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The macro-world gives us many examples of chiral dynam-
ics created by helical structures that convert rotations in a 
plane into translational motion orthogonal to it, from the 

Archimedes screw to plane propellers and household fans. In the 
micro-world, the electrons bound inside chiral molecules should 
develop a similar helical motion when excited by planar rotation of 
the electric field of circularly polarized light. Electronic excitation by 
circularly polarized light has been used to distinguish right-handed 
from left-handed molecules since 18961. This technique, called pho-
toabsorption circular dichroism (CD)2, is based on the difference in 
the absorption of left- and right-circularly polarized light in chiral 
molecules and remains the go-to tool3 for analysing properties of 
biological molecules, providing indispensable information on their 
structure, kinetics and thermodynamics, and interaction with their 
environment and with other molecules. However, it does not rely 
on the helical nature of bound electron currents, but uses the helical 
pitch of the light wave instead. This pitch, given by the wavelength 
of the absorbed light, λ≳​2,500 Å (1 Å=​10−8 cm), is barely noticeable 
on the molecular scale of ~1 Å, leading to very weak signals, three 
to four orders of magnitude less than the light absorption itself. 
Formally, the chiral-sensitive part of the light-induced excitation 
requires the excited electrons to respond to both the electric and the 
magnetic field of the light wave (see Fig. 1a).

Remarkably, in spite of extraordinary recent advances in devel-
oping new methods for chiral discrimination that do not rely on the 
magnetic properties of the medium4–15, none has relied on using the 
helical motion of bound electrons. Is it possible to excite and probe 
such motion without the help of magnetic field effects?

Exciting chiral dynamics in bound states
A hallmark of helical motion of bound electrons is the appearance 
of an induced dipole orthogonal to the polarization plane of the 

exciting circular light. We first show that an ultrashort pulse cre-
ates such a dipole in a randomly oriented molecular ensemble. Let 
the electric field of the pulse, rotating in the x–y plane, coherently 
excite two electronic states (Fig. 1b) of a chiral molecule. As shown 
in the Methods, the orientation-averaged induced dipole acquires 
the desired component along the light propagation direction z:

σ Δ∝ × ⋅d E td d d[ ] sin( ) (1)z
PXCD

01 02 12 21

Here σ = ±1 is the light helicity, d01, d02 and d12 are the dipole 
transition vectors connecting the ground 0  and the two excited 
electronic states 1 and 2  (Fig. 1b), and ΔE21 is the energy spacing 
between the two excited states. For more than two states, equation (1)  
will contain the sum over all pairs of excited states n,m, leading to 
oscillations at all relevant frequencies ΔEnm. As a function of time, 
the induced dipole vector dPXCD maps out a helix (Fig. 1b) and the  
z component of the helical current is

σ Δ Δ∝ × ⋅j E E td d d[ ] cos( ) (2)z
PXCD

01 02 12 21 21

Both dz
PXCD and jz

PXCD are quintessential chiral observables (see, 
for example, refs 16,17). Indeed, both are proportional to the light helic-
ity σ = ±1 and to the triple product of three vectors × ⋅d d d[ ]01 02 12. 
This triple product is a pseudo-scalar and as such presents a funda-
mental measure of chirality: it changes sign on reflection and thus 
has an opposite sign for left and right enantiomers. For randomly 
oriented non-chiral molecules = =d j 0z z

PXCD PXCD .
Equations (1) and (2) lead to the following conclusions. First, the 

coherent excitation of electronic states leads to a charge displacement 
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along the light propagation direction. Hence, a macroscopic dipole 
dz

PXCD and the corresponding chiral density are created in the excited 
states, with a chiral current oscillating out of phase for the two 
enantiomers. Second, photoexcitation circular dichroism (PXCD) 
requires no magnetic or quadrupole effects, and so, it is orders of 
magnitude stronger than standard photoabsorption CD. While pho-
toabsorption CD exploits the helical pitch of the laser field in space, 
PXCD takes advantage of the subcycle rotation of the light field in 
time and is inherently ultrafast. PXCD arises only if the excitation 
dipoles d01, d02 are non-collinear: for the angle ϕ between the two 
transition dipoles, the PXCD (equations (1) and (2)) is proportional 
to σ ϕsin( ). Since σ = ±1, σ ϕ σϕ σωτ= =sin( ) sin( ) sin( ), where ω is 
the light frequency and τ ϕ ω= ∕  is the time required by the light field 
to rotate by the angle ϕ. PXCD vanishes if the coherence between 
excited states 1  and 2  is lost and it reflects the dynamical sym-
metry breaking in an isotropic medium. Our compact formulation 
of chiral response forms a common basis for understanding and 
linking together several different phenomena involving rotational11 
and bound–continuum dipole transitions4 for chiral discrimination 
or dichroic phenomena18. The common requirement linking all of 
them is the non-collinearity of the excitation dipoles.

Is it possible to create PXCD from purely vibrational excitation 
of a chiral molecule? Theoretically, vibrational states within the 
same electronic state can also fulfil the PXCD condition as long as 
their dipoles are not collinear (see equations (1) and (2)). As shown 
in the Supplementary Information, this requires the breakdown of 
the Franck–Condon approximation (that is, a strong dependence of 
the electronic wavefunction on the position of the nuclei). In turn, 
this dependence leads to the appearance of electronic currents stim-
ulated by the nuclear motion, which is triggered by the pump pulse. 

Thus, vibrational PXCD is intertwined with the underlying chiral 
motion of electrons. The PXCD current can be induced with circu-
larly polarized light either by direct coherent excitation of electronic 
states or by vibrational excitations with a strong coupling between 
electronic and vibrational degrees of freedom.

We now show that time-resolving PXCD does not require a chi-
ral probe pulse. The coherence underlying PXCD allows a chiral 
object to ‘interact with itself ’, albeit in a different quantum state, thus 
mimicking interaction with ‘another chiral object’ and removing 
any need for other chiral interactions during the probe step (Fig. 1).  
One such probe, termed photoexcitation-induced photoelectron 
circular dichroism (PXECD), is introduced below.

Probing chiral dynamics in bound states
One way to probe the excited chiral density is to promote the chiral 
wavepacket to the electronic continuum using a linearly polarized 
pulse (Fig. 1c). As shown in the Methods, the standard photoioniza-
tion observable, the photoelectron current averaged over molecular 
orientations, is:

σ Δ τ σ

Δ τ

∝ × ⋅ + ×

⋅

J k k E

k E

d d D d d

D

( ) [ ] ( )sin( ) [ ]

( )cos( )
(3)z

r

i

PXECD
01 02 12 21 01 02
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with = =J k J k( ) ( ) 0x y
PXECD PXECD . Here τ is the pump–probe delay, k is 

the photoelectron momentum and = +k k i kD D D( ) ( ) ( )r i
12 12 12  is the 

Raman-type photoionization vector (see Fig. 1c and the Methods) 
that connects the excited bound states via the common continuum 
and plays the role of d12 of equations (1) and (2) (the real part of the 
Raman-type photoionization dipole is equal to zero due to the time-
reversal symmetry of the setup). 

The electron current in equation (3) contains a triple product. 
Just like the triple product × ⋅d d d[ ]01 02 12 earlier, × ⋅d d D[ ] i

01 02 12 
will change sign on reflection. Thus, the electron current in equa-
tion (3) is a pseudo-scalar observable; it reverses its direction if the 
handedness σ of the pump pulse or of the enantiomer is swapped, 
showing that PXECD is a genuine chiral effect. The chiral nature 
of the response arises only if the participating bound states are 
coherently excited. Once the coherence is lost, the chiral signal 
will also disappear.

Importantly, the state of the continuum does not need to be chi-
ral, as it only provides a link between the two chiral bound states 1  
and 2  (Fig. 1c). J k( )z

PXECD  remains chiral even for a plane-wave con-
tinuum (see the Methods); kD ( )12  has only an imaginary component:

σ Δ τ∝ − × ⋅J k k Ed d D( ) [ ] ( )cos( ) (4)z
i

,PW
PXECD

01 02 12
,PW

21

Note also that the total PXECD photoelectron current 
∫≡J J k k( )dztot

PXECD
,PW

PXECD  measures the chiral current excited in bound 

states jz
PXCD (equation (2)) (that is, ∝J jztot

PXECD PXCD (see Supplementary 

Information)) because ∫ Δ− ∕ ≡k k ED d1 2 ( )di
12
,PW

12 12. In particular, 
for Δ =E 012  both the PXCD bound and the PXECD continuum 
currents vanish.

One might think that partial alignment of the excited molecu-
lar ensemble could already be fully responsible for enabling non-
chiral probes of chiral dynamics. However, it is not true in our case. 
Indeed, the effect of alignment persists for a single excited electronic 
state and for the two excited electronic states with collinear dipoles, 
but in both cases it leads to zero PXECD current. Finally, remov-
ing the effect of partial alignment shows that the PXECD current 
remains chiral for every k (see Methods).

Probing the created chiral excitation using photoelectron  
imaging with linearly polarized light constitutes yet another new 
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Fig. 1 | Chiral discrimination schemes in randomly oriented molecular 
ensembles. The complex conjugated diagrams, complementing those 
presented, are omitted. Down-arrows denote complex conjugation of 
driving fields. a, CD requires an electric dipole transition up, a magnetic 
dipole transition down and vice versa. b, PXCD (equation (1)) requires a 
coherent excitation of two states by an ultrashort circularly polarized pulse. 
The excitation dipole transition to state |2〉​ is followed by a dipole transition 
to state |1〉​ and a stimulated dipole transition to state |0〉​. Inset: the induced 
dipole maps out a helix as a function of time. c, In PXECD (equation (3)), 
the two excited states |1〉​ and |2〉​ are connected by Raman-type transitions 
via the continuum, stimulated by a linearly polarized probe pulse.  
d, PECD requires a circularly polarized light and a photoelectron scattering 
in a chiral Vch (right panel) or non-spherically symmetric Vns potential 
(left panel). The red arrows indicate a torque (imparted on the emitted 
photoelectron) that survives the orientational averaging and induces the 
chiral response in PECD.
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phenomenon. The PXECD is reminiscent of photoelectron circular 
dichroism (PECD)4–6,13–15,19, which arises when circularly polarized 
light is used to photoionize a chiral molecule. However, there is a fun-
damental difference. PECD can exist only if the molecular potential 
felt by the emitted electron is either chiral4 or, at least, non-spherically 
symmetric20 (both effects quickly disappearing for photoelectron 
energies above 10 to 20 eV), while the initial orbital may or may not 
be chiral at all21 (see Fig. 1d and Supplementary Information).

In contrast to PECD, PXECD requires neither chiral light, 
nor chiral or asymmetric scattering of the photoelectron. It can 
be observed both at low and high photoelectron energies. If one 
chooses to observe it at low energies, the chiral continuum may 
affect imaging of the bound chiral current. Nevertheless, if the 
bound dynamics is excited but the PXCD helical current (elec-
tronic or vibronic) is absent (that is, the excited dynamics is not 
chiral), its measurement with linear light will yield zero chiral 
response (unless the ‘up–down’ symmetry of the continuum states 
with respect to the plane determined by the excitation dipoles is 
different from that of the excited Rydberg wavepacket). Thus, if the 
experiment detects a time-dependent chiral signal, it demonstrates 
the presence of bound chiral dynamics. This contrasts PXECD with 
time-resolved PECD measurement, which uses a circularly polar-
ized probe: it can yield non-zero chiral response even if the excited 
dynamics is not chiral.

Since time-resolved PXECD does not require the technically 
challenging use of ultrashort circularly polarized extreme ultra-
violet pulses22–26, it opens unique perspectives for ultrafast chiral-
sensitive measurements using readily available ultrashort linearly 
polarized extreme ultraviolet light.

We shall now confirm both numerically and experimentally 
that our scheme provides a sensitive time-resolved probe of chiral 
molecular dynamics in bound states.

Theoretical analysis in fenchone
To quantify the PXECD effect, we performed quantum mechani-
cal calculations on fenchone molecules (see Supplementary 
Information). First, we simulated the PXCD phenomenon and  
calculated the excitation of the s and p manifolds of Rydberg states 
in fenchone by a circular pump pulse. On averaging over a random 
initial orientation of molecules, the resulting electron density of  
the Rydberg wavepacket is asymmetric in the z direction in the 

momentum space. The asymmetry reverses if the helicity of the  
pump pulse or the handedness of the molecule is reversed. 
The strength of the PXCD can be quantified by the magni-
tude of the chiral component of the excited electron density. 
It is obtained by subtracting the momentum space density D 
obtained with right (R) and left (L) circularly polarized light: 

= − ∕ +D D D DPXCD 2( (L) (R)) ( (L) (R)). The calculated PXCD 
reaches very high values (35%, Fig. 2a). The asymmetry of the 
charge distribution describes a macroscopic dipole moment 
dz

PXCD that reaches 3 debye (Fig. 2b) and oscillates at frequencies 
determined by the energy differences between the states form-
ing the electronic wavepacket. The pump–probe PXECD signal, 
calculated as −D D( (L) (R)) and normalized to the maximum of 

+ ∕D D( (L) (R)) 2, reveals temporal oscillations (Fig. 2c) and 6% 
asymmetry, owing to the short duration of the probe pulse (36 fs 
full-width at half-maximum (FWHM) in intensity). The asymme-
try scales with the probe bandwidth ΔWFWHM as Δ Δ− ∕e E ln W[ 2 ]12 FWHM

2 
(see Supplementary Information), decreasing for longer probe 
pulses such as used in the experiment.

Observation of PXECD in fenchone
In our experiment, a circularly polarized femtosecond pump pulse 
at 201 nm (6.17 eV photon energy, 80 meV at 1/e2 electric field 
bandwidth) photoexcites enantiopure fenchone molecules from a 
supersonic gas jet in the interaction zone of a velocity map imaging 
spectrometer. The molecules are excited to Rydberg bands through 
single-photon absorption (Fig. 3a, see Supplementary Information). 
A time-delayed, linearly polarized probe pulse at 405 nm (3.1 eV 
photon energy, 85 meV at 1/e2 of the electric field bandwidth) 
induces one-photon ionization of the excited molecules. The cross-
correlation of the pump and the probe pulses is 170 fs. The pho-
toelectrons are accelerated and projected by an electrostatic lens 
onto a set of dual microchannel plates and imaged by a phosphor 
screen and a CCD (charge-coupled device) camera. The (L) and 
(R) photoelectron images are recorded alternatively using left and 
right circularly polarized pump pulses respectively. The difference 
(L – R) and sum (L +​ R) of these two images are fitted by a linear 
combination of Legendre polynomials using a least-square fitting 
algorithm (p-Basex, see Supplementary Information for details). 
The PXECD is given by the (L – R) image while the (L +​ R) image 
reflects the angle-resolved photoelectron spectrum (PES). These 
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two images shown in Fig. 3b for a 200 fs pump–probe delay are both 
normalized by the peak of the (L +​ R)/2 image. As expected, a sig-
nificant amplitude of the PXECD image is observed, reaching 2%.  
The asymmetry reverses for the other enantiomer of (1S)-(+​)- 
fenchone (see Supplementary Fig. 4), proving the enantio-sensitiv-
ity of the effect, originating from the pseudo-scalar nature of the 
PXECD current (see equation (3)). The forward–backward asym-
metry (that is, the normalized difference of photoelectron counts 
between the forward and the backward hemispheres relative to the  
z axis) is − . ± .1 86% 0 14% for (1S)-(+​)-fenchone and + . ± .1 68% 0 34% 
for (1R)-(–)-fenchone, at 700 fs delay.

The photoelectron spectrum, obtained from the first even term 
of the Legendre decomposition (see Supplementary Information), 
contains a single broad component in energy, corresponding to 
ionization from the outermost orbital (vertical ionization potential 
8.72 eV). This component does not shift in energy with the pump–
probe delay (Fig. 4b) and decays exponentially in 3.3 ps, reflecting 
a simple vibronic relaxation of the Rydberg population onto lower 
states that cannot be photoionized by one probe photon alone. 
The temporal evolution of the PXECD image shows much richer 
spectroscopic features, which can be analysed by decomposing it 
in odd Legendre polynomials (Fig. 4a). We note that a sum of first- 
and third-order Legendre polynomials, with coefficients α and α′​,  
is enough to fit the PXECD images. Both coefficients maximize 
around ~50 meV below the maximum of the PES. The PXECD  

signal (Fig. 4b) can be decomposed into two components: below 
and above the maximum of the PES. The low-energy component 
of α undergoes a rather smooth decay. On the contrary, its high-
energy component decays very quickly and even changes sign 
around 1 ps. For α′​, the behaviour is opposite; that is, the high-
energy component shows much slower dynamics than the low-
energy part. Such time-dependent and electron-energy-dependent 
behaviour is characteristic of internal vibrational torsional motion 
and may indicate the change of the chiral structure of the mol-
ecule induced by such motion. Indeed, the electronic excitation 
of the molecules is expected to be accompanied by a significant 
vibrational excitation, since the equilibrium geometries of Rydberg 
states are quite different from that of the ground state. The mol-
ecules will tend to relax towards the equilibrium geometry of the 
Rydberg states, and oscillate around it. Figure 5 illustrates the 
influence of this change of molecular geometry on the calculated 
PXECD signal. Even small bond length changes (≤​7%) lead to sig-
nificant modification of the PXECD signal. This demonstrates the 
remarkable sensitivity of PXECD to molecular vibrations, which 
follow the electronic excitation. The ensuing vibrational dynam-
ics will inevitably blur the purely electronic oscillations shown in 
Fig. 2c. At 4 ps (not shown), the PXECD completely vanishes while 
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the Rydberg population is still 30% of its initial value. This result 
unambiguously reflects the loss of wavepacket coherence that halts 
chiral dynamics in our experiment.

Observation of PXECD in camphor
According to numerical simulations (see Supplementary 
Information), the coherence between the two Rydberg bands could 
eventuate in fenchone. However, the s and p Rydberg bands of cam-
phor are upshifted by an additional several tens of millielectronvolts 
compared with fenchone, preventing direct excitation of the p states 
by the pump pulse. The experiment still reveals a strong PXECD 
signal, indicating that a chiral vibronic wavepacket has been created 
in camphor. Both PXCD and PXECD are highly molecular specific 
(Fig. 3b): the PXECD images from the two isomers (camphor and 
fenchone) are drastically different. The α′​ coefficients in camphor 
and fenchone are of opposite sign as seen in multiphoton27 and one-
photon PECD14. In our experiment, this could be a consequence of 
PXECD sensitivity to isomerism (see Fig. 5 to gauge the sensitivity 
to nuclear configuration), but it might also be a signature of the dif-
ferent nature of the excited chiral electronic currents in fenchone 
and camphor. Changing the excitation wavelength from 202 nm to 
200 nm does not affect the monoexponential decay of the PES. In 
contrast, a strong change is observed in the PXECD: the α′​ mag-
nitude is almost twice as large and it is shifted in energy towards 
the red wing of the photoelectron spectrum. The drastic change 
observed in the PXECD signal in camphor once the pump photon 
energy is increased by only 60 meV illustrates the extreme sensitiv-
ity of this measurement to the excited vibrational dynamics.

Conclusions and outlook
The ensemble-averaged chiral charge density arising in PXCD 
implies asymmetry in the charge distribution along the light propa-
gation direction, induced by the planar rotation of light polarization 
but not by light’s helical structure. Depending on the medium den-
sity, this could lead to a very large coherently oscillating macroscopic 

dipole. The phase of this oscillation is opposite for two enantiomers, 
leading to macroscopic enantio-sensitive effects. The existence of 
the enantio-sensitive macroscopic dipole, which also occurs for 
purely rotational excitation11,28, opens a way to laser-driven separa-
tion of enantiomers in isotropic racemic mixtures in the gas phase.

The application of a linearly polarized X-ray probe in PXECD 
would enable genuine probing of ultrafast chiral bound dynamics, 
since PXECD does not require chiral interaction in the continuum, 
which becomes negligible for sufficiently high-energy electrons. 
Therefore, the PXCD phenomenon opens the way to direct visu-
alization of chiral electronic density using time-resolved X-ray 
diffraction imaging, both in the gas and condensed phase. Intense 
ultrafast sources of X-ray radiation, such as free-electron lasers, 
combined with measurements sensitive to valence-shell dynamics 
in the gas phase29 should lead to few-femtosecond time resolution 
of chiral charge dynamics. Finally, PXCD could be used to drive 
molecular reactions in chiral systems in a stereo-specific way, by 
imprinting a chiral torque via the helicity of the exciting circularly 
polarized pulse. The ultrafast charge dynamics triggered by coher-
ent electronic excitation is reminiscent of ultrafast charge migration 
triggered by photoionization30–36 recently observed37 and speculated 
to underlie charge-directed reactivity in cations38. Chiral electron 
stereo-dynamics in neutral molecules may open similar opportuni-
ties for controlling charge and energy flow in molecules at the level 
of electrons, offering new perspectives for such intriguing problems 
as asymmetric synthesis, a major challenge in stereochemistry.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-017-0038-z.
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Methods
Full details of the analysis of photoexcitation circular dichroism (PXCD) and its 
probing are given in the Supplementary Information. Here we present its key steps.

Exciting chiral currents. To derive equations (1) and (2) for the z components 
of the induced dipole and current, we use standard time-dependent perturbation 
theory, assuming two excited states i=​1,2 coupled to the ground state. The pump 
field in the laboratory frame (superscript L) is:

ε= + . .σ
ω δ− +

t F tE ( ) 1
2

( ) e c c (5)i tL L ( )

where ω is the carrier frequency, F(t) is the field amplitude, δ is the carrier-envelope 
phase and

ε σ ŷ= +
σ

x i
2

(6)L
L L

describes the pulse polarization. The excitation amplitudes are:

ε ωϱ = − ϱ ⋅σ a i R d( ) [ ( ) ] ( ) (7)i i i
L

,0 0

where i=​1,2 labels the excited states, ω( )i0  are the spectral amplitudes at the 
transition frequencies ωi0, di,0 are the excitation dipole matrix elements in the 
molecular frame, and the pump field is rotated into the molecular frame via 
the rotation matrix ϱR( ), with the Euler angles α β γϱ ≡ ( , , ) (see Supplementary 
Information for explicit expressions). The induced dipole in the molecular  
frame is:

∑τ = ϱ ϱ ω τ
ϱ

=

−a ad d( ) *( ) ( )e (8)
i j

i j i j
, 0

2
i

,
ji

where = i jd di j,  and ω ω ω= −ij i j. Transforming to the laboratory frame and 
averaging over all orientations ϱ yields

∑∫ ∫τ τ= ϱ ϱ = ϱ ϱ ϱ ϱω τ
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where = −R Rt 1 is the transpose of the rotation matrix R. Details of the integration 
are presented in the Supplementary Information. The final result is:
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where ω ω ϕ=  ( )i( ) ( ) expi i i0 0 , ϕ ϕ ϕ= −21 2 1. The π∕2 phase shift reflects the 
resonance. Equation (1) shows the z component, for ϕ = 021 . Note that dz

L is a time-
even pseudo-scalar; that is, the quintessential chiral observable. Together with the 
x and y components, which describe rotation in the polarization plane, dz

L describes 
the helical charge motion induced in a randomly oriented chiral ensemble. The 
planar rotation stems from the coherence with the ground state, and the motion 
along the z axis from the coherence between the excited states. The bound current 
is obtained by differentiating the dipole:
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The strength of the chiral response in PXCD depends on the efficiency of 
conversion of the planar current excited by the pump field into the helical current 

with the chiral component along the z axis. The conversion is performed by the 
chiral molecule itself, see Supplementary Fig. 1.

Probing chiral currents. The photoelectron current in equation (3) is derived by 
applying the perturbation theory to the coherent excitation amplitudes calculated 
above. The ionizing probe field with frequency ω′​ is linearly polarized along the 
laboratory x L axis and is delayed (delay τ) from the pump field. The current for the 
photoelectron momentum ⃗k  in the molecular frame is

= + . .a aJ k k( ) 1
2

* c c (12)k k

where the population amplitude of the continuum state k  is (see Supplementary 
Information)
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Here ω′ ( )ik,  is the spectral amplitude of the probe at the required transition 
frequency, and D k( )i  are bound–free transition dipoles in the molecular frame.

The current includes both diagonal contributions and the Raman-type 
coupling of states =i 1, 2 via the continuum. Only the latter survives the orientation 
averaging (see Supplementary Information). Substituting expressions for the 
continuum amplitudes, and keeping only the off-diagonal terms, we obtain the 
current in the molecular frame:

ε ε ω ωϱ = ϱ ⋅ ϱ ⋅ ϱ ⋅ ϱ ⋅

+ . .
σ σ

ω τ
−

′  R R x R R xJ k d D d D

k

( , ) ( ( ) * )( ( ) *)( ( ) )( ( ) ) ( , )e

c c
(14)

iL
2,0

L
2

L
1,0

L
1

21

where ω ω′( , ) includes all spectral amplitudes of the pump and probe pulses for 
the relevant transition frequencies,

ω ω ω ω ω ω= ′′ ′ ′ ′    ( , ) *( ) ( ) *( ) ( ) (15)k k2 1 2 1

Note that J k( ) is independent of the carrier-envelope phase δ of the pump. 
Hence, it also does not matter whether the probe is linearly polarized along the  
x or the y axis.

After transforming the current into the laboratory frame ϱ = ϱRJ k J( , ) ( )tL , 
averaging over all molecular orientations, and over all directions of k we obtain:

σ ω ω= − × ⋅ + . .ω τ′ − π
 ( )J k kd d D( )

60
( , )[ ] ( )e c c (16)z

iL
1,0 2,0 12 221

= =J k J k( ) ( ) 0 (17)x y
L L

∫ Ω=kD D k( ) d ( ) (18)k12 12

and the vector D k( )12  is defined below. Writing the Raman-type photoionization 
vector kD ( )12  as a sum of its real and imaginary parts, we obtain equation (3), up to 
constant multipliers (omitted there for compactness):
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Here the phases and amplitudes of the pump and probe fields are denoted 
ϕ ω ω′( , ) and ω ω′( , ) . The real part of the Raman-type photoionization dipole 
 is equal to zero due to time-reversal symmetry of the set-up. For D k( )12 , we find 
(see Supplementary Information)

= − ⋅ + ⋅ + ⋅D k D D k D k D D k D( ) 4( *) ( * ) ( ) * (20)12 1 2 2 1 1 2

This general expression shows that every available vector D D k( , *, )1 2  can be 
used to ‘complete’ the triple product. We show below that the last two terms 
in this equation can be associated with partial alignment of the molecular 
ensemble by the pump pulse, and disappear if the unpolarized probe is used. 
However, the PXECD effect remains due to the first term in the  
above equation.
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PXECD for unpolarized probe pulse. Theoretically, it is instructive to consider 
completely unpolarized light as a probe of the excited chiral dynamics. Since 
the probe is completely isotropic, it cannot be sensitive to the initial alignment 
by the pump. Thus, considering an unpolarized probe, we can find out how 
a partial alignment of the initially isotropic ensemble by the pump transition 
affects the chiral continuum current (the PXECD effect). Below, we show that 
the PXECD effect does not vanish if the alignment by the pump is excluded. 
Thus, the PXECD effect does not originate solely from a partial alignment by the 
pump pulse.

Consider an arbitrary direction of the linear probe in the laboratory frame. 
Instead of a single vector characterizing the direction of polarization x L of the 
probe pulse, we introduce
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Then the current in equation (14) takes the form
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where i and j take values x y z, , . From this expression, we can see that cross-terms 
≠i j vanish after averaging over probe-polarization directions; therefore, we need to 

calculate only the terms corresponding to a probe polarized along directions x L, ŷL 
and ̂zL independently. We already calculated the expression for a probe polarized 
along x L and demonstrated that it is valid for all probe polarizations in the x yL L 
plane, and in particular for probe polarization along ŷL. For a probe polarized 
along ̂zL, we obtain expressions identical to equations (16)–(19) for the current, 
except that D12 in equation (20) is now given by

̂ = − ⋅ + ⋅ + ⋅zD k D D k D D k D D k( , ) 2[( ) ( * ) *( )] (22)12
L

1 2 1 2 2 1

From equations (20)–(22), the expression for the current in the laboratory 
frame reads as
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where ̂ = ̂n z
L L is the propagation direction of the pump. The coefficient 
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 vanishes after averaging over orientations of the probe and we 

obtain the simple expression
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which, once integrated over orientations of k (see equation (18)), gives the Raman-
type photoionization vector that goes into the final expression for the current in 
equation (19). Note that, once the partial alignment by the pump is excluded, only 
vector k can be used to ‘complete’ the triple product.

PXECD in the plane-wave continuum. So far, all of our calculations have been 
general. We now consider the case of the plane-wave continuum, eliminating any 

possibility of chiral contributions from the continuum (that is, the photoelectron 
scattering from the chiral potential of the core). We write the photoionization 
dipoles in the velocity gauge,

ψ ψ= = =∼
 iD k p k k( ), 1, 2 (26)i i i

The photoionization matrix elements are proportional to the wavefunctions 
of the excited states in the momentum space, ψ



k( )i . Putting these expressions in 
equation (20), we obtain

ψ ψ= − ∼ ∼kD k k k k( ) 2 ( ) *( ) (27)12
2

1 2

Thus, the Raman-type photoionization vector ∫ Ω=kD D k( ) d ( )k12 12  becomes:

∫ Ω ψ ψ= − ∼ ∼k kD k k k( ) 2 d ( ) *( ) (28)k12
PW 2

1 2

We now show that kD ( )12
PW  is purely imaginary. We split the electronic 

wavefunctions ψ r( )1,2  of the bound states 1  and 2  in coordinate space into their 
symmetric and antisymmetric components:

ψ ψ ψ= +r r r( ) ( ) ( ) (29)S A
1,2 1,2 1,2

Their Fourier transforms are
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where both ψ∼ k( )A
1,2  and ψ∼ k( )S

1,2  are real functions. After simple algebra we get:

∫ Ω ψ ψ ψ ψ= −∼ ∼ ∼ ∼( )k i kD k k k k k( ) 2 d ( ) ( ) ( ) ( ) (31)k
S A A S

12
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1 2 1 2

Thus, kD ( )12
PW  is purely imaginary:

=k i kD D( ) ( ) (32)i
12
PW

12
,PW

Taking into account equation (32) and using explicitly the imaginary 
component of the Raman-type photoionization vector kD ( )i

12
,PW , we obtain 

equation (4):
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The constants as well as the phases and amplitudes of the pump and probe 
fields ϕ ω ω′( , ), and ω ω′( , )  at the excitation and probe frequencies, appearing 
in equation (33), were omitted in equation (4) for compactness and clarity of our 
equations. Importantly, equation (33) shows that the PXECD current remains 
chiral for every k, even when the effects of chirality in the continuum are removed 
by using a plane-wave continuum. Thus, PXECD can be used as a probe exclusively 
sensitive to chiral bound dynamics.

We now establish the relationship between the PXCD current and the 
total PXECD current integrated over all k. First, we compare the Raman-type 
photoionization vector integrated over all k ( Ω≡ kkd d k

2):

∫ ∫ ψ ψ− ≡ ∼ ∼k kD k k k k1
2

d ( ) d ( ) *( ) (34)12
PW

1 2

and the bound transition dipole between the two excited states d1,2.  This dipole 
can be written in a strikingly similar form:

∫ω ψ ψ≡ ∼ ∼i d k k k kd ( ) *( ) (35)21 1,2 1 2

The right-hand sides of equations (34) and (35) are equivalent. Thus, 
ωi d21 1,2 and ∫− ∕k kDd ( ) 212

PW  are also equivalent. If ω = 021 , the Raman-type 
photoionization vector integrated over all k is also zero.

Thus, we recover a simple connection between the bound transition dipole d1,2 
and the integrated Raman-type photoionization vector:

∫ω ≡ − k kd D1
2

d ( ) (36)i
21 1,2 12

,PW

Here we explicitly used that kD ( )12
PW  is purely imaginary. This is evident 

from equations (32) and (35). Using this simple connection and integrating the 
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continuum current over all k (assuming adjustable strength of the probe pulse 
at all frequencies, so that = ′ ω ω

ω ω

′ ′ ′

′ ′
 C *1

5
( ) ( )k k

k k

2 1

1 2
 is independent of k), we obtain a 

simple relationship between the bound and total (integrated over all k) continuum 
currents:

∫≡J k J kd ( ) (37)ztot
PXECD L,PW

= J C j (38)ztot
PXECD PXCD

Here we used equations (11), (33) and (36). Despite its simplicity,  
equation (38) is important for understanding the PXECD phenomenon.  
It shows that even if one explicitly removes the effects associated with the  
chirality of the molecular continuum or effects associated with the non-spherical 
symmetry of the molecular continuum (by using a plane-wave continuum instead), 
the PXECD current remains chiral, not only for every k (see equation (33)),  
but also integrally for all k, because in this case it directly reflects the chirality  
of the bound PXCD current. If the bound current is equal to zero (for example, 
when the two bound states are degenerate), then the total continuum current is 
also equal to zero.

The nature of the PXECD current. We can now address the question about 
the mechanisms leading to the PXECD current more broadly. The PXECD 
continuum current may arise due to the following reasons: due to bound PXCD 
current; due to partial alignment of the molecular ensemble by the pump pulse; 
or due to the degenerate PXECD process, even in the absence of bound PXCD 
current (that is, when ω = 012 ). Degenerate PXECD is the PXECD for degenerate 
excited states.

Equation (19) is general; it contains all three effects. The set of examples that 
we have considered in previous subsections allows us to identify and to isolate  
each of these effects. The effect of partial alignment due to the pump pulse can  
be ‘removed’ by considering an unpolarized probe. Equation (25) shows that 
the chiral response does not vanish in this case. Finally, to isolate the degenerate 
PXECD process, one can remove the first two effects by considering unpolarized 
light and setting ω = 012 . When these effects are removed, for ω = 012  and an 
unpolarized probe:

= − ⋅D k D k D k k( ) 10
3

( ( ) *( )) (39)12
u

1 2

and the PXECD current is:
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In this expression, for simplicity we set the phases ϕ ω ω =′( , ) 0.
In the previous subsection we have demonstrated that in the case of a plane-

wave continuum, the total PXECD current (integrated over all k) vanishes if we 
set ω = 012 . However, each momentum component of this current remains finite 
as long as the excited states 1  and 2  do not have definite parity, and ≠d 012 . Note 
that the triple product in equation (40) is formed by the two bound dipoles and the 
vector k of the continuum electron.

Inverse Abel transform of the two-photon chiral signal. Here we show  
how the Abel-inverted quantities α and α′​ (Fig. 4) are connected to the 
conventional asymmetry parameters of the three-dimensional (3D) 
photoelectron signal.

Experimentally, the photoelectron spectrum closely follows the spectrum of 
the probe: the spectra are located within a bell-shaped 3D sphere G k k( , )0 0 , where 

= ∕E k 20 0
2  is the central energy, with width Δ ≪E E0. In the geometry of our 

experiment, the 3D chiral asymmetry signal can be written as
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where C depends on the gas density and so on. The Legendre polynomials P2
2 and 

P3
2 reflect the geometry of the experiment, where the pump field is propagating 

along the z axis. The parameters −q2, 2 and q32 appear due to the breaking of the 
cylindrical symmetry in our experimental set-up; q32 reflects the chiral asymmetry, 
changing sign with changing light helicity or enantiomer handedness. The 3D signal 
is projected onto the 2D x–z plane, simulating the measurement, and then raised 
back to 3D, simulating the reconstruction. The modelling is done numerically using 
the experimentally measured G k k( , )0 0 . The analytical model will be described 
elsewhere. The presence of q32 modifies the reconstructed 3D image in two ways. 
First, α and α′​ (Fig. 4) contain q32: α = +q q610 32

 and α = −′ q q610 32
. Secondly, a 

characteristic signal θ∝ ∕q k k P( ) (cos )32 0 1
0  for <k k0 lying outside the spectral 

bandwidth of the pulse may appear as a signature of q32. This background allows us 
to give the upper estimate to q32

 from the 3D images directly obtained via the inverse 
Abel transform of the measured 2D spectra (see Supplementary Information).

Numerical simulations. The numerical results for PXCD and PXECD in fenchone, 
presented in Figs. 2 and 4, have been obtained using perturbative quantum-
mechanical calculations that mimic the experimental pump–probe set-up. These 
calculations employ bound and continuum configuration-interaction single states 
in the framework of frozen nuclei and single-active electron approximations. Our 
simulations have shown that molecular chiral Rydberg wavepackets can be formed 
by absorption of a circularly polarized photon. In addition: the population of this 
wavepacket does not depend on the helicity within the dipole approximation; 
this wavepacket is inherently chiral, as imaged by the photoexcitation circular 
dichroism that survives orientation averaging within a set of randomly aligned 
targets as long as there is an electronic coherence between the excited states; when a 
linearly polarized probe is switched on, this chiral dichroism is transferred into the 
continuum and mapped onto the (usual) photoelectron circular dichroism, even 
in the plane-wave approximation; the electronic beating between the underlying 
wavepacket states is noticeable in the excitation and the related ionization 
dichroisms, as function of the pump–probe delay, but the beating is blurred in the 
total photoionization signal. All of this sheds new light on the origin of chirality, 
whose signature is no more constrained to molecular ionization but extends to the 
whole electronic spectrum, within the usual and intuitive dipole approximation. 
Extended details regarding the simulations are given in Supplementary Section III.

Vibrational coherence in PXECD. In Supplementary Section V, we discuss 
the role that the excitation of the vibrational wavepackets plays in PXECD. Our 
analytical results presented above are general and can be applied to both electronic 
and vibrational (vibronic) states. However, the non-collinearity of the excitation 
dipoles required in PXCD leads to the following conditions for observing 
vibrational PXECD. First, it requires the breakdown of the Franck–Condon 
approximation. This is expected to be the case for large molecules exhibiting broad 
vibrational lines. Indeed, the essence of this approximation is that the vibrational 
wavefunctions are sufficiently compact in coordinate space, so that the electronic 
transition dipoles do not change as a function of the vibrational coordinates 
within this compact region. If, however, the vibrational wavefunctions spread over 
considerable distances, the breakdown of the Franck–Condon approximation is 
expected and natural. Second, it requires multidimensional, at least 2D, potential 
energy surfaces, which is certainly the case for chiral molecules.

Data availability. The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon reasonable request.
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