the importance of the
quantum-classical isomorphism (Chandler and Wolynes,
1981). Because the partition function of the quantum
system is equal to the partition function of the classical
system, and because of the central importance of the par-
tition function in statistical mechanics, there is an exact,
systematic procedure for understanding many properties
of quantum systems purely in terms of classical statistical
mechanics. Anything about helium that can be written
in terms of the partition function, or more generally as
matrix elements of the density matrix, has a classical
statistical-mechanical analog.

There is a curious shift of vocabulary in going from
the quantum system to the polymer model. Scientists
discussing liquid helium with the aid of path integrals
sometimes resemble children playing the game of “op-
posites,” where the child says the opposite of what is
intended. (I do not want a cookie.) Usually, the chil-
dren’s game degenerates quickly into confusion because
common language is ambiguous and not entirely logical.
Discussions of path integrals should be clearer, since path
integrals are based on mathematics, but the “translation”
is complicated by several features.

The same word applied to the quantum system and the
classical system can mean quite different things. In cases
where confusion of terms is possible, we shall put the
term referring to polymers in quotes. To further avoid
confusion we do not refer to the “energy” of the polymer
model, but to its action. Another confusing term is en-
tropy. The entropy of a quantum system decreases with
temperature. But at low temperature, the corresponding
polymer system is becoming more disordered. The con-
fusion arises because the “temperature” of the polymer
model is not equal to the quantum temperature.

To translate what we mean by temperature into the
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polymer model we must find how 3 appears in the ac-
tion. It is best not to see how the time step appears
in the action because the time step is fixed by requiring
that the action be accurate. Hence the spring constant
and the interbead potential should be fixed as temper-
ature varies. This means that 3 will be proportional to
the number of time slices. The lower the temperature,
the more beads on the polymer. Zero temperature cor-
responds to infinitely long chains. One might worry that
sooner or later space will be completely filled by beads.
This is not a problem because only beads at the same
“time” interact, and hence any given bead always sees N
other beads.

Time is a word that can have at least three different
meanings: real time in the quantum system, the “imag-
inary time” of the path integrals, and the time related
to how the path is moved in the computer program. We
shall call this last time, steps, moves, or sweeps. If we
confuse the first two meanings of time, a word can have
exactly the opposite meaning in the quantum and poly-
mer systems. For example, the “velocity” of a bead is
usefully defined as its displacement from one time slice
to the next, divided by 7. But with this definition atoms
that are “fast” correspond to low-energy atoms, because
they are spread out and their kinetic energy is small.
On the other hand, particles that are trapped in a small
region have a small “velocity” and a high energy. The
inversion of meaning comes because path integrals are
in imaginary time. The kinetic energy in the primitive
approximation is

m=5-5{("*5=)):

Kinetic energy is a constant minus the square of the “ve-
locity.” The constant needs to be there so that the total
kinetic energy will always be positive. It is possible for
a single realization of a path to have a negative kinetic
energy, by being spread out more than usual, but the
average over all paths must be positive. There is a large
cancellation between these two terms as 7 gets small,
since they both diverge as 1/7. We shall find other ways
to estimate the kinetic energy in Sec. VL

Any observable corresponding to a scalar function of
coordinates maps trivially from the quantum system into
the polymer model. For example, the particle density is
simply the average density of the beads,

(2.25)

(2.26)

N
(p(e)) = <Z o(x - rim)> .

Here (---) denotes the configurational average over the
polymer configurations. Since the ring polymers are pe-
riodic in imaginary time, we can average over time slices
m as well as over paths.

There are often several different ways of mapping a
quantum concept onto the classical system. A concept
such as superfluidity is very general and related to many
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quantum-mechanical observables. In a few words, su-
perfluidity is equivalent to the presence of macroscopic
polymers in the classical model. Further explanations
and qualifications of this relation will be given in Sec. III.

A simple but very important quantity is the internal
energy, the sum of the potential and kinetic energies.
As discussed above, the potential energy is identical in
the quantum and classical systems, since it is a function
of coordinates alone. We have also given an expression
for the kinetic energy. Hence we know how to compute
the total energy. But by using Green’s theorem we can
write the internal energy in various other forms having
different fluctuations and different systematic errors. We
call these various forms estimators and discuss them in
Sec. VI.

This aspect of figuring out different ways of calculating
quantum properties in some ways resembles experimental
physics. The theoretical concept may be perfectly well
defined, but it is up to the ingenuity of the experimental-
ist to find the best way of doing the measurement. Even
what is meant by “best” is subject to debate. Although
mapping the quantum system onto a classical system is
a big step forward, there may still be severe problems in
calculating properties. One limitation is that simulation
methods usually calculate only ratios of integrals, as in
Eq. (2.1). Specialized techniques are required for such
quantities as the free energy or entropy. This is a well-
known and well-studied problem in classical statistical
mechanics. Another problem is that the variance of an
estimator may be too high. This is often the case when
the integrand is both positive and negative. It is most se-
vere for real-time or fermion path integrals but can occur
in other contexts as well, for example, any excited state
of a quantum system. Third, many important quanti-
ties of quantum systems are really defined as dynamical
quantities, while the quantum-classical correspondence is
restricted to imaginary time. Often, one can reformulate
the quantum property in imaginary time, but not always.
We shall give some examples in the next sections. There
is still much to be done in learning how to exploit the
quantum-classical correspondence.

E. Visualizing the paths

If path integrals are to be a useful, intuitive tool for
understanding quantum systems, one needs to develop
convenient ways of depicting paths. Here we give some
pictures of two-dimensional path integrals (two dimen-
sions because we do not want to consider the additional
problem of projecting out the z dimension). What is
usually done is to plot the t¢race of the paths in the
X-Y plane, projecting out the “time” coordinate. What
is shown in Fig. 3 are six distinguishable He atoms (IN=6)
in a periodic square at 2 K with 80 time slices. This is
four times as many slices as are needed for a real simula-
tion. The filled circles shown are markers for the begin-
ning of imaginary time, i.e., R;. There is nothing special
about that value of imaginary time, but it is useful to

Rev. Mod. Phys., Vol. 67, No. 2, April 1995

_,..,..,,...,,.TI..%_
4,_ —
[ ]
2 —

= oF ]

>+ p
_4~ —
'...l...l...i‘..|..h|...ﬂ“

4

-4 -2 2

0
x (R)

FIG. 3. The trace of the paths of six helium atoms at a tem-
perature of 2 K with 80 steps on the paths. The filled circles
are markers for the (arbitrary) beginning of the path. Paths
that exit on one side of the square reenter on the other side.
Successive beads are connected with straight lines.

place a mark at a common bead for each polymer, since
the potential acts only at equal “times.” It also helps
the eye to pick out individual atoms when their paths
overlap.

Shown in Fig. 4 are the same paths projected onto
the (z,t) and (y,t) planes; the vertical axis is imaginary
time. This is the world-line perspective. Clearly the
trace perspective is more useful, since the spatial, two-
dimensional relationship of the atoms is very important.

What is striking about the trace perspective is the

X y

FIG. 4. A world-line diagram of the paths shown in Fig. 3.
The vertical axis is imaginary time.



288 D. M. Ceperley: Path integrals in the theory of condensed helium

messy nature of the paths. They do not look like our ide-
alized picture of ring polymers. In fact real polymers are
quite different. On the length scale of individual atoms,
chemical bonds keep the polymer rigid, but on a much
larger length scale, real polymers are also messy looking.
Because they cannot self-intersect, their paths are more
spread than those of our “ring polymers.”

Both real polymers and these paths are “fractals.”
Suppose we take any one of the line segments in the trace
perspective and blow it up by making the time step many
times smaller. To generate Fig. 5 we have used 8192 time
slices. We can see that the line segment that was used in
Fig. 3 to connect the beads is a poor approximation to
this “fuzzy” object. As the number of time steps tends
to infinity, the set of points visited by the paths will oc-
cupy a finite area; it has a Hausdorf dimension 2, while
any smooth curve will have dimension 1. (A real poly-
mer would have a fractal dimension between 1 and 2,
but that does not concern us.) In the small-7 limit the
kinetic action always dominates. This means that the
fractal character seen in Fig. 5 is universal, independent
of the potential. In the world-line picture, we see that
the slope dr/dt is almost nowhere continuous. That curve
would appear more and more ragged if the graph were
expanded. For a detailed discussion of these issues see
Mandelbrot (1977).

This fractal character of paths results in a very basic
difference between viewing trajectories from a molecular-
dynamics simulation and from path integrals. In a
“movie” of a path (where viewing time is along the imag-
inary time direction) one’s eye is distracted from seeing
any pattern by the continual jerking of the particles, so
“movies” are not a satisfactory way of getting insight into
path integrals.

We are seriously misrepresenting the character of the
paths by simply connecting the neighboring beads with
straight lines. It is far better to shade (or even better
color) the area in between the beads, to indicate which
points could have been visited. This is closely related to
a way of calculating a better approximation to the action,
the cumulant action, which we shall discuss later. Shown
in Fig. 6 are the same paths with all points that are
within a distance a of the beads shaded. For a detailed
discussion of how this figure was generated, see Moran

FIG. 5. The trace of a free-particle path going from one circle
to the other with 8192 steps.
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FIG. 6. The same paths as in Fig. 3. The shaded area are
points within 0.38 A of a visited point.

and Wagner (1994). On a raster device it is very easy
to generate this type of plot; all of the pixels within a
thermal wavelength A, of a bead are turned on.

In common with classical systems, periodic boundary
conditions pose another problem for visualization. The
paths really live on the surface of a 2D or 3D torus. By
showing just the central unit cell, one introduces some
unphysical features: a path can disappear from one side
of the square and reappear on the other side. It is more
satisfactory to repeat the unit cell, so that each polymer
appears uncut at least once in the diagram. The same
paths are plotted in this extended view in Fig. 7. The
central cell is outlined with dashes. The extended cell
view is especially important for superfluids, since it is
the topological difference of paths that wind around the
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FIG. 7. This is the same trace as in Fig. 3, but the paths have
been replicated four times to eliminate the artificial bound-
aries.
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boundaries that counts.

We have already explained how “true” paths are messy
objects. The fine-scale details are important for get-
ting the calculation right, but not for viewing the paths.
Every little detail is not important, whereas the overall
shape and connectivity of a path is important. It is much
more pleasing to the eye to smooth the paths. In Fig. 8
we have zeroed out all Fourier components above some
threshold. In fact, Fourier smoothing represents a differ-
ent way of doing discrete path integrals. Instead of work-
ing with a finite number of time steps, it is equivalent to
keep a finite number of Fourier components. We shall
discuss the Fourier path-integral method in Sec. V.E.

There is another way in which path integrals are unlike
polymers: the paths have a direction. They correspond
to directed polymers. One can reverse the direction of
“time” for a whole system and one will get an equally
probable path, since the action is invariant on changing ¢
to 8 — t. But one cannot reverse the time on one atom’s
path and not on another atom’s path. Neighboring paths
may prefer to have their “velocities” parallel rather than
antiparallel. Thus it may be important to place an arrow
on each particle’s path of a trace to indicate its “velocity.”

One should always keep in mind that all these pic-
tures show are points sampled from a product of ther-
mal density matrices. They have only an indirect rela-
tionship to real-time dynamics or paths. They tell us
mathematically precise information, but it must be cor-
rectly interpreted. Correlations along the paths are the
Laplace transform of real-time linear-response functions.
This will be considered in more detail in Sec. VL.F. Even
though the imaginary-time dynamics is not directly real-
time dynamics, it is very important. For example, it is
impossible to tell from a single time slice whether or not
a liquid is a superfluid, but one can recognize a superfluid
by examining the connection of the paths in imaginary
time.
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FIG. 8. The same trace as shown in Fig. 3, but the paths have
been Fourier smoothed by taking only the lowest 11 Fourier
components.
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F. Bose symmetry

The density matrices up to this point have been appro-
priate to distinguishable (Boltzmann) particle statistics,
since the indistinguishability of particles was not taken
into account. For Bose systems only totally symmetric
eigenfunctions ¢;(R) contribute to the density matrix—
those such that ¢;(PR) = ¢;(R) where P is a permuta-
tion of particle labels, i.e., PR = (rp,,rp, ...rpy). De-
fine the particle symmetrization operator

PH(R) = % 3 $(PR). (2.27)
P

If the Hamiltonian is symmetric under particle exchange,
all states are either even or odd with respect to a given
permutation. Then P will project out Bose states. If we
apply P to the density matrix, we will obtain the bosonic
density matrix. Written in position space, this is

pB(Ro, R1;8) = % Z p(Ro, PRy; ) (2.28)
P

where pp is the boson density matrix and p is the boltz-
mannon density matrix. Note that we can apply the per-
mutation to the first argument of p, the last argument,
or both. We will get the same result.

A straightforward evaluation of the permutation sum
is out of the question once N gets large, since there will
be N! terms. The bosonic density matrix for free parti-
cles is an object known in mathematics as a permanent
(a determinant with all the minus signs removed). A
permanent takes on the order of N x 2V~ operations to
compute explicitly (Minc, 1978), as compared to a de-
terminant, which takes only N3 operations. Fortunately,
each term in the sum is positive, so we can sample the
permutations in the sum. A bosonic simulation consists
of a random walk through the path space and the per-
mutation space. For fermions the cancellation between
the. contributions of even and odd permutations gener-
ally rules out a Monte Carlo evaluation of the integrand
without some major modification.

The partition function for a Bose system has the form

M
1 m
ZBzmzp /dRO---dRM_IeXp(— E_IS ),
' (2.29)

with new boundary conditions on path closure: PR, =
Ry. Paths are allowed to close on any permutation of
their starting positions. The partition function includes
contributions from all N! closures. At high tempera-
ture the identity permutation dominates, while at zero
temperature all permutations have equal contributions.
In the classical isomorphic system, ring polymers can
“cross-link.” (We only mean to be suggestive: cross-
linking of real polymers is quite different.) A two-atom
system of M links can be in two possible permutation
states: either two separate ring polymers, each with M
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links, or one larger polymer with 2M links.

Figure 9 shows the world-line view of a typical path of a
2D system of six *He atoms in the superfluid state. Three
of the atoms are involved in a cyclic exchange, which
wraps around the periodic boundary conditions. This
path wrapping around the boundaries is called a winding
path and is a direct manifestation of superfluidity. In
the world-line view, superfluidity appears as a barber-
pole or candy-cane design of the paths. The next figure,
Fig. 10, shows the trace perspective (the projection onto
the X-Y plane) of the same paths. Here the connection
of the paths and of the winding is much more evident.
The paths have a net “velocity” to the right.

Any permutation can be broken into a product of cyclic
permutations. Each cycle corresponds to several poly-
mers “cross-linking” and forming a larger ring polymer.
Quantum mechanically the liquid does this to lower its ki-
netic energy. In the classical language, cross-linking takes
place to maximize the “entropy”; there are many more
cross-linked configurations than non-cross-linked ones.
According to Feynman’s 1953 theory, the superfluid tran-
sition is represented in the classical system by the forma-
tion of macroscopic polymers, i.e., those stretching across
an entire system and involving on the order of N atoms.
What we shall see in the following sections is the ex-
plicit dependence of superfluid properties on these macro-
scopic exchanges. Monomers are atoms not involved in
an exchange—atoms 7 such that P; = i. We shall find
that the average monomer density is directly related to
the free energy of an isotopic impurity.

It is easy to determine when quantum statistics will
be important. In the absence of interaction, the size of a
path (or polymer) is its thermal wavelength,

X y

FIG. 9. The world-line view of same paths as in Fig. 10.
Three of the atoms are involved in an exchange which winds
around the boundary in the z direction.
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10— T

FIG. 10. The extended trace of six *He atoms at a temper-
ature of 0.75 K and with 53 time slices. The dashed square
represents the periodic boundary conditions. Three of the
atoms are involved in an exchange which winds around the
boundary in the x direction.

Ag = (2802 (2.30)
When the size of the polymer equals the interpolymer
spacing, roughly p~1/¢, it is at least possible for the poly-
mers to link up by exchanging end points. This relation-
ship, Ag = p~ /4, defines the degeneracy temperature

Z/th

p

= . 2.31
mkg ( )

Tp

For temperatures higher than Tp, quantum statistics (ei-
ther bosonic or fermionic) are not very important.

In a liquid state, Tp gives a surprisingly good esti-
mate of the superfluid transition temperature. For ideal
Bose condensation in three dimensions, T./Tp = 3.31.
For liquid “He at saturated-vapor-pressure (SVP) condi-
tions (essentially zero pressure), T./Tp = 2.32. Particle
localization can cause T, to become reduced. For exam-
ple, as liquid *He is compressed, T, decreases somewhat,
while T increases, so that by the time liquid “He freezes
T./Tp = 1.64. To explain this change, Feynman (1953)
argued that the effective mass of the helium atoms is
larger than the bare mass and increases with density.
Later, we shall determine this effective mass with path
integrals. Putting particles in a quantum solid suppresses
exchange to such an extent that it is no longer a super-
fluid. In “He films, the transition is of the Kosterlitz-
Thouless type, but nonetheless the estimate of the su-
perfluid transition is reasonable: T./Tp = 1.8 at the
minimum liquid density (Ceperley and Pollock, 1989).
Note that the Fermi energy for an ideal spin-% Fermi lig-
uid is given in terms of the degeneracy temperature by
Er/(kpTp) = 7.6 in 3D and 6.3 in 2D.

In Eq. (2.28), it appeared that R, was singled out to
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receive the permutation. Examination of Fig. 10 shows
that the time slice where one relabels the particles is
arbitrary. By change of variables one can make the per-
mutation occur at any time slice. This is analogous to
the international date line on the Earth: by convention,
we change the calendar date in the middle of the Pacific
Ocean, but the date line could have been placed any-
where. We could also insert a permutation on every link,
but this would be a useless relabeling of the particles. As
on the Earth, it is convenient to label particles in neigh-
boring time slices the same, but somewhere along the
path the labels must change if the permutation is nontriv-
ial. All time slices are still equivalent, and they can all be
used to calculate averages. Whenever one constructs an
estimator for an observable, one should consider whether
Bose symmetry has been taken into account properly.

Molecular hydrogen is another example of how per-
mutational symmetry is treated with path integrals. In
liquid or solid molecular hydrogen, two molecules ex-
change places very rarely, but the protons within a sin-
gle molecule exchange very frequently. It is found that,
in the absence of magnetic impurities, the total nuclear
spin of the molecule is conserved for very long periods of
time, so there are effectively two chemical species, para-
hydrogen and ortho-hydrogen. The para-hydrogen nu-
clear spatial wave function must be symmetric under the
exchange of the two protons, i.e., bosonlike. To calculate
the partition function of para-hydrogen with path inte-
grals, we must allow paths to close on themselves with
a possible permutation, where atoms within the same
molecule may exchange. There are 2%V such permutations
where N is the number of hydrogen molecules. These
pair permutations will not cause superfluidity, since they
only modify the local wave function, but they can affect
the thermodynamic properties. See, for example, Runge
et al. (1992) or Marx et al. (1993). If we further as-
sume that the molecule is localized at a crystal site and
the molecular bond length is fixed, the only dynamical
variable left is the bond angle. Then the path for each
molecule is a path on the surface of a sphere. For para-
hydrogen, points related to each other by inversion sym-
metry are considered equivalent. For ortho-hydrogen, the
molecular wave functions are antisymmetric under parti-
cle exchange. Each pair exchange brings in an additional
minus sign. Hence the integrand of the partition function
is both positive and negative, so that it cannot map onto
a classical distribution function.

For any discrete or continuous symmetry one can con-
struct a projection operator for states restricted to a par-
ticular symmetry. Whether this is computationally use-
ful depends on whether one has introduced too many
minus signs in the process. Luckily for bosons there are
no minus signs.

l1l. PATH INTEGRALS AND HELIUM

In this section we systematically go through the prop-
erties of liquid helium, explain how they are related to
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path integrals, and compare the results with experimen-
tal data. In particular, we focus on the properties directly
related to superfluidity—the specific heat, the momen-
tum distribution, and the superfluid density. Finally, we
discuss exchange in solid helium and attempt to calculate
the excitation spectrum with path integrals.

A. The lambda phase transition

It was the shape of the specific-heat curve and its sin-
gularity at 2.17 K that gave rise to the name of the
lambda transition. See Fig. 11. Feynman (1953) ex-
plained how macroscopic bosonic exchange gives rise to
this peak. First he argued that the primitive approxi-
mation for the action would be qualitatively correct for
temperatures near the critical temperature if we allowed
the mass to be an effective mass even with one time slice.
He arrived at the simple form for the partition function

Zyur =~ Kg/de(R) ZPjexp (~%) , (3.1)

where f(R) is a normalized configurational distribution
that at low temperature equals the ground-state density:
f(R) = ||¢o(R)||?, K5 is a normalization factor, and A\*
accounts for the effective mass. This partition function
was earlier proposed by Matsubara (1951) based on the
symmetry of the boson ground state.

The Matsubara-Feynman approximate partition func-
tion captures the physics of the lambda transition. Ac-
cording to Feynman (1953), “It is not hard to understand
that Eq. (3.1) gives a transition. If f were a constant it
would be the same as a partition function for an ideal gas.
The fact that f is not perfectly uniform cannot change
this much.”

One crucial difference is that the density of liquid he-
lium is uniform, while ideal bosons tend to attract each
other to maximize exchange and create pockets of high
density. The interatomic potential between helium atoms
will not allow regions of high density. To derive a sim-
pler lattice model, Feynman neglected the temperature
dependence of f(R) and assumed that all configurations
R are more or less equivalent, as long as the atoms are
well separated. The neglect of the temperature depen-
dence is justified empirically by noting that the pair-
correlation function does not change much in the region
of the lambda transition (Ceperley and Pollock, 1986).
We can assume f(R) = 77 > p 6(R — PRy) where Ry is
a typical configuration of atoms. For simplicity, Feyn-
man (and later Kikuchi) took Ro to be a perfect cubic
lattice. The hard-core repulsion between helium atoms is
then taken into account by allowing precisely one atom
per lattice site. These approximations do not concern us
now, since the PIMC computations will not use them.
Taking a reference configuration, Ry, let us define the
density of exchange distances,

n(@) = 3 D0l — (Ro — PRo/(4A)].  (32)
P
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Then the partition function reduces to

Zrk = Kg / dan(z) exp (_%) . (3.3)

On a perfect cubic lattice with spacing d, = will be a
multiple of d2/(4)\*). Then y = exp[—d?/(4)*p)] is the
link probability. Feynman argued that in the critical re-
gion only permutations that send an atom back to its
original site or to nearest-neighbor sites are important.
If the permutation P is broken into cycles, a 4-cycle cor-
responds to a square on the lattice. A valid permutation
consists of a nonintersecting collection of polygons on the
lattice, nonintersecting because each atom can be a mem-
ber of only a single cycle. Thus the partition function is
obtained by finding the number of ways of drawing non-
intersecting polygons on a lattice. In general, this com-
binatorical problem does not have a known solution. But
on a two-dimensional honeycomb lattice Nienhuis (1984)
has managed to evaluate the lattice sums exactly for the
critical value of y, showing that the lambda transition is
of the Kosterlitz-Thouless type.

Qualitatively, one can understand why there will be
a phase transition when the temperature is low enough.
From Feynman (1953a): “A single large polygon of r
sides contributes a very small amount y" with y < 1.
But a large polygon can be drawn in more ways than a
small one. Increasing the length r by one increases the
number of polygons available by a factor say s (perhaps 3
or 4) although the contribution of each is multiplied by y.
Thus if sy < 1 (high T') large polygons are unimportant.
As T falls, suddenly when sy = 1 the contributions from
very large polygons (limited by the size of the container)
begin to be important. This produces a transition.”

In Feynman’s original calculation, he got a third-order
transition because of approximations made in calculat-
ing the lattice sum. Kikuchi, Denman, and Schreiber
(1960) have refined these calculations using more elabo-
rate methods. Chester (1955) showed, using cluster ex-
pansion methods directly on the partition function of Eq.
(3.1), that introducing any correlation at all between the
loops will change the transition from third order (ideal
bosons) to second order.

Differentiating Eq. (3.3) with respect to 3, we obtain
for the energy

3T Tz
8=60+?—" J\<f) (34)
and for the specific heat
3 Ty  T*(z—(x))?)
=-— . 3.5
Cyp=3 -2+ N (8.5)

The specific heat is proportional to the mean-squared
fluctuation of the exchange distance. At the critical point
the specific heat diverges because there are both long and
short exchanges present. Because it has to do with the
stretching of paths, this is a purely kinetic contribution.
We shall see in, Sec. VI that there is an exact equivalent
to Eq. (3.4), one not based on an approximate partition
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function.

Elser (1984) has performed a Monte Carlo evaluation
of the sum on a cubic lattice, obtaining the specific heat
shown in Fig. 11. To get the transition temperatures
to match, we adjusted the effective mass of the helium
atoms to be 1.30 times the bare mass. While this is a
somewhat small value for the effective mass, scaling the
temperature also takes into account the approximation
of a cubic lattice and the restriction to nearest-neighbor
exchanges. [When Elser calculated the specific heat, he
dropped the first two terms of Eq. (3.5) and plotted only
the fluctuation term, which is the one that diverges at T¢.]
There is a remarkable agreement between the lattice spe-
cific heat and the experimental measurement, thus ver-
ifying Feynman’s conjecture that the Feynman-Kikuchi
model is a correct description in the critical region.

Simulations of the lattice model of course run much
faster than those of the detailed microscopic model. Be-
low T, one has to make modifications to the Matsubara-
Feynman partition function to get the right specific heat,
as explained in Feynman (1953b). This is because the
number of permutations depends on the local density.
But density fluctuations (phonons) have been left out of
the lattice model.

Shown in Fig. 12 is the probability P,, that a given par-
ticle belongs to a cycle of length m (hence ) P, = 1)
as a function of temperature. These results were ob-
tained with PIMC simulation and a realistic interatomic
potential. One sees that above T, very few particles are
involved in any exchanges, but at the transition there are
many exchanges. The monomer density, P; is related to
the energy of placing an impurity in *He, as we discuss
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FIG. 11. The specific heat of *He: solid line, experiment at
saturated vapor pressure (Wilks, 1967); triangles with error
bars, PIMC calculations (Ceperley and Pollock, 1986); open
circles, Feynman-Kikuchi model with 20° sites (Elser, 1984).
In Elser’s calculation, only the fluctuation term in the specific
heat has been included, and the temperature has been scaled
to match the experimental transition temperature.
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FIG. 12. The probability that an atom belongs to a permu-
tation of length m as a function of temperature in liquid *He
at saturated vapor pressure. The solid line represents the
probability of a nonexchanging atom. The dashed lines are
for m = 2,3,4,5. All curves approach the zero-temperature
value of 1/N = 1/64.

below.

The phase transition for liquid helium belongs to
the universality class characterized by a two-component
order parameter, usually represented by a single-
particle wave function ¢(r) and a free-energy functional
(Ginzburg and Pitaevshii, 1958; Pitaevskii, 1961) appro-
priate for long-wavelength excitations:

F= [ar[AO60E + o) + Jo0)t] (30

where p is the chemical potential and V represents the
short-ranged helium-helium potential. The chemical po-
tential is negative and vanishes at the transition tem-
perature, p = (1 — T/T.)po. The free energy vanishes
above T,, where the minimum energy is attained when
¢(r) = 0. But below T, the ground state has a bro-
ken symmetry because the phase of ¢ is undetermined:
o(r) = e/ —p/V.

Elser (1984) has shown in the dilute-gas limit how the
¢* theory arises from bosonic exchanges in the path-
integral description. A two-component field theory re-
sults from the fact that a permutation cycle has two pos-
sible senses (except for 1 and 2 cycles). Such a deriva-
tion has to make some assumptions about the existence
of long exchanges, since application of pressure to “He
produces a solid phase, which has completely different
properties and a different effective action.

B. The energy of liquid *He

Switching now to computations that use the best in-
teratomic and path-integral techniques, we see in Fig. 13
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FIG. 13. The energy/atom of *He: solid line, experiment at
saturated vapor pressure; symbols with error bars, PIMC cal-
culations (Ceperley and Pollock, 1986). The upper panel is
the potential energy (solid line and left scale) and kinetic en-
ergy (dashed line and right scale).

the energy of liquid *He as a function of temperature
at saturated-vapor-pressure (SVP) conditions. One sees
that there is a good agreement with experiment. But
the effects of superfluidity are hardly evident in this
curve; there is just a small point of infinite derivative
at T, = 2.17 K. Figure 11 shows the specific heat as
obtained by taking finite differences of the path-integral
energies. We shall discuss alternate ways of computing
the specific heat in Sec. VI.B. Although the agreement
with experiment is not bad, the statistical error of Cy
is large. Lattice models such as the Feynman-Kikuchi
model are much more convenient for determining critical
properties such as critical exponents, since they are so
much faster than continuum calculations. However, the
continuum calculations are necessary for calculation of
detailed microscopic properties and away from the criti-
cal point.

The effect of Bose condensation on the kinetic energy
is more pronounced. At the transition, the kinetic energy
drops by —1.2 K/atom, but the potential energy increases
by only 0.25 K. Thus the atoms are able to delocalize
with hardly any change in their spatial distribution. It is
difficult with neutron scattering measurements to see the
small change in kinetic energy. It is possible to measure
the much larger dependence of kinetic energy on density,
which is shown in Fig. 14, both for liquid and solid he-
lium. The evident agreement means that the core of the
He-He interaction has been chosen to have the correct
size, since it is the core size which controls the kinetic
energy.

Pollock and Runge (1992b) have directly calculated the
transition temperature for liquid helium at saturated va-
por pressure using PIMC and a realistic interatomic po-
tential. To estimate the critical temperature they used
ideas of finite size scaling, which have been extensively
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FIG. 14. The kinetic energy in *He as estimated from PIMC
at SVP as a function of density (solid line). Most of the calcu-
lations were done at 4 K. The jog in the curve near 30 nm™3
is the reduction in kinetic energy upon solidification. The
points are estimates from deep-inelastic neutron scattering.
Filled circles are the measurements in the solid phase (Blas-
dell, Ceperley, and Simmons, 1993) at various temperatures
between 1 and 2 K. Open squares are measurements in the
normal liquid at 4.25 K by Herwig et al. (1990).

applied to lattice models. The very simplest, but surpris-
ingly accurate, way of determining the transition temper-
ature is to calculate the free-energy difference from peri-
odic to antiperiodic boundary conditions. If ¢(r) is the
wave function of the order parameter, then antiperiodic
boundary conditions are defined by ¢(r + L) = —¢(r)
with L the size of the simulation box. Using the energy
functional of Eq. (3.6) we determine that the energy to
make this twist equals —uAn?2L?~2/V in the superfluid
phase. Thus for d = 3 the free-energy change will be
proportional to L. In the normal phase, the free energy
to make the twist will decrease exponentially with the
correlation length, £, AF ~ e~ L/, As we shall discuss
in the following sections, this free-energy change can be
directly calculated by path integrals: It is

AF = —kpT In(e'W="/L) (3.7)

where W, is the instantaneous winding number in the &
direction [see Eq. (3.32)] and the brackets represent an
average over the distribution of paths. The twist free
energy is related to the difference in probability of an
even winding and of an odd winding.

Figure 15 shows the result of this calculation for vari-
ous sized systems and as a function of temperature. One
can see very clearly that there is a change in behavior at
the transition temperature. Pollock and Runge estimate
the transition from this plot to be T, = 2.1940.02 K. The
experimental value is 2.172 K. This remarkable agree-
ment (along with others that we shall discuss) removes
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FIG. 15. Free-energy difference between periodic and an-
tiperiodic boundary conditions for the indicated temperatures
(in K) as a function of the number of atoms. An estimate of
T., based on extrapolating the slopes of the curves to zero,
gives 2.19 + 0.02 K (Pollock and Runge, 1992). The experi-
mental transition temperature is 2.172 K.

any doubt of the underlying mechanism of the super-
fluid transition. Path-integral Monte Carlo simulation
has succeeded in going directly from a parameter-free
microscopic Hamiltonian to the experimental transition
of a quantum many-body system.

C. The pair-correlation function and the structure function

The pair-correlation function g(r) and its Fourier
transform, the structure factor S(k), describe the micro-
scopic arrangement of atoms in liquid helium. There have
been extensive and systematic measurements of these
functions with neutron and x-ray scattering experiments.
The calculated radial distribution function is shown in
Fig. 16 and compared with x-ray and neutron scattering
experiments. The largest disagreement, of about 2%, is
at the nearest-neighbor peak. One expects errors in the
peak height of order N™! =~ 1% because of finite size
effects. In fact, the disagreement between the two scat-
tering measurements is larger than between theory and
experiment. The comparison with the PIMC simulations
gives us confidence in both the numerical methods and
the assumed intermolecular potential.

The pair-correlation function shows very little effect
of Bose condensation. Shown in Fig. 17 is the differ-
ence between the pair correlations of a boson system and
a system with no bosonic exchange, i.e., “boltzmannon
statistics” at the same temperature, 2 K. This is an exam-
ple of a computer “experiment” that is easy to perform
on the computer but impossible in nature. The maxi-
mum difference is only 2%. This temperature, just below
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FIG. 16. The low-temperature pair-correlation function of
liquid helium at the saturated vapor pressure density of
0.02182 atoms A™3: solid line, PIMC calculation at 1.21 K;
(O, neutron-scattering measurement of Sears (1979) at 1.38
K; x, x-ray scattering of Robkoff and Hallock (1981) at 1.38
K.

T., was chosen because one expects that the effects of
Bose statistics on the structure will be largest there. At
higher temperatures, bosonic exchange is unimportant;
at lower temperatures the thermal wavelength of even
a distinguishable atom becomes greater than the inter-
particle spacing. The insensitivity of g(r) to exchange
justifies the assumption that Feynman made, that the
spatial distribution f(R) is independent of temperature.

0.04

0.02

FIG. 17. The difference in the pair-correlation functions of
“distinguishable” and boson-liquid helium at a temperature
of 2.0 K and a saturated vapor pressure density of 0.02182
atoms/A 3. The peak height of g(r) is reduced by about 2%
because of bosonic exchange.
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FIG. 18. The structure factor at 1.38 K and saturated vapor
pressure: solid line, as calculated by PIMC; e, measured by
neutron scattering (Sears et al., 1979); O, measured by x-ray
scattering (Robkoff and Hallock, 1981).

The next three figures compare the PIMC calculated
structure factors with neutron and x-ray scattering mea-
surements. Figure 18 is in the superfluid phase (1.38 K).
The agreement is superb. Figure 19 shows this compari-
son in the normal liquid, near the liquid-gas critical point.
Except at long wavelengths the comparison is very good.
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FIG. 19. The structure factor at 4.25 K and saturated vapor
pressure; solid line, as calculated by PIMC at a density of
0.01873 A~3; e, as measured by neutron scattering (Sears et
al., 1979); O, as measured by x-ray scattering (Robkoff and
Hallock, 1981). The lowest wave vector actually calculated
by PIMC is at 0.42 A~'. The PIMC curve shown is the
Fourier transform of the pair-correlation function, which has
been extrapolated to values for r greater than the size of the
simulation cell. Hence the disagreement for k < 0.5 A~ arises
because the small size of the simulation cell could not contain
longer-wavelength density fluctuations.
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FIG. 20. The difference between the structure factor at 4 and
1.67 K at a density 0.0256 A~3: solid line, as computed with
PIMC; dashed line, as measured by x-ray scattering (Robkoff
and Hallock, 1982).

The smallest wave vector in the simulation is at 0.42 A1
so that the small cells with a fixed number of particles
do not have the density fluctuations caused by the grow-
ing compressibility. Finally Fig. 20 shows the difference
in the structure factor at high density in going through
the superfluid transition, as calculated by PIMC and as
measured by experiment. The calculated and measured
changes are rather similar. This last plot shows that not
only is PIMC getting the structure correct, it is also get-
ting the change in structure due to Bose condensation
correct.

D. The momentum distribution

London (1938) supposed the superfluid transition to be
the analog of the transition that occurs in an ideal Bose
gas where, below the transition, a finite fraction of par-
ticles occupy the zero-momentum state. It is hard to un-
derstand how particles with strong repulsive interactions
could behave like free particles. How can they remain in
a zero-momentum state, which means that they are uni-
formly occupying the entire box, while at the same time
keeping out of each other’s way?

Penrose and Onsager (1956) defined Bose condensation
in an interacting system as the macroscopic occupation
of a single-particle state, namely the state of zero mo-
mentum. Using Feynman’s partition function and argu-
ments concerning cycle length distribution, they showed
that there would be Bose condensation below 7. but
not above. They estimated that at zero temperature
8% of the atoms have precisely zero momentum. Since
that time the ground-state calculations have been im-
proved considerably, for example, with the variational
Monte Carlo calculations of McMillan (1965) and the
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Green’s-function Monte Carlo calculations of Whitlock
and Panoff (1987), but the estimate of the ground-state
condensate is still close to 8%.

The condensate fraction has a simple meaning in terms
of path integrals. The probability density of observing a
single atom with momentum k is defined as

2
ni, = (2m)~Nd / dks - - - dky l / dR$(R)e~KR| | (3.8)

where ¢(R) is the many-body wave function. If we per-
form the integrals dk; - - - dky and thermally occupy the
many-body states, we find

1 k(s et
nx = W/drldr’le k(=) (rq, 1)), (3.9)

where the single-particle density matrix is

n(ry,r})
Q '
=7 dry---dryp(ri,re,...,TN,T7,T2,...,TN; G).

(3.10)

We have assumed periodic boundary conditions in a cell
with volume Q. Note that n(r,r’) and ny are normalized
as [drn(r,r) = Q and [dkny, = 1. For a homogeneous
isotropic liquid we have n(r,r’) = n(jr — r’|]), in which
case n(0) = 1. The kinetic energy is proportional to the
second moment of nj and to the curvature of n(r) at
r=0.

According to Eq. (3.9), the momentum distribution is
the Fourier transform of an off-diagonal element of the
density matrix. The paths that we have been discussing
up to this point, each ending at the start of another par-
ticle’s path, cannot be used to calculate the momentum
distribution. Simply put, to get an observable in mo-
mentum space we cannot do the simulation entirely in
the position representation. All that is needed to get the
momentum distribution is to remove the restriction on
one of the atoms that it return to its starting position.

The method by which to calculate the single-particle
density matrix is quite simple: one samples paths from
the probability distribution,

1
(R, 1)) = Ep(rl,rz,...,rN,r'l,rz,...,rN;,B), (3.11)

where Z' is a new normalization constant and r and r' are
independent variables. This density matrix is expanded
into a path. We were careful when we defined the path
integrals to do it for a general (off-diagonal) matrix ele-
ment. Then the distribution of r; and r} is given by
n(r,r') o (§(ry — r)é(ry — 1)), , (3.12)

where the brackets denote an average over m,. The clas-
sical simulation to be performed is of (N — 1) ring poly-
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mers and 1 linear polymer. An example of such a path
is shown in Fig. 21.

At high temperature there is no particle exchange and
the distance between the polymers is much greater than
the size of a given polymer, so the internal coordinates
of the single linear polymer will be almost free-particle
like and its end-to-end distribution Gaussian: n(r,r’)
exp[—(r —r')2/(4)AB)]. Taking the Fourier transform, we
end up with the Maxwellian momentum distribution with
a width kpT.

Now we have to consider how Bose statistics affects
the types of paths that are allowed. Care must be taken
to understand the imaginary-time boundary conditions
once permutations are present. Suppose particle 1 is in-
volved in a three-body cyclic permutation with particles
2 and 3. We know that particle 1 begins at r and ends
at r’. That means one has the following boundary con-
ditions on the paths:

r =rq(0),
rl(ﬂ) = I‘z(O),

r2(8) = r3(0), (3.13)
1'3(,3) =r.
It is simpler to state the conditions physically. There

are two cut ends in the path space, but it does not mat-
ter which particle labels are attached to the ends. If a
macroscopic exchange is present, as is usually the case
in the superfluid state, the two ends can become sepa-
rated by much more than a thermal wavelength if they
are attached to a macroscopic exchange. How far they

y (8)

FIG. 21. The extended trace of five *He atoms at a temper-
ature 0.75 K. The dotted path is that of the cut polymer,
the one that is not periodic in imaginary time. Its end-to-
end distribution is used to calculate the momentum distribu-
tion. The other four atoms are involved in an exchange which
winds around the boundary in the z and y directions. The
dashed square represents the periodic boundary conditions.
The paths have been Fourier smoothed.
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become separated depends on the statistical mechanics
of the polymer system and is different for bulk “He and
for “He films (i.e., in 2D or 3D).

For a 3D bulk liquid the single-particle density matrix
in the superfluid state goes to a constant at large r; see
Fig: 22. The momentum distribution, its Fourier trans-
form, will then have a delta function at the origin. We
define the condensate fraction as the probability of find-
ing an atom with precisely zero momentum. This will
equal

_(2m)®
Ng =

1
qQ o= m/drdr’n(r,r')

- é / den(r).

The factor (27)3Q~! comes about because ny is a proba-
bility density, while 7 is a probability. The last equation
holds for a homogeneous liquid. If we take the volume of
the box to infinity, the condensate fraction is the large-
distance limit of the single-particle density matrix,

(3.14)

fip = lim n(r). (3.15)

r—00

The condensate fraction is essentially the probability of
the two cut ends attaching themselves to a macroscopic
exchange. Figure 23 shows the fraction of atoms in the
zero-momentum state, and Fig. 24 the momentum distri-
bution of the noncondensed atoms.

One often hears the question: why is the condensate
fraction at low temperature only 10% while the system

r (4)

FIG. 22. The single-particle density matrix of *He above and
below the lambda transition at temperatures 1.18, 2.22, and
4 K (from top to bottom). The calculations (Ceperley and
Pollock, 1987) were done at the density corresponding to sat-
urated vapor pressure. Note that the dotted line, correspond-
ing to a temperature of 2.22 K, which is above T., does not
approach zero at the edge of the box because the finite-sized
sample (64 atoms) has a higher transition temperature than
bulk helium.
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FIG. 23. The condensate fraction in *He as estimated from
PIMC at SVP as a function of temperature. The estimates
are obtained by averaging n(r) in the range 2.5 A< r < 6.0 A.
Thus they are not zero in the normal fluid. The value at 0.1
K is from the zero-temperature Green’s-function Monte Carlo
calculations of Whitlock and Panoff (1987). The dashed line
with crosses and error bars is from an analysis of neutron-
scattering data by Snow, Wang, and Sokol (1992).

is 100% superfluid? We shall discuss the superfluidity
in the next subsection, but it is easy to understand the
fact that fig is much less than unity. The two ends of
the “cut” polymer are attracted to each other because
they can share the same correlation hole and thus mini-
mize the action. In contrast to real polymers, there is no
interaction between the two ends, since they represent
two halves of the same particle that would push them
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FIG. 24. The noncondensed momentum distribution of *He
from PIMC calculations with the same conditions as in the
previous figure.
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apart. “Entropy” counteracts this tendency to localize
the two ends. If the attractive force between the ends
drops sufficiently quickly, as happens in 3D, then 7o will
be finite. But the delocalization can only happen if there
are macroscopic exchanges.

The explanation of the condensate fraction in terms of
wave functions is quite different. Clearly the many-body
wave function must have lots of curvature so that it can
go to zero whenever any pair of atoms overlap. Hence
the kinetic energy is nonzero and high momentum states
must be occupied. In spite of this curvature, a “con-
densed” wave function manages to stay delocalized and
uniformly fills up the low-potential-energy part of config-
uration space. One can pick an arbitrary atom, displace
it a long distance and reinsert it, and with probability
7, find that the wave function is still large.

In neutron-scattering experiments, the distribution of
angles and energies of a neutron beam passing through a
sample of helium is recorded. The measured cross section
is proportional to the dynamic structure factor S(k,w).
To relate the dynamic structure factor to the momentum
distribution, one must take into account the quantum
states the liquid can end up in after the scattering, “the
final-state effect.” At sufficiently high momentum trans-
fer, the impulse approximation holds because the neutron
scatters from a single atom. In this case one finds that

m

S(k,w) = —J(Y),

; (3.16)

where the scaling variable is defined by ¥ = (m/k)(w —
Ak?) and

s

T(k,) = / dkodkymy = = / drn(r) cos(k,r).  (3.17)

A comparison between the neutron-scattering measure-
ments (Sokol, Soosnick, and Snow, 1989) and PIMC
(Ceperley, 1989) for liquid helium is shown in Fig. 25.
Note the good agreement with respect to experiment, at
various temperatures. The experimental results are rela-
tively insensitive to the condensate, thus the rather large
errors on the condensate in Fig. 23.

In “He films the momentum distribution is quite dif-
ferent at small momentum. At a nonzero temperature
the two cut ends never lose sight of each other. They feel
an attraction to each other which varies like nin(|r —r’|)
at large separations. Hence the single-particle density
matrix decays to zero algebraically: n(r) o< r~". The
strength of this interaction depends on the temperature
through the Kosterlitz-Thouless relation (Nelson, 1983),
1~ = 4w\Bp,, where p, is the superfluid density. Hence
a nonzero condensate only appears at zero temperature.
Nonetheless the system is superfluid below its transition
temperature. PIMC calculations (Ceperley and Pollock,
1989) on 2D helium are in good agreement both with
the Kosterlitz-Thouless theory and with experiments on
helium films (Greywall and Busch, 1991).
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FIG. 25. Observed neutron scattering (Sokol, Sosnick, and
Snow, 1989) at temperatures of 1.0, 1.8, 2.3, and 3.5 K. The
solid lines are the PIMC predictions (Ceperley and Pollock,
1987) with instrumental resolution and finite-size effects in-
cluded.

E. Response to rotation and the superfluid density

Superfluidity is experimentally characterized by the re-
sponse of a system to movements of its boundaries. The
rotating bucket experiment was first discussed by Landau
(1941) on the basis of his theory of superfluidity. He pre-
dicted that superfluid helium would show an abnormal
relation between the energy it takes to spin a bucket and
its moment of inertia. Suppose one measures the work
needed to bring a container filled with helium to a steady
rotation rate. A normal fluid in equilibrium will rotate
rigidly with the walls. The work done is F = %Iwz,
where I is the momentum of inertia and w is the angular
rotation rate. On the other hand, a superfluid will stay
at rest if the walls rotate slowly, so that a smaller energy
is needed to spin up the container. The liquid that stays
at rest is the superfluid. Experiments by Andronikashvili
(1946) confirmed this prediction.

We do not assume that the bucket has cylindrical sym-
metry, so there will be some coupling between the walls
of the bucket and the liquid helium, allowing the liquid
to come to thermal equilibrium with the walls. The ef-
fective moment of inertia is defined as the work done for
an infinitesimally small rotation rate,

aF | _ (L)
dw? T dw

, (3.18)

w=0 w=0

where F' is the free energy, £, is the total angular mo-
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mentum operator in the 2 direction,

A
z:,:mtz:;b?i,

and 6; is the angle of the ith particle in cylindrical co-
ordinates. On the other hand, the classical moment of
inertia is given by

N
I = <Z mg(r; x 2)2> .

The ratio of the two moments is defined as the normal
density; what is missing is the superfluid density:

(3.19)

(3.20)

o _q_pPe_ L (3.21)
P p I
Thus the superfluid density is the linear response to an
imposed rotation, just as the electrical conductivity is
the response to an imposed voltage.

One might not think that imaginary-time path inte-
grals would be appropriate to calculate the superfluid
density, since motion in real time is involved. This is not
so. Statistical mechanics does not require the use of an
inertial reference frame. We can transform to the frame
rotating with the bucket to determine the free energy
of rotation. The Hamiltonian in the rotating coordinate
system is simply given by

Hoy = Ho — wL,. (3.22)

Here H, is the Hamiltonian at rest. We pick up the ex-
tra term in transforming the Schroedinger equation from
the laboratory frame to the rotating frame, since the new
angle is given by §' = § —wt. Now we have to find a path-
integral expression for the effective moment of inertia de-
fined in Eq. (3.18). The following identity allows us to
take the derivative of an exponential operator that con-
tains a parameter w. First we break up the exponential
into M pieces:

de4 M _ deA/M _
= - 3 elk-na/m —— eM—k)A/M (3.23)
k=1
Now we take the limit M — oco:
A 1
%E; =/0 dtet4 3—‘3 e(1=t)4, (3.24)

The first equation is appropriate to discrete-time path
integrals, the second should be familiar from linear-
response theory. Of course, if the derivative % com-
mutes with A, things are much simpler. We do not want
to assume that the potential is invariant with respect to
rotations so that the angular momentum operator does
not commute with the Hamiltonian.

Now let us take the derivative of the rotating density
matrix with respect to w, as required by Eq. (3.18). We
get
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On I s (8- —
= = tr [/ dtLe=B—DHpe—tH| (3.25)
14 4 0

We have expressed the normal fluid density in terms of
the matrix elements involving the system at rest. Now
we explicitly evaluate this in terms of discrete path in-
tegrals by having the angular momentum operate on the
action. Since angular momentum commutes with the in-
ternal potential energy, that term will not contribute.
One can show (Pollock and Ceperley, 1987) that an ex-
ternal potential also does not contribute in the limit as
7 — 0. In evaluating the sum over k in Eq. (3.23) there
is one tricky point. The k£ = 1 term must be treated sep-
arately, since £ operates twice on one link. That term
gives rise to the classical response. After some algebra
we get

Ps 2m(A2)
p BAL’

where we have defined two functions of a given path,
namely, the projected area

(3.26)

1
A= 5 Zri’j X T j+1 (327)

i3

and the moment of inertia (this is a better definition than
given previously)

— E - 1
IC == < m,l‘ij . ri7j+1> .
i3

Note that the area of a path is a vector. For rotations
about the 2 axis we need only the Z component of the
area. By symmetry the average value of A vanishes.
Equation (3.26) is the main result of this section and is
an exact fluctuation-dissipation formula. The superfluid
density is proportional to the mean-squared area of paths
sampled for a container at rest divided by the classical
moment of inertia.

At high temperature the mean-squared area will be
the sum of the mean-squared areas for each atom’s path,
since we can assume that the areas will be uncorrelated
with each other, (4%) = N(a2), where the mean-squared
area of a free particle is (a?) = (AB)?/3 (Pollock and
Runge, 1992a). The classical moment of inertia will be
mN{r?). Hence the superfluid density will be p,/p =
228/(3(r?)). It will be negligible once the size of the
cylinder is greater than the thermal wavelength.

But for a superfluid, the mean-squared area can be
much greater. One finds that the superfluid density ap-
proaches unity at low temperature. See Fig. 26 for the
path-integral estimates of the superfluid density of *He
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