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Preface to the second edition

Probability theory is now fully established as a crossroads discipline in mathematical science.

Its connections across pure and applied mathematics are in excellent health. In its role as the

‘science of risk’, it is a lynchpin of political, economic, and social science. Never before have

so many students in schools and universities been exposed to the basics of probability. This

introductory text on probability is designed for first and second year mathematics students. It

is based upon courses given at the Universities of Bristol, Cambridge, and Oxford.

Broadly speaking, we cover the usual material, but we hope that our account will have

certain special attractions for the reader and we shall say what these may be in a moment.

The first eight chapters form a course in basic probability, being an account of events, random

variables, and distributions—we treat discrete and continuous random variables separately—

together with simple versions of the law of large numbers and the central limit theorem. There

is an account of moment generating functions and their applications. The next three chapters

are about branching processes, random walks, and continuous-time random processes such as

the Poisson process. We hope that these chapters are adequate at this level and are suitable

appetizers for further courses in applied probability and random processes. The final chapter

is devoted to Markov chains in discrete time.

As in the first edition, this text is divided into three sections: (A) Probability, (B) Further

Probability, and (C) Random Processes. We hope thus to indicate two things. First, the prob-

ability in Part A seems to us to be core material for first-year students, whereas the material

in Part B is somewhat more difficult. Secondly, although random processes are collected to-

gether in the final four chapters, they may well be introduced much earlier in the course. The

chapters on branching processes and random walks might be studied after Chapter 5, and the

chapter on continuous-time processes after Chapter 6. The chapter on Markov chains can in

addition be used as the basis for a free-standing 12–16 lecture course.

The major difference of substance between the first and second editions of this text is the

new Chapter 12 on Markov chains. This chapter is a self-contained account of discrete-time

chains, culminating in a proper account of the convergence theorem. Numerous lesser changes

and additions have been made to the text in response to the evolution of course syllabuses and

of our perceptions of the needs of readers. These include more explicit accounts of geometrical

probability, indicator functions, the Markov and Jensen inequalities, the multivariate normal

distribution, and Cramér’s large deviation theorem, together with further exercises and prob-

lems often taken from recent examination papers at our home universities.

We have two major aims: to be concise, and to be honest about mathematical rigour. Some

will say that this book reads like a set of lecture notes. We would not regard this as entirely

unfair; indeed a principal reason for writing it was that we believe that most students benefit

more from possessing a compact account of the subject in 250 printed pages or so (at a suitable

price) than a diffuse account of 400 or more pages. Most undergraduates learn probability
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theory by attending lectures, at which they may take copious and occasionally incorrect notes;

they may also attend tutorials and classes. Few are they who learn probability in private by

relying on a textbook as the sole or principal source of inspiration and learning. Although

some will say that this book is quite difficult, it is the case that first-year students at many

universities learn some quite difficult things, such as axiomatic systems in algebra and ǫ/δ

analysis, and we doubt if the material covered here is inherently more challenging than these.

Also, lecturers and tutors have certain advantages over authors—they have the power to hear

and speak to their audiences—and these advantages should help them explain the harder things

to their students.

Here are a few words about our approach to rigour. It is impossible to prove everything

with complete rigour at this level. On the other hand, we believe it is important that students

should understand why rigour is necessary. We try to be rigorous where possible, and else-

where we go to some lengths to point out how and where we skate on thin ice.

Most sections finish with a few exercises; these are usually completely routine, and stu-

dents should do them as a matter of course. Each chapter finishes with a collection of prob-

lems; these are often much harder than the exercises, and include numerous questions taken

from examination papers set in Cambridge and Oxford. We acknowledge permission from

Oxford University Press in this regard, and also from the Faculties of Mathematics at

Cambridge and Oxford for further questions added in this second edition. There are two use-

ful appendices, followed by a final section containing some hints for solving the problems.

Problems marked with an asterisk may be more difficult.

We hope that the remaining mistakes and misprints are not held against us too much, and

that they do not pose overmuch of a hazard to the reader. Only with the kind help of our

students have we reduced them to the present level.

Finally, we extend our appreciation to our many students in Bristol, Oxford, and

Cambridge for their attention, intelligence, and criticisms during our many years of teach-

ing probability to undergraduates.

GG, DW

Cambridge, Oxford

February 2014
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Part A

Basic Probability





1

Events and probabilities

Summary. The very basic principles and tools of probability theory

are set out. An event involving randomness may be described in math-

ematical terms as a probability space. Following an account of the

properties of probability spaces, the concept of conditional probab-

ility is explained, and also that of the independence of events. There

are many worked examples of calculations of probabilities.

1.1 Experiments with chance

Many actions have outcomes which are largely unpredictable in advance—tossing a coin and

throwing a dart are simple examples. Probability theory is about such actions and their con-

sequences. The mathematical theory starts with the idea of an experiment (or trial), being a

course of action whose consequence is not predetermined. This experiment is reformulated

as a mathematical object called a probability space. In broad terms, the probability space

corresponding to a given experiment comprises three items:

(i) the set of all possible outcomes of the experiment,

(ii) a list of all the events which may possibly occur as consequences of the experiment,

(iii) an assessment of the likelihoods of these events.

For example, if the experiment is the throwing of a fair six-sided die, then the probability

space amounts to the following:

(i) the set {1, 2, 3, 4, 5, 6} of possible outcomes,

(ii) a list of events such as

• the result is 3,

• the result is at least 4,

• the result is a prime number,

(iii) each number 1, 2, 3, 4, 5, 6 is equally likely to be the result of the throw.

Given any experiment involving chance, there is a corresponding probability space, and the

study of such spaces is called probability theory. Next, we shall see how to construct such

spaces more explicitly.

1.2 Outcomes and events

We use the letter E to denote a particular experiment whose outcome is not completely pre-

determined. The first thing which we do is to make a list of all the possible outcomes of E .



4 Events and probabilities

The set of all such possible outcomes is called the sample space of E and we usually denote

it by �. The Greek letter ω denotes a typical member of �, and we call each member ω an

elementary event.

If, for example, E is the experiment of throwing a fair die once, then

� = {1, 2, 3, 4, 5, 6}.

There are many questions which we may wish to ask about the actual outcome of this experi-

ment (questions such as ‘is the outcome a prime number?’), and all such questions may be

rewritten in terms of subsets of� (the previous question becomes ‘does the outcome lie in the

subset {2, 3, 5} of�?’). The second thing which we do is to make a list of all the events which

are interesting to us. This list takes the form of a collection of subsets of �, each such subset

A representing the event ‘the outcome of E lies in A’. Thus we ask ‘which possible events are

interesting to us’, and then we make a list of the corresponding subsets of�. This relationship

between events and subsets is very natural, especially because two or more events combine

with each other in just the same way as the corresponding subsets combine. For example, if A

and B are subsets of �, then

• the set A ∪ B corresponds to the event ‘either A or B occurs’,

• the set A ∩ B corresponds to the event ‘both A and B occur’,

• the complement Ac := � \ A corresponds to the event ‘A does not occur’,1

where we say that a subset of C of � ‘occurs’ whenever the outcome of E lies in C . Thus all

set-theoretic statements and combinations may be interpreted in terms of events. For example,

the formula

� \ (A ∩ B) = (� \ A) ∪ (� \ B)

may be read as ‘if A and B do not both occur, then either A does not occur or B does not oc-

cur’. In a similar way, if A1, A2, . . . are events, then the sets
⋃∞

i=1 Ai and
⋂∞

i=1 Ai represent

the events ‘Ai occurs, for some i ’ and ‘Ai occurs, for every i ’, respectively.

Thus we write down a collection F = {Ai : i ∈ I } of subsets of � which are interesting

to us; each A ∈ F is called an event. In simple cases, such as the die-throwing example

above, we usually take F to be the set of all subsets of � (called the power set of �), but

for reasons which may be appreciated later there are many circumstances in which we take

F to be a very much smaller collection than the entire power set.2 In all cases we demand a

certain consistency of F , in the following sense. If A, B,C, . . . ∈ F , we may reasonably be

interested also in the events ‘A does not occur’ and ‘at least one of A, B,C, . . . occurs’. With

this in mind, we require that F satisfy the following definition.

1For any subset A of �, the complement of A is the set of all members of � which are not members of A. We
denote the complement of A by either � \ A or Ac, depending on the context.

2This is explained in Footnote 3 on p. 6.
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Definition 1.1 The collection F of subsets of the sample space � is called an event
space if

F is non-empty, (1.2)

if A ∈ F then� \ A ∈ F , (1.3)

if A1, A2, . . . ∈ F then

∞⋃

i=1

Ai ∈ F . (1.4)

We speak of an event space F as being ‘closed under the operations of taking complements

and countable unions’. Here are some elementary consequences of axioms (1.2)–(1.4).

(a) An event space F must contain the empty set ∅ and the whole set �. This holds as

follows. By (1.2), there exists some A ∈ F . By (1.3), Ac ∈ F . We set A1 = A, Ai = Ac

for i ≥ 2 in (1.4), and deduce that F contains the union� = A ∪ Ac. By (1.3) again, the

complement� \� = ∅ lies in F also.

(b) An event space is closed under the operation of finite unions, as follows. Let A1, A2, . . . ,

Am ∈ F , and set Ai = ∅ for i > m. Then A :=
⋃m

i=1 Ai satisfies A =
⋃∞

i=1 Ai , so that

A ∈ F by (1.4).

(c) The third condition (1.4) is written in terms of unions. An event space is also closed under

the operations of taking finite or countable intersections. This follows by the elementary

formula (A ∩ B)c = Ac ∪ Bc, and its extension to finite and countable families.

Here are some examples of pairs (�,F ) of sample spaces and event spaces.

Example 1.5 � is any non-empty set and F is the power set of �. △

Example 1.6 � is any non-empty set and F = {∅, A,� \ A,�}, where A is a given non-

trivial subset of �. △

Example 1.7 � = {1, 2, 3, 4, 5, 6} and F is the collection

∅, {1, 2}, {3, 4}, {5, 6}, {1, 2, 3, 4}, {3, 4, 5, 6}, {1, 2, 5, 6}, �

of subsets of�. This event space is unlikely to arise naturally in practice. △

In the following exercises, � is a set and F is an event space of subsets of �.

Exercise 1.8 If A, B ∈ F , show that A ∩ B ∈ F .

Exercise 1.9 The difference A \ B of two subsets A and B of � is the set A ∩ (� \ B) of all points of
� which are in A but not in B. Show that if A, B ∈ F , then A \ B ∈ F .

Exercise 1.10 The symmetric difference A △ B of two subsets A and B of � is defined to be the set of
points of � which are in either A or B but not both. If A, B ∈ F , show that A △ B ∈ F .

Exercise 1.11 If A1, A2, . . . , Am ∈ F and k is positive integer, show that the set of points in � which
belong to exactly k of the Ai belongs to F (the previous exercise is the case when m = 2 and k = 1).

Exercise 1.12 Show that, if � is a finite set, then F contains an even number of subsets of �.
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1.3 Probabilities

From our experiment E , we have so far constructed a sample space � and an event space F

associated with E , but there has been no mention yet of probabilities. The third thing which

we do is to allocate probabilities to each event in F , writing P(A) for the probability of the

event A. We shall assume that this can be done in such a way that the probability function P
satisfies certain intuitively attractive conditions:

(a) each event A in the event space has a probability P(A) satisfying 0 ≤ P(A) ≤ 1,

(b) the event �, that ‘something happens’, has probability 1, and the event ∅, that ‘nothing

happens’, has probability 0,

(c) if A and B are disjoint events (in that A ∩ B = ∅), then P(A ∪ B) = P(A)+ P(B).

We collect these conditions into a formal definition as follows.3

Definition 1.13 A mapping P : F → R is called a probability measure on (�,F ) if

(a) P(A) ≥ 0 for A ∈ F ,

(b) P(�) = 1 and P(∅) = 0,

(c) if A1, A2, . . . are disjoint events in F (in that Ai ∩ A j = ∅ whenever i 6= j ) then

P

(∞⋃

i=1

Ai

)
=

∞∑

i=1

P(Ai). (1.14)

We emphasize that a probability measure P on (�,F ) is defined only on those subsets of

� which lie in F . Here are two notes about probability measures.

(i) The second part of condition (b) is superfluous in the above definition. To see this, define

the disjoint events A1 = �, Ai = ∅ for i ≥ 2. By condition (c),

P(�) = P

(∞⋃

i=1

Ai

)
= P(�)+

∞∑

i=2

P(∅).

(ii) Condition (c) above is expressed as saying that P is countably additive. The probability

measure P is also finitely additive in that

P

(
m⋃

i=1

Ai

)
=

m∑

i=1

P(Ai)

for disjoint events Ai . This is deduced from condition (c) by setting Ai = ∅ for i > m.

Condition (1.14) requires that the probability of the union of a countable collection of

disjoint sets is the sum of the individual probabilities.4

3This is where the assumptions of an event space come to the fore. Banach and Kuratowski proved in 1929 that
there exists no probability measure P defined on all subsets of the interval [0, 1] satisfying P({x}) = 0 for every
singleton x ∈ [0, 1].

4A set S is called countable if it may be put in one–one correspondence with a subset of the natural numbers
{1, 2, 3, . . . }.
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Example 1.15 Let � be a non-empty set and let A be a proper, non-empty subset of � (so

that A 6= ∅,�). If F is the event space {∅, A,� \ A,�}, then all probability measures on

(�,F ) have the form

P(∅) = 0, P(A)= p,

P(� \ A) = 1 − p, P(�)= 1,

for some p satisfying 0 ≤ p ≤ 1. △

Example 1.16 Let � = {ω1, ω2, . . . , ωN } be a finite set of exactly N points, and let F be

the power set of �. It is easy to check that the function P defined by

P(A) =
1

N
|A| for A ∈ F

is a probability measure on (�,F ).5 △

Exercise 1.17 Let p1, p2, . . . , pN be non-negative numbers such that p1 + p2 +· · ·+ pN = 1, and let
� = {ω1, ω2, . . . , ωN }, with F the power set of �, as in Example 1.16. Show that the function Q given
by

Q(A) =
∑

i:ωi ∈A

pi for A ∈ F

is a probability measure on (�,F ). Is Q a probability measure on (�,F ) if F is not the power set of
� but merely some event space of subsets of �?

1.4 Probability spaces

We combine the previous ideas in a formal definition.

Definition 1.18 A probability space is a triple (�,F ,P) of objects such that

(a) � is a non-empty set,

(b) F is an event space of subsets of �,

(c) P is a probability measure on (�,F ).

There are many elementary consequences of the axioms underlying this definition, and we

describe some of these. Let (�,F ,P) be a probability space.

Property If A, B ∈ F , then6 A \ B ∈ F .

Proof The complement of A \ B equals (� \ A) ∪ B, which is the union of events and is

therefore an event. Hence A \ B is an event, by (1.3). 2

Property If A1, A2, . . . ∈ F , then
⋂∞

i=1 Ai ∈ F .

5The cardinality |A| of a set A is the number of points in A.
6 A \ B = A ∪ (� \ B) is the set of points in A which are not in B .
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Proof The complement of
⋂∞

i=1 Ai equals
⋃∞

i=1(� \ Ai), which is the union of the comple-

ments of events and is therefore an event. Hence the intersection of the Ai is an event also, as

before. 2

Property If A ∈ F then P(A)+ P(� \ A) = 1.

Proof The events A and � \ A are disjoint with union �, and so

1 = P(�) = P(A)+ P(� \ A). 2

Property If A, B ∈ F then P(A ∪ B)+ P(A ∩ B) = P(A)+ P(B).

Proof The set A is the union of the disjoint sets A \ B and A ∩ B, and hence

P(A) = P(A \ B)+ P(A ∩ B) by (1.14).

A similar remark holds for the set B, giving that

P(A)+ P(B) = P(A \ B)+ 2P(A ∩ B)+ P(B \ A)

= P
(
(A \ B) ∪ (A ∩ B) ∪ (B \ A)

)
+ P(A ∩ B) by (1.14)

= P(A ∪ B)+ P(A ∩ B). 2

Property If A, B ∈ F and A ⊆ B then P(A) ≤ P(B).

Proof We have that P(B) = P(A)+ P(B \ A) ≥ P(A). 2

It is often useful to draw a Venn diagram when working with probabilities . For example,

to illustrate the formula P(A ∪ B)+ P(A ∩ B) = P(A)+ P(B), we might draw the diagram

in Figure 1.1, and note that the probability of A ∪ B is the sum of P(A) and P(B) minus

P(A ∩ B), since the last probability is counted twice in the simple sum P(A)+ P(B).

�

A B

A ∩ B

Fig. 1.1 A Venn diagram illustrating the fact that P(A ∪ B) = P(A)+ P(B)− P(A ∩ B).

In the following exercises, (�,F ,P) is a probability space.
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Exercise 1.19 If A, B ∈ F , show that P(A \ B) = P(A)− P(A ∩ B).

Exercise 1.20 If A, B,C ∈ F , show that

P(A ∪ B ∪ C) = P(A)+ P(B)+ P(C)− P(A ∩ B)− P(B ∩ C)− P(A ∩ C)+ P(A ∩ B ∩ C).

Exercise 1.21 Let A, B,C be three events such that

P(A) = 5
10
, P(B) = 7

10
, P(C) = 6

10
,

P(A ∩ B) = 3
10
, P(B ∩ C) = 4

10
, P(A ∩ C) = 2

10
,

P(A ∩ B ∩ C) = 1
10
.

By drawing a Venn diagram or otherwise, find the probability that exactly two of the events A, B, C
occur.

Exercise 1.22 A fair coin is tossed 10 times (so that heads appears with probability 1
2

at each toss).
Describe the appropriate probability space in detail for the two cases when

(a) the outcome of every toss is of interest,

(b) only the total number of tails is of interest.

In the first case your event space should have 2210
events, but in the second case it need have only 211

events.

1.5 Discrete sample spaces

Let E be an experiment with probability space (�,F ,P). The structure of this space depends

greatly on whether � is a countable set (that is, a finite or countably infinite set) or an un-

countable set. If� is a countable set, we normally take F to be the set of all subsets of �, for

the following reason. Suppose that � = {ω1, ω2, . . . } and, for each ω ∈ �, we are interested

in whether or not this given ω is the actual outcome of E ; then we require that each single-

ton set {ω} belongs to F . Let A ⊆ �. Then A is countable (since � is countable), and so

A may be expressed as the union of the countably many ωi which belong to A, giving that

A =
⋃
ω∈A{ω} ∈ F by (1.4). The probability P(A) of the event A is determined by the

collection of probabilities P({ω}) as ω ranges over �, since, by (1.14),

P(A) =
∑

ω∈A

P({ω}).

We usually write P(ω) for the probability P({ω}) of an event containing only one point in �.

Example 1.23 (Equiprobable outcomes) If � = {ω1, ω2, . . . , ωN } and P(ωi ) = P(ω j ) for

all i and j , then P(ω) = 1/N for ω ∈ �, and P(A) = |A|/N for A ⊆ �. △

Example 1.24 (Random integers) There are ‘intuitively clear’ statements which are without

meaning in probability theory, and here is an example: if we pick a positive integer at random,

then it is an even integer with probability 1
2

. Interpreting ‘at random’ to mean that each posi-

tive integer is equally likely to be picked, then this experiment would have probability space

(�,F ,P), where



10 Events and probabilities

(a) � = {1, 2, . . . },
(b) F is the set of all subsets of �,

(c) if A ⊆ �, then P(A) =
∑

i∈A P(i) = π |A|, where π is the probability that any given

integer, i say, is picked.

However,

if π = 0 then P(�) =
∞∑

i=1

0 = 0,

if π > 0 then P(�) =
∞∑

i=1

π = ∞,

neither of which is in agreement with the rule that P(�) = 1. One possible way of interpreting

the italicized statement above is as follows. Let N be a large positive integer, and let EN be

the experiment of picking an integer from the finite set �N = {1, 2, . . . , N} at random. The

probability that the outcome of EN is even is

1

2
if N is even, and

1

2

(
1 −

1

N

)
if N is odd,

so that, as N → ∞, the required probability tends to 1
2 . Despite this sensible interpretation

of the italicized statement, we emphasize that this statement is without meaning in its present

form and should be shunned by serious probabilists. △

The most elementary problems in probability theory are those which involve experiments

such as the shuffling of cards or the throwing of dice, and these usually give rise to situations

in which every possible outcome is equally likely to occur. This is the case of Example 1.23

above. Such problems usually reduce to the problem of counting the number of ways in which

some event may occur, and the following exercises are of this type.

Exercise 1.25 Show that if a coin is tossed n times, then there are exactly

(
n

k

)
=

n!
k! (n − k)!

sequences of possible outcomes in which exactly k heads are obtained. If the coin is fair (so heads and
tails are equally likely on each toss), show that the probability of getting at least k heads is

1

2n

n∑

r=k

(
n

r

)
.

Exercise 1.26 We distribute r distinguishable balls into n cells at random, multiple occupancy being
permitted. Show that

(a) there are nr possible arrangements,

(b) there are
(r
k

)
(n − 1)r−k arrangements in which the first cell contains exactly k balls,
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(c) the probability that the first cell contains exactly k balls is

(
r

k

)(
1

n

)k (
1 −

1

n

)r−k

.

Exercise 1.27 In a game of bridge, the 52 cards of a conventional pack are distributed at random be-
tween the four players in such a way that each player receives 13 cards. Show that the probability that
each player receives one ace is

24 · 48! · 134

52!
= 0.105 . . . .

Exercise 1.28 Show that the probability that two given hands in bridge contain k aces between them is

(
4

k

)(
48

26 − k

)/(
52

26

)
.

Exercise 1.29 Show that the probability that a hand in bridge contains 6 spades, 3 hearts, 2 diamonds
and 2 clubs is (

13

6

)(
13

3

)(
13

2

)2/(
52

13

)
.

Exercise 1.30 Which of the following is more probable:

(a) getting at least one six with 4 throws of a die,

(b) getting at least one double six with 24 throws of two dice?

This is sometimes called ‘de Méré’s paradox’, after the professional gambler Chevalier de Méré, who
believed these two events to have equal probability.

1.6 Conditional probabilities

Let E be an experiment with probability space (�,F ,P). We may sometimes possess some

incomplete information about the actual outcome of E without knowing this outcome entirely.

For example, if we throw a fair die and a friend tells us that an even number is showing, then

this information affects our calculations of probabilities. In general, if A and B are events

(that is, A, B ∈ F ) and we are given that B occurs, then, in the light of this information, the

new probability of A may no longer be P(A). Clearly, in this new circumstance, A occurs if

and only if A ∩ B occurs, suggesting that the new probability of A should be proportional to

P(A ∩ B). We make this chat more formal in a definition.7

Definition 1.31 If A, B ∈ F and P(B) > 0, the (conditional) probability of A given B

is denoted by P(A | B) and defined by

P(A | B) =
P(A ∩ B)

P(B)
. (1.32)

7We emphasize that this is a definition rather than a theorem.
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Note that the constant of proportionality in (1.32) has been chosen so that the probability

P(B | B), that B occurs given that B occurs, satisfies P(B | B) = 1. We must next check that

this definition gives rise to a probability space.

Theorem 1.33 If B ∈ F and P(B) > 0 then (�,F ,Q) is a probability space where

Q : F → R is defined by Q(A) = P(A | B).

Proof We need only check that Q is a probability measure on (�,F ). Certainly Q(A) ≥ 0

for A ∈ F and

Q(�) = P(� | B) =
P(� ∩ B)

P(B)
= 1,

and it remains to check that Q satisfies (1.14). Suppose that A1, A2, . . . are disjoint events in

F . Then

Q

(⋃

i

Ai

)
=

1

P(B)
P

((⋃

i

Ai

)
∩ B

)

=
1

P(B)
P

(⋃

i

(Ai ∩ B)

)

=
1

P(B)

∑

i

P(Ai ∪ B) since P satisfies (1.14)

=
∑

i

Q(Ai). 2

Exercise 1.34 If (�,F ,P) is a probability space and A, B,C are events, show that

P(A ∩ B ∩ C) = P(A | B ∩ C)P(B | C)P(C)

so long as P(B ∩ C) > 0.

Exercise 1.35 Show that

P(B | A) = P(A | B)
P(B)

P(A)
if P(A) > 0 and P(B) > 0.

Exercise 1.36 Consider the experiment of tossing a fair coin 7 times. Find the probability of getting a
prime number of heads given that heads occurs on at least 6 of the tosses.

1.7 Independent events

We call two events A and B ‘independent’ if the occurrence of one of them does not affect the

probability that the other occurs. More formally, this requires that, if P(A), P(B) > 0, then

P(A | B) = P(A) and P(B | A) = P(B). (1.37)

Writing P(A | B) = P(A ∩ B)/P(B), we see that the following definition is appropriate.
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Definition 1.38 Events A and B of a probability space (�,F ,P) are called independ-
ent if

P(A ∩ B) = P(A)P(B), (1.39)

and dependent otherwise.

This definition is slightly more general than (1.37) since it allows the events A and B to

have zero probability. It is easily generalized as follows to more than two events. A family

A = (Ai : i ∈ I ) of events is called independent if, for all finite subsets J of I ,

P

(⋂

i∈J

Ai

)
=
∏

i∈J

P(Ai). (1.40)

The family A is called pairwise independent if (1.40) holds whenever |J | = 2.

Thus, three events, A, B, C , are independent if and only if the following equalities hold:

P(A ∩ B ∩ C) = P(A)P(B)P(C), P(A ∩ B) = P(A)P(B),

P(A ∩ C) = P(A)P(C), P(B ∩ C) = P(B)P(C).

There are families of events which are pairwise independent but not independent.

Example 1.41 Suppose that we throw a fair four-sided die (you may think of this as a square

die thrown in a two-dimensional universe). We may take � = {1, 2, 3, 4}, where each ω ∈ �
is equally likely to occur. The events A = {1, 2}, B = {1, 3}, C = {1, 4} are pairwise

independent but not independent. △

Exercise 1.42 Let A and B be events satisfying P(A), P(B) > 0, and such that P(A | B) = P(A).
Show that P(B | A) = P(B).

Exercise 1.43 If A and B are events which are disjoint and independent, what can be said about the
probabilities of A and B?

Exercise 1.44 Show that events A and B are independent if and only if A and � \ B are independent.

Exercise 1.45 Show that events A1, A2, . . . , Am are independent if and only if � \ A1, � \ A2, . . . ,

� \ Am are independent.

Exercise 1.46 If A1, A2, . . . , Am are independent and P(Ai ) = p for i = 1, 2, . . . ,m, find the probab-
ility that

(a) none of the Ai occur,

(b) an even number of the Ai occur.

Exercise 1.47 On your desk, there is a very special die with a prime number p of faces, and you throw
this die once. Show that no two events A and B can be independent unless either A or B is the whole
sample space or the empty set.



14 Events and probabilities

1.8 The partition theorem

Let (�,F ,P) be a probability space. A partition of � is a collection {Bi : i ∈ I } of disjoint

events (in that Bi ∈ F for each i , and Bi ∩ B j = ∅ if i 6= j ) with union
⋃

i Bi = �. The

following partition theorem is extremely useful.

Theorem 1.48 (Partition theorem) If {B1, B2, . . . } is a partition of � with P(Bi ) > 0

for each i , then

P(A) =
∑

i

P(A | Bi)P(Bi ) for A ∈ F .

This theorem has several other fancy names such as ‘the theorem of total probability’, and

it is closely related to ‘Bayes’ theorem’, Theorem 1.50.

Proof We have that

P(A) = P

(
A ∩

(
⋃

i

Bi

))

= P

(
⋃

i

(A ∩ Bi)

)

=
∑

i

P(A ∩ Bi ) by (1.14)

=
∑

i

P(A | Bi)P(Bi) by (1.32). 2

Here is an example of this theorem in action in a two-stage calculation.

Example 1.49 Tomorrow there will be either rain or snow but not both; the probability of rain

is 2
5

and the probability of snow is 3
5
. If it rains, the probability that I will be late for my lecture

is 1
5

, while the corresponding probability in the event of snow is 3
5

. What is the probability

that I will be late?

Solution Let A be the event that I am late and B be the event that it rains. The pair B, Bc is a

partition of the sample space (since exactly one of them must occur). By Theorem 1.48,

P(A) = P(A | B)P(B)+ P(A | Bc)P(Bc)

= 1
5

· 2
5

+ 3
5

· 3
5

= 11
25
. △

There are many practical situations in which you wish to deduce something from a piece

of evidence. We write A for the evidence, and B1, B2, . . . for the possible ‘states of nature’.

Suppose there are good estimates for the conditional probabilities P(A | Bi), but we seek

instead a probability of the form P(B j | A).
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Theorem 1.50 (Bayes’ theorem) Let {B1, B2, . . . } be a partition of the sample space

� such that P(Bi ) > 0 for each i . For any event A with P(A) > 0,

P(B j | A) =
P(A | B j )P(B j )∑

i P(A | Bi )P(Bi)
.

Proof By the definition of conditional probability (see Exercise 1.35),

P(B j | A) =
P(A | B j)P(B j )

P(A)
,

and the claim follows by the partition theorem, Theorem 1.48. 2

Example 1.51 (False positives) A rare but potentially fatal disease has an incidence of 1

in 105 in the population at large. There is a diagnostic test, but it is imperfect. If you have

the disease, the test is positive with probability 9
10 ; if you do not, the test is positive with

probability 1
20 . Your test result is positive. What is the probability that you have the disease?

Solution Write D for the event that you have the disease, and P for the event that the test is

positive. By Bayes’ theorem, Theorem 1.50,

P(D | P) =
P(P | D)P(D)

P(P | D)P(D) + P(P | Dc)P(Dc)

=
9
10

· 1
105

9
10

· 1

105 + 1
20

· 105−1

105

≈ 0.0002.

It is more likely that the result of the test is incorrect than that you have the disease. △

Exercise 1.52 Here are two routine problems about balls in urns. You are presented with two urns. Urn I
contains 3 white and 4 black balls, and Urn II contains 2 white and 6 black balls.

(a) You pick a ball randomly from Urn I and place it in Urn II. Next you pick a ball randomly from
Urn II. What is the probability that the ball is black?

(b) This time, you pick an urn at random, each of the two urns being picked with probability 1
2

, and
you pick a ball at random from the chosen urn. Given the ball is black, what is the probability you
picked Urn I?

Exercise 1.53 A biased coin shows heads with probability p = 1 − q whenever it is tossed. Let un be
the probability that, in n tosses, no two heads occur successively. Show that, for n ≥ 1,

un+2 = qun+1 + pqun ,

and find un by the usual method (described in Appendix B) when p = 2
3

.
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1.9 Probability measures are continuous

There is a certain property of probability measures which will be very useful later, and we

describe this next. Too great an emphasis should not be placed on the property at this stage,

and we recommend to the reader that he or she omit this section at the first reading.

A sequence A1, A2, . . . of events in a probability space (�,F ,P) is called increasing if

An ⊆ An+1 for n = 1, 2, . . . .

The union

A =
∞⋃

i=1

Ai

of such a sequence is called the limit of the sequence, and it is an elementary consequence of

the axioms for an event space that A is an event. It is perhaps not surprising that the probability

P(A) of A may be expressed as the limit limn→∞ P(An) of the probabilities of the An .

Theorem 1.54 (Continuity of probability measures) Let (�,F ,P) be a probability

space. If A1, A2, . . . is an increasing sequence of events in F with limit A, then

P(A) = lim
n→∞

P(An).

We precede the proof of the theorem with an application.

Example 1.55 It is intuitively clear that the chance of obtaining no heads in an infinite set of

tosses of a fair coin is 0. A rigorous proof goes as follows. Let An be the event that the first n

tosses of the coin yield at least one head. Then

An ⊆ An+1 for n = 1, 2, . . . ,

so that the An form an increasing sequence. The limit set A is the event that heads occurs

sooner or later. By the continuity of P, Theorem 1.54,

P(A) = lim
n→∞

P(An).

However, P(An) = 1 − ( 1
2
)n , and so P(An) → 1 as n → ∞. Thus P(A) = 1, giving that the

probability P(� \ A), that no head ever appears, equals 0. △

Proof of Theorem 1.54 Let Bi = Ai \ Ai−1. Then

A = A1 ∪ B2 ∪ B3 ∪ · · ·

is the union of disjoint events in F (draw a Venn diagram to make this clear). By (1.14),

P(A) = P(A1)+ P(B2)+ P(B3)+ · · ·

= P(A1)+ lim
n→∞

n∑

k=2

P(Bk).
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However,

P(Bi) = P(Ai )− P(Ai−1) for i = 2, 3, . . . ,

and so

P(A) = P(A1)+ lim
n→∞

n∑

k=2

[
P(Ak)− P(Ak−1)

]

= lim
n→∞

P(An)

as required, since the last sum collapses. 2

The conclusion of Theorem 1.54 is expressed in terms of an increasing sequence of events,

but the corresponding statement for a decreasing sequence is valid too: if B1, B2, . . . is a

sequence of events in F such that Bi ⊇ Bi+1 for i = 1, 2, . . . , then P(Bn) → P(B) as

n → ∞, where B =
⋂∞

i=1 Bi is the limit of the Bi as i → ∞. The shortest way to show this

is to set Ai = � \ Bi in the theorem.

1.10 Worked problems

Example 1.56 A fair six-sided die is thrown twice (when applied to such objects as dice or

coins, the adjectives ‘fair’ and ‘unbiased’ imply that each possible outcome has equal probab-

ility of occurring).

(a) Write down the probability space of this experiment.

(b) Let B be the event that the first number thrown is no larger than 3, and let C be the event

that the sum of the two numbers thrown equals 6. Find the probabilities of B and C , and

the conditional probabilities of C given B , and of B given C .

Solution The probability space of this experiment is the triple (�,F ,P), where

(i) � =
{
(i, j ) : i, j = 1, 2, . . . , 6

}
, the set of all ordered pairs of integers between 1 and 6,

(ii) F is the set of all subsets of �,

(iii) each point in � has equal probability, so that

P
(
(i, j )

)
= 1

36
for i, j = 1, 2, . . . , 6,

and, more generally,

P(A) = 1
36

|A| for each A ⊆ �.

The events B and C are subsets of � given by

B =
{
(i, j) : i = 1, 2, 3 and j = 1, 2, . . . , 6

}
,

C =
{
(i, j) : i + j = 6 and i, j = 1, 2, . . . , 6

}
.

The event B contains 3 × 6 = 18 ordered pairs, and C contains 5 ordered pairs, giving that

P(B) = 18
36 = 1

2 , P(C) = 5
36 .

Finally, B ∩ C is given by
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B ∩ C =
{
(1, 5), (2, 4), (3, 3)

}

containing just 3 ordered pairs, so that

P(C | B) =
P(C ∩ B)

P(B)
= 3

36

/
18
36

= 1
6
,

and

P(B | C) =
P(B ∩ C)

P(C)
= 3

36

/
5

36
= 3

5
. △

Example 1.57 You are travelling on a train with your sister. Neither of you has a valid ticket,

and the inspector has caught you both. He is authorized to administer a special punishment for

this offence. He holds a box containing nine apparently identical chocolates, three of which are

contaminated with a deadly poison. He makes each of you, in turn, choose and immediately

eat a single chocolate.

(a) If you choose before your sister, what is the probability that you will survive?

(b) If you choose first and survive, what is the probability that your sister survives?

(c) If you choose first and die, what is the probability that your sister survives?

(d) Is it in your best interests to persuade your sister to choose first?

(e) If you choose first, what is the probability that you survive, given that your sister sur-

vives?

Solution Let A be the event that the first chocolate picked is not poisoned, and let B be the

event that the second chocolate picked is not poisoned. Elementary calculations, if you are

allowed the time to perform them, would show that

P(A) = 6
9 , P(B | A) = 5

8 , P(B | Ac) = 6
8 ,

giving by the partition theorem, Theorem 1.48, that

P(B) = P(B | A)P(A)+ P(B | Ac)P(Ac)

= 5
8

· 6
9

+ 6
8

· (1 − 6
9
) = 2

3
.

Hence P(A) = P(B), so that the only reward of choosing second is to increase your life

expectancy by a few seconds.

The final question (e) seems to be the wrong way round in time, since your sister chooses

her chocolate after you. The way to answer such a question is to reverse the conditioning as

follows:

P(A | B) =
P(A ∩ B)

P(B)
= P(B | A)

P(A)

P(B)
, (1.58)

and hence

P(A | B) = 5
8 · 6

9

/
2
3 = 5

8 .

We note that P(A | B) = P(B | A), in agreement with our earlier observation that the order

in which you and your sister pick from the box is irrelevant to your chances of survival. △
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Example 1.59 A coin is tossed 2n times. What is the probability of exactly n heads? How

does your answer behave for large n?

Solution The sample space is the set of possible outcomes. It has 22n elements, each of which

is equally likely. There are
(

2n
n

)
ways to throw exactly n heads. Therefore, the answer is

1

22n

(
2n

n

)
. (1.60)

To understand how this behaves for large n, we need to expand the binomial coefficient in

terms of polynomials and exponentials. The relevant asymptotic formula is called Stirling’s

formula,

n! ∼ (n/e)n
√

2πn as n → ∞, (1.61)

where an ∼ bn means an/bn → 1 as n → ∞. See Theorem A.4 for a partial proof of this.

Applying Stirling’s formula to (1.60), we obtain

1

22n

(
2n

n

)
= 2−2n (2n)!

(n!)2

∼ 2−2n (2n/e)2n
√

2π2n

(n/e)2n(2πn)
=

1
√
πn
.

The factorials and exponentials are gigantic but they cancel out. △

Example 1.62 (Simpson’s paradox) The following comparison of surgical procedures is

taken from Charig et al. (1986). Two treatments are considered for kidney stones, namely

open surgery (abbreviated to OS) and percutaneous nephrolithotomy (PN). It is reported that

OS has a success rate of 78% (= 273/350) and PN a success rate of 83% (= 289/350). This

looks like a marginal advantage to PN. On looking more closely, the patients are divided into

two groups depending on whether or not their stones are smaller than 2 cm, with the following

success rates.

stone < 2 cm stone > 2 cm Total

OS 93% (= 81/87) 73% (= 192/263) 78% (= 273/350)

PN 87% (= 234/270) 68% (= 55/80) 83% (= 289/350)

Open surgery wins in both cases! Discuss. △

1.11 Problems

1. A fair die is thrown n times. Show that the probability that there are an even number of sixes

is 1
2

[
1 + ( 2

3
)n
]
. For the purpose of this question, 0 is an even number.

2. Does there exist an event space containing just six events?

3. Prove Boole’s inequality:

P




n⋃

i=1

Ai


 ≤

n∑

i=1

P(Ai).
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4. Prove that

P




n⋂

i=1

Ai


 ≥ 1 − n +

n∑

i=1

P(Ai ).

This is sometimes called Bonferroni’s inequality, but the term is not recommended since it has
multiple uses.

5. Two fair dice are thrown. Let A be the event that the first shows an odd number, B be the event
that the second shows an even number, and C be the event that either both are odd or both are
even. Show that A, B, C are pairwise independent but not independent.

6. Urn I contains 4 white and 3 black balls, and Urn II contains 3 white and 7 black balls. An
urn is selected at random, and a ball is picked from it. What is the probability that this ball is
black? If this ball is white, what is the probability that Urn I was selected?

7. A single card is removed at random from a deck of 52 cards. From the remainder we draw two
cards at random and find that they are both spades. What is the probability that the first card
removed was also a spade?

8. A fair coin is tossed 3n times. Find the probability that the number of heads is twice the number
of tails. Expand your answer using Stirling’s formula.

9. Two people toss a fair coin n times each. Show that the probability they throw equal numbers
of heads is (

2n

n

)(
1

2

)2n

.

AA BB

Fig. 1.2 Two electrical circuits incorporating switches.

10. In the circuits in Figure 1.2, each switch is closed with probability p, independently of all other
switches. For each circuit, find the probability that a flow of current is possible between A and
B.

11. Show that if un is the probability that n tosses of a fair coin contain no run of 4 heads, then for
n ≥ 4

un = 1
2

un−1 + 1
4

un−2 + 1
8

un−3 + 1
16

un−4.

Use this difference equation to show that u8 = 208
256

.

* 12. Any number ω ∈ [0, 1] has a decimal expansion

ω = 0.x1x2 . . . ,

and we write fk (ω, n) for the proportion of times that the integer k appears in the first n digits
in this expansion. We call ω a normal number if

fk(ω, n) → 1
10

as n → ∞

for k = 0, 1, 2, . . . , 9. On intuitive grounds we may expect that most numbers ω ∈ [0, 1] are
normal numbers, and Borel proved that this is indeed true. It is quite another matter to exhibit
specific normal numbers. Prove the number
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0.1234567891011121314 . . .

is normal. It is an unsolved problem of mathematics to show that e − 2 and π − 3 are normal
numbers also.

13. A square board is divided into 16 equal squares by lines drawn parallel to its sides. A counter
is placed at random on one of these squares and is then moved n times. At each of these moves,
it can be transferred to any neighbouring square, horizontally, vertically, or diagonally, all such
moves being equally likely.

Let cn be the probability that a particular corner site is occupied after n such independent
moves, and let the corresponding probabilities for an intermediate site at the side of the board
and for a site in the middle of the board be sn and mn , respectively. Show that

4cn + 8sn + 4mn = 1, n = 0, 1, 2, . . . ,

and that
cn = 2

5 sn−1 + 1
8 mn−1, n = 1, 2, . . . .

Find two other relations for sn and mn in terms of cn−1, sn−1, and mn−1, and hence find cn ,
sn , and mn . (Oxford 1974M)

14. (a) Let P(A) denote the probability of the occurrence of an event A. Prove carefully, for events
A1, A2, . . . , An , that

P




n⋃

i=1

Ai


 =

∑

i

P(Ai)−
∑

i< j

P(Ai ∩ A j )+
∑

i< j<k

P(Ai ∩ A j ∩ Ak)− · · ·

+ (−1)n+1P


⋂

i

Ai


 .

(b) One evening, a bemused lodge-porter tried to hang n keys on their n hooks, but only man-
aged to hang them independently and at random. There was no limit to the number of keys
which could be hung on any hook. Otherwise, or by using (a), find an expression for the prob-
ability that at least one key was hung on its own hook.

The following morning, the porter was rebuked by the Bursar, so that in the evening she was
careful to hang only one key on each hook. But she still only managed to hang them independ-
ently and at random. Find an expression for the probability that no key was then hung on its
own hook.

Find the limits of both expressions as n tends to infinity.

You may assume that, for real x ,

ex =
∞∑

r=0

xr

r !
= lim

N→∞

(
1 +

x

N

)N
.

(Oxford 1978M)

15. Two identical decks of cards, each containing N cards, are shuffled randomly. We say that a
k-matching occurs if the two decks agree in exactly k places. Show that the probability that
there is a k-matching is

πk =
1

k!

(
1 −

1

1!
+

1

2!
−

1

3!
+ · · · +

(−1)N−k

(N − k)!

)
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for k = 0, 1, 2, . . . , N . We note that πk ≃ 1/(k! e) for large N and fixed k. Such matching
probabilities are used in testing departures from randomness in circumstances such as psycho-
logical tests and wine-tasting competitions. (The convention is that 0! = 1.)

16. The buses which stop at the end of my road do not keep to the timetable. They should run
every quarter hour, at 08.30, 08.45, 09.00, . . . , but in fact each bus is either five minutes early
or five minutes late, the two possibilities being equally probable and different buses being
independent. Other people arrive at the stop in such a way that, t minutes after the departure of

one bus, the probability that no one is waiting for the next one is e−t/5. What is the probability
that no one is waiting at 09.00? One day, I come to the stop at 09.00 and find no one there;
show that the chances are more than four to one that I have missed the nine o’clock bus.

You may use an approximation e3 ≈ 20. (Oxford 1977M)

17. A coin is tossed repeatedly; on each toss a head is shown with probability p, or a tail with
probability 1 − p. The outcomes of the tosses are independent. Let E denote the event that the
first run of r successive heads occurs earlier that the first run of s successive tails. Let A denote
the outcome of the first toss. Show that

P(E | A = head) = pr−1 + (1 − pr−1)P(E | A = tail).

Find a similar expression for P(E | A = tail), and hence find P(E). (Oxford 1981M)

* 18. Show that the axiom that P is countably additive is equivalent to the axiom that P is finitely
additive and continuous. That is to say, let � be a set and F an event space of subsets of �. If
P is a mapping from F into [0, 1] satisfying

(i) P(�) = 1,P(∅) = 0,
(ii) if A, B ∈ F and A ∩ B = ∅ then P(A ∪ B) = P(A)+ P(B),

(iii) if A1, A2, . . . ∈ F and Ai ⊆ Ai+1 for i = 1, 2, . . . , then

P(A) = lim
i→∞

P(Ai),

where A =
⋃∞

i=1 Ai ,

then P satisfies P
(⋃

i Ai

)
=
∑

i P(Ai) for all sequences A1, A2, . . . of disjoint events.

19. There are n socks in a drawer, three of which are red and the rest black. John chooses his socks
by selecting two at random from the drawer, and puts them on. He is three times more likely
to wear socks of different colours than to wear matching red socks. Find n.

For this value of n, what is the probability that John wears matching black socks? (Cambridge
2008)
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Discrete random variables

Summary. Discrete random variables are studied via their probability

mass functions. This leads to the definition of the ‘mean value’ or

‘expectation’ of a random variable. There are discussions of variance,

and of functions of random variables. Methods are presented for cal-

culating expectations, including the use of conditional expectation.

2.1 Probability mass functions

Given a probability space (�,F ,P), we are often interested in situations involving some real-

valued function X acting on �. For example, let E be the experiment of throwing a fair die

once, so that � = {1, 2, 3, 4, 5, 6}, and suppose that we gamble on the outcome of E in such

a way that the profit is

−1 if the outcome is 1, 2, or 3,

0 if the outcome is 4,

2 if the outcome is 5 or 6,

where negative profits are positive losses. If the outcome is ω, then our profit is X (ω), where

X : � → R is defined by

X (1) = X (2) = X (3) = −1, X (4) = 0, X (5) = X (6) = 2.

The mapping X is an example of a ‘discrete random variable’.

More formally, a discrete random variable X on the probability space (�,F ,P) is defined

to be a mapping X : � → R such that

the image X (�) is a countable subset of R,1 and (2.1)

{ω ∈ � : X (ω) = x} ∈ F for x ∈ R. (2.2)

The word ‘discrete’ here refers to the condition that X takes only countably many values

in R.2 Condition (2.2) is obscure at first sight, and the point here is as follows. A discrete

random variable X takes values in R, but we cannot predict the actual value of X with certainty

1If X : � → R and A ⊆ �, the image of A is the set X (A) = {X (ω) : ω ∈ A} of values taken by X on A.
2A slightly different but morally equivalent definition of a discrete random variable is a function X : � → R such

that there exists a countable subset S ⊆ R with P(X ∈ S) = 1.
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since the underlying experiment E involves chance. Instead, we would like to measure the

probability that X takes a given value, x say. To this end, we note that X takes the value x if

and only if the result of E lies in that subset of � which is mapped into x , namely the subset

X−1(x) = {ω ∈ � : X (ω) = x}. Condition (2.2) postulates that all such subsets are events,

in that they belong to F , and are therefore assigned probabilities by P.

The most interesting things about a discrete random variable are the values which it may

take and the probabilities associated with these values. If X is a discrete random variable on

the probability space (�,F ,P), then its image Im X is the image of � under X , that is, the

set of values taken by X .

Henceforth, we abbreviate events of the form {ω ∈ � : X (ω) = x} to the more convenient

form {X = x}.

Definition 2.3 The (probability) mass function (or pmf) of the discrete random variable

X is the function pX : R → [0, 1] defined by

pX(x) = P(X = x). (2.4)

Thus, pX(x) is the probability that the mapping X takes the value x . Note that Im X is

countable for any discrete random variable X , and

pX (x) = 0 if x /∈ Im X, (2.5)

∑

x∈Im X

pX (x) = P

(
⋃

x∈Im X

{ω ∈ � : X (ω) = x}

)
by (1.14)

= P(�) = 1. (2.6)

Equation (2.6) is sometimes written as

∑

x∈R

pX(x) = 1,

in the light of the fact that only countably many values of x make non-zero contributions to

this sum. Condition (2.6) essentially characterizes mass functions of discrete random variables

in the sense of the following theorem.

Theorem 2.7 Let S = {si : i ∈ I } be a countable set of distinct real numbers, and let

{πi : i ∈ I } be a collection of real numbers satisfying

πi ≥ 0 for i ∈ I , and
∑

i∈I

πi = 1.

There exists a probability space (�,F ,P) and a discrete random variable X on

(�,F ,P) such that the probability mass function of X is given by

pX (si) = πi for i ∈ I,

pX(s) = 0 if s /∈ S.
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Proof Take � = S, F to be the set of all subsets of �, and

P(A) =
∑

i: si ∈A

πi for A ∈ F .

Finally, define X : � → R by X (ω) = ω for ω ∈ �. 2

This theorem is very useful, since for many purposes it allows us to forget about sample

spaces, event spaces, and probability measures; we need only say ‘let X be a random variable

taking the value si with probability πi , for i ∈ I ’ and we can be sure that such a random

variable exists without having to construct it explicitly.

In the next section, we present a list of some of the most common types of discrete random

variables.

Exercise 2.8 If X and Y are discrete random variables on the probability space (�,F ,P), show that U

and V are discrete random variables on this space also, where

U(ω) = X (ω)+ Y (ω), V (ω) = X (ω)Y (ω), for ω ∈ �.

Exercise 2.9 Show that if F is the power set of �, then all functions which map � into a countable
subset of R are discrete random variables.

Exercise 2.10 If E is an event of the probability space (�,F ,P) show that the indicator function of E ,
defined to be the function 1E on � given by

1E (ω) =
{

1 if ω ∈ E ,

0 if ω /∈ E ,

is a discrete random variable.

Exercise 2.11 Let (�,F ,P) be a probability space in which

� = {1, 2, 3, 4, 5, 6}, F =
{
∅, {2, 4, 6}, {1, 3, 5},�

}
,

and let U , V , W be functions on � defined by

U(ω) = ω, V (ω) =

{
1 if ω is even,

0 if ω is odd,
W (ω) = ω2,

for ω ∈ �. Determine which of U , V , W are discrete random variables on the probability space.

Exercise 2.12 For what value of c is the function p, defined by

p(k) =





c

k(k + 1)
if k = 1, 2, . . . ,

0 otherwise,

a mass function?
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2.2 Examples

Certain types of discrete random variables occur frequently, and we list some of these.

Throughout this section, n is a positive integer, p is a number in [0, 1], and q = 1 − p.

We never describe the underlying probability space.

Bernoulli distribution. This is the simplest non-trivial distribution. We say that the discrete

random variable X has the Bernoulli distribution with parameter p if the image of X is {0, 1},
so that X takes the values 0 and 1 only.

Such a random variable X is often called simply a coin toss. There exists p ∈ [0, 1] such

that

P(X = 0) = q, P(X = 1) = p, (2.13)

and the mass function of X is given by

pX (0) = q, pX (1) = p, pX(x) = 0 if x 6= 0, 1.

Coin tosses are the building blocks of probability theory. There is a sense in which the

entire theory can be constructed from an infinite sequence of coin tosses.

Binomial distribution. We say that X has the binomial distribution with parameters n and p

if X takes values in {0, 1, . . . , n} and

P(X = k) =
(

n

k

)
pkqn−k for k = 0, 1, 2, . . . , n. (2.14)

Note that (2.14) gives rise to a mass function satisfying (2.6) since, by the binomial theorem,

n∑

k=0

(
n

k

)
pkqn−k = (p + q)n = 1.

Poisson distribution. We say that X has the Poisson distribution with parameter λ (> 0) if

X takes values in {0, 1, 2, . . . } and

P(X = k) =
1

k!
λke−λ for k = 0, 1, 2, . . . . (2.15)

Again, this gives rise to a mass function since

∞∑

k=0

1

k!
λke−λ = e−λ

∞∑

k=0

1

k!
λk = e−λeλ = 1.

Geometric distribution. We say that X has the geometric distribution with parameter p ∈
(0, 1) if X takes values in {1, 2, 3, . . . } and

P(X = k) = pqk−1 for k = 1, 2, 3, . . . . (2.16)

As before, note that
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∞∑

k=1

pqk−1 =
p

1 − q
= 1.

Negative binomial distribution. We say that X has the negative binomial distribution with

parameters n and p ∈ (0, 1) if X takes values in {n, n + 1, n + 2, . . . } and

P(X = k) =
(

k − 1

n − 1

)
pnqk−n for k = n, n + 1, n + 2, . . . . (2.17)

As before, note that

∞∑

k=n

(
k − 1

n − 1

)
pnqk−n = pn

∞∑

l=0

(
n + l − 1

l

)
ql where l = k − n

= pn
∞∑

l=0

(
−n

l

)
(−q)l

= pn(1 − q)−n = 1,

using the binomial expansion of (1 − q)−n , see Theorem A.3.

Example 2.18 Here is an example of some of the above distributions in action. Suppose that a

coin is tossed n times and there is probability p that heads appears on each toss. Representing

heads by H and tails by T, the sample space is the set � of all ordered sequences of length

n containing the letters H and T, where the kth entry of such a sequence represents the result

of the kth toss. The set � is finite, and we take F to be the set of all subsets of �. For each

ω ∈ �, we define the probability that ω is the actual outcome by

P(ω) = ph(ω)q t (ω),

where h(ω) is the number of heads in ω and t (ω) = n −h(ω) is the number of tails. Similarly,

for any A ∈ F ,

P(A) =
∑

ω∈A

P(ω).

For i = 1, 2, . . . , n, we define the discrete random variable X i by

X i (ω) =
{

1 if the i th entry in ω is H,

0 if the i th entry in ω is T.

Each X i takes values in {0, 1} and has mass function given by

P(X i = 0) = P
(
{ω ∈ � : ωi = T}

)
,

where ωi is the i th entry in ω. Thus
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P(X i = 0) =
∑

ω:ωi =T

ph(ω)qn−h(ω)

=
n−1∑

h=0

∑

ω:ωi =T,
h(ω)=h

phqn−h =
n−1∑

h=0

(
n − 1

h

)
phqn−h

= q(p + q)n−1 = q

and

P(X i = 1) = 1 − P(X i = 0) = p.

Hence, each X i has the Bernoulli distribution with parameter p. We have derived this fact in

a cumbersome manner, but we believe these details to be instructive.

Let

Sn = X1 + X2 + · · · + Xn,

which is to say that Sn(ω) = X1(ω) + X2(ω) + · · · + Xn(ω). Clearly, Sn is the total number

of heads which occur, and Sn takes values in {0, 1, . . . , n} since each X i equals 0 or 1. Also,

for k = 0, 1, . . . , n, we have that

P(Sn = k) = P
(
{ω ∈ � : h(ω) = k}

)

=
∑

ω: h(ω)=k

P(ω)

=
(

n

k

)
pkqn−k, (2.19)

and so Sn has the binomial distribution with parameters n and p.

If n is very large and p is very small but np is a ‘reasonable size’ (np = λ, say) then

the distribution of Sn may be approximated by the Poisson distribution with parameter λ, as

follows. For fixed k ≥ 0, write p = λ/n and suppose that n is large to find that

P(Sn = k) =
(

n

k

)
pk(1 − p)n−k

∼
nk

k!

(
λ

n

)k (
1 −

λ

n

)n (
1 −

λ

n

)−k

∼
1

k!
λke−λ. (2.20)

This approximation may be useful in practice. For example, consider a single page of the

Guardian newspaper containing, say, 106 characters, and suppose that the typesetter flips a

coin before setting each character and then deliberately mis-sets this character whenever the

coin comes up heads. If the coin comes up heads with probability 10−5 on each flip, then

this is the equivalent to taking n = 106 and p = 10−5 in the above example, giving that

the number Sn of deliberate mistakes has the binomial distribution with parameters 106 and
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10−5. It may be easier (and not too inaccurate) to use (2.20) rather than (2.19) to calculate

probabilities. In this case, λ = np = 10 and so, for example,

P(Sn = 10) ≈
1

10!
(10e−1)10 ≈ 0.125. △

Example 2.21 Suppose that we toss the coin of the previous example until the first head turns

up, and then we stop. The sample space now is

� = {H,TH,T2H, . . . } ∪ {T∞},

where TkH represents the outcome of k tails followed by a head, and T∞ represents an infinite

sequence of tails with no head. As before, F is the set of all subsets of �, and P is given by

the observation that

P(TkH) = pqk for k = 0, 1, 2 . . . ,

P(T∞) =

{
1 if p = 0,

0 if p > 0.

Let Y be the total number of tosses in this experiment, so that Y (TkH) = k +1 for 0 ≤ k < ∞
and Y (T∞) = ∞. If p > 0, then

P(Y = k) = P(Tk−1H) = pqk−1 for k = 1, 2, . . . ,

showing that Y has the geometric distribution with parameter p. △

Example 2.22 If we carry on tossing the coin in the previous example until the nth head has

turned up, then a similar argument shows that, if p ∈ (0, 1), the total number of tosses required

has the negative binomial distribution with parameters n and p. △

Exercise 2.23 If X is a discrete random variable having the Poisson distribution with parameter λ, show

that the probability that X is even is e−λ coshλ.

Exercise 2.24 If X is a discrete random variable having the geometric distribution with parameter p,

show that the probability that X is greater than k is (1 − p)k .

2.3 Functions of discrete random variables

Let X be a discrete random variable on the probability space (�,F ,P) and let g : R → R. It

is easy to check that Y = g(X) is a discrete random variable on (�,F ,P) also, defined by

Y (ω) = g(X (ω)) for ω ∈ �.

Simple examples are

if g(x) = ax + b then g(X) = a X + b,

if g(x) = cx2 then g(X) = cX2.



30 Discrete random variables

If Y = g(X), the mass function of Y is given by

pY (y) = P(Y = y) = P(g(X) = y)

= P(X ∈ g−1(y))

=
∑

x∈g−1(y)

P(X = x), (2.25)

since there are only countably many non-zero contributions to this sum. Thus, if Y = a X + b

with a 6= 0, then

P(Y = y) = P(a X + b = y) = P
(
X = a−1(y − b)

)
for y ∈ R,

while if Y = X2, then

P(Y = y) =





P
(
X = √

y
)
+ P

(
X = −√

y
)

if y > 0,

P(X = 0) if y = 0,

0 if y < 0.

Exercise 2.26 Let X be a discrete random variable having the Poisson distribution with parameter λ,

and let Y = | sin( 1
2
πX)|. Find the mass function of Y .

2.4 Expectation

Consider a fair die. If it were thrown a large number of times, each of the possible outcomes

1, 2, . . . , 6 would appear on about one-sixth of the throws, and the average of the numbers

observed would be approximately

1
6

· 1 + 1
6

· 2 + · · · + 1
6

· 6 = 7
2
,

which we call the mean value. This notion of mean value is easily extended to more general

distributions as follows.

Definition 2.27 If X is a discrete random variable, the expectation of X is denoted by

E(X) and defined by

E(X) =
∑

x∈Im X

xP(X = x) (2.28)

whenever this sum converges absolutely, in that
∑

x |xP(X = x)| < ∞.

Equation (2.28) is often written

E(X) =
∑

x

xP(X = x) =
∑

x

x pX(x),

and the expectation of X is often called the expected value or mean of X .3 The reason for

requiring absolute convergence in (2.28) is that the image Im X may be an infinite set, and we

3One should be careful to avoid ambiguity in the use (or not) of parentheses. For example, we shall sometimes

write E(X)2 for [E(X)]2 , and E|X | for E(|X |).
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need the summation in (2.28) to take the same value irrespective of the order in which we add

up its terms.

The physical analogy of ‘expectation’ is the idea of ‘centre of gravity’. If masses with

weights π1, π2, . . . are placed at the points x1, x2, . . . of R, then the position of the centre

of gravity is
∑
πi xi

/∑
πi , or

∑
xi pi , where pi = πi

/∑
j π j is the proportion of the total

weight allocated to position xi .

If X is a discrete random variable (on some probability space) and g : R → R, then

Y = g(X) is a discrete random variable also. According to the above definition, we need to

know the mass function of Y before we can calculate its expectation. The following theorem

provides a useful way of avoiding this tedious calculation.

Theorem 2.29 (Law of the subconscious statistician) If X is a discrete random vari-

able and g : R → R, then

E(g(X)) =
∑

x∈Im X

g(x)P(X = x),

whenever this sum converges absolutely.

Intuitively, this result is rather clear, since g(X) takes the value g(x) when X takes the

value x , an event which has probability P(X = x). A more formal proof proceeds as follows.

Proof Writing I for the image of X , we have that Y = g(X) has image g(I ). Thus

E(Y ) =
∑

y∈g(I )

yP(Y = y)

=
∑

y∈g(I )

y
∑

x∈I : g(x)=y

P(X = x) by (2.25)

=
∑

x∈I

g(x)P(X = x)

if the last sum converges absolutely. 2

Two simple but useful properties of expectation are as follows.

Theorem 2.30 Let X be a discrete random variable and let a, b ∈ R.

(a) If P(X ≥ 0) = 1 and E(X) = 0, then P(X = 0) = 1.

(b) We have that E(a X + b) = aE(X)+ b.

Proof (a) Suppose the assumptions hold. By the definition (2.28) of E(X), we have that

xP(X = x) = 0 for all x ∈ Im X . Therefore, P(X = x) = 0 for x 6= 0, and the claim follows.

(b) This is a simple consequence of Theorem 2.29 with g(x) = ax + b. 2

Here is an example of Theorem 2.29 in action.
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Example 2.31 Suppose that X is a random variable with the Poisson distribution, parameter

λ, and we wish to find the expected value of Y = eX . Without Theorem 2.29 we would have

to find the mass function of Y . Actually this is not difficult, but it is even easier to apply the

theorem to find that

E(Y ) = E(eX )

=
∞∑

k=0

ekP(X = k) =
∞∑

k=0

ek 1

k!
λke−λ

= e−λ
∞∑

k=0

1

k!
(λe)k = eλ(e−1). △

The expectation E(X) of a discrete random variable X is an indication of the ‘centre’ of

the distribution of X . Another important quantity associated with X is the ‘variance’ of X ,

and this is a measure of the degree of dispersion of X about its expectation E(X).

Definition 2.32 The variance var(X) of a discrete random variable X is defined by

var(X) = E
(
[X − E(X)]2

)
. (2.33)

We note that, by Theorem 2.29,

var(X) =
∑

x∈Im X

(x − µ)2P(X = x), (2.34)

where µ = E(X). A rough motivation for this definition is as follows. If the dispersion of

X about its expectation is very small, then |X − µ| tends to be small, giving that var(X) =
E(|X −µ|2) is small also; on the other hand, if there is often a considerable difference between

X and its mean, then |X − µ| may be large, giving that var(X) is large also.

Equation (2.34) is not always the most convenient way to calculate the variance of a dis-

crete random variable. We may expand the term (x − µ)2 in (2.34) to obtain

var(X) =
∑

x

(x2 − 2µx + µ2)P(X = x)

=
∑

x

x2P(X = x)− 2µ
∑

x

xP(X = x)+ µ2
∑

x

P(X = x)

= E(X2)− 2µ2 + µ2 by (2.28) and (2.6)

= E(X2)− µ2,

where µ = E(X) as before. Thus we obtain the useful formula

var(X) = E(X2)− E(X)2. (2.35)
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Example 2.36 If X has the geometric distribution with parameter p (= 1 − q), the mean of

X is

E(X) =
∞∑

k=1

kpqk−1

=
p

(1 − q)2
=

1

p
,

and the variance of X is

var(X) =
∞∑

k=1

k2 pqk−1 −
1

p2

by (2.35).4 Now,

∞∑

k=1

k2qk−1 = q

∞∑

k=1

k(k − 1)qk−2 +
∞∑

k=1

kqk−1

=
2q

(1 − q)3
+

1

(1 − q)2

by Footnote 4, giving that

var(X) = p

(
2q

p3
+

1

p2

)
−

1

p2

= qp−2. △

Exercise 2.37 If X has the binomial distribution with parameters n and p = 1 − q, show that

E(X) = np, E(X2) = npq + n2 p2,

and deduce the variance of X .

Exercise 2.38 Show that var(aX + b) = a2 var(X) for a, b ∈ R.

Exercise 2.39 Find E(X) and E(X2) when X has the Poisson distribution with parameter λ, and hence
show that the Poisson distribution has variance equal to its mean.

2.5 Conditional expectation and the partition theorem

Suppose that X is a discrete random variable on the probability space (�,F ,P), and that

B is an event with P(B) > 0. If we are given that B occurs, then this information affects

the probability distribution of X . That is, probabilities such as P(X = x) are replaced by

conditional probabilities such as P(X = x | B) = P
(
{X (ω) = x} ∩ B

)
/P(B).

4To sum a series such as
∑∞

k=0 kxk−1, just note that, if |x| < 1, then
∑

k kxk−1 = (d/dx)
∑

k xk , and hence∑∞
k=0 kxk−1 = (d/dx)(1 − x)−1 = (1 − x)−2. The relevant property of power series is that they may be differ-

entiated term by term within their circle of convergence. Repeated differentiation of (1 − x)−1 yields formulae for∑
k k(k − 1)xk−2 and similar expressions.
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Definition 2.40 If X is a discrete random variable and P(B) > 0, the conditional ex-
pectation of X given B is denoted by E(X | B) and defined by

E(X | B) =
∑

x∈Im X

xP(X = x | B), (2.41)

whenever this sum converges absolutely.

Just as the partition theorem, Theorem 1.48, expressed probabilities in terms of conditional

probabilities, so expectations may be expressed in terms of conditional expectations.

Theorem 2.42 (Partition theorem) If X is a discrete random variable and {B1, B2, . . . }
is a partition of the sample space such that P(Bi) > 0 for each i , then

E(X) =
∑

i

E(X | Bi)P(Bi), (2.43)

whenever this sum converges absolutely.

Proof The right-hand side of (2.43) equals, by (2.41),

∑

i

∑

x

xP
(
{X = x} ∩ Bi

)
=
∑

x

xP

(
{X = x} ∩

(⋃

i

Bi

))

=
∑

x

xP(X = x). 2

We close this chapter with an example of this partition theorem in use.

Example 2.44 A coin is tossed repeatedly, and heads appears at each toss with probability p,

where 0 < p = 1 − q < 1. Find the expected length of the initial run (this is a run of heads if

the first toss gives heads, and of tails otherwise).

Solution Let H be the event that the first toss gives heads and H c the event that the first toss

gives tails. The pair H , H c forms a partition of the sample space. Let X be the length of the

initial run. It is easy to see that

P(X = k | H ) = pk−1q for k = 1, 2, . . . ,

since if H occurs, then X = k if and only if the first toss is followed by exactly k − 1 heads

and then a tail. Similarly,

P(X = k | H c) = qk−1 p for k = 1, 2, . . . .

Therefore,
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E(X | H ) =
∞∑

k=1

kpk−1q =
q

(1 − p)2
=

1

q
,

and similarly,

E(X | H c) =
1

p
.

By the partition theorem, Theorem 2.42,

E(X) = E(X | H )P(H )+ E(X | H c)P(H c)

=
1

q
p +

1

p
q

=
1

pq
− 2. △

Exercise 2.45 Let X be a discrete random variable and let g be a function from R to R. If x is a real
number such that P(X = x) > 0, show formally that

E(g(X) | X = x) = g(x),

and deduce from the partition theorem, Theorem 2.42, that

E(g(X)) =
∑

x

g(x)P(X = x).

Exercise 2.46 Let N be the number of tosses of a fair coin up to and including the appearance of the
first head. By conditioning on the result of the first toss, show that E(N) = 2.

2.6 Problems

1. If X has the Poisson distribution with parameter λ, show that

E
(
X (X − 1)(X − 2) · · · (X − k)

)
= λk+1

for k = 0, 1, 2, . . . .

2. Each toss of a coin results in heads with probability p (> 0). If m(r) is the mean number of
tosses up to and including the r th head, show that

m(r) = p
[
1 + m(r − 1)

]
+ (1 − p)

[
1 + m(r)

]

for r = 1, 2, . . . , with the convention that m(0) = 0. Solve this difference equation by the
method described in Appendix B.

3. If X is a discrete random variable and E(X2) = 0, show that P(X = 0) = 1. Deduce that, if
var(X) = 0, then P(X = µ) = 1, whenever µ = E(X) is finite.

4. For what values of c and α is the function p, defined by

p(k) =

{
ckα for k = 1, 2, . . . ,

0 otherwise,

a mass function?
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5. Lack-of-memory property. If X has the geometric distribution with parameter p, show that

P
(
X > m + n

∣∣ X > m
)

= P(X > n)

for m, n = 0, 1, 2, . . . .

We say that X has the ‘lack-of-memory property’ since, if we are given that X − m > 0,
then the distribution of X − m is the same as the original distribution of X . Show that the
geometric distribution is the only distribution concentrated on the positive integers with the
lack-of-memory property.

6. The random variable N takes non-negative integer values. Show that

E(N) =
∞∑

k=0

P(N > k)

provided that the series on the right-hand side converges.

A fair die having two faces coloured blue, two red and two green, is thrown repeatedly. Find
the probability that not all colours occur in the first k throws.

Deduce that, if N is the random variable which takes the value n if all three colours occur in
the first n throws but only two of the colours in the first n − 1 throws, then the expected value

of N is 11
2

. (Oxford 1979M)

7. Coupon-collecting problem. There are c different types of coupon, and each coupon obtained
is equally likely to be any one of the c types. Find the probability that the first n coupons
which you collect do not form a complete set, and deduce an expression for the mean number
of coupons you will need to collect before you have a complete set.

* 8. An ambidextrous student has a left and a right pocket, each initially containing n humbugs.
Each time he feels hungry, he puts a hand into one of his pockets and, if it is not empty, he
takes a humbug from it and eats it. On each occasion, he is equally likely to choose either the
left or right pocket. When he first puts his hand into an empty pocket, the other pocket contains
H humbugs.

Show that if ph is the probability that H = h, then

ph =
(

2n − h

n

)
1

22n−h
for h = 0, 1, . . . , n,

and find the expected value of H , by considering

n∑

h=0

ph ,

n∑

h=0

hph ,

n∑

h=0

(n − h)ph,

or otherwise. (Oxford 1982M)

9. The probability of obtaining a head when a certain coin is tossed is p. The coin is tossed
repeatedly until n heads occur in a row. Let X be the total number of tosses required for this to
happen. Find the expected value of X .

10. A population of N animals has had a certain number a of its members captured, marked, and
then released. Show that the probability Pn that it is necessary to capture n animals in order to
obtain m which have been marked is

Pn =
a

N

(
a − 1

m − 1

)(
N − a

n − m

)/(
N − 1

n − 1

)
,
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where m ≤ n ≤ N − a + m. Hence, show that

a

N

(
a − 1

m − 1

)
(N − a)!
(N − 1)!

N−a+m∑

n=m

(n − 1)! (N − n)!
(n − m)! (N − a + m − n)!

= 1,

and that the expectation of n is
N + 1

a + 1
m. (Oxford 1972M)



3

Multivariate discrete distributions

and independence

Summary. Following an extension of the theory of discrete random

variables to discrete random vectors, the independence of a family

of random variables is explored. Much of probability theory is con-

cerned with sums of random variables, and it is shown here how to

study the sums of independent variables. Properties of indicator func-

tions are presented, and it is shown how they may be used to facilitate

certain calculations.

3.1 Bivariate discrete distributions

Let X and Y be discrete random variables on the probability space (�,F ,P). Instead of

treating X and Y separately, it is often necessary to regard the pair (X,Y ) as a random vector

taking values in R2.

Definition 3.1 If X and Y are discrete random variables on (�,F ,P), the joint (prob-
ability) mass function pX,Y of X and Y is the function pX,Y : R2 → [0, 1] defined

by

pX,Y (x, y) = P
({
ω ∈ � : X (ω) = x and Y (ω) = y

})
, (3.2)

usually abbreviated to pX,Y (x, y) = P(X = x, Y = y).

It is clear that

pX,Y (x, y) = 0 unless x ∈ Im X and y ∈ Im Y, (3.3)
∑

x∈Im X

∑

y∈Im Y

pX,Y (x, y) = 1. (3.4)

The individual mass functions pX and pY of X and Y may be found from pX,Y thus:

pX (x) = P(X = x) =
∑

y∈Im Y

P(X = x, Y = y)

=
∑

y

pX,Y (x, y), (3.5)
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and similarly,

pY (y) =
∑

x

pX,Y (x, y). (3.6)

These mass functions, given by (3.5) and (3.6), are called the marginal mass functions of X

and Y , respectively, since, if we think of (X,Y ) as a randomly chosen point in the plane, then

X and Y are the projections of this point onto the coordinate axes.

x = 1 x = 2 x = 3

y = 1 1
12

3
18

1
6

y = 2 1
18

0 5
18

y = 3 0 3
18

1
12

Table 3.1 The joint mass function of the pair X , Y .

Example 3.7 Suppose that X and Y are random variables each taking the values 1, 2, or 3,

and that the probability that the pair (X,Y ) equals (x, y) is given in Table 3.1 for all relevant

values of x and y.

Then, for example,

P(X = 3) = P(X = 3, Y = 1)+ P(X = 3, Y = 2)+ P(X = 3, Y = 3)

= 1
6

+ 5
18

+ 1
12

= 19
36
.

Similarly,

P(Y = 2) = 1
18

+ 0 + 5
18

= 1
3
. △

Similar ideas apply to families X = (X1, X2, . . . , Xn) of discrete random variables on a

probability space. For example, the joint mass function of X is the function pX defined by

pX(x) = P(X1 = x1, X2 = x2, . . . , Xn = xn)

for x = (x1, x2, . . . , xn) ∈ Rn .

Exercise 3.8 Two cards are drawn at random from a deck of 52 cards. If X denotes the number of aces
drawn and Y denotes the number of kings, display the joint mass function of X and Y in the tabular form
of Table 3.1.

Exercise 3.9 The pair of discrete random variables (X, Y ) has joint mass function

P(X = i, Y = j ) =

{
θ i+ j+1 if i, j = 0, 1, 2,

0 otherwise,

for some value of θ . Show that θ satisfies the equation

θ + 2θ2 + 3θ3 + 2θ4 + θ5 = 1,

and find the marginal mass function of X in terms of θ .
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3.2 Expectation in the multivariate case

If X and Y are discrete random variables on (�,F ,P) and g : R2 → R, it is easy to check that

Z = g(X, Y ) is a discrete random variable on (�,F ,P) also, defined formally by Z(ω) =
g(X (ω),Y (ω)) for ω ∈ �. The expectation of Z may be calculated directly from the joint

mass function pX,Y (x, y) = P(X = x, Y = y), as the following theorem indicates; the proof

is exactly analogous to that of Theorem 2.29.

Theorem 3.10 We have that

E(g(X,Y )) =
∑

x∈Im X

∑

y∈Im Y

g(x, y)P(X = x, Y = y),

whenever this sum converges absolutely.

One particular consequence of this is of great importance: the expectation operator E acts

linearly on the set of discrete random variables. That is to say, if X and Y are discrete random

variables on (�,F ,P), and a, b ∈ R, then

E(a X + bY ) = aE(X)+ bE(Y ), (3.11)

whenever E(X) and E(Y ) exist.1 To see this, we use Theorem 3.10 with g(x, y) = ax + by

to obtain that

E(a X + bY ) =
∑

x

∑

y

(ax + by)P(X = x, Y = y)

= a
∑

x

x
∑

y

P(X = x, Y = y)+ b
∑

y

y
∑

x

P(X = x, Y = y)

= a
∑

x

xP(X = x)+ b
∑

y

yP(Y = y) by (3.5) and (3.6)

= aE(X)+ bE(Y ).

Exercise 3.12 Suppose that (X, Y ) has joint mass function

P(X = i, Y = j ) = θ i+ j+1 for i, j = 0, 1, 2.

Show that
E(XY ) = θ3 + 4θ4 + 4θ5

and
E(X) = θ2 + 3θ3 + 3θ4 + 2θ5.

1The linearity of E extends beyond finite sums of the form (3.11), but the full property involves the convergence of
infinite series of random variables, and is therefore beyond the scope of this text. We give an example. If X1, X2, . . .

is a sequence of non-negative random variables with sum S, then E(S) =
∑∞

i=1 E(Xi ) regardless of whether this
sum converges or diverges. See Grimmett and Stirzaker (2001, eqn (5.6.13)) for further details.
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3.3 Independence of discrete random variables

In a probability space (�,F ,P), events A and B are called independent if P(A ∩ B) =
P(A)P(B). Discrete random variables X and Y on (�,F ,P) are called ‘independent’ if the

value taken by X is independent of the value taken by Y .

Definition 3.13 Two discrete random variables X and Y are independent if the pair of

events {X = x} and {Y = y} are independent for all x , y ∈ R, and we normally write

this condition as

P(X = x, Y = y) = P(X = x)P(Y = y) for x , y ∈ R. (3.14)

Random variables which are not independent are called dependent.

Condition (3.14) may be expressed as

pX,Y (x, y) =
(∑

y

pX,Y (x, y)

)(∑

x

pX,Y (x, y)

)
for x, y ∈ R, (3.15)

in terms of the joint mass function of X and Y . This latter condition may be simplified as

indicated by the following theorem.

Theorem 3.16 Discrete random variables X and Y are independent if and only if there

exist functions f, g : R → R such that the joint mass function of X and Y satisfies

pX,Y (x, y) = f (x)g(y) for x, y ∈ R. (3.17)

Of course, we need only check (3.17) for x ∈ Im X and y ∈ Im Y .

Proof We need only to prove the sufficiency of the condition. Suppose that (3.17) holds for

some f and g. By (3.5) and (3.6),

pX (x) = f (x)
∑

y

g(y), pY (y) = g(y)
∑

x

f (x),

and by (3.4)

1 =
∑

x,y

pX,Y (x, y) =
∑

x,y

f (x)g(y)

=
∑

x

f (x)
∑

y

g(y).

Therefore,

pX,Y (x, y) = f (x)g(y) = f (x)g(y)
∑

x

f (x)
∑

y

g(y)

= pX (x)pY (y). 2
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Example 3.18 Suppose that X and Y are random variables taking values in the non-negative

integers with joint mass function

pX,Y (i, j) = P(X = i, Y = j) =
1

i ! j !
λiµ j e−(λ+µ) for i, j = 0, 1, 2, . . . .

Immediate from Theorem 3.16 is the fact that X and Y are independent, since their joint mass

function may be factorized in the form

pX,Y (i, j ) =
(

1

i !
λi

)(
1

j !
µ j e−(λ+µ)

)
,

as a function of i multiplied by a function of j . Such a factorization is not unique, and it is

more natural to write

pX,Y (i, j) =
(

1

i !
λi e−λ

)(
1

j !
µ j e−µ

)

as the product of the marginal mass functions: X and Y are independent random variables

each having a Poisson distribution, with parameters λ and µ respectively. △

The following is an important property of independent pairs of random variables.

Theorem 3.19 If X and Y are independent discrete random variables with expectations

E(X) and E(Y ), then

E(XY ) = E(X)E(Y ).

Proof By Theorem 3.10,

E(XY ) =
∑

x,y

xyP(X = x, Y = y)

=
∑

x,y

xyP(X = x)P(Y = y) by independence

=
∑

x

xP(X = x)
∑

y

yP(Y = y) = E(X)E(Y ).

It is the existence of E(X) and E(Y ) which authorizes us to interchange the summations as

we have done. 2

The converse of Theorem 3.19 is false: if E(XY ) = E(X)E(Y ), then it does not follow

that X and Y are independent (see Example 3.22 below). The correct converse is given next.

Theorem 3.20 Discrete random variables X and Y on (�,F ,P) are independent if and

only if

E(g(X)h(Y )) = E(g(X))E(h(Y )) (3.21)

for all functions g, h : R → R for which the last two expectations exist.
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Proof The necessity of (3.21) follows just as in the proof of Theorem 3.19. To prove suffi-

ciency, let a, b ∈ R and define g and h by

g(x) =
{

1 if x = a,

0 if x 6= a,
h(y) =

{
1 if y = b,

0 if y 6= b.

Then

E(g(X)h(Y )) = P(X = a, Y = b)

and

E(g(X))E(h(Y )) = P(X = a)P(Y = b),

giving by (3.21) that pX,Y (a, b) = pX (a)pY (b). 2

Here is an example of two discrete random variables X and Y which are not independent

but which satisfy E(XY ) = E(X)E(Y ).

Example 3.22 Suppose that X has distribution given by

P(X = −1) = P(X = 0) = P(X = 1) = 1
3

and Y is given by

Y =
{

0 if X = 0,

1 if X 6= 0.

It is easy to find a probability space (�,F ,P), together with two random variables having

these distributions. For example, take � = {−1, 0, 1},F the set of all subsets of �, P given

by P(−1) = P(0) = P(1) = 1
3
, and X (ω) = ω, Y (ω) = |ω|. Then X and Y are dependent

since

P(X = 0, Y = 1) = 0

but

P(X = 0)P(Y = 1) = 1
3

· 2
3

= 2
9
.

On the other hand,

E(XY ) =
∑

x,y

xyP(X = x, Y = y)

= (−1) · 1
3

+ 0 · 1
3

+ 1 · 1
3

= 0

and

E(X)E(Y ) = 0 · 2
3

= 0. △
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In this section so far, we have considered pairs of random variables only, but the same

ideas apply to families X = (X1, X2, . . . , Xn) of random variables with n > 2. For example,

the family X is called independent if

P(X1 = x1, . . . , Xn = xn) = P(X1 = x1) · · · P(Xn = xn),

or, equivalently, pX(x) =
∏n

i=1 pX i (xi), for x = (x1, x2, . . . , xn) ∈ Rn. Furthermore, if

X1, X2, . . . , Xn are independent, then

E(X1 X2 · · · Xn) = E(X1)E(X2) · · ·E(Xn),

just as in Theorem 3.19. Finally, the family is called pairwise independent if X i and X j are

independent whenever i 6= j . See Problem 3.6.2 for an example of pairwise-independent

random variables that are not independent.

Exercise 3.23 Let X and Y be independent discrete random variables. Prove that

P(X ≥ x and Y ≥ y) = P(X ≥ x)P(Y ≥ y)

for all x, y ∈ R.

Exercise 3.24 The indicator function of an event A is the function 1A defined by

1A(ω) =

{
1 if ω ∈ A,

0 if ω /∈ A.

Show that two events A and B are independent if and only if their indicator functions are independent
random variables.

Exercise 3.25 If X and Y are independent discrete random variables, show that the two random vari-
ables g(X) and h(Y ) are independent also, for any functions g and h which map R into R.

3.4 Sums of random variables

Much of probability theory is concerned with sums of random variables, and so we need an

answer to the following question: if X and Y are discrete random variables with a certain joint

mass function, what is the mass function of Z = X + Y ? Clearly, Z takes the value z if and

only if X = x and Y = z − x for some value of x , and so

P(Z = z) = P

(⋃

x

(
{X = x} ∩ {Y = z − x}

)
)

=
∑

x∈Im X

P(X = x, Y = z − x) for z ∈ R. (3.26)

If X and Y are independent, their joint mass function factorizes, and we obtain the following

result.



3.5 Indicator functions 45

Theorem 3.27 (Convolution formula) If X and Y are independent discrete random

variables on (�,F ,P), then Z = X + Y has mass function

P(Z = z) =
∑

x∈Im X

P(X = x)P(Y = z − x) for z ∈ R. (3.28)

In the language of analysis, equation (3.28) says that the mass function of X +Y is the con-

volution of the mass functions of X and Y . Formula (3.28) is rather inconvenient in practice,

since it involves a summation. Soon we shall see a better way of treating sums of independent

random variables.

Exercise 3.29 If X and Y are independent discrete random variables, X having the Poisson distribution
with parameter λ and Y having the Poission distribution with parameter µ, show that X + Y has the
Poisson distribution with parameter λ+µ. Give an example to show that the conclusion is not generally
true if X and Y are dependent.

Exercise 3.30 If X has the binomial distribution with parameters m and p, Y has the binomial dis-
tribution with parameters n and p, and X and Y are independent, show that X + Y has the binomial
distribution with parameters m + n and p.

Exercise 3.31 Show by induction that the sum of n independent random variables, each having the
Bernoulli distribution with parameter p, has the binomial distribution with parameters n and p.

3.5 Indicator functions

Indicator functions have been encountered already in Exercises 2.10 and 3.24.

Definition 3.32 The indicator function of an event A is the random variable denoted

1A and given by

1A(ω) =
{

1 if ω ∈ A,

0 if ω /∈ A.

The function 1A indicates whether or not A occurs.2 It is a discrete random variable with

expectation given by

E(1A) = P(A).

Indicator functions have two basic properties, namely,

1A∩B = 1A1B, (3.33)

1A + 1Ac = 1, (3.34)

each of which is easily checked by considering the various possibilities for given ω ∈ �.

2Probability theory is based customarily on events, followed by random variables. By representing events via their
indicator functions, one may rework the entire theory with random variables in the principal role, and with expectation
taking the role of probability. See Whittle (2000).
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Indicator functions provide a useful tool for calculating probabilities and expectations.

Here is an elementary example. By (3.33)–(3.34),

1A∪B = 1 − 1Ac∩Bc

= 1 − 1Ac 1Bc = 1 − (1 − 1A)(1 − 1B)

= 1A + 1B − 1A∩B . (3.35)

Now take expectations to deduce the standard fact that P(A ∪ B) = P(A)+P(B)−P(A ∩ B).

Example 3.36 (Inclusion–exclusion formula) Let A1, A2, . . . , An be events, and let 1Ai be

the indicator function of Ai . As in (3.35), the union A = A1 ∪ A2 ∪ · · · ∪ An has indicator

function

1A = 1 −
n∏

i=1

(1 − 1Ai ).

The product may be expanded and the terms grouped to obtain

1A =
∑

i

1Ai −
∑

i< j

1Ai 1A j +
∑

i< j<k

1Ai 1A j 1Ak − · · ·

+ (−1)n+11A1 1A2 · · · 1An .

On taking expectations, we obtain the inclusion–exclusion formula

P

(⋃

i

Ai

)
=
∑

i

P(Ai)−
∑

i< j

P(Ai ∩ A j )+
∑

i< j<k

P(Ai ∩ A j ∩ Ak)− · · ·

+ (−1)n+1P

(⋂

i

Ai

)

of Problem 1.11.14. △

Example 3.37 The 2n seats around a circular table are numbered clockwise. The guests at

dinner form n king/queen pairs. The queens sit at random in the odd-numbered seats, with the

kings at random between them. Let N be the number of queens sitting next to their king. Find

the mean and variance of N .

Solution Let Ai be the event that the i th king/queen pair are seated adjacently. Then

N =
n∑

i=1

1Ai
, (3.38)

so that

E(N) =
n∑

i=1

E(1Ai
) =

n∑

i=1

P(Ai) = nP(A1),

by symmetry. It is easily seen (by conditional probability, or simply by counting) that P(A1) =
2/n, and hence E(N) = n(2/n) = 2 regardless of the value of n.
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In order to find the variance, we should calculate E(N2). By (3.38),

E(N2) = E



[
∑

i

1Ai

]2

 = E


∑

i

12
Ai

+ 2
∑

i< j

1Ai
1A j


 . (3.39)

Now 12
Ai

= 1Ai
, since an indicator function takes only the values 0 and 1, and also 1Ai

1A j
=

1Ai ∩A j
. Therefore, by symmetry,

E(N2) = E


∑

i

1Ai + 2
∑

i< j

1Ai ∩A j


 = nP(A1)+ n(n − 1)P(A1 ∩ A2). (3.40)

Using conditional probability,

P(A1 ∩ A2) = P(A1)P(A2 | A1)

=
2

n

(
1

n − 1
·

1

n − 1
+

n − 2

n − 1
·

2

n − 1

)
=

2(2n − 3)

n(n − 1)2
, (3.41)

where the two terms correspond to whether or not the second queen sits next to the first couple.

By (3.39)–(3.41),

E(N2) = 2 + n(n − 1) ·
2(2n − 3)

n(n − 1)2
,

and hence

var(N) = E(N2)− E(N)2 =
2(n − 2)

n − 1
. △

Exercise 3.42 Let N be the number of the events A1, A2, . . . , An which occur. Show that3

E(N) =
n∑

i=1

P(Ai).

3.6 Problems

1. Let X and Y be independent discrete random variables, each having mass function given by

P(X = k) = P(Y = k) = pqk for k = 0, 1, 2 . . . ,

where 0 < p = 1 − q < 1. Show that

P(X = k | X + Y = n) =
1

n + 1
for k = 0, 1, 2 . . . , n.

3A similar fact is valid for an infinite sequence A1, A2, . . . , namely that the mean number of events that occur is∑∞
i=1 P(Ai ). This is, however, harder to prove. See the footnote on p. 40.
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2. Independent random variables U and V each take the values −1 or 1 only, and

P(U = 1) = a, P(V = 1) = b,

where 0 < a, b < 1. A third random variable W is defined by W = U V . Show that there are
unique values of a and b such that U , V , and W are pairwise independent. For these values of
a and b, are U , V , and W independent? Justify your answer. (Oxford 1971F)

3. If X and Y are discrete random variables, each taking only two distinct values, prove that X

and Y are independent if and only if E(XY ) = E(X)E(Y ).

4. Let X1, X2, . . . , Xn be independent discrete random variables, each having mass function

P(X i = k) =
1

N
for k = 1, 2, . . . , N .

Find the mass functions of Un and Vn , given by

Un = min{X1, X2, . . . , Xn}, Vn = max{X1, X2, . . . , Xn}.

5. Let X and Y be independent discrete random variables, X having the geometric distribution
with parameter p and Y having the geometric distribution with parameter r . Show that U =
min{X,Y } has the geometric distribution with parameter p + r − pr .

6. Hugo’s bowl of spaghetti contains n strands. He selects two ends at random and joins them. He
does this until no ends are left. What is the expected number of spaghetti hoops in his bowl?

7. Let X1, X2, . . . be discrete random variables, each having mean µ, and let N be a random
variable which takes values in the non-negative integers and which is independent of the Xi .
By conditioning on the value of N , show that

E(X1 + X2 + · · · + X N ) = µE(N).

8. Let X1, X2, . . . be independent, identically distributed random variables, and Sn = X1+X2+
· · · + Xn . Show that E(Sm/Sn) = m/n if m ≤ n, and E(Sm/Sn) = 1 + (m − n)µE(1/Sn) if
m > n, where µ = E(X1). You may assume that all the expectations are finite.

9. The random variables U and V each take the values ±1. Their joint distribution is given by

P(U = +1) = P(U = −1) = 1
2
,

P(V = +1 | U = 1) = 1
3

= P(V = −1 | U = −1),

P(V = −1 | U = 1) = 2
3

= P(V = +1 | U = −1).

(a) Find the probability that x2 + U x + V = 0 has at least one real root.
(b) Find the expected value of the larger root, given that there is at least one real root.

(c) Find the probability that x2 + (U + V )x + U + V = 0 has at least one real root.

(Oxford 1980M)

10. A number N of balls are thrown at random into M boxes, with multiple occupancy permitted.

Show that the expected number of empty boxes is (M − 1)N /M N−1 .

11. We are provided with a coin which comes up heads with probability p at each toss. Let
v1, v2, . . . , vn be n distinct points on a unit circle. We examine each unordered pair vi , v j
in turn and toss the coin; if it comes up heads, we join vi and v j by a straight line segment
(called an edge), otherwise we do nothing. The resulting network is called a random graph.
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Prove that

(a) the expected number of edges in the random graph is 1
2

n(n − 1)p,
(b) the expected number of triangles (triples of points each pair of which is joined by an

edge) is 1
6

n(n − 1)(n − 2)p3.

12. Coupon-collecting problem. There are c different types of coupon, and each coupon obtained
is equally likely to be any one of the c types. Let Yi be the additional number of coupons
collected, after obtaining i distinct types, before a new type is collected. Show that Yi has the
geometric distribution with parameter (c − i)/c, and deduce the mean number of coupons you
will need to collect before you have a complete set.

13. In Problem 3.6.12 above, find the expected number of different types of coupon in the first n
coupons received.

14. Each time you flip a certain coin, heads appears with probability p. Suppose that you flip the
coin a random number N of times, where N has the Poisson distribution with parameter λ and
is independent of the outcomes of the flips. Find the distributions of the numbers X and Y of
resulting heads and tails, respectively, and show that X and Y are independent.

15. Let (Zn : 1 ≤ n < ∞) be a sequence of independent, identically distributed random variables
with

P(Zn = 0) = q, P(Zn = 1) = p,

where p + q = 1. Let Ai be the event that Zi = 0 and Zi−1 = 1. If Un is the number of times
Ai occurs for 2 ≤ i ≤ n, prove that E(Un) = (n − 1)pq, and find the variance of Un . (Oxford
1977F)

16. I throw two dice and record the scores S1 and S2. Let X be the sum S1+S2 and Y the difference
S1 − S2.

(a) Suppose the dice are fair, so that the values 1, 2, . . . , 6 are equally likely. Calculate the
mean and variance of both X and Y . Find all the values of x and y at which the prob-
abilities P(X = x), P(Y = y) are each either greatest or least. Determine whether the
random variables X and Y are independent.

(b) Now suppose the dice give the values 1, 2, . . . , 6 with probabilities p1, p2, . . . , p6 and
q1, q2, . . . , q6, respectively. Write down the values of P(X = 2), P(X = 7), and
P(X = 12). By comparing P(X = 7) with

√
P(X = 2)P(X = 12) and applying the

arithmetic/geometric mean inequality,4 or otherwise, show that X cannot be uniformly
distributed on the set {2, 3, . . . , 12}.

(Cambridge 2009)

4See the forthcoming Example 7.70 also.
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Probability generating functions

Summary. Generating functions provide a powerful tool for studying

random variables that take integer values. The moments of a random

variable are defined, and it is shown how they may be derived from

its generating function. Generating functions are especially useful in

understanding sums of random variables. The chapter ends with an

account of the random sum formula.

4.1 Generating functions

One way to record a sequence u0, u1, u2, . . . of real numbers is to write down a general

formula for the nth term un . Another is to write down the generating function of the sequence,

defined to be the sum of the power series

u0 + u1s + u2s2 + · · · . (4.1)

For example, the sequence 1, 2, 4, 8, . . . has generating function

1 + 2s + 4s2 + · · · =
∞∑

n=0

(2s)n =
1

1 − 2s
,

valid whenever |s| < 1
2
. Similarly the sequence 1, 2, 3, . . . has generating function

1 + 2s + 3s2 + · · · =
∞∑

n=0

(n + 1)sn =
1

(1 − s)2
, (4.2)

valid whenever |s| < 1. Such generating functions are useful ways of dealing with real se-

quences since they specify the sequence uniquely. That is to say, given the real sequence

u0, u1, u2, . . . , we may find its generating function (4.1); conversely if the generating func-

tion U(s) has a convergent Taylor series

U(s) = u0 + u1s + u2s2 + · · ·

for all small s, then this expansion is unique, and so U(s) generates the sequence

u0, u1, u2, . . . only.
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One may define other types of generating functions also. For example, the exponential

generating function of the real sequence u0, u1, u2, . . . is defined to be the sum of the power

series

u0 + u1s +
1

2!
u2s2 +

1

3!
u3s3 + · · ·

whenever this series converges. We do not consider such generating functions in this chapter,

but shall return to them in Chapter 7.

When dealing with generating functions of real sequences, it is important that the un-

derlying power series converges for certain s 6= 0, but so long as this is the case we will

not normally go to the length of saying for which values of s the power series is absolutely

convergent. For example, we say that (1 − s)−2 is the generating function of the sequence

1, 2, 3, . . . without explicit reference to the fact that the series in (4.2) converges absolutely

only if |s| < 1.

Example 4.3 The sequence given by

un =





(
N

n

)
if n = 0, 1, 2, . . . , N

0 otherwise

has generating function

U(s) =
N∑

n=0

(
N

n

)
sn = (1 + s)N . △

Exercise 4.4 If u0, u1, . . . has generating function U (s) and v0, v1, . . . has generating function V (s),
find V (s) in terms of U (s) when (a) vn = 2un , (b) vn = un + 1, (c) vn = nun .

Exercise 4.5 Let 0 < p = 1 − q < 1. Of which sequence is U (s) =
√

1 − 4pqs2 the generating
function?

4.2 Integer-valued random variables

Many random variables of interest take values in the set of non-negative integers (all the

examples in Section 2.2 are of this form). We may think of the mass function of such a random

variable X as a sequence p0, p1, p2, . . . of numbers, where

pk = P(X = k) for k = 0, 1, 2, . . . ,

satisfying

pk ≥ 0 for all k, and

∞∑

k=0

pk = 1. (4.6)
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Definition 4.7 The probability generating function (or pgf) of X is the function G X (s)

defined by

G X (s) = p0 + p1s + p2s2 + · · · , (4.8)

for all values of s for which the right-hand side converges absolutely.

In other words, the probability generating function G X(s) of X is the generating function

of the sequence p0, p1, . . . . From (4.6) and (4.8) we see that

G X (0) = p0 and G X (1) = 1, (4.9)

and, by Theorem 2.29,

G X(s) = E(s X ) (4.10)

whenever this expectation exists. It is immediate that G X (s) exists for all values of s satisfying

|s| ≤ 1, since in this case,1
∞∑

k=0

|pksk | ≤
∞∑

k=0

pk = 1. (4.11)

Example 4.12 Let X be a random variable having the geometric distribution with parameter

p. Then

P(X = k) = pqk−1 for k = 1, 2, 3, . . . ,

where p + q = 1, and X has probability generating function

G X (s) =
∞∑

k=1

pqk−1sk

= ps

∞∑

k=0

(qs)k =
ps

1 − qs
if |s| < q−1. △

A crucially important property of probability generating functions is the following unique-

ness theorem.

Theorem 4.13 (Uniqueness theorem for probability generating functions) Suppose X

and Y have probability generating functions G X and GY , respectively. Then

G X (s) = GY (s) for all s

if and only if

P(X = k) = P(Y = k) for k = 0, 1, 2, . . . .

In other words, integer-valued random variables have the same probability generating

function if and only if they have the same mass function.

1Regarded as a power series, G X has radius of convergence at least 1.
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Proof We need only show that G X = GY implies that P(X = k) = P(Y = k) for all k. By

(4.11), G X and GY have radii of convergence at least 1, and therefore they have unique power

series expansions about the origin:

G X (s) =
∞∑

k=0

skP(X = k), GY (s) =
∞∑

k=0

skP(Y = k).

If G X = GY , these two power series have identical coefficients. 2

We saw in Example 4.12 that a random variable with the geometric distribution, parameter

p, has probability generating function ps(1 − qs)−1, where p + q = 1. Only by an appeal

to the above theorem can we deduce the converse: if X has probability generating function

ps(1 − qs)−1, then X has the geometric distribution with parameter p.

Here is a list of some common probability generating functions. Let p = 1 − q ∈ [0, 1].
Bernoulli distribution. If X has the Bernoulli distribution with parameter p, then

G X (s) = q + ps. (4.14)

Binomial distribution. If X has the binomial distribution with parameters n and p, then

G X (s) =
n∑

k=0

(
n

k

)
pkqn−ksk = (q + ps)n. (4.15)

Poisson distribution. If X has the Poisson distribution with parameter λ, then

G X (s) =
∞∑

k=0

1

k!
λke−λsk = eλ(s−1). (4.16)

Negative binomial distribution. If X has the negative binomial distribution with parameters

n and p, then

G X (s) =
∞∑

k=n

(
k − 1

n − 1

)
pnqk−nsk =

(
ps

1 − qs

)n

if |s| < q−1. (4.17)

We have used the negative binomial expansion here, see Theorem A.3.

There are two principal reasons why it is often more convenient to work with probability

generating functions than with mass functions, and we discuss these in the next two sections.

Exercise 4.18 If X is a random variable with probability generating function G X (s), and k is a positive
integer, show that Y = k X and Z = X + k have probability generating functions

GY (s) = G X (s
k), G Z (s) = sk G X (s).
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Exercise 4.19 If X is uniformly distributed on {0, 1, 2, . . . , a}, in that

P(X = k) =
1

a + 1
for k = 0, 1, 2, . . . , a,

show that X has probability generating function

G X (s) =
1 − sa+1

(a + 1)(1 − s)
.

4.3 Moments

For any discrete random variable X , the mean value E(X) is an indication of the ‘centre’ of

the distribution of X . This is only the first of a collection of numbers containing information

about the distribution of X , the whole collection being the sequence E(X), E(X2), E(X3), . . .

of means of powers of X . These numbers are called the moments of X .

Definition 4.20 Let k ≥ 1. The kth moment of the random variable X is the quantity

E(Xk ).

Possibly the two most important quantities which arise from the moments of X are the

mean E(X) of X , and the variance of X , defined in (2.33) to be

var(X) = E
(
[X − E(X)]2

)
. (4.21)

To see the relationship between var(X) and the moments of X , just note that

var(X) = E
(
X2 − 2XE(X)+ E(X)2

)

= E(X2)− 2E(X)2 + E(X)2 by (3.11)

= E(X2)− E(X)2, (4.22)

in agreement with (2.35).

If X is a random variable with values in the non-negative integers, the moments of X are

easily found from the probability generating function of X by calculating the derivatives of

this function at the point s = 1. The basic observation is as follows.

Theorem 4.23 Let X be a random variable with probability generating function G X (s).

The r th derivative of G X (s) at s = 1 equals E
(
X [X−1] · · · [X −r +1]

)
for r = 1, 2, . . . .

That is to say,

G
(r)
X (1) = E

(
X [X − 1] · · · [X − r + 1]

)
. (4.24)
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Proof To see this when r = 1, we use the following non-rigorous argument:

G′
X (s) =

d

ds

∞∑

k=0

skP(X = k)

=
∞∑

k=0

d

ds
skP(X = k) =

∞∑

k=0

ksk−1P(X = k) (4.25)

so that

G′
X (1) =

∞∑

k=0

kP(X = k) = E(X)

as required. A similar argument holds for the r th derivative of G X (s) at s = 1. The difficulty

in (4.25) is to justify the interchange of the differential operator and the summation, but this

may be shown to be valid2 if |s| < 1, and then Abel’s lemma3 enables us to conclude that

(4.25) is correct. 2

It is easy to see how to calculate the moments of X from (4.24). For example

E(X) = G′
X (1), (4.26)

and

E(X2) = E
(
X [X − 1] + X

)

= E
(
X [X − 1]

)
+ E(X)

= G′′
X (1)+ G′

X (1), (4.27)

and similarly, by (4.22),

var(X) = G′′
X (1)+ G′

X (1)− G X (1)
2. (4.28)

Example 4.29 Let X have the geometric distribution with parameter p ∈ (0, 1). It has prob-

ability generating function G X (s) = ps(1 − qs)−1 for |s| < q−1, where p + q = 1. Hence

E(X) = G′
X (1) =

1

p
,

E(X2) = G′′
X (1)+ G′

X (1) =
q + 1

p2
,

var(X) =
q

p2
,

in agreement with the calculations of Example 2.36. △

2Recall that G X is a power series with radius of convergence at least 1.
3Abel’s lemma is a classical result of real analysis. It says that if u0, u1, . . . is a real non-negative sequence such

that the power series
∑∞

k=0 uksk converges with sum U(s) if |s| < 1, then
∑∞

k=0 uk = lims↑1 U(s), where we allow
the possibility that both sides equal +∞.
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Exercise 4.30 Use the method of generating functions to show that a random variable having the Pois-
son distribution, parameter λ, has both mean and variance equal to λ.

Exercise 4.31 If X has the negative binomial distribution with parameters n and p, show that

E(X) = n/p, var(X) = nq/p2,

where q = 1 − p.

Exercise 4.32 Let X be a random variable taking values in the finite set {1, 2, . . . , N}. The Dirichlet

probability generating function of X is defined as the function 1(s) = E(X−s). Express the mean of X

in terms of 1.

Similarly, express the mean of log X in terms of1. You may find it useful to recall that (x y−1)/y →
log x as y → 0.

4.4 Sums of independent random variables

Much of probability theory is concerned with sums of independent random variables, and we

need a way of dealing with such sums. The convolution formula of Theorem 3.27 is usually

inconvenient, since n − 1 convolutions are required to find the mass function of the sum of n

independent random variables, and each such operation can be rather complicated. It is in this

respect that probability generating functions are a powerful tool.

Theorem 4.33 If X and Y are independent random variables, each taking values in the

set {0, 1, 2, . . . }, then their sum has probability generating function

G X+Y (s) = G X (s)GY (s). (4.34)

Proof We have that

G X+Y (s) = E(s X+Y ) = E(s X sY )

= E(s X )E(sY ) by Theorem 3.20

= G X (s)GY (s). 2

It follows that the sum Sn = X1 + X2 +· · ·+ Xn of n independent random variables, each

taking values in {0, 1, 2, . . . }, has probability generating function given by

GSn (s) = G X1
(s)G X2

(s) · · · G Xn (s). (4.35)

We shall make much use of this formula. An important extension of (4.35) deals with the sum

of a random number of independent random variables.
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Theorem 4.36 (Random sum formula) Let N and X1, X2, . . . be independent random

variables, each taking values in {0, 1, 2, . . . }. If the X i are identically distributed with

common probability generating function G X , then the sum

S = X1 + X2 + · · · + X N

has probability generating function

GS(s) = G N (G X (s)). (4.37)

Proof We use the partition theorem, Theorem 2.42, with the events Bn = {N = n} to find

that

GS(s) = E(s X1+···+X N )

=
∞∑

n=0

E
(
s X1+···+X N

∣∣ N = n
)
P(N = n) by Theorem 2.42

=
∞∑

n=0

E(s X1+···+Xn )P(N = n)

=
∞∑

n=0

G X (s)
nP(N = n) by (4.35)

= G N (G X (s))

by the definition of G N . 2

Formula (4.37) enables us to say quite a lot about such a random sum. For example, to find

the mean vaue of S, in the notation of Theorem 4.36, we merely calculate G′
S(1) as follows.

By (4.37),

G′
S(s) = G′

N (G X(s))G
′
X (s).

Now set s = 1 to obtain

G′
S(1) = G′

N (G X (1))G
′
X (1) = G′

N (1)G
′
X (1),

since G X (1) = 1. By (4.26),

E(S) = G′
S(1) = E(N)E(X), (4.38)

where E(X) is the mean of a typical X i .

Example 4.39 One evening, the hutch in the garden contains 20 pregnant rabbits. The hutch

is insecure and each rabbit has a chance of 1
2

of escaping overnight. The next morning, each

remaining rabbit gives birth to a litter, with each mother having a random number of offspring

with the Poisson distribution, parameter 3 (this is a very unlikely tale). Assuming as much
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independence as necessary, determine the probability generating function of the total number

of offspring.

Solution The number N of rabbits who do not escape has the binomial distribution with

parameters 20 and 1
2

, and consequently N has probability generating function

G N (s) = E(sN ) =
(

1
2

+ 1
2

s
)20
.

Let X i be the number of offspring of the i th of these rabbits. Each X i has the Poisson distri-

bution with probability generating function

G X (s) = e3(s−1).

Assuming that N and the X i are independent, we conclude from the random sum formula

(4.37) that the total number S = X1 + X2 + · · · + X N of offspring has probability generating

function

GS(s) = G N (G X(s)) =
(

1
2

+ 1
2

e3(s−1)
)20
. △

Exercise 4.40 Use Theorem 4.33 to show that the sum of two independent random variables, having
the Poisson distribution with parameters λ and µ respectively, has the Poisson distribution also, with
parameter λ+ µ. Compare your solution to that of Exercise 3.29.

Exercise 4.41 Use generating functions to find the distribution of X + Y , where X and Y are independ-
ent random variables, X having the binomial distribution with parameters m and p, and Y having the
binomial distribution with parameters n and p. Deduce that the sum of n independent random variables,
each having the Bernoulli distribution with parameter p, has the binomial distribution with parameters
n and p.

Exercise 4.42 Each egg laid by a hen falls onto the concrete floor of the henhouse and cracks with
probability p. If the number of eggs laid today by the hen has the Poisson distribution, parameter λ,
use generating functions to show that the number of uncracked eggs has the Poisson distribution with
parameter λ(1 − p).

4.5 Problems

1. Let X have probability generating function G X (s) and let un = P(X > n). Show that the
generating function U(s) of the sequence u0, u1, . . . satisfies

(1 − s)U(s) = 1 − G X (s),

whenever the series defining these generating functions converge.

2. A symmetrical die is thrown independently seven times. What is the probability that the total
number of points obtained is 14? (Oxford 1974M)

3. Three players, Alan, Bob, and Cindy, throw a perfect die in turn independently in the order
A, B,C , A, . . . until one wins by throwing a 5 or a 6. Show that the probability generating
function F(s) for the random variable X which takes the value r if the game ends on the r th
throw can be written as

F(s) =
9s

27 − 8s3
+

6s2

27 − 8s3
+

4s3

27 − 8s3
.

Hence find the probabilities of winning for Alan, Bob, and Cindy. Find the mean duration of
the game. (Oxford 1973M)
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4. A player undertakes trials, and the probability of success at each trial is p. A turn consists of a
sequence of trials up to the first failure. Obtain the probability generating function for the total

number of successes in N turns. Show that the mean of this distribution is N p(1 − p)−1 and
find its variance. (Oxford 1974M)

5. Each year a tree of a particular type flowers once, and the probability that it has n flowers is

(1 − p)pn , n = 0, 1, 2, . . . , where 0 < p < 1. Each flower has probability 1
2

of producing a
ripe fruit, independently of all other flowers. Find the probability that in a given year

(a) the tree produces r ripe fruits,
(b) the tree had n flowers, given that it produces r ripe fruits.

(Oxford 1982M)

6. An unfair coin is tossed n times, each outcome is independent of all the others, and on each toss
a head is shown with probability p. The total number of heads shown is X . Use the probability
generating function of X to find

(a) the mean and variance of X ,
(b) the probability that X is even,
(c) the probability that X is divisible by 3.

(Oxford 1980M)

7. Let X and Y be independent random variables having Poisson distributions with parameters
λ and µ, respectively. Prove that X + Y has a Poisson distribution and that var(X + Y ) =
var(X)+ var(Y ). Find the conditional probability P(X = k | X + Y = n) for 0 ≤ k ≤ n, and
hence show that the conditional expectation of X given that X + Y = n, that is,

E
(
X
∣∣ X + Y = n

)
=

∞∑

k=0

kP
(
X = k

∣∣ X + Y = n
)
,

is nλ/(λ+ µ). (Oxford 1983M)

* 8. A fair coin is tossed a random number N of times, giving a total of X heads and Y tails. You
showed in Problem 3.6.14 that X and Y are independent if N has the Poisson distribution. Use
generating functions to show that the converse is valid too: if X and Y are independent and
the generating function GN (s) of N is assumed to exist for values of s in a neighbourhood of
s = 1, then N has the Poisson distribution.

9. Coupon-collecting problem. Each packet of a certain breakfast cereal contains one token,
coloured either red, blue, or green. The coloured tokens are distributed randomly among the
packets, each colour being equally likely. Let X be the random variable which takes the value j

when I find my first red token in the j th packet which I open. Obtain the probability generating
function of X , and hence find its expectation.

More generally, suppose that there are tokens of m different colours, all equally likely. Let Y
be the random variable which takes the value j when I first obtain a full set, of at least one
token of each colour, when I open my j th packet. Find the generating function of Y , and show

that its expectation is m
(

1 + 1
2

+ 1
3

+ · · · + 1
m

)
. (Oxford 1985M)

10. Define the mean value of a discrete random variable and the probability generating function φ.
Show that the mean value is φ′(1). If φ(s) has the form p(s)/q(s) show that the mean value is
(p′(1)− q ′(1))/q(1).

Two duellists, A and B, fire at each other in turn until one hits the other. Each duellist has the
same probability of obtaining a hit with each shot fired, these probabilities being a for A and
b for B. If A fires the first shot, calculate the probability that A wins the duel. Find also the
probability distribution of the number of shots fired before the duel terminates. What is the
expected number of shots fired? (Oxford 1976M)
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11. There is a random number N of foreign objects in my soup, with mean µ and finite variance.
Each object is a fly with probability p, and otherwise a spider; different objects have indep-
endent types. Let F be the number of flies and S the number of spiders.

(a) Show that G F (s) = GN (ps + 1 − p). [You should present a clear statement of any
general result used.]

(b) Suppose N has the Poisson distribution with parameter µ. Show that F has the Poisson
distribution with parameter µp, and that F and S are independent.

(c) Let p = 1
2

and suppose F and S are independent. [You are given nothing about the

distribution of N .] Show that G N (s) = G N

(
1
2
[1 + s]

)2
. By working with the function

H(s) = G N (1 − s) or otherwise, deduce that N has a Poisson distribution.

You may assume that
[
1 + (x/n)+ o(n−1)

]n → ex as n → ∞. (Cambridge 2002)
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Distribution functions and

density functions

Summary. One of the basic objects associated with a random variable

is its distribution function, which summarizes the probabilities of dif-

ferent values. Continuous random variables are defined, together with

their probability density functions. There is an account of how to find

the density of a function of a continuous random variable, and several

examples are presented of the use of density functions in practice. The

final section is devoted to three problems in geometrical probability,

namely Bertrand’s paradox, Buffon’s needle, and the problem of stick

breaking.

5.1 Distribution functions

Discrete random variables may take only countably many values. This condition is too restrict-

ive for many situations, and accordingly we make a broader definition1: a random variable X

on the probability space (�,F ,P) is a mapping X : � → R such that
{
ω ∈ � : X (ω) ≤ x

}
∈ F for all x ∈ R. (5.1)

Henceforth, we abbreviate events of the form {ω ∈ � : X (ω) ≤ x} to the simpler expression

{X ≤ x}.
We require that random variables satisfy (5.1) for very much the same reason as we re-

quired (2.2) for discrete random variables. That is, we are interested in the values taken by a

random variable X , and the probabilities associated with these values. A convenient way to

do this is to fix x ∈ R and ask for the probability that X takes a value in the interval (−∞, x].
This probability exists only if its inverse image X−1

(
(−∞, x]

)
= {X ≤ x} lies in the event

space F , and so we postulate that this holds for all x ∈ R. Note that every discrete random

variable X is a random variable. To see this, observe that if X is discrete, then

{X ≤ x} =
⋃

y∈Im X : y≤x

{X = y},

which is the countable union of events in F and therefore belongs to F .

Whereas discrete random variables were studied via their mass functions, random vari-

ables in the broader sense are studied via their distribution functions, defined as follows.

1If (5.1) holds, the function X is said to be F -measurable.
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Definition 5.2 If X is a random variable on (�,F ,P), the distribution function2of X

is the function FX : R → [0, 1] defined by

FX (x) = P(X ≤ x). (5.3)

Example 5.4 Suppose that X is a discrete random variable taking non-negative integer values,

with mass function

P(X = k) = pk for k = 0, 1, 2, . . . .

For x ∈ R, it is the case that X ≤ x if and only if X takes one of the values 0, 1, 2, . . . , ⌊x⌋,

where ⌊x⌋ denotes the greatest integer not greater than x . Hence

FX (x) =

{
0 if x < 0,

p0 + p1 + · · · + p⌊x⌋ if x ≥ 0,

and a sketch of this function is displayed in Figure 5.1. △

1

1 2 3 4 5

FX (x)

x

p0

p0 + p1

Fig. 5.1 The distribution function of a random variable that takes values in the set
{0, 1, 2, 3, 4, 5}.

The distribution function FX has various general and elementary properties, the first of

which is

FX (x) ≤ FX (y) if x ≤ y, (5.5)

which is to say that FX is monotonic non-decreasing. This holds because

2Sometimes referred to as the cumulative distribution function of X .
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{X ≤ x} ⊆ {X ≤ y}

whenever x ≤ y, since if X takes a value not exceeding x , then this value cannot exceed y.

Other elementary properties of FX (x) concern its behaviour when x is near −∞ or +∞. It is

intuitively clear that

FX (x) → 0 as x → −∞, (5.6)

FX (x) → 1 as x → ∞, (5.7)

since in the first case, as x → −∞ the event that X is smaller than x becomes less and less

likely, whilst in the second case, as x → ∞ this event becomes overwhelmingly likely. At an

intuitive level, (5.6) and (5.7) are obvious, since they resemble the trivial remarks

P(X ≤ −∞) = 0, P(X ≤ ∞) = 1,

but a formal verification of (5.6) and (5.7) relies on the continuity of P, Theorem 1.54.

In the same way, Theorem 1.54 is needed to prove the third general property of distribution

functions:

FX is continous from the right, (5.8)

which is to say that3

FX (x + ǫ) → FX (x) as ǫ ↓ 0. (5.9)

A glance at Figure 5.1 confirms that distribution functions need not be continuous from the

left. Properties (5.5)–(5.8) characterize distribution functions completely, in the sense that if F

is a function which satisfies (5.5)–(5.8), there exists a probability space and a random variable

X on this space such that X has distribution function F . The proof is omitted, but this fact

should be noted since, in many circumstances, it allows us to avoid the rather tedious business

of writing down probability spaces and random variables explicitly.

Before we give examples of distribution functions, here is a final property. The probability

FX (x) = P(X ≤ x) is the probability that X takes a value in the infinite interval (−∞, x].
To find the probability that X takes a value in a bounded interval (a, b], we proceed in the

following way. For a < b,

P(a < X ≤ b) = P
(
{X ≤ b} \ {X ≤ a}

)

= P(X ≤ b)− P(X ≤ a)

since the event {X ≤ a} is a subset of the event {X ≤ b}. Hence

P(a < X ≤ b) = FX (b)− FX (a). (5.10)

Exercise 5.11 Let X be a random variable taking integer values such that P(X = k) = pk for k =
. . . ,−1, 0, 1, . . . . Show that the distribution function of X satisfies

FX (b) − FX (a) = pa+1 + pa+2 + · · · + pb

for all integers a, b with a < b.

3The limit in (5.9) is taken as ǫ tends down to 0 through positive values only.
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Exercise 5.12 If X is a random variable and c is a real number such that P(X = c) > 0, show that the
distribution function FX (x) of X is discontinuous at the point x = c. Is the converse true?

Exercise 5.13 Express the distribution function of Y = max{0, X} in terms of the distribution function
FX of X .

Exercise 5.14 The real number m is called a median of the random variable X if

P(X < m) ≤ 1
2

≤ P(X ≤ m).

Show that every random variable has at least one median.

5.2 Examples of distribution functions

Example 5.4 contains our first example of a distribution function. Note the general features of

this function: non-decreasing, continuous from the right, tending to 0 as x → −∞ and to 1

as x → ∞. Other distribution functions contrast starkly to this function by being continuous,

and our next example is such a function.

Example 5.15 (Uniform distribution) Let a, b ∈ R and a < b. The function

F(x) =





0 if x < a,
x − a

b − a
if a ≤ x ≤ b,

1 if x > b,

is sketched in Figure 5.2. It has the properties (5.5)–(5.8) and is thus a distribution function.

A random variable with this distribution function is said to have the uniform distribution on

the interval (a, b); some people call this the uniform distribution on [a, b]. △

Example 5.16 (Exponential distribution) Let λ > 0 and let F be given by

F(x) =

{
0 if x ≤ 0,

1 − e−λx if x > 0,
(5.17)

as sketched in Figure 5.3. Clearly F is a distribution function. A random variable with this

distribution is said to have the exponential distribution with parameter λ. △

The two distribution functions above are very important in probability theory. There are

many other distribution functions including, for example, any non-negative function F which

is continuous and non-decreasing and satisfies

lim
x→−∞

F(x) = 0, lim
x→∞

F(x) = 1.

Exercise 5.18 Show that if F1 and F2 are distribution functions, then so is the function F(x) =
αF1(x)+ (1 − α)F2(x) for any α satisfying 0 ≤ α ≤ 1.

Exercise 5.19 Let

F(x) = c

∫ x

−∞
e−|u| du for x ∈ R.

For what value of c is F a distribution function?
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1

a b x

F(x)

Fig. 5.2 The distribution function of the uniform distribution.

1

x

F(x)

Fig. 5.3 The distribution function of the exponential distribution.

5.3 Continuous random variables

Random variables come in many shapes, but there are two classes of random variables which

are particularly important:

I. discrete random variables,

II. continuous random variables.

Discrete random variables take only countably many values, and their distribution functions

generally look like step functions (remember Figure 5.1). At the other extreme, there are

random variables whose distribution functions are very smooth (remember Figures 5.2–5.3),

and we call such random variables ‘continuous’.
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Definition 5.20 A random variable X is continuous if its distribution function FX may

be written in the form

FX (x) = P(X ≤ x) =
∫ x

−∞
fX (u) du for x ∈ R, (5.21)

for some non-negative function fX .4 In this case, we say that X has (probability) density
function (or pdf) fX .

Example 5.22 If X has the exponential distribution with parameter λ, then

FX (x) =

{
0 if x ≤ 0,

1 − e−λx if x > 0,

with density function

fX (x) =

{
0 if x ≤ 0,

λe−λx if x > 0.
△

Provided that X is a continuous random variable and FX is well behaved in (5.21), we can

take

fX (x) =





d

dx
FX (x) if this derivative exists at x,

0 otherwise,
(5.23)

as the density function of X . We shall normally do this, although we should point out that there

are some difficulties over mathematical rigour here. However, for almost all practical purposes

(5.23) is adequate, and the reader of a text at this level should seldom get into trouble if he or

she uses (5.23) when finding density functions of continuous random variables.

Density functions serve continuous random variables in very much the same way as mass

functions serve discrete random variables, and it is not surprising that the general properties of

density functions and mass functions are very similar. For example, it is clear that the density

function fX of X satisfies

fX (x) ≥ 0 for x ∈ R, (pY (x) ≥ 0) (5.24)
∫ ∞

−∞
fX (x) dx = 1,

(∑

x

pY (x) = 1

)
, (5.25)

where the parentheses contain the corresponding properties, (2.5) and (2.6), of a mass function

pY . However, this analogy can be dangerous, since fX (x) is not a probability and may well

even exceed 1 in value. On the other hand, fX (x) is indeed a ‘measure’ of probability in the

4More advanced textbooks call such random variables ‘absolutely continuous’.
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following sense. If δx is small and positive, then, roughly speaking, the probability that X is

‘near’ x satisfies

P(x < X ≤ x + δx) = F(x + δx)− F(x) by (5.10)

=
∫ x+δx

x

fX (u) du by (5.21)

≈ fX (x)δx for small δx . (5.26)

So the true analogy is not between a density function fX (x) and a mass function pY (x) but

instead between fX (x)δx and pY (x). This is borne out by comparing (5.25) with (2.6): values

of the mass function are replaced by fX (x)δx , and the summation (since, for discrete random

variables, only countably many values are positive) is replaced by the integral. A startling

difference between discrete and continuous random variables is given in the first part of the

next theorem.

Theorem 5.27 If X is continuous with density function fX , then

P(X = x) = 0 for x ∈ R, (5.28)

P(a ≤ X ≤ b) =
∫ b

a

fX (u) du for a, b ∈ R with a ≤ b. (5.29)

Proof We argue as follows:

P(X = x) = lim
ǫ↓0

P(x − ǫ < X ≤ x)

= lim
ǫ↓0

[
FX (x)− FX (x − ǫ)

]
by (5.10)

= lim
ǫ↓0

∫ x

x−ǫ
fX (u) du by (5.21)

= 0.

The first equality here cannot be justified without an appeal to the continuity of P, Theorem

1.54. For the second part of the theorem, if a ≤ b, then

P(a ≤ X ≤ b) = P(a < X ≤ b) by (5.28)

= FX (b)− FX (a) by (5.10)

=
∫ b

a

fX (u) du. 2

To recap, all random variables have a distribution function. In addition, discrete random

variables have a mass function, and continuous random variables have a density function.

There are many random variables which are neither discrete nor continuous, and we shall

come across some of these later.
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Exercise 5.30 A random variable X has density function

f (x) =

{
2x if 0 < x < 1,

0 otherwise.

Find the distribution function of X .

Exercise 5.31 If X has density function

f (x) = 1
2

e−|x | for x ∈ R,

find the distribution function of X . This is called the bilateral (or double) exponential distribution.

Exercise 5.32 If X has distribution function

F(x) =





1

2(1 + x2)
for − ∞ < x ≤ 0,

1 + 2x2

2(1 + x2)
for 0 < x < ∞,

show that X is continuous and find its density function.

Exercise 5.33 Find the distribution function of the so-called ‘extreme value’ density function

f (x) = exp(−x − e−x ) for x ∈ R.

5.4 Some common density functions

It is fairly clear that any function f which satisfies

f (x) ≥ 0 for x ∈ R (5.34)

and ∫ ∞

−∞
f (x) dx = 1 (5.35)

is the density function of some random variable. To confirm this, simply define

F(x) =
∫ x

−∞
f (u) du

and check that F is a distribution function by verifying (5.5)–(5.8). There are several such

functions f which are especially important in practice, and we list these below.

The uniform distribution on the interval (a, b) has density function

f (x) =





1

b − a
if a < x < b,

0 otherwise.
(5.36)



5.4 Some common density functions 69

The exponential distribution with parameter λ > 0 has density function

f (x) =
{
λe−λx if x > 0,

0 if x ≤ 0.
(5.37)

The normal (or Gaussian) distribution with parameters µ and σ 2, sometimes written as

N(µ, σ 2), has density function

f (x) =
1

√
2πσ 2

exp

(
−

1

2σ 2
(x − µ)2

)
for x ∈ R. (5.38)

The Cauchy distribution has density function

f (x) =
1

π(1 + x2)
for x ∈ R. (5.39)

The gamma distribution with parameters w (> 0) and λ (> 0) has density function

f (x) =





1

Ŵ(w)
λwxw−1e−λx if x > 0,

0 if x ≤ 0,

(5.40)

where Ŵ(w) is the gamma function, defined by

Ŵ(w) =
∫ ∞

0

xw−1e−x dx . (5.41)

Note that, for positive integers w, Ŵ(w) = (w − 1)! (see Exercise 5.46).

The beta distribution with parameters s, t (> 0) has density function

f (x) =
1

B(s, t)
x s−1(1 − x)t−1 for 0 ≤ x ≤ 1. (5.42)

The beta function

B(s, t) =
∫ 1

0

x s−1(1 − x)t−1 dx (5.43)

is chosen so that f has integral equal to one. You may care to prove that

B(s, t) =
Ŵ(s)Ŵ(t)

Ŵ(s + t)

(see (6.44)). If s = t = 1, then X is uniform on [0, 1].
The chi-squared distribution with n degrees of freedom (sometimes written χ2

n ) has density

function

f (x) =





1

2Ŵ( 1
2

n)
( 1

2
x)

1
2 n−1e− 1

2 x if x > 0,

0 if x ≤ 0.

(5.44)

A comparison of (5.44) with (5.40) shows that the χ2
n distribution is the same as the gamma

distribution with parameters 1
2
n and 1

2
, but we list the distribution separately here because of

its common occurrence in statistics.
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The above list is a dull compendium of some of the commoner density functions, and

we do not expect it to inspire the reader in this form. It is difficult to motivate these density

functions adequately at this stage, but we shall need to refer back to this section later when we

meet these functions in action.

It is not always a trivial task to show that these functions are actually density functions.

The condition (5.34) of non-negativity is no problem, but some care is required in checking

that the functions integrate to 1. For example, to check this for the function given in (5.38) we

require the standard definite integral

∫ ∞

−∞
e−x2

dx =
√
π.

An outline of the proof of this may be found in Exercise 5.47.

The constant terms in (5.36)–(5.44) have been chosen solely so that the resulting functions

integrate to 1. For example, it is clear that the function

g(x) =
1

1 + x2
for x ∈ R,

is not a density function since ∫ ∞

−∞
g(x) dx = π,

but it follows that the ‘normalized’ function

f (x) =
1

π
g(x)

is a density function.

Exercise 5.45 For what values of its parameters is the gamma distribution also an exponential distribu-
tion?

Exercise 5.46 Show that the gamma function Ŵ(w) satisfies Ŵ(w) = (w − 1)Ŵ(w − 1) for w > 1, and
deduce that Ŵ(n) = (n − 1)! for n = 1, 2, 3, . . . .

Exercise 5.47 Let

I =
∫ ∞

−∞
e−x2

dx.

By changing variables to polar coordinates, show that

I 2 =
∫∫

R2
e−x2−y2

dx dy =
∫ 2π

θ=0

∫ ∞

r=0
e−r2

r dr dθ,

and deduce that I =
√
π .
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Exercise 5.48 Show that the density function

f (x) =





1

π
√

x(1 − x)
if 0 < x < 1,

0 otherwise,

has distribution function with the form

F(x) = c sin−1 √
x if 0 < x < 1,

and find the constant c.

5.5 Functions of random variables

Let X be a random variable on (�,F ,P) and suppose that g : R → R. Then Y = g(X) is a

mapping from� into R, defined by Y (ω) = g[X (ω)] for ω ∈ �. Actually, Y is not generally

a random variable since it need not satisfy condition (5.1). It turns out, however, that (5.1)

is valid for Y whenever g is sufficiently well behaved (such as g is a continuous function,

or a monotone function, or . . . ), and so we neglect this difficulty, assuming henceforth that

all quantities of the form Y = g(X) are random variables. The main question is now the

following: if we know the distribution of X , then how do we find the distribution of Y = g(X)?

If X is discrete with mass function pX , then (2.25) provides the answer, and we consider next

the case when X is continuous with density function fX . We begin with an example.

Example 5.49 If X is continuous with density function fX , and g(x) = ax + b when a > 0,

then Y = g(X) = a X + b has distribution function given by

P(Y ≤ y) = P(a X + b ≤ y)

= P
(
X ≤ a−1(y − b)

)

= FX

(
a−1(y − b)

)
.

By differentiation with respect to y,

fY (y) = a−1 fX

(
a−1(y − b)

)
for y ∈ R. △

The next theorem generalizes the result of this example.

Theorem 5.50 If X is a continuous random variable with density function fX , and g is a

strictly increasing and differentiable function from R into R, then Y = g(X) has density

function

fY (y) = fX

(
g−1(y)

) d

dy
[g−1(y)] for y ∈ R, (5.51)

where g−1 is the inverse function of g.
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Proof First, we find the distribution function of Y :

P(Y ≤ y) = P
(
g(X) ≤ y

)

= P
(
X ≤ g−1(y)

)
since g is increasing.

We differentiate this with respect to y, noting that the right-hand side is a function of a func-

tion, to obtain (5.51). 2

If, in Theorem 5.50, g were strictly decreasing, then the same argument gives that Y =
g(X) has density function

fY (y) = − fX

(
g−1(y)

) d

dy
[g−1(y)] for y ∈ R. (5.52)

Formulae (5.51) and (5.52) rely heavily on the monotonicity of g. Other cases are best treated

on their own merits, and actually there is a lot to be said for using the method of the next

example always, rather than taking recourse in the general results (5.51)–(5.52).

Example 5.53 If X has density function fX , and g(x) = x2, then Y = g(X) = X2 has

distribution function

P(Y ≤ y) = P(X2 ≤ y)

=
{

0 if y < 0,

P
(
−√

y ≤ X ≤ √
y
)

if y ≥ 0.

Hence fY (y) = 0 if y ≤ 0, while for y > 0

fY (y) =
d

dy
P(Y ≤ y) if this derivative exists

=
d

dy

[
FX (

√
y)− FX (−

√
y)
]

=
1

2
√

y

[
fX (

√
y)+ fX (−

√
y)
]
. △

Exercise 5.54 Let X be a random variable with the exponential distribution, parameter λ. Find the
density function of

(a) A = 2X + 5,

(b) B = eX ,

(c) C = (1 + X)−1,

(d) D = (1 + X)−2.

Exercise 5.55 Show that if X has the normal distribution with parameters 0 and 1, then Y = X2 has the

χ2 distribution with one degree of freedom.
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5.6 Expectations of continuous random variables

If a one-dimensional metal rod has density ρ(x) at point x , then its mass is m =
∫
ρ(x) dx ,

and its centre of gravity is at the position m−1
∫

xρ(x) dx . This leads naturally to the idea of

the expectation of a continuous random variable.

Definition 5.56 If X is a continuous random variable with density function fX , the ex-
pectation of X is denoted by E(X) and defined by

E(X) =
∫ ∞

−∞
x fX (x) dx, (5.57)

whenever this integral converges absolutely, in that
∫∞
−∞ |x fX (x)| dx < ∞.

As in the case of discrete variables, the expectation of X is often called the expected value

or mean of X .

If X is a continuous variable and g : R → R, then Y = g(X) is a random variable also

(so long as g is sufficiently well behaved). It may be difficult to calculate E(Y ) from first

principles, not least since Y may be neither discrete nor continuous and so neither of formulae

(2.28) and (5.57) may apply. Of great value here is the following result, which enables us to

calculate E(Y ) directly from knowledge of fX and g.

Theorem 5.58 (Law of the subconscious statistician) If X is a continuous random

variable with density function fX , and g : R → R, then

E(g(X)) =
∫ ∞

−∞
g(x) fX (x) dx, (5.59)

whenever this integral converges absolutely.

Sketch proof The theorem is not too difficult to prove, but the full proof is a little long (see

Grimmett and Stirzaker (2001, p. 93) for a discussion). We think that it is more important to

understand why it is true rather than to see a formal proof. If Y is a discrete random variable

and g : R → R, then

E(g(Y )) =
∑

x

g(x)P(Y = x), (5.60)

as in Theorem 2.29. Remember the analogy between mass functions and density functions: in

(5.60), replace P(Y = x) by fX (x) dx and the summation by the integral, to obtain (5.59). A

more complete proof is outlined at Problem 5.8.8. 2

As in the case of discrete random variables, the mean E(X) of a continuous random vari-

able X is an indication of the ‘centre’ of the distribution of X . As a measure of the degree of

dispersion of X about this mean, we normally take the variance of X , defined to be

var(X) = E
(
[X − E(X)]2

)
. (5.61)
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By Theorem 5.58,

var(X) =
∫ ∞

−∞
(x − µ)2 fX (x) dx,

where µ = E(X). Therefore,

var(X) =
∫ ∞

−∞
(x2 − 2µx + µ2) fX (x) dx

=
∫ ∞

−∞
x2 fX (x) dx − 2µ

∫ ∞

−∞
x fX (x) dx + µ2

∫ ∞

−∞
fX (x) dx

=
∫ ∞

−∞
x2 fX (x) dx − µ2

by (5.57) and (5.35). Thus we obtain the usual formula

var(X) = E(X2)− E(X)2. (5.62)

Example 5.63 If X has the uniform distribution on (a, b), then

E(X) =
∫ ∞

−∞
x fX (x) dx by (5.57)

=
∫ b

a

x
1

b − a
dx = 1

2
(a + b).

As an example of a function of a random variable, let Y = sin X . Then

E(Y ) =
∫ ∞

−∞
sin x fX (x) dx by (5.59)

=
∫ b

a

sin x

b − a
dx =

cos a − cos b

b − a
. △

Example 5.64 If X has the exponential distribution with parameter λ, then

E(X) =
∫ ∞

0

xλe−λx dx =
1

λ
,

E(X2) =
∫ ∞

0

x2λe−λx dx =
2

λ2

by (5.59), giving by (5.62) that the variance of X is

var(X) = E
(
[X − E(X)]2

)

= E(X2)− E(X)2 =
1

λ2
. △
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Example 5.65 If X has the normal distribution with parameters µ = 0 and σ 2 = 1, then

E(X) =
∫ ∞

−∞
x

1
√

2π
e− 1

2
x2

dx = 0,

by symmetry properties of the integrand. Hence

var(X) =
∫ ∞

−∞
x2 1

√
2π

e− 1
2

x2

dx = 1.

Similar integrations show that the normal distribution with parameters µ and σ 2 has mean µ

and variance σ 2, as we may have expected. △

Example 5.66 If X has the Cauchy distribution, then

E(X) =
∫ ∞

−∞
x

1

π(1 + x2)
dx,

so long as this integral exists. It does not exist, since

∫ N

−M

x
1

π(1 + x2)
dx =

[
1

2π
log(1 + x2)

]N

−M

=
1

2π
log

1 + N2

1 + M2
= l(M, N),

say, and the limit of l(M, N) as M, N → ∞ depends on the way in which M and N approach

∞. If M → ∞ and N → ∞ in that order, then l(M, N) → −∞, while if the limit is taken

in the other order, then l(M, N) → ∞. Hence the Cauchy distribution does not have a mean

value. On the other hand, there are many functions of X with finite expectations. For example,

if Y = tan−1 X , then

E(Y ) =
∫ ∞

−∞
tan−1 x

1

π(1 + x2)
dx

=
∫ 1

2π

− 1
2
π

v

π
dv where v = tan−1 x

= 0. △

Exercise 5.67 Show that a random variable with density function

f (x) =





1

π
√

x(1 − x)
if 0 < x < 1,

0 otherwise,

has mean 1
2

.
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Exercise 5.68 The random variable X has density function

f (x) = cx(1 − x) for 0 ≤ x ≤ 1.

Determine c, and find the mean and variance of X .

Exercise 5.69 If X has the normal distribution with mean 0 and variance 1, find the mean value of
Y = e2X .

5.7 Geometrical probability

This chapter closes with three examples of the use of probability in simple geometrical calcu-

lations, namely Bertrand’s paradox, Buffon’s needle, and stick breaking.

The paradox of Joseph Louis François Bertrand. A chord of the unit circle is picked at

random. What is the probability that an equilateral triangle with the chord as base fits inside

the circle?

There are several ways of ‘choosing a chord at random’, and the ‘paradox’ lies in the mult-

iplicity of answers arising from different interpretations. Here are three such interpretations,

and a fourth is found in Exercise 5.70.

D

A

C

Fig. 5.4 The triangle can be drawn inside the circle if and only if D ≥ 1
2

.

I. Let D be the perpendicular distance between the centre of the circle and the chord, as

illustrated in Figure 5.4. The triangle can be drawn inside the circle if and only if D ≥ 1
2 .

Assume that D is uniformly distributed on the interval (0, 1). Then the answer is

P(D ≥ 1
2
) = 1

2
.
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II. Assume the acute angle A between the chord and the tangent is uniform on the interval

(0, 1
2
π). Since D = 1

2
when A = 1

3
π , the answer is

P(A ≤ 1
3
π) = 1

3
π
/

1
2
π = 2

3
.

III. Assume the centre C of the chord is chosen uniformly in the interior of the circle. Then

D ≤ d if and only if C lies within a circle of radius d , so that P(D ≤ d) = πd2/π = d2.

The answer is

P(D ≥ 1
2
) = 1 − P(D ≤ 1

2
) = 3

4
.

The needle of Georges Louis Leclerc, Comte de Buffon. This is more interesting. A plane

is ruled by straight lines which are unit distance apart, as in Figure 5.5. What is the probability

that a unit needle, dropped at random, intersects a line?5

We may position the plane so that the x-axis is along a line. Let (X,Y ) be the coordinates

of the midpoint of the needle, and let 2 be its inclination to horizontal, as in the figure. It is

reasonable to assume that

(a) Z := Y − ⌊Y ⌋ is uniformly distributed on [0, 1],
(b) 2 is uniform on [0, π ], and

(c) Z and2 are independent.

Thus,

fZ ,2(z, θ) =
1

π
for z ∈ [0, 1], θ ∈ [0, π ].

2

Z

Fig. 5.5 The needle and the ruled plane in Buffon’s problem.

An intersection occurs if and only if (z, θ) ∈ B, where

B =
{
(z, θ) : either z ≤ 1

2 sin θ or 1 − z ≤ 1
2 sin θ

}
.

Therefore, the probability of an intersection satisfies

5The original problem of Buffon was slightly different, namely the following. A coin is dropped on a tiled floor.
What is the probability it falls on a crack? See Problem 5.8.12.
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P(intersection) =
∫∫

B

1

π
dz dθ

=
1

π

∫ π

θ=0

dθ

(∫ 1
2 sin θ

0

dz +
∫ 1

1− 1
2

sin θ

dz

)

=
1

π

∫ π

0

dθ sin θ =
2

π
.

This motivates a Monte Carlo experiment to estimate the value of π . Drop the needle n

times, and let In be the number of throws that result in intersections. The natural estimate of π

is π̂n := (2n)/In . It may be shown that E(π̂n) → π as n → ∞, and furthermore the variance

of π̂n is of order n−1. Thus, there is a sense in which the accuracy of this experiment increases

as n → ∞. There are, however, better ways to estimate π than by Monte Carlo methods.

Stick breaking. Here is an everyday problem of broken sticks. A stick of unit length is brok-

en at the two places X , Y , each chosen uniformly at random along the stick. What is the

probability that the three pieces can be used to make a triangle? We assume that X and Y are

independent.

The lengths of the three substicks are

U = min{X,Y }, V = |Y − X |, W = 1 − U − V ,

and we are asked for the probability that no substick is longer than the sum of the other two

lengths. Since U + V + W = 1, this is equivalent to requiring that U,V ,W ≤ 1
2

. The region

of the (X,Y )-plane satisfying U,V , 1 − U − V ≤ 1
2

is shaded in Figure 5.6, and it has area
1
4

. Therefore, the answer is 1
4

.

1

1 X

Y

Fig. 5.6 The shaded area corresponds to the region where (U, V ) satisfies the given conditions.
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Exercise 5.70 What is the answer to Bertrand’s question if the chord is P Q, where P and Q are chosen
uniformly and independently at random on the circumference of the circle?

Exercise 5.71 Suppose Buffon junior uses a needle of length ℓ (< 1). Show that the probability of an
intersection is 2ℓ/π .

Exercise 5.72 One of Hugo’s longer noodles, of length ℓ, falls at random from his bowl onto Buffon’s
ruled plane. Show that the mean number of intersections of the noodle with lines is 2ℓ/π .

5.8 Problems

1. The bilateral (or double) exponential distribution has density function

f (x) = 1
2

ce−c|x | for x ∈ R,

where c (> 0) is a parameter of the distribution. Show that the mean and variance of this

distribution are 0 and 2c−2, respectively.

2. Let X be a random variable with the Poisson distribution, parameter λ. Show that, for w =
1, 2, 3, . . . ,

P(X ≥ w) = P(Y ≤ λ),

where Y is a random variable having the gamma distribution with parameters w and 1.

3. The random variable X has density function proportional to g(x), where g is a function satis-
fying

g(x) =
{

|x|−n if |x| ≥ 1,

0 otherwise,

and n (≥ 2) is an integer. Find and sketch the density function of X , and determine the values
of n for which both the mean and variance of X exist.

4. If X has the normal distribution with mean 0 and variance 1, find the density function of
Y = |X |, and find the mean and variance of Y .

5. Let X be a random variable whose distribution function F is a continuous function. Show that
the random variable Y , defined by Y = F(X), is uniformly distributed on the interval (0, 1).

* 6. Let F be a distribution function, and let X be a random variable which is uniformly distributed

on the interval (0, 1). Let F−1 be the inverse function of F , defined by

F−1(y) = inf{x : F(x) ≥ y}.

Show that the random variable Y = F−1(X) has distribution function F . This observation may
be used in practice to generate pseudorandom numbers drawn from any given distribution.

7. If X is a continuous random variable taking non-negative values only, show that

E(X) =
∫ ∞

0
[1 − FX (x)] dx,

whenever this integral exists.
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* 8. Use the result of Problem 5.8.7 to show that

E(g(X)) =
∫ ∞

−∞
g(x) fX (x) dx

whenever X and g(X) are continuous random variables and g : R → [0,∞).

9. The random variable X ′ is said to be obtained from the random variable X by truncation at the
point a if

X ′(ω) =

{
X (ω) if X (ω) ≤ a,

a if X (ω) > a.

Express the distribution function of X ′ in terms of the distribution function of X .

10. Let X have the exponential distribution with parameter 1. Find the density function of Y =
(X − 2)/(X + 1).

11. William Tell is a very bad shot. In practice, he places a small green apple on top of a straight
wall which stretches to infinity in both directions. He then takes up position at a distance of one
perch from the apple, so that his line of sight to the target is perpendicular to the wall. He now
selects an angle uniformly at random from his entire field of view and shoots his arrow in this
direction. Assuming that his arrow hits the wall somewhere, what is the distribution function
of the horizontal distance (measured in perches) between the apple and the point which the
arrow strikes? There is no wind.

* 12. Buffon–Laplace needle. Let a, b > 0. The Cartesian plane is ruled with two sets of parallel
lines of the form x = ma and y = nb for integers m and n. A needle of length ℓ (< min{a, b})
is dropped at random. Show that the probability it intersects some line is ℓ(2a+2b−ℓ)/(πab).

* 13. A unit stick is broken at n random places, each uniform on [0, 1], and different breaks are
chosen independently. Show that the resulting n + 1 substicks can form a closed polygon with
probability 1 − (n + 1)/2n .

14. The random variable X is uniformly distributed on the interval [0, 1]. Find the distribution and
probability density function of Y , where

Y =
3X

1 − X
.

(Cambridge 2003)
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6

Multivariate distributions and

independence

Summary. A random vector is studied via its joint distribution func-

tion, and this leads to a discussion of the independence of random

variables. The joint, marginal, and conditional density functions of

continuous variables are defined, and their theory explored. Sums of

independent variables are studied via the convolution formula, and

transformations of random vectors via the Jacobian method. The basic

properties of the bivariate normal distribution are described.

6.1 Random vectors and independence

Given two random variables X and Y , acting on a probability space (�,F ,P), it is often

useful to think of them acting together as a random vector (X,Y ) taking values in R2. If X

and Y are discrete, we may study this random vector by using the joint mass function of X and

Y , but this method is not always available. In the general case of arbitrary random variables

X , Y , we study instead their joint distribution function, defined as follows.

Definition 6.1 The joint distribution function of the pair X, Y of random variables is

the mapping FX,Y : R2 → [0, 1] given by

FX,Y (x, y) = P(X ≤ x, Y ≤ y). (6.2)

Joint distribution functions have certain elementary properties which are exactly analogous

to those of ordinary distribution functions. For example, it is easy to see that

lim
x,y→−∞

FX,Y (x, y) = 0, (6.3)

lim
x,y→∞

FX,Y (x, y) = 1, (6.4)

just as in (5.6) and (5.7). Similarly, FX,Y is non-increasing in each variable in that

FX,Y (x1, y1) ≤ FX,Y (x2, y2) if x1 ≤ x2 and y1 ≤ y2. (6.5)

The joint distribution function FX,Y contains a great deal more information than the two or-

dinary distribution functions FX and FY , since it tells us how X and Y behave together. In
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particular, the distribution functions of X and Y may be found from their joint distribution

function in a routine way. It is intuitively attractive to write

FX (x) = P(X ≤ x)

= P(X ≤ x, Y ≤ ∞) = FX,Y (x,∞)

and similarly,

FY (y) = FX,Y (∞, y),

but the mathematically correct way of expressing this is

FX (x) = lim
y→∞

FX,Y (x, y), FY (y) = lim
x→∞

FX,Y (x, y). (6.6)

These distribution functions are called the marginal distribution functions of the joint distri-

bution function FX,Y .

The idea of ‘independence’ of random variables X and Y follows naturally from this dis-

cussion.

Definition 6.7 We call X and Y independent if, for all x , y ∈ R, the events {X ≤ x}
and {Y ≤ y} are independent.

That is to say, X and Y are independent if and only if

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y) for x, y ∈ R,

which is to say that their joint distribution function factorizes as the product of the two

marginal distribution functions:

FX,Y (x, y) = FX (x)FY (y) for x, y ∈ R. (6.8)

It is a straightforward exercise to show that this is a genuine extension of the notion of ind-

ependent discrete random variables. Random variables which are not independent are called

dependent.

We study families of random variables in very much the same way. Briefly, if X1, X2, . . . ,

Xn are random variables on (�,F ,P), their joint distribution function is the function FX :
Rn → [0, 1] given by

FX(x) = P
(
X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn

)
(6.9)

for x = (x1, x2, . . . , xn) ∈ Rn . The variables X1, X2, . . . , Xn are called independent if

P
(
X1 ≤ x1, . . . , Xn ≤ xn

)
= P(X1 ≤ x1) · · ·P(Xn ≤ xn) for x ∈ Rn,

or equivalently if

FX(x) = FX1
(x1) · · · FXn (xn) for x ∈ Rn . (6.10)
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Example 6.11 Suppose that X and Y are random variables on some probability space, each

taking values in the integers {. . . ,−1, 0, 1, . . . } with joint mass function

P(X = i, Y = j ) = p(i, j ) for i, j = 0,±1,±2, . . . .

Their joint distribution function is given by

FX,Y (x, y) =
∑

i≤x, j≤y

p(i, j ) for (x, y) ∈ R2. △

Example 6.12 Suppose that X and Y are random variables with joint distribution function

FX,Y (x, y) =

{
1 − e−x − e−y + e−x−y if x, y ≥ 0,

0 otherwise.

The (marginal) distribution function of X is

FX (x) = lim
y→∞

FX,Y (x, y) =

{
1 − e−x if x ≥ 0,

0 otherwise,

so that X has the exponential distribution with parameter 1. A similar calculation shows that

Y has this distribution also. Hence

FX,Y (x, y) = FX (x)FY (y) for x, y ∈ R,

and so X and Y are independent. △

Exercise 6.13 Show that two random variables X and Y are independent if and only if

P(X > x, Y > y) = P(X > x)P(Y > y) for x, y ∈ R.

Exercise 6.14 Let the pair (X,Y ) of random variables have joint distribution function F(x, y). Prove
that

P(a < X ≤ b, c < Y ≤ d) = F(b, d)+ F(a, c)− F(a, d)− F(b, c)

for any a, b, c, d ∈ R such that a < b and c < d .

Exercise 6.15 Prove that two random variables X and Y are independent if and only if

P(a < X ≤ b, c < Y ≤ d) = P(a < X ≤ b)P(c < Y ≤ d)

for all a, b, c, d ∈ R satisfying a < b and c < d .

6.2 Joint density functions

Recall that a random variable X is continuous if its distribution function may be expressed in

the form

FX (x) = P(X ≤ x) =
∫ x

−∞
f (u) du for x ∈ R.
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Definition 6.16 The pair X,Y of random variables on (�,F ,P) is called (jointly) con-
tinuous if its joint distribution function is expressible in the form1

FX,Y (x, y) = P(X ≤ x, Y ≤ y) =
∫ x

u=−∞

∫ y

v=−∞
f (u, v) du dv (6.17)

for x , y ∈ R and some function f : R2 → [0,∞). If this holds, we say that X and Y

have joint (probability) density function f , and we usually denote this function by fX,Y .

As in Section 5.3, if X and Y are jointly continuous, we may take their joint density

function to be given by

fX,Y (x, y) =





∂2

∂x∂y
FX,Y (x, y) if this derivative exists at (x, y),

0 otherwise,

(6.18)

and we shall normally do this in future. There are the usual problems here over mathematical

rigour but, as noted after (5.23), you should not get into trouble at this level if you take this as

the definition of the joint density function of X and Y .

The elementary properties of the joint density function fX,Y are consequences of proper-

ties (6.3)–(6.5) of joint distribution functions:

fX,Y (x, y) ≥ 0 for x, y ∈ R, (6.19)
∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) dx dy = 1. (6.20)

Once again, we note an analogy between joint density functions and joint mass functions.

This may be expressed rather crudely by saying that for any (x, y) ∈ R2 and small positive δx

and δy, the probability that the random vector (X,Y ) lies in the small rectangle with bottom

left-hand corner at (x, y) and side lengths δx and δy is

P
(
x < X ≤ x + δx, y < Y ≤ y + δy

)
≈ fX,Y (x, y) δx δy (6.21)

(see Figure 6.1). This holds for very much the same reasons as the one-dimensional case

(5.26). It is not difficult to see how this leads to the next theorem.

Theorem 6.22 If A is any regular subset of R2 and X and Y are jointly continuous

random variables with joint density function fX,Y , then

P
(
(X,Y ) ∈ A

)
=
∫∫

(x,y)∈A

fX,Y (x, y) dx dy. (6.23)

1We ought to say exactly what we mean by the integral on the right-hand side of (6.17). At this level, it is perhaps
enough to say that this double integral may be interpreted in any standard way, and that there is a result (called
Fubini’s theorem) which says that, under certain wide conditions, it does not matter whether we integrate over u first
or over v first when we calculate its value.
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x + δx

y

y + δy

x

Fig. 6.1 The probability that (X,Y ) lies in the shaded region is approximately fX,Y (x, y) δx δy.

This is really a result about integration rather than about probability theory, and so we omit

the proof. We do not even attempt to explain the term ‘regular’, noting only that it covers sets

such as rectangles, discs, regions bounded by closed Jordan curves, and so on. On the other

hand, it is easy to see why (6.23) should hold. The set A may be split up into the union of lots

of small non-overlapping rectangles, and fX,Y (x, y) δx δy is the probability that (X, Y ) takes

a value in a typical rectangle. Roughly speaking, the probability that (X, Y ) takes a value in

A is the sum of these small probabilities.

Example 6.24 It is not too difficult to check that a function f : R2 → R is the joint density

function of some pair of random variables if and only if f satisfies (6.19) and (6.20):

f (x, y) ≥ 0 for x, y ∈ R, and

∫ ∞

−∞

∫ ∞

−∞
f (x, y) dx dy = 1.

This holds in just the same way as the corresponding properties (5.34) and (5.35) were nec-

essary and sufficient for a function of one variable to be a density function. It follows that the

function

f (x, y) =





1

ab
if 0 < x < a and 0 < y < b,

0 otherwise,

is a joint density function. If X and Y have joint density function f , the vector (X,Y ) is said

to be uniformly distributed on the rectangle B = (0, a)×(0, b). For any region A of the plane,

P
(
(X, Y ) ∈ A

)
=
∫∫

A

f (x, y) dx dy

=
∫∫

A∩B

1

ab
dx dy =

area (A ∩ B)

area (B)
. △
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Exercise 6.25 Random variables X and Y have joint density function

f (x, y) =
{

c(x2 + 1
2

xy) if 0 < x < 1, 0 < y < 2,

0 otherwise.

Find the value of the constant c and the joint distribution function of X and Y .

Exercise 6.26 Random variables X and Y have joint density function

f (x, y) =

{
e−x−y if x, y > 0,

0 otherwise.

Find P(X + Y ≤ 1) and P(X > Y ).

6.3 Marginal density functions and independence

Whenever the pair X , Y has joint density function fX,Y , the ordinary density functions of X

and Y may be retrieved immediately since (at points of differentiability)

fX (x) =
d

dx
P(X ≤ x)

=
d

dx

∫ x

u=−∞

∫ ∞

v=−∞
fX,Y (u, v) du dv by Theorem 6.22

=
∫ ∞

v=−∞
fX,Y (x, v) dv, (6.27)

and similarly,

fY (y) =
∫ ∞

u=−∞
fX,Y (u, y) du. (6.28)

These density functions are called the marginal density functions of X and of Y , since they are

obtained by ‘projecting’ the random vector (X,Y ) onto the two coordinate axes of the plane.

Recall that X and Y are independent if their distribution functions satisfy

FX,Y (x, y) = FX (x)FY (y) for x, y ∈ R. (6.29)

If X and Y are jointly continuous, then differentiation of this relation with respect to both x

and y yields a condition on their density functions,

fX,Y (x, y) = fX (x) fY (y) for x, y ∈ R, (6.30)

and it is easy to see that (6.29) holds if and only if (6.30) holds—certainly (6.29) implies

(6.30), and conversely, if we integrate both sides of (6.30) as x ranges over (−∞, u] and y

ranges over (−∞, v], then we obtain (6.29). Thus, jointly continuous random variables are

independent if and only if their joint density function factorizes as the product of the two

marginal density functions. This is exactly analogous to the case of discrete random variables,

discussed in Section 3.3. Just as in the case of discrete random variables, there is a more

general result.
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Theorem 6.31 Jointly continuous random variables X and Y are independent if and

only if their joint density function may be expressed in the form

fX,Y (x, y) = g(x)h(y) for x, y ∈ R,

as the product of a function of the first variable and a function of the second.

We do not prove this, but we suggest that the reader adapts the proof of Theorem 3.16,

replacing summations by integrals.

We do not wish to spend a lot of time going over the case when there are three or more

random variables. Roughly speaking, all the ideas of this chapter so far have analogues in

more than two dimensions. For example, three random variables X , Y , Z are called jointly

continuous if

P
(
X ≤ x, Y ≤ y, Z ≤ z

)
=
∫ x

u=−∞

∫ y

v=−∞

∫ z

w=−∞
f (u, v,w) du dv dw

for x, y, z ∈ R and some function f . If this holds, we may take

f (x, y, z) =
∂3

∂x∂y∂z
P
(
X ≤ x, Y ≤ y, Z ≤ z

)

to be the joint density function of the triple (X,Y, Z ), whenever these derivatives exist. The

random variables are independent if and only if f factorizes as the product of the marginal

density functions:

f (x, y, z) = fX (x) fY (y) fZ (z) for x, y, z ∈ R.

Example 6.32 Suppose that X and Y have joint density function

f (x, y) =
{

e−x−y if x, y > 0,

0 otherwise.

Then

fX (x) =
∫ ∞

−∞
f (x, y) dy

=





∫ ∞

0

e−x−y dy if x > 0,

0 otherwise,

=
{

e−x if x > 0,

0 otherwise,

giving that X has the exponential distribution with parameter 1. The random variable Y has

this distribution also, and

fX,Y (x, y) = fX (x) fY (y) for x, y ∈ R,

so that X and Y are independent. △
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Example 6.33 Suppose that X and Y have joint density function

f (x, y) =

{
ce−x−y if 0 < x < y,

0 otherwise,
(6.34)

for some constant c. Find c and ascertain whether X and Y are independent.

Solution Joint density functions integrate to 1, so that

1 =
∫ ∞

−∞

∫ ∞

−∞
f (x, y) dx dy =

∫ ∞

x=0

∫ ∞

y=x

e−x−y dx dy

= c

∫ ∞

0

e−2x dx = 1
2
c,

giving that c = 2. Clearly, X and Y are dependent, since f cannot be factorized as the product

of a function of x and a function of y (look at the domain of f in (6.34)). More explicitly, by

Theorem 6.22,

P(X > 2, Y < 1) =
∫ ∞

x=2

∫ 1

y=−∞
f (x, y) dx dy = 0

since f (x, y) = 0 if y < x . On the other hand,

P(X > 2) > 0 and P(Y < 1) > 0,

so that

P(X > 2, Y < 1) 6= P(X > 2)P(Y < 1),

implying that X and Y are dependent. △

Exercise 6.35 Let X and Y have joint density function

f (x, y) =

{
cx if 0 < y < x < 1,

0 otherwise.

Find the value of the constant c and the marginal density functions of X and Y . Are X and Y
independent?

Exercise 6.36 Random variables X , Y , and Z have joint density function

f (x, y, z) =

{
8xyz if 0 < x, y, z < 1,

0 otherwise.

Are X , Y , and Z independent? Find P(X > Y ) and P(Y > Z).
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6.4 Sums of continuous random variables

We often need to know the density function of the sum Z = X + Y of two jointly continuous

random variables. The density function of Z is the derivative of the distribution function of Z ,

and so we calculate this first. Suppose that X and Y have joint density function fX,Y . Then

P(Z ≤ z) = P(X + Y ≤ z)

=
∫∫

A

fX,Y (x, y) dx dy

by Theorem 6.22, where A = {(x, y) ∈ R2 : x + y ≤ z}. Writing in the limits of integration,

we find that

P(Z ≤ z) =
∫ ∞

x=−∞

∫ z−x

y=−∞
fX,Y (x, y) dx dy

=
∫ z

v=−∞

∫ ∞

u=−∞
fX,Y (u, v − u) du dv

by the substitution u = x , v = x + y.2 Differentiate this equation with respect to z, where

possible, to obtain

fZ (z) =
∫ ∞

−∞
fX,Y (u, z − u) du. (6.37)

An important special case is when X and Y are independent, for which the following theorem

is an immediate consequence of (6.37).

Theorem 6.38 (Convolution formula) If the random variables X and Y are indep-

endent and continuous with density functions fX and fY , then the density function of

Z = X + Y is

fZ (z) =
∫ ∞

−∞
fX (x) fY (z − x) dx for z ∈ R. (6.39)

In the language of analysis, equation (6.39) says that fZ is the convolution of fX and fY ,

written fZ = fX ∗ fY .

Example 6.40 Let X and Y be independent random variables having, respectively, the gamma

distribution with parameters s and λ, and the gamma distribution with parameters t and λ.

Then Z = X + Y has density function

fZ (z) =
∫ ∞

−∞
fX (x) fY (z − x) dx

=





∫ z

0

fX (x) fY (z − x) dx if z > 0,

0 otherwise,

2This is a simple change of variables in two dimensions. Those readers not familiar with such transformations in
more than one dimension should read on to the next section.
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since fX (x) fY (z − x) = 0 unless x > 0 and z − x > 0. Thus, for z > 0,

fZ (z) =
∫ z

0

1

Ŵ(s)
λ(λx)s−1e−λx 1

Ŵ(t)
λ[λ(z − x)]t−1e−λ(z−x) dx

= Ae−λz

∫ z

0

x s−1(z − x)t−1 dx,

where

A =
1

Ŵ(s)Ŵ(t)
λs+t .

Substitute y = x/z in the last integral to obtain

fZ (z) = Bzs+t−1e−λz for z > 0, (6.41)

where B is a constant given by

B =
1

Ŵ(s)Ŵ(t)
λs+t

∫ 1

0

ys−1(1 − y)t−1 dy. (6.42)

The only distribution with density function of the form (6.41) is the gamma distribution

with parameters s + t and λ, and it follows that the constant B satisfies

B =
1

Ŵ(s + t)
λs+t . (6.43)

A glance at (5.40) confirms this. Our principal conclusion is that the sum of two independ-

ent gamma-distributed random variables, with parameters s, λ and t, λ, respectively, has the

gamma distribution with parameters s + t, λ. We have a subsidiary conclusion also: by com-

parison of (6.42) and (6.43),

∫ 1

0

ys−1(1 − y)t−1 dy =
Ŵ(s)Ŵ(t)

Ŵ(s + t)
for s, t > 0. (6.44)

This well known formula arose earlier as the normalizing constant for the beta distribution

(5.42). △

Exercise 6.45 If X and Y have joint density function

f (x, y) =

{
1
2
(x + y)e−x−y if x, y > 0,

0 otherwise,

find the density function of X + Y .

Exercise 6.46 If X and Y are independent random variables having the χ2 distribution with m and n

degrees of freedom, respectively, prove that X +Y has the χ2 distribution with m+n degrees of freedom.

Exercise 6.47 If X and Y are independent random variables, each having the normal distribution with
mean 0 and variance 1, find the distribution of X + Y .
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6.5 Changes of variables

The following type of question arises commonly: if X and Y are random variables and u, v :
R2 → R, what can be said about the joint distribution of the pair (U,V ) of random variables

given by U = u(X, Y ), V = v(X, Y )? We present an answer to this question in the particular

case when X and Y are jointly continuous and the functions u and v satisfy certain conditions

which allow us to use the usual theory of changes of variables within an integral. Let T be the

mapping from R2 into R2 given by T (x, y) = (u, v), where u = u(x, y) and v = v(x, y), and

suppose that T is a bijection between some domain D ⊆ R2 and some range S ⊆ R2. Then T

may be inverted to obtain a bijection T −1 : S → D. That is, for each (u, v) ∈ S, there exists

a point (x, y) = T −1(u, v) in D, and we write x = x(u, v) and y = y(u, v). The Jacobian of

T −1 is defined to be the determinant

J (u, v) =

∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
=
∂x

∂u

∂y

∂v
−
∂y

∂u

∂x

∂v
, (6.48)

and we suppose that these derivatives exist and are continuous at all points in S. The standard

theory of multiple integrals tells us how to change variables within the integral: if g : R2 →
R2, then, for any sufficiently regular subset A of D and any integrable function g,

∫∫

A

g(x, y) dx dy =
∫∫

T (A)

g
(
x(u, v), y(u, v)

)
|J (u, v)| du dv, (6.49)

where T (A) is the image of A under T .

Theorem 6.50 (Jacobian formula) Let X and Y be jointly continuous with joint density

function fX,Y , and let D = {(x, y) : fX,Y (x, y) > 0}. If the mapping T given by

T (x, y) = (u(x, y), v(x, y)) is a bijection from D to the set S ⊆ R2, then (subject to

the previous conditions) the pair (U, V ) = (u(X,Y ), v(X, Y )) is jointly continuous with

joint density function

fU,V (u, v) =
{

fX,Y

(
x(u, v), y(u, v)

)
|J (u, v)| if (u, v) ∈ S,

0 otherwise.
(6.51)

Proof You should not worry overmuch about the details of this argument. Suppose that A ⊆
D and T (A) = B. Since T : D → S is a bijection,

P
(
(U, V ) ∈ B

)
= P

(
(X,Y ) ∈ A

)
. (6.52)

However,

P
(
(X,Y ) ∈ A

)
=
∫∫

A

fX,Y (x, y) dx dy by Theorem 6.22

=
∫∫

B

fX,Y

(
x(u, v), y(u, v)

)
|J (u, v)| du dv by (6.49)

= P
(
(U,V ) ∈ B

)
by (6.52).

This holds for any B ⊆ S, and another glance at Theorem 6.22 gives the result. 2
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Although the statement of Theorem 6.50 looks forbidding, it is not difficult to apply in

practice, although it is necessary to check that the mapping in question is a bijection. Here is

an example.

Example 6.53 Let X and Y have joint density function

f (x, y) =
{

e−x−y if x, y > 0,

0 otherwise,

and let U = X + Y and V = X/(X + Y ). Find the joint density function of U and V and the

marginal density function of V .

Solution The mapping T of this problem is given by T (x, y) = (u, v), where

u = x + y, v =
x

x + y
,

and T is a bijection from D = {(x, y) : x, y > 0} to S = {(u, v) : 0 < u < ∞, 0 < v < 1}.
It has inverse T −1(u, v) = (x, y), where

x = uv, y = u(1 − v).

The Jacobian of T −1 is ∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
v u

(1 − v) −u

∣∣∣∣∣ = −u,

giving by (6.51) that U and V have joint density function

fU,V (u, v) =

{
ue−u if u > 0 and 0 < v < 1,

0 otherwise.

The marginal density function of V is

fV (v) =
∫ ∞

−∞
fU,V (u, v) du

=





∫ ∞

0

ue−u du = 1 if 0 < v < 1,

0 otherwise,

so that V is uniformly distributed on (0, 1). It may in addition be shown that U and V are

independent, and U has the gamma distribution with parameters 2 and 1. △

Exercise 6.54 Let X and Y be independent random variables, each having the normal distribution with

mean µ and variance σ 2. Find the joint density function of U = X − Y and V = X + Y . Are U and V

independent?
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Exercise 6.55 Let X and Y be random variables with joint density function

f (x, y) =
{

1
4

e− 1
2 (x+y) if x, y > 0,

0 otherwise.

Show that the joint density function of U = 1
2
(X − Y ) and V = Y is

fU,V (u, v) =

{
1
2

e−u−v if (u, v) ∈ A,

0 otherwise,

where A is a region of the (u, v) plane to be determined. Deduce that U has the bilateral exponential
distribution with density function

fU (u) = 1
2

e−|u| for u ∈ R.

6.6 Conditional density functions

Let us suppose that X and Y are jointly continuous random variables with joint density func-

tion fX,Y . To obtain the marginal density function fY of Y , we ‘average’ over all possible

values of X ,

fY (y) =
∫ ∞

−∞
fX,Y (x, y) dx,

and this is the calculation which we perform if we care about Y only and have no information

about the value taken by X . A contrasting situation arises if we have full information about

the value taken by X , say if we are given that X takes the value x . This information has

consequences for the distribution of Y , and it is this ‘conditional distribution of Y given that

X = x’ that concerns us in this section. We cannot calculate P(Y ≤ y | X = x) from the

usual formula P(A | B) = P(A ∩ B)/P(B) since P(B) = 0 in this case, and so we proceed

as follows. Instead of conditioning on the event that X = x , we condition on the event that

x ≤ X ≤ x + δx and take the limit as δx ↓ 0. Thus,

P
(
Y ≤ y

∣∣ x ≤ X ≤ x + δx
)

=
P(Y ≤ y, x ≤ X ≤ x + δx)

P(x ≤ X ≤ x + δx)

=
∫ x+δx

u=x

∫ y

v=−∞ fX,Y (u, v) du dv
∫ x+δx

x
fX (u) du

by Theorems 6.22 and 5.27. We divide both the numerator and the denominator by δx and

take the limit as δx ↓ 0 to obtain

P
(
Y ≤ y

∣∣ x ≤ X ≤ x + δx
)

→
∫ y

−∞

fX,Y (x, v)

fX (x)
dv

= G(y), (6.56)
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say. It is clear from (6.56) that G is a distribution function with density function

g(y) =
fX,Y (x, y)

fX (x)
for y ∈ R,

and we call G and g the ‘conditional distribution function’ and the ‘conditional density func-

tion’ of Y given that X equals x . The above discussion is valid only for values of x such that

fX (x) > 0, and so we make the following formal definition.

Definition 6.57 The conditional density function of Y given that X = x is denoted by

fY |X (· | x) and defined by

fY |X (y | x) =
fX,Y (x, y)

fX (x)
(6.58)

for y ∈ R and x satisfying fX (x) > 0.

We emphasize that expressions such as P(Y ≤ y | X = x) cannot be interpreted in

the usual way by using the formula for P(A | B). The only way of giving meaning to such

a quantity is to make a new definition, such as: P(Y ≤ y | X = x) is defined to be the

conditional distribution function G(y) of Y given X = x , as in (6.56).

If X and Y are independent, then fX,Y (x, y) = fX (x) fY (y). By (6.58), fY |X (y | x) =
fY (y), which is to say that information about X is irrelevant when studying Y .

Example 6.59 Let X and Y have joint density function

f (x, y) =
{

2e−x−y if 0 < x < y < ∞,

0 otherwise.

The marginal density functions are

fX (x) = 2e−2x for x > 0,

fY (y) = 2e−y(1 − e−y) for y > 0,

where it is understood that these functions take the value 0 off the specified domains. The

conditional density function of Y given X = x (> 0) is

fY |X (y | x) =
2e−x−y

2e−2x
= ex−y for y > x .

The conditional density function of X given Y = y is

fX |Y (x | y) =
e−x

1 − e−y
for 0 < x < y.

It is clear that both these conditional density functions equal 0 if x > y. △
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Exercise 6.60 Suppose that X and Y have joint density function

f (x, y) =

{
e−y if 0 < x < y < ∞,

0 otherwise.

Find the conditional density functions of X given that Y = y, and of Y given that X = x .

Exercise 6.61 Let X and Y be independent random variables, each having the exponential distribution
with parameter λ. Find the joint density function of X and X +Y , and deduce that the conditional density
function of X , given that X + Y = a, is uniform on the interval (0, a) for each a > 0. In other words,
the knowledge that X + Y = a provides no useful clue about the position of X in the interval (0, a).

6.7 Expectations of continuous random variables

Let X and Y be jointly continuous random variables on (�,F ,P), and let g : R2 → R. As

in the discussion of Section 5.5, we shall suppose that the mapping Z : � → R, defined by

Z(ω) = g(X (ω),Y (ω)), is a random variable (this is certainly the case if g is sufficiently

well behaved). In calculating the expectation of Z , we do not have to find the distribution of

Z explicitly.

Theorem 6.62 We have that

E(g(X,Y )) =
∫ ∞

−∞

∫ ∞

−∞
g(x, y) f X,Y (x, y) dx dy,

whenever this integral converges absolutely.

We do not prove this, but note that the result follows intuitively from the corresponding

result, Theorem 3.10, for discrete random variables, by exploiting the analogy between joint

mass functions and joint density functions.

Using Theorem 6.62, we find that the expectation operator acts linearly on the space of

continuous random variables, which is to say that

E(a X + bY ) = aE(X)+ bE(Y ) (6.63)

whenever a, b ∈ R and X and Y are jointly continuous random variables with means E(X)
and E(Y ). This follows from Theorem 6.62 by writing

E(a X + bY ) =
∫ ∞

−∞

∫ ∞

−∞
(ax + by) fX,Y (x, y) dx dy

= a

∫ ∞

−∞

∫ ∞

−∞
x fX,Y (x, y) dx dy + b

∫ ∞

−∞

∫ ∞

−∞
y fX,Y (x, y) dx dy

= a

∫ ∞

−∞
x fX (x) dx + b

∫ ∞

−∞
y fY (y) dy

= aE(X)+ bE(Y ).
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We mention one common error here. It is a mistake to demand that X and Y be independent

in order that E(X + Y ) = E(X) + E(Y ). This equation holds whether or not X and Y are

independent.

Next we discuss the relationship between expectation and independence, noting the excel-

lent analogy with Theorems 3.19 and 3.20 dealing with discrete random variables. First, if X

and Y are independent random variables with joint density function fX,Y , then

E(XY ) = E(X)E(Y ) (6.64)

whenever these expectations exist, since

E(XY ) =
∫ ∞

−∞

∫ ∞

−∞
xy f X,Y (x, y) dx dy

=
∫ ∞

−∞
x fX (x) dx

∫ ∞

−∞
y fY (y) dy by independence

= E(X)E(Y ). (6.65)

The converse is false: there exist jointly continuous dependent random variables X and Y for

which E(XY ) = E(X)E(Y ). The correct and full result here is the next theorem.

Theorem 6.66 Jointly continuous random variables X and Y are independent if and

only if

E(g(X)h(Y )) = E(g(X))E(h(Y )) (6.67)

for all functions g, h : R → R for which these expectations exist.

Proof If X and Y are independent, then fX,Y (x, y) = fX (x) fY (y), and (6.67) holds by

Theorem 6.62. Conversely, if (6.67) holds for all appropriate functions g and h, then it holds

in particular for the functions given by

g(u) =

{
1 if u ≤ x,

0 if u > x,
h(v) =

{
1 if v ≤ y,

0 if v > y,

for fixed values of x and y. In this case, g(X)h(Y ) is a discrete random variable with the

Bernoulli distribution, parameter p1 = P(X ≤ x, Y ≤ y), and g(X) and h(Y ) are Bernoulli

random variables with parameters p2 = P(X ≤ x) and p3 = P(Y ≤ y), respectively. Hence

E(g(X)h(Y )) = P(X ≤ x, Y ≤ y)

by (2.28), and

E(g(X)) = P(X ≤ x), E(h(Y )) = P(Y ≤ y),

giving by (6.67) that

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y) for x, y ∈ R,

as required. 2
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We turn now to conditional expectation. Suppose that X and Y are jointly continuous

random variables with joint density function fX,Y , and that we are given that X = x . In

light of this information, the new density function of Y is the conditional density function

fY |X (· | x).

Definition 6.68 The conditional expectation of Y given X = x, written E(Y | X = x),

is the mean of the conditional density function,

E(Y | X = x) =
∫ ∞

−∞
y fX |Y (y | x) dy =

∫ ∞

−∞
y

fX,Y (x, y)

fX (x)
dy,

valid for any value of x for which fX (x) > 0.

Possibly the most useful application of conditional expectation is the next theorem, a form

of the partition theorem which enables us to calculate E(Y ) in situations where the conditional

expectations E(Y | X = x) are easily calculated.

Theorem 6.69 If X and Y are jointly continuous random variables, then

E(Y ) =
∫

E(Y | X = x) fX (x) dx,

where the integral is over all values of x such that fX (x) > 0.

In other words, in calculating E(Y ) we may first fix the value of X and then average over

this value later.

Proof This is straightforward:

E(Y ) =
∫

y fY (y) dy =
∫∫

y fX,Y (x, y) dx dy

=
∫∫

y fY |X (y | x) f X (x) dx dy by (6.58)

=
∫ (∫

y fY |X (y | x) dy

)
fX (x) dx

as required. The integrals here range over all appropriate values of x and y. 2

Exercise 6.70 Let the pair (X,Y ) be uniformly distributed on the unit disc, so that

fX,Y (x, y) =

{
π−1 if x2 + y2 ≤ 1,

0 otherwise.

Find E
√

X2 + Y 2 and E(X2 + Y 2).

Exercise 6.71 Give an example of a pair of dependent and jointly continuous random variables X , Y

for which E(XY ) = E(X)E(Y ).
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Exercise 6.72 If X and Y have joint density function

f (x, y) =
{

e−y if 0 < x < y < ∞,

0 otherwise,

find E(X | Y = y) and E(Y | X = x).

6.8 Bivariate normal distribution

The ‘univariate’ normal distribution N(0, 1) has density function

f (x) =
1

√
2π

e− 1
2 x2

for x ∈ R.

The corresponding bivariate distribution has a joint density function of a similar form. Let

ρ ∈ (−1, 1), and let f be the function of two variables given by

f (x, y) =
1

2π
√

1 − ρ2
exp

(
−

1

2(1 − ρ2)
(x2 − 2ρxy + y2)

)
for x, y ∈ R. (6.73)

Clearly, f (x, y) ≥ 0 for all x and y, and it is the case that

∫ ∞

−∞

∫ ∞

−∞
f (x, y) dx dy = 1

(the reader should check this), giving that f is a joint density function; it is called the joint

density function of the standard bivariate normal (or Gaussian) distribution. Suppose that

X and Y are random variables with the standard bivariate normal density function f . We

calculate next

(a) the marginal density function of X ,

(b) the conditional density function of Y given X = x ,

(c) the conditional expectation of Y given X = x ,

(d) a condition under which X and Y are independent.

Marginals. The marginal density function of X is

fX (x) =
∫ ∞

−∞
f (x, y) dy

=
∫ ∞

−∞

1

2π
√

1 − ρ2
exp

(
−

1

2(1 − ρ2)

[
(y − ρx)2 + x2(1 − ρ2)

])
dy

=
1

√
2π

e− 1
2 x2

∫ ∞

−∞

1√
2π(1 − ρ2)

exp

(
−
(y − ρx)2

2(1 − ρ2)

)
dy.

Note the completion of the square in the exponent. The function within the final integral is the

density function of the normal distribution with mean ρx and variance 1 − ρ2, and therefore

this final integral equals 1, giving that
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fX (x) =
1

√
2π

e− 1
2

x2

for x ∈ R. (6.74)

We conclude that X has the normal distribution with mean 0 and variance 1. By symmetry, Y

has this distribution also.

Conditional density function. The conditional density function of Y given that X = x is

fY |X (y | x) =
f (x, y)

fX (x)
=

1√
2π(1 − ρ2)

exp

(
−
(y − ρx)2

2(1 − ρ2)

)
,

and so the conditional distribution of Y given X = x is the normal distribution with mean ρx

and variance 1 − ρ2.

Conditional expectation. By the above, the conditional expectation of Y given X = x is

E(Y | X = x) =
∫ ∞

−∞
y fY |X (y | x) dy = ρx . (6.75)

Independence. The random variables X and Y are independent if and only if f (x, y) factor-

izes as the product of a function of x and a function of y. This happens (by a glance at (6.73))

if and only if ρ = 0. The constant ρ occurs in another way also. We may calculate E(XY ) by

applying Theorem 6.69 to the random variables X and XY to obtain

E(XY ) =
∫ ∞

−∞
E(XY | X = x) fX (x) dx

=
∫ ∞

−∞
xE(Y | X = x) fX (x) dx

=
∫ ∞

−∞
ρx2 fX (x) dx by (6.75)

= ρE(X2) = ρ var(X) since E(X) = 0

= ρ

by the remarks after (6.74). Also, E(X) = E(Y ) = 0, giving that

ρ = E(XY )− E(X)E(Y ).

We deduce that X and Y are independent if and only if E(XY ) = E(X)E(Y ). Thus, by the

discussion around (6.65), for random variables X and Y with the bivariate normal distribution,

X and Y are independent if and only if E(XY ) = E(X)E(Y ). This is commonly expressed

by saying that such random variables are independent if and only if they are uncorrelated (see

the account of covariance and correlation in the forthcoming Section 7.3).

The marginals of the standard bivariate normal distribution are N(0, 1). Here is a more

general bivariate distribution. Let g be the function of two variables given by

g(x, y) =
1

2πσ1σ2

√
1 − ρ2

e− 1
2 Q(x,y) for x, y ∈ R, (6.76)
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where Q is the quadratic form

Q(x, y) =
1

1 − ρ2

[(
x − µ1

σ1

)2

− 2ρ

(
x − µ1

σ1

)(
y − µ2

σ2

)
+
(

y − µ2

σ2

)2
]

(6.77)

and µ1, µ2 ∈ R, σ1, σ2 > 0, −1 < ρ < 1. The standard bivariate normal distribution is

obtained by setting µ1 = µ2 = 0 and σ1 = σ2 = 1. It is not difficult but slightly tedious

to show that g is a joint density function, and the corresponding distribution is called the

bivariate normal distribution with the appropriate parameters. We leave it for Exercise 6.79

to show that, if X and Y have joint density function g, then the pair U , V given by

U =
X − µ1

σ1
, V =

Y − µ2

σ2
, (6.78)

has the standard bivariate normal distribution with parameter ρ.

The general bivariate normal distribution of (6.76)–(6.77) has a complicated form. There

is however a simpler definition of substantial appeal, namely the following. A pair (X,Y ) of

random variables is said to have a bivariate normal distribution if, for all a, b ∈ R, the linear

combination a X +bY has a univariate normal distribution. It is not difficult to show that this is

equivalent to the definition given above, so long as one allows degenerate normal distributions

with zero variances.

This characterization of normal distributions is valuable, especially when extending

the theory from two variables to a general number. More generally, a vector X =
(X1, X2, . . . , Xn) is said to have a multivariate normal distribution if, for all a ∈ Rn , the

scalar product a · X′ has a univariate normal distribution.

Exercise 6.79 Let the pair (X,Y ) have the bivariate normal density function of (6.76), and let U and
V be given by (6.78). Show that U and V have the standard bivariate normal distribution. Hence or
otherwise show that

E(XY )− E(X)E(Y ) = ρσ1σ2,

and that
E(Y | X = x) = µ2 + ρσ2(x − µ1)/σ1.

Exercise 6.80 Let the pair (X,Y ) have the bivariate normal distribution of (6.76), and let a, b ∈ R.
Show that aX + bY has a univariate normal distribution, possibly wth zero variance.

6.9 Problems

1. If X and Y are independent random variables with density functions fX and fY , respectively,
show that U = XY and V = X/Y have density functions

fU (u) =
∫ ∞

−∞
fX (x) fY (u/x)

1

|x|
dx, fV (v) =

∫ ∞

−∞
fX (vy) fY (y)|y| dy.

2. Is the function G, defined by

G(x, y) =
{

1 if x + y ≥ 0,

0 otherwise,

the joint distribution function of some pair of random variables? Justify your answer.
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3. Let (X,Y, Z) be a point chosen uniformly at random in the unit cube (0, 1)3. Find the probab-

ility that the quadratic equation Xt2 + Y t + Z = 0 has two distinct real roots.

4. Show that if X and Y are independent random variables having the exponential distribution
with parameters λ and µ, respectively, then min{X,Y } has the exponential distribution with
parameter λ+ µ.

5. Lack-of-memory property. If X has the exponential distribution, show that

P
(
X > u + v

∣∣ X > u
)

= P(X > v) for u, v > 0.

This is called the ‘lack of memory’ property, since it says that, if we are given that X > u,
then the distribution of X − u is the same as the original distribution of X . Show that if Y is a
positive, continuous random variable with the lack-of-memory property above, then Y has the
exponential distribution.

6. Let X1, X2, . . . , Xn be independent random variables, each having distribution function F

and density function f . Find the distribution function of U and the density functions of U and
V , where U = min{X1, X2, . . . , Xn} and V = max{X1, X2, . . . , Xn}. Show that the joint
density function of U and V is

fU,V (u, v) = n(n − 1) f (u) f (v)
[
F(v) − F(u)

]n−2
if u < v.

7. Let X1, X2, . . . be independent, identically distributed, continuous random variables. Define
N as the index such that

X1 ≥ X2 ≥ · · · ≥ X N−1 and X N−1 < X N .

Prove that P(N = k) = (k − 1)/k! and that E(N) = e.

8. Show that there exists a constant c such that the function

f (x, y) =
c

(1 + x2 + y2)3/2
for x, y ∈ R

is a joint density function. Show that both marginal density functions of f are the density
function of the Cauchy distribution.

9. Let X and Y have joint density function

f (x, y) =

{
1
4
(x + 3y)e−(x+y) if x, y ≥ 0,

0 otherwise.

Find the marginal density function of Y . Show that P(Y > X) = 5
8

.

10. Let Sn be the sum of n independent, identically distributed random variables having the expon-
ential distribution with parameter λ. Show that Sn has the gamma distribution with parameters
n and λ.

For given t > 0, show that Nt = max{n : Sn ≤ t} has a Poisson distribution.

11. An aeroplane drops medical supplies to two duellists. With respect to Cartesian coordinates
whose origin is at the target point, both the x and y coordinates of the landing point of the
supplies have normal distributions which are independent. These two distributions have the

same mean 0 and variance σ 2. Show that the expectation of the distance between the landing
point and the target is σ

√
π/2. What is the variance of this distance? (Oxford 1976M)
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12. X and Y are independent random variables normally distributed with mean zero and variance

σ 2. Find the expectation of
√

X2 + Y 2. Find the probabilities of the following events, where

a, b, c, and α are positive constants such that b < c and α < 1
2
π :

(a)
√

X2 + Y 2 < a,

(b) 0 < tan−1(Y/X) < α and Y > 0.

(Consider various cases depending on the relative sizes of a, b, and c.) (Oxford 1981M)

13. The independent random variables X and Y are both exponentially distributed with parameter
λ, that is, each has density function

f (t) =

{
λe−λt if t > 0,

0 otherwise.

(a) Find the (cumulative) distribution and density functions of the random variables 1−e−λX ,
min{X,Y }, and X − Y .

(b) Find the probability that max{X,Y } ≤ aX , where a is a real constant.

(Oxford 1982M)

14. The independent random variables X and Y are normally distributed with mean 0 and variance
1.

(a) Show that W = 2X − Y is normally distributed, and find its mean and variance.

(b) Find the mean of Z = X2/(X2 + Y 2).
(c) Find the mean of V/U , where U = max{|X |, |Y |} and V = min{|X |, |Y |}.

(Oxford 1985M)

15. Let X and Y be independent random variables, X having the normal distribution with mean 0

and variance 1, and Y having the χ2 distribution with n degrees of freedom. Show that

T =
X

√
Y/n

has density function

f (t) =
1

√
πn

Ŵ( 1
2
(n + 1))

Ŵ( 1
2

n)

(
1 +

t2

n

)− 1
2
(n+1)

for t ∈ R.

T is said to have the t -distribution with n degrees of freedom.

16. Let X and Y be independent random variables with the χ2 distribution, X having m degrees
of freedom and Y having n degrees of freedom. Show that

U =
X/m

Y/n

has density function

f (u) =
mŴ( 1

2
(m + n))

nŴ( 1
2

m)Ŵ( 1
2

n)
·

(mu/n)
1
2 m−1

[
1 + (mu/n)

] 1
2 (m+n)

for u > 0.

U is said to have the F-distribution with m and n degrees of freedom.
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17. In a sequence of dependent Bernoulli trials, the conditional probability of success at the i th
trial, given that all preceding trials have resulted in failure, is pi (i = 1, 2, . . . ). Give an
expression in terms of the pi for the probability that the first success occurs at the nth trial.

Suppose that pi = 1/(i +1) and that the time intervals between successive trials are independ-
ent random variables, the interval between the (n − 1)th and the nth trials being exponentially
distributed with density nα exp(−nαx), where α is a given constant. Show that the expected
time to achieve the first success is finite if and only if α > 0. (Oxford 1975F)

18. Let a, b > 0. Independent positive random variables X and Y have probability densities

1

Ŵ(a)
xa−1e−x ,

1

Ŵ(b)
yb−1e−y , for x, y ≥ 0,

respectively, and U and V are defined by

U = X + Y, V =
X

X + Y
.

Prove that U and V are independent, and find their distributions.

Deduce that

E

(
X

X + Y

)
=

E(X)

E(X)+ E(Y )
.

(Oxford 1971F)

19. Let X1, X2, X3 be independent χ2 random variables with r1, r2, r3 degrees of freedom.

(a) Show that Y1 = X1/X2 and Y2 = X1 + X2 are independent and that Y2 is a χ2 random
variable with r1 + r2 degrees of freedom.

(b) Deduce that the following random variables are independent:

X1/r1

X2/r2
and

X3/r3

(X1 + X2)/(r1 + r2)
.

(Oxford 1982F)

20. Let X and Y be random variables with the vector (X,Y ) uniformly distributed on the region
R = {(x, y) : 0 < y < x < 1}. Write down the joint probability density function of (X, Y ).
Find P(X + Y < 1).

Find the probability density function fX (x) of X , and find also E(X). Find the conditional
probability density function fY |X (y | x) of Y given that X = x , and find also E(Y | X = x).
(Oxford 2005)

21. Let X and Y be independent random variables, each uniformly distributed on [0, 1]. Let U =
min{U, V } and V = max{U, V }. Show that E(U) = 1

3
, and hence find the covariance of U

and V . (Cambridge 2007)

* 22. Three crew members of Dr Who’s spacecraft Tardis are teleported to the surface of the spher-
ical planet Zog. Their positions X , Y , Z are independent and uniformly distributed on the

surface. Find the probability density function of the angle X̂CY , where C is the centre of Zog.

Two people positioned on the surface at A and B are in direct radio communication if and only

if ÂC B < 1
2
π .

(a) Find the probability that Z is in direct radio communication with either X or Y , condi-

tional on the event that φ := X̂CY satisfies φ < 1
2
π .
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(b) Find the probability that Z is in direct radio communication with both X and Y , condi-

tional on the event that φ > 1
2
π .

Deduce that the probability that all three crew members can keep in touch is (π + 2)/(4π).

* 23. Zog continued. This time, n members of Dr Who’s crew are transported to Zog, their positions
being independent and uniformly distributed on the surface. In addition, Dr Who is required to
choose a place W on the surface for his own transportation. Find the probability that, for every
W , he is able to communicate with some member of his crew.

24. Let X and Y be independent non-negative random variables with densities f and g, respec-
tively. Find the joint density function of U = X and V = X + aY , where a is a positive
constant.

Let X and Y be independent and exponentially distributed random variables, each with density

f (x) = λe−λx for x ≥ 0.

Find the density of X + 1
2

Y . Is it the same as the density of max{X, Y }? (Cambridge 2007)

25. Let X and Y have the bivariate normal density function

f (x, y) =
1

2π
√

1 − ρ2
exp

{
−

1

2(1 − ρ2)
(x2 − 2ρxy + y2)

}
for x, y ∈ R,

for fixed ρ ∈ (−1, 1). Let Z = (Y − ρX)/
√

1 − ρ2. Show that X and Z are independent
N(0, 1) variables. Hence or otherwise determine P(X > 0, Y > 0). (Cambridge 2008)

26. Let X and Y be random variables with the joint probability density function

fX,Y (x, y) = 1
4

e− 1
2 (x+y) for x, y > 0.

Show that the joint probability density function of U = 1
2
(X − Y ) and V = Y is

fU,V (u, v) =

{
1
2

e−u−v if (u, v) ∈ A,

0 otherwise,

where A is a region of the (u, v) plane to be determined. Deduce that U has probability density
function

fU (u) = 1
2 e−|u|, −∞ < u < ∞.

(Oxford 2008)

27. (a) Suppose that the continuous random variables X and Y are independent with probability
density functions f and g, both of which are symmetric about zero.
(i) Find the joint probability density function of (U, V ), where U = X and V = Y/X .

(ii) Show that the marginal density function of V is

fV (v) = 2

∫ ∞

0
x f (x)g(xv) dx.

(iii) Let X and Y be independent normal random variables, each with mean 0, and with

non-zero variances a2 and b2, respectively. Show that V = Y/X has probability
density function

fV (v) =
c

π(c2 + v2)
for − ∞ < v < ∞,

where c = b/a. Hence find P(|Y | < |X |).
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(b) Now let X and Y be independent random variables, each uniformly distributed on the

interval (0, 1). By considering the random variables U = Y and V = XY 2, or otherwise,
find the probability density function of V .

(Oxford 2010)

28. (a) Define the distribution function F of a random variable, and also its density function f ,
assuming F is differentiable. Show that

f (x) = −
d

dx
P(X > x).

(b) Let U , V be independent random variables, each with the uniform distribution on [0, 1].
Show that

P(V 2 > U > x) = 1
3

− x + 2
3

x3/2 for x ∈ (0, 1).

(c) What is the probability that the random quadratic equation x2 + 2V x + U = 0 has real
roots?

(d) Given that the two roots R1, R2 of the above quadratic are real, what is the probability
that both |R1| ≤ 1 and |R2| ≤ 1?

(Cambridge 2012)
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Moments, and

moment generating functions

Summary. Following a discussion of general random variables, the

moments of a general distribution are defined. Covariance and correl-

ation are introduced, and the Cauchy–Schwarz inequality is proved.

The theory of moment generating functions may be viewed as an

extension of the theory of probability generating functions. Special

attention is given to the Markov and Jensen inequalities, and the chap-

ter terminates with an account of characteristic functions.

7.1 A general note

Up to now, we have treated discrete and continuous random variables separately, and have

hardly broached the existence of random variables which are neither discrete nor continuous.

A brief overview of the material so far is depicted in Figure 7.1.

We cannot continue to treat the discrete case and the continuous case separately and the

other cases not at all. The correct thing to be done at this point is to study random variables in

their generality. Unfortunately, such a proper treatment is too advanced for this basic text since

it involves defining the expectation of an arbitrary random variable, using ideas and techniques

of abstract measure and integration theory. We are therefore forced to adopt another strategy.

We shall try to state and prove theorems in ways which do not explicitly mention the type

(discrete or continuous or . . . ) of the random variables involved; generally speaking, such

arguments may be assumed to hold in the wide sense. Sometimes we will have to consider

special cases, and then we shall normally treat continuous random variables. The discrete case

is usually similar and easier, and a rule of thumb for converting an argument about continuous

random variables into an argument about discrete random variables is to replace fX (x) dx by

pX (x) and
∫

by
∑

.

Finally, curious readers may care to see the standard example of a random variable whose

type is neither discrete nor continuous. Less enthusiastic readers should go directly to the next

section.

Example 7.1 (The Cantor distribution) The celebrated Cantor set C is the often quoted

example of an uncountable subset of the real line which is very sparse, in the sense that for

any ǫ > 0, there exist intervals I1, I2, . . . with total length less than ǫ such that C ⊆
⋃

n In .

We construct this set as follows. Let C1 = [0, 1]. Delete the middle third ( 1
3
, 2

3
) of C1 and
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probability space

(�,F ,P)

random variable

X : � → R

distribution function

F(x) = P(X ≤ x)

discrete random

variables

X (�) is countable

mass function

p(x) = P(X = x)

expectation

E(X) =
∑

x p(x)

random variables

which are neither

discrete nor

continuous

for example

the Cantor distribution

of Example 7.1

continuous random

variables

F(x) =
∫ x

−∞
f (u) du

density function

f (x) =
d

dx
P(X ≤ x)

expectation

E(X) =
∫ ∞

−∞
x f (x) dx

Fig. 7.1 An overview of probability spaces and random variables so far.

let C2 = [0, 1
3
] ∪ [ 2

3
, 1] be the remaining set. Next, delete the middle third in each of the two

intervals comprising C2 to obtain C3 = [0, 1
9
]∪[ 2

9
, 1

3
]∪[ 2

3
, 7

9
]∪[ 8

9
, 1], and continue similarly

to obtain an infinite nested sequence C1 ⊇ C2 ⊇ C3 ⊇ · · · of subsets of [0, 1]. The Cantor

set C is defined to be the limit

C = lim
n→∞

Cn =
∞⋂

i=1

Ci .

There is another way of thinking about the Cantor set, and this is useful for us. Just as

each number in [0, 1] has an expansion in the base-10 system (namely its decimal expansion)

so it has an expansion in the base-3 system. That is to say, any x ∈ [0, 1] may be written in

the form

x =
∞∑

i=1

ai

3i
, (7.2)
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where each of the ai equals 0, 1, or 2. The Cantor set C is the set of all points x ∈ [0, 1] for

which the ai above take the values 0 and 2 only.

We obtain the Cantor distribution as follows. Take x ∈ C and express x in the form (7.2)

with ai ∈ {0, 2} for all i . We define F(x) by

F(x) =
∞∑

i=1

ai/2

2i
.

It is clear that

F(0) = 0, F(1) = 1,

and F is non-decreasing in that

F(x) ≤ F(y) if x ≤ y.

Note that F is not a distribution function since it is defined on C only. However, we may

extend the domain of F to the whole real line in the following natural way. If x ∈ [0, 1] \ C ,

x belongs to one of the intervals which were deleted in the construction of C . We define F(x)

to be the supremum of the set {F(y) : y ∈ C, y < x}. Finally, we set F(x) = 0 if x < 0 and

F(x) = 1 if x > 1. It is fairly easy to see that F is a continuous non-decreasing function from

R onto [0, 1], and thus F is a distribution function.

Let X be a random variable with distribution function F . Clearly, X is not a discrete ran-

dom variable, since F is continuous. It is not quite so easy to see that X cannot be continuous.

Roughly speaking, this is because F is constant on each interval ( 1
3
, 2

3
), ( 1

9
, 2

9
), ( 7

9
, 8

9
), . . .

that was deleted in constructing C . The total length of these intervals is

1
3

+ 2 · 1
9

+ 4 · 1
27

+ · · · = 1
3

∞∑

i=0

( 2
3
)i = 1,

so that F ′(x) = 0 for ‘almost all’ of [0, 1]. Thus, if F were to have density function f , then

f (x) = 0 for ‘almost all’ x , giving that

P(−∞ < X < ∞) =
∫ ∞

−∞
f (x) dx = 0,

which is clearly absurd. Hence, X is neither discrete nor continuous. It turns out that the

distribution function F is in an entirely new category, called the set of ‘singular’ distribu-

tion functions. Do not be too disturbed by this novelty; there are basically only three classes

of distribution functions: those which are singular, those which arise from discrete random

variables, and those which arise from continuous random variables. There is a theorem of

Lebesgue called the ‘decomposition theorem’ that implies that every distribution function F

may be expressed in the form F = α1 F1 + α2 F2 + α3 F3 for non-negative αi summing to 1,

such that: F1 is the distribution function of a discrete random variable, F2 that of a continuous

random variable, and F3 is singular.1 △

1See, for example, Taylor (1973, Sect. 9.3).
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Exercise 7.3 On the kth toss of a fair coin, a gambler receives 0 if it is a tail and 2/3k if it is a head. Let
X be the total gain of the gambler after an infinite sequence of tosses of the coin. Show that X has the
Cantor distribution.

Exercise 7.4 Show that the Cantor set is uncountable.

7.2 Moments

The main purpose of this chapter is to study the ‘moments’ of a random variable: what are

moments, and how can we use them? For any random variable X , the kth moment of X is

defined for k = 1, 2, . . . to be the number E(X k), that is, the expectation of the kth power of

X , whenever this expectation exists. We shall see that the sequence E(X),E(X2), . . . contains

a lot of information about X , but first we give some examples of calculations of moments.2

Example 7.5 If X has the exponential distribution with parameter λ, then

E(X k) =
∫ ∞

0

xkλe−λx dx by Theorem 5.58

=
[
−xke−λx

]∞
0

+
∫ ∞

0

kxk−1e−λx dx

=
k

λ
E(X k−1)

if k ≥ 1, giving that

E(X k) =
k

λ
E(X k−1) =

k(k − 1)

λ2
E(X k−2) = · · ·

=
k!
λk

E(X0) =
k!
λk

E(1) =
k!
λk
.

In particular, the exponential distribution has moments of all orders. △

Example 7.6 If X has the Cauchy distribution, then

E(X k) =
∫ ∞

−∞

xk

π(1 + x2)
dx

for values of k for which this integral converges absolutely. It is however an elementary exer-

cise (remember Example 5.66) to see that

∫ ∞

−∞

∣∣∣∣
xk

π(1 + x2)

∣∣∣∣ dx = ∞

if k ≥ 1, and so the Cauchy distribution possesses no moments.

2Strictly speaking, these moments are associated with the distribution of X rather than with the random variable
X itself. Thus we shall speak of the moments of a distribution or of a density function.
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You may see how to adapt this example to find a density function with some moments but

not all. Consider the density function

f (x) =
c

1 + |x |m
for x ∈ R,

where m (≥ 2) is an integer, and c is chosen so that f is indeed a density function:

c =
(∫ ∞

−∞

dx

1 + |x |m

)−1

.

You may check that this density function has a kth moment for those values of k satisfying

1 ≤ k ≤ m − 2 only. △

Given the distribution function FX of the random variable X , we may calculate its mo-

ments whenever they exist (at least, if X is discrete or continuous). It is interesting to ask

whether or not the converse is true: given the sequence E(X),E(X2), . . . of (finite) moments

of X , is it possible to reconstruct the distribution of X? The general answer to this question is

no, but is yes if we have some extra information about the moment sequence.

Theorem 7.7 (Uniqueness theorem for moments) Suppose that all moments E(X),
E(X2), . . . of the random variable X exist, and that the series

∞∑

k=0

1

k!
tkE(X k) (7.8)

is absolutely convergent for some t > 0. Then the sequence of moments uniquely deter-

mines the distribution of X.

Thus the absolute convergence of (7.8) for some t > 0 is sufficient (but not necessary) for

the moments to determine the underlying distribution. We omit the proof of this, since it is not

primarily a theorem about probability theory; a proof may be found in textbooks on real and

complex analysis. The theorem is closely related to the uniqueness theorem, Theorem 4.13,

for probability generating functions; the series in (7.8) is the exponential generating function

of the sequences of moments.

Here is an example of a distribution which is not determined uniquely by its moments.

Example 7.9 (Log-normal distribution) If X has the normal distribution with mean 0 and

variance 1, then Y = eX has the log-normal distribution with density function

f (x) =





1

x
√

2π
exp

[
− 1

2
(log x)2

]
if x > 0,

0 if x ≤ 0.

Suppose that −1 ≤ a ≤ 1 and define

fa(x) =
[
1 + a sin(2π log x)

]
f (x).

It is not difficult to check that



7.3 Variance and covariance 113

(a) fa is a density function,

(b) f has finite moments of all orders,

(c) fa and f have equal moments of all orders, in that
∫ ∞

−∞
xk f (x) dx =

∫ ∞

−∞
xk fa(x) dx for k = 1, 2, . . . .

Thus, { fa : −1 ≤ a ≤ 1} is a collection of distinct density functions having the same mo-

ments. △

Exercise 7.10 If X is uniformly distributed on (a, b), show that

E(Xk ) =
bk+1 − ak+1

(b − a)(k + 1)
for k = 1, 2, . . . .

Exercise 7.11 If X has the gamma distribution with parameters w and λ, show that

E(Xk) =
Ŵ(w + k)

λkŴ(w)
for k = 1, 2, . . . .

Exercise 7.12 If X has the χ2 distribution with n degrees of freedom, show that

E(Xk) = 2k
Ŵ(k + 1

2
n)

Ŵ( 1
2

n)
for k = 1, 2, . . . .

7.3 Variance and covariance

We recall that the variance of a random variable X is defined to be

var(X) = E
(
[X − µ]2

)
, (7.13)

where µ = E(X) (see (2.33) and (5.61) for discrete and continuous random variables). The

variance of X is a measure of its dispersion about its expectationµ, in the sense that if X often

takes values which differ considerably from µ, then |X −µ| is often large and so E([X −µ]2)

will be large, whereas if X is usually near to µ, then |X −µ| is usually small and E([X −µ]2)

is small also. An extreme case arises when X is concentrated at some point. It is the case that,

for a random variable Y ,

E(Y 2) = 0 if and only if P(Y = 0) = 1. (7.14)

Obviously, E(Y 2) = 0 if P(Y = 0) = 1, and the converse holds since (for discrete random

variables, anyway)

E(Y 2) =
∑

y

y2P(Y = y) ≥ 0

with equality if and only if P(Y = y) = 0 for all y 6= 0. Applying (7.14) to Y = X − µ gives

var(X) = 0 if and only if P(X = µ) = 1, (7.15)

so that ‘zero variance’ means ‘no dispersion at all’.
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There are many other possible measures of dispersion, such as E(|X −µ|) and E(|X −µ|3)
and so on, but it is easiest to work with variances.

As noted before, when calculating the variance of X , it is often simpler to work with the

moments of X rather than with (7.13) directly. That is to say, it may be easier to make use of

the formula

var(X) = E
(
[X − µ]2

)

= E(X2)− µ2 (7.16)

by (2.35) and (5.62), where µ = E(X).

There is also a simple formula for calculating the variance of a linear function a X + b of

a random variable X , namely

var(a X + b) = a2 var(X). (7.17)

To see this, note by (6.63) that

var(a X + b) = E
([

a X + b − E(a X + b)
]2)

= E
([

a X + b − aE(X)− b
]2)

= E
(
a2[X − µ]2

)
= a2E

(
[X − µ]2

)

= a2 var(X).

As a measure of dispersion, the variance of X has an undesirable property: it is non-linear

in the sense that the variance of a X is a2 times the variance of X . For this reason, statisticians

often prefer to work with the standard deviation of X , defined to be
√

var(X).

What can be said about var(X + Y ) in terms of var(X) and var(Y )? It is simple to see that

var(X + Y ) = E
({
(X + Y )− E(X + Y )

}2)

= E
({

[X − E(X)] + [Y − E(Y )]
}2)

= E
(
[X − E(X)]2 + 2[X − E(X)][Y − E(Y )] + [Y − E(Y )]2

)

= var(X)+ 2E
(
[X − E(X)][Y − E(Y )]

)
+ var(Y ). (7.18)

It is convenient to have a special word for the middle term in the last expression, and to this

end we define the ‘covariance’ of the pair X , Y .

Definition 7.19 The covariance of the random variables X and Y is the quantity denoted

cov(X,Y ) and given by

cov(X,Y ) = E
(
[X − E(X)][Y − E(Y )]

)
, (7.20)

whenever these expectations exist.
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Note that cov(X,Y ) may be written in a simpler form: expand [X − E(X)][Y − E(Y )] in

(7.20) and use the linearity of E to find that

cov(X,Y ) = E(XY ) − E(X)E(Y ). (7.21)

Equation (7.18) may be rewritten as

var(X + Y ) = var(X)+ 2cov(X,Y )+ var(Y ), (7.22)

valid for all random variables X and Y . If X and Y are independent, then

cov(X,Y ) = E(XY )− E(X)E(Y ) = 0 (7.23)

by (6.64), giving that the sum of independent random variables has variance

var(X + Y ) = var(X)+ var(Y ) (7.24)

whenever the latter variances exist.

The converse of the last remark is false in general: we recall from (3.22) that there exist

dependent random variables X and Y for which cov(X,Y ) = 0. Despite this, cov(X,Y )

is often used as a measure of the dependence of X and Y , and the reason for this is that

cov(X,Y ) is a single number (rather than a complicated object such as a joint density function)

which contains some useful information about the joint behaviour of X and Y . For example,

if cov(X,Y ) > 0, then X − E(X) and Y − E(Y ) may have a good chance (in some sense) of

having the same sign. A principal disadvantage of covariance as a measure of dependence is

that it is not ‘scale-invariant’: if X and Y are random measurements (in inches, say) and U and

V are the same random measurements in centimetres (so that U = αX and V = αY , where

α ≈ 2.54), then cov(U,V ) ≈ 6cov(X,Y ), despite the fact that the two pairs, (X,Y ) and

(U,V ), measure essentially the same quantities. To deal with this, we ‘re-scale’ covariance as

follows.

Definition 7.25 The correlation (coefficient) of the random variables X and Y is the

quantity ρ(X,Y ) given by

ρ(X,Y ) =
cov(X,Y )

√
var(X) var(Y )

, (7.26)

whenever the latter quantities exist and var(X) var(Y ) 6= 0.

It is a simple exercise to show that

ρ(a X + b, cY + d) = ρ(X, Y ) (7.27)

for all a, b, c, d ∈ R such that ac 6= 0, and so correlation is scale invariant. Correlation has

another attractive property as a measure of dependence. It turns out that −1 ≤ ρ(X, Y ) ≤ 1

always, and moreover there are specific interpretations in terms of the joint behaviour of X

and Y of the cases when ρ(X, Y ) = ±1.
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Theorem 7.28 If X and Y are random variables, then

−1 ≤ ρ(X,Y ) ≤ 1, (7.29)

whenever this correlation exists.

The proof of this is a direct application of the next inequality.

Theorem 7.30 (Cauchy–Schwarz inequality) If U and V are random variables, then

[E(U V )]2 ≤ E(U 2)E(V 2), (7.31)

whenever these expectations exist.

Proof Let s ∈ R and define a new random variable W = sU + V . Clearly, W 2 ≥ 0 always,

and so

0 ≤ E(W 2) = E(s2U 2 + 2sU V + V 2)

= as2 + bs + c, (7.32)

where a = E(U 2), b = 2E(U V ), c = E(V 2). Clearly, a ≥ 0, and we may suppose that a > 0,

since otherwise P(U = 0) = 1 by (7.14) and the result holds trivially. Equation (7.32) implies

that the quadratic function g(s) = as2 + bs + c intersects the line t = 0 (in the usual (s, t)

plane) at most once (since if g(s) = 0 for distinct values s = s1 and s = s2, then g(s) < 0 for

all values of s strictly between s1 and s2). Thus, the quadratic equation ‘g(s) = 0’ has at most

one real root, giving that its discriminant b2 − 4ac satisfies b2 − 4ac ≤ 0. Hence

[2E(U V )]2 − 4E(U 2)E(V 2) ≤ 0

and the result is proved. 2

Proof of Theorem 7.28 Set U = X − E(X) and V = Y − E(Y ) in the Cauchy–Schwarz

inequality to find that

cov(X,Y )2 ≤ var(X) var(Y ),

yielding (7.29) immediately. 2

Only under very special circumstances can it be the case that ρ(X,Y ) = ±1, and these

circumstances are explored by considering the proof of (7.31) more carefully. Let a = var(X),

b = 2cov(X,Y ), c = var(Y ) and suppose that ρ(X, Y ) = ±1. Then var(X) var(Y ) 6= 0 and

b2 − 4ac = 4 var(X) var(Y )
[
ρ(X,Y )2 − 1

]
= 0,

and so the quadratic equation

as2 + bs + c = 0
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has two equal real roots, at s = α, say. Therefore, W = α[X − E(X)] + [Y − E(Y )] satisfies

E(W 2) = aα2 + bα + c = 0,

giving that P(W = 0) = 1, by (7.14), and showing that (essentially) Y = −αX + β , where

β = αE(X) + E(Y ). A slightly more careful treatment discriminates between the values +1

and −1 for ρ(X,Y ):

ρ(X,Y ) = 1 if and only if P(Y = αX + β) = 1

for some real α and β with α > 0, (7.33)

ρ(X,Y ) = −1 if and only if P(Y = αX + β) = 1

for some real α and β with α < 0. (7.34)

To recap, we may use ρ(X, Y ) as a measure of the dependence of X and Y . If X and Y

have non-zero variances, then ρ(X,Y ) takes some value in the interval [−1, 1], and this value

should be interpreted in the light of the ways in which the values −1, 0, 1 may arise:

(a) if X and Y are independent, then ρ(X,Y ) = 0,

(b) Y is a linear increasing function of X if and only if ρ(X,Y ) = 1,

(c) Y is a linear decreasing function of X if and only if ρ(X,Y ) = −1.

If ρ(X,Y ) = 0, we say that X and Y are uncorrelated.

Exercise 7.35 If X and Y have the bivariate normal distribution with parameters µ1, µ2, σ1, σ2, ρ (see
(6.76)), show that

cov(X,Y ) = ρσ1σ2 and ρ(X,Y ) = ρ.

Exercise 7.36 Let X1, X2, . . . be a sequence of uncorrelated random variables, each having variance

σ 2. If Sn = X1 + X2 + · · · + Xn , show that

cov(Sm, Sn) = var(Sm) = mσ 2 if m < n.

Exercise 7.37 Show that cov(X,Y ) = 1 in the case when X and Y have joint density function

f (x, y) =





1

y
e−y−x/y if x, y > 0,

0 otherwise.

7.4 Moment generating functions

If X is a discrete random variable taking values in {0, 1, 2, . . . }, its probability generating

function is defined by

G X (s) = E(s X ) =
∞∑

k=0

skP(X = k). (7.38)

Probability generating functions are very useful, but only when the random variables in ques-

tion take non-negative integral values. For more general random variables, it is customary to

consider a modification of (7.38).
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Definition 7.39 The moment generating function (or mgf) of the random variable X is

the function MX defined by

MX (t) = E(et X), (7.40)

for all t ∈ R for which this expectation exists.

This is a modification of (7.38) in the sense that, if X takes values in {0, 1, 2, . . . }, then

MX (t) = E(et X ) = G X (e
t ), (7.41)

by the substitution s = et . In general,

MX (t) = E(et X ) =





∑

x

et xP(X = x) if X is discrete,

∫ ∞

−∞
et x fX (x) dx if X is continuous,

(7.42)

whenever this sum or integral converges absolutely. In some cases, the existence of MX (t) can

pose a problem for non-zero values of t .

Example 7.43 If X has the normal distribution with mean 0 and variance 1, then

MX (t) =
∫ ∞

−∞
et x 1

√
2π

e− 1
2 x2

dx

= e
1
2

t2
∫ ∞

−∞

1
√

2π
e− 1

2
(x−t)2 dx

= e
1
2

t2

, (7.44)

since the integrand in the latter integral is the density function of the normal distribution with

mean t and variance 1, and thus has integral 1. The moment generating function MX (t) exists

for all t ∈ R. △

Example 7.45 If X has the exponential distribution with parameter λ, then

MX (t) =
∫ ∞

0

et xλe−λx dx =





λ

λ− t
if t < λ,

∞ if t ≥ λ,
(7.46)

so that MX (t) exists only for values of t satisfying t < λ. △

Example 7.47 If X has the Cauchy distribution, then

MX (t) =
∫ ∞

−∞
et x 1

π(1 + x2)
dx =

{
1 if t = 0,

∞ if t 6= 0,

so that MX (t) exists only at t = 0. △
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This difficulty over the existence of E(et X ) may be avoided by studying the complex-

valued characteristic function φX (t) = E(eit X ) of X instead—this function can be shown to

exist for all t ∈ R. However, we want to avoid i =
√

−1 at this stage, and so we must accustom

ourselves to the difficulty, although we shall return to characteristic functions in Section 7.6.

It turns out to be important only that E(et X ) exists in some neighbourhood (−δ, δ) of the

origin, and the reason for this is contained in the uniqueness theorem for moment generating

functions (see the forthcoming Theorem 7.55). We shall generally use moment generating

functions freely, but always subject to the implicit assumption of existence in a neighbourhood

of the origin.

The reason for the name ‘moment generating function’ is the following intuitively attract-

ive expansion:

MX (t) = E(et X) = E

(
1 + t X +

1

2!
(t X)2 + · · ·

)

= 1 + tE(X) +
1

2!
t2E(X2)+ · · · . (7.48)

That is to say, subject to a rigorous derivation of (7.48) which does not interchange the two

operations E and
∑

so light-heartedly, MX (t) is the exponential generating function of the

moments of X .

Theorem 7.49 If MX (t) exists in a neighbourhood of 0, then, for k = 1, 2, . . . ,

E(X k) = M
(k)
X (0), (7.50)

the kth derivative of MX (t) evaluated at t = 0.

Sketch proof Cross your fingers for the sake of rigour to obtain

dk

dtk
MX (t) =

dk

dtk
E(et X )

= E

(
dk

dtk
et X

)
= E(X ket X),

and finish by setting t = 0. It is the interchange of the expectation operator and the differential

operator which requires justification here. 2

As noted before, much of probability theory is concerned with sums of random variables.

It can be difficult in practice to calculate the distribution of a sum from knowledge of the

distributions of the summands, and it is here that moment generating functions are extremely

useful. Consider first the linear function a X + b of the random variable X . If a, b ∈ R,

Ma X+b(t) = E(et (a X+b)) = E(eat X etb)

= etbE(e(at)X) by (6.63)

giving that
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Ma X+b(t) = etbMX (at). (7.51)

A similar argument enables us to find the moment generating function of the sum of indep-

endent random variables.

Theorem 7.52 If X and Y are independent random variables, then X + Y has moment

generating function

MX+Y (t) = MX (t)MY (t). (7.53)

Proof We have that

MX+Y (t) = E(et (X+Y )) = E(et XetY )

= E(et X)E(etY ),

by independence and Theorem 6.66. 2

By Theorem 7.52, the sum S = X1 + · · · + Xn of n independent random variables has

moment generating function

MS(t) = MX1
(t) · · · MXn (t). (7.54)

Finally, we state the uniqueness theorem for moment generating functions.

Theorem 7.55 (Uniqueness theorem for moment generating functions) If the mo-

ment generating function MX satisfies MX (t) = E(et X ) < ∞ for all t satisfying

−δ < t < δ and some δ > 0, there is a unique distribution with moment generating func-

tion MX . Furthermore, under this condition, we have that E(X k ) < ∞ for k = 1, 2, . . .

and

MX (t) =
∞∑

k=0

1

k!
tkE(X k) for |t| < δ. (7.56)

We do not prove this here. This theorem is basically the Laplace inverse theorem since, by

(7.42), MX (t) is essentially the Laplace transform of the density function fX (x). The Laplace

inverse theorem says that if the Laplace transform of fX exists in a suitable manner, then fX

may be found from this transform by using the inversion formula. Equation (7.56) is the same

as (7.48), but some care is needed to justify the interchange of E and
∑

noted after (7.48).

Clearly, there is a close relationship between Theorems 7.55 and 7.7, but we do not explore

this here.

Finally, we give an example of the use of moment generating functions in which the

uniqueness part of Theorem 7.55 is essential.

Example 7.57 Let X and Y be independent random variables, X having the normal distribu-

tion with parameters µ1 and σ 2
1 and Y having the normal distribution with parameters µ2 and

σ 2
2 . Show that their sum Z = X + Y has the normal distribution with parameters µ1 +µ2 and

σ 2
1 + σ 2

2 .
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Solution Let U be a random variable having the normal distribution with parameters µ and

σ 2. The moment generating function of U is

MU (t) =
∫ ∞

−∞
etu 1

√
2πσ 2

exp

(
−

1

2σ 2
(u − µ)2

)
du

= eµt

∫ ∞

−∞
exσ t 1

√
2π

e− 1
2

x2

dx on substituting x =
u − µ

σ

= exp
(
µt + 1

2
σ 2t2

)
by (7.44). (7.58)

By Theorem 7.52,

MZ (t) = MX (t)MY (t)

= exp
(
µ1t + 1

2
σ 2

1 t2
)

exp
(
µ2t + 1

2
σ 2

2 t2
)

by (7.58)

= exp
[
(µ1 + µ2)t + 1

2
(σ 2

1 + σ 2
2 )t

2
]
,

which we recognize by (7.58) as the moment generating function of the normal distribution

with parameters µ1 +µ2 and σ 2
1 + σ 2

2 . We deduce that Z has this distribution by appealing to

Theorem 7.55. △

Exercise 7.59 Find the moment generating function of a random variable having

(a) the gamma distribution with parameters w and λ,

(b) the Poisson distribution with parameter λ.

Exercise 7.60 If X has the normal distribution with mean µ and variance σ 2, find E(X3).

Exercise 7.61 Show that, if X has a normal distribution, then so does aX + b, for any a, b ∈ R with
a 6= 0. You may use Theorem 7.55 together with (7.51) and (7.58).

Exercise 7.62 Let X1, X2, . . . be identically distributed random variables with common moment gen-
erating function M. Let N be a random variable taking non-negative integer values with probability
generating function G, and suppose N is independent of the sequence (Xi ). Show that the random sum
S = X1 + X2 + · · · + X N has moment generating function MS(t) = G(M(t)).

7.5 Two inequalities

The purpose of this section is to state and prove two very useful inequalities, attributed to

Markov and Jensen, and involving the moments of a random variable.

Markov’s inequality is concerned with the following question: if you know that the mean

E(X) of a non-negative random variable X is finite, what does this tell you about the distrib-

ution of X? The so-called right and left tails of X are the probabilities that X is large and

positive (respectively, large and negative). More specifically, the (right) tail is the function

P(X ≥ t) for large t , with a corresponding definition for the left tail. If X is positive and

E(X) < ∞, then the right tail of X cannot be too ‘fat’.
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Theorem 7.63 (Markov’s inequality) For any non-negative random variable X,

P(X ≥ t) ≤
E(X)

t
for t > 0. (7.64)

Proof This is often proved in elementary texts by expressing E(X) as either a sum or an

integral, as appropriate. It is simpler to argue as follows. Let X be a non-negative random

variable, and t > 0. Recalling that X is a function from � to [0,∞), we have the trivial

inequality

X (ω) ≥
{

t if X (ω) ≥ t,

0 if X (ω) < t,

for ω ∈ �. We write this as an inequality between the function X and the indicator function

of the event A = {X ≥ t}:
X ≥ t1A.

Now take expectations, and remember that E(1A) = P(A). The result is the required inequal-

ity E(X) ≥ tP(X ≥ t). 2

Example 7.65 Let X be a random variable. The real number m is called a median of X if

P(X < m) ≤ 1
2

≤ P(X ≤ m).

Exercise 5.14 was to show that every random variable possesses at least one median m. If X

is non-negative, then

1
2

≤ P(X ≥ m) ≤
E(X)

m
,

by Markov’s inequality. Therefore, any median m satisfies m ≤ 2E(X). It is left to Exercise

7.72 to determine whether or not equality can hold. △

Jensen’s inequality is of a different type, and concerns convexity. Let −∞ ≤ a < b ≤ ∞.

A function g : (a, b)→ R is called convex if

g
(
[1 − t]u + tv

)
≥ (1 − t)g(u)+ tg(v) (7.66)

for every t ∈ [0, 1] and u, v ∈ (a, b). Condition (7.66) may be expressed geometrically as

follows. Let u, v ∈ (a, b) and consider the straight line joining the two points (u, g(u)) and

(v, g(v)) on the curve y = g(x). Then (7.66) requires that this chord lies always above the

curve itself (see Figure 7.2).

Theorem 7.67 (Jensen’s inequality) Let X be a random variable taking values in the

(possibly infinite) interval (a, b) such that E(X) exists, and let g : (a, b) → R be a

convex function such that E|g(X)| < ∞. Then

E(g(X)) ≥ g(E(X)).
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x

y

y = g(x)

u v

(w, g(w))

Fig. 7.2 A function g is convex if every chord of the curve y = g(x) lies above the curve. At any
point on the curve, there exists a tangent that ‘supports’ the curve. Note that a convex function is
not necessarily everywhere differentiable.

This may be interpreted as follows. Inequality (7.66) requires that a weighted average of

two values of g lies above the value of g at their average value. Taking expectations is itself

a type of averaging operation, and Jensen’s inequality extends the two-point average of (7.66)

to this more general average.

In preparation for the proof, we present next a result known in a more general form as the

‘supporting hyperplane theorem’. It is illustrated in Figure 7.2.

Theorem 7.68 (Supporting tangent theorem) Let g : (a, b) → R be convex, and let

w ∈ (u, v). There exists α ∈ R such that

g(x) ≥ g(w)+ α(x −w) for x ∈ (a, b). (7.69)

Proof Let a < w < b. The theorem says there exists a straight line that touches the curve

at the point (w, g(w)) and such that the curve never passes below the line: the line ‘supports’

the curve. Some readers will be content with the ‘proof by picture’ of Figure 7.2. Others may

prefer the following proof.

Let u < w < v. We may expressw as a linear combination of u and v thus:

w = (1 − t)u + tv, where t =
w − u

v − u
.

By convexity,

g(w) ≤ (1 − t)g(u)+ tg(v),

which we reorganize as
g(w)− g(u)

w − u
≤

g(v)− g(w)

v − w
.

By maximizing the left side and minimizing the right side, we obtain that Lw ≤ Rw, where
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Lw = sup

{
g(w)− g(u)

w − u
: u < w

}
, Rw = inf

{
g(v)− g(w)

v − w
: v > w

}
.

Pick α ∈ [Lw, Rw], so that

g(w)− g(u)

w − u
≤ α ≤

g(v)− g(w)

v − w
, for u < w < v.

On multiplying up the left inequality, we deduce (7.69) for x = u < w. Similarly, the right

inequality yields (7.69) for x = v > w. 2

Proof of Theorem 7.67 Let X take values in (a, b) with mean µ = E(X). Let g be a convex

function on this interval satisfying E|g(X)| < ∞. By Theorem 7.68 with w = µ, there exists

α ∈ R such that g(x) ≥ g(µ)+ α(x − µ). Therefore, g(X) ≥ g(µ)+ α(X − µ). Now take

expectations to obtain E(g(X)) ≥ g(µ). 2

Example 7.70 (Arithmetic/geometric mean inequality) The function g(x) = − log x is

convex on the interval (0,∞). By Jensen’s inequality applied to a positive random variable X

with finite mean,

E(log X) ≤ log E(X). (7.71)

Suppose X is a discrete random variable which is equally likely to take any of the positive

values x1, x2, . . . , xn. Then

E(log X) =
1

n

n∑

i=1

log xi = log γ, E(X) = x,

where

γ =
( n∏

i=1

xi

)1/n

, x =
1

n

n∑

i=1

xi

are the geometric and arithmetic means of the xi , respectively. By (7.71), log γ ≤ log x , and

we deduce that γ ≤ x . In summary, the geometric mean of a set of positive numbers cannot

exceed its arithmetic mean. This may be proved by a more direct method. △

Exercise 7.72 Determine which distributions on the non-negative reals, if any, with mean µ are such
that 2µ is a median.

Exercise 7.73 Let I be an interval of the real line, and let f : I → R be twice differentiable with
f ′′(x) > 0 for x ∈ I . Show that f is convex on I .

Exercise 7.74 Show by Jensen’s inequality that E(X2) ≥ E(X)2.

Exercise 7.75 The harmonic mean η of the positive reals x1, x2, . . . , xn is given by

1

η
=

1

n

n∑

i=1

1

xi
.

Show that η is no greater than the geometric mean of the xi .
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7.6 Characteristic functions

The Cauchy distribution is not the only distribution for which the moment generating function

does not exist, and this problem of existence is a serious handicap to the use of moment gen-

erating functions. However, by a slight modification of the definition, we may obtain another

type of generating function whose existence is guaranteed and which has broadly the same

properties as before.3

Definition 7.76 The characteristic function of the random variable X is defined to be

the function φX given by

φX (t) = E(eit X ) for t ∈ R, (7.77)

where i =
√

−1.

You may doubt the legitimacy of the expectation of the complex-valued random variable

eit X , but we recall that eit X = cos tx + i sin tx for t, x ∈ R, so that (7.77) may be replaced by

φX(t) = E(cos t X)+ iE(sin t X)

if this is preferred.

Compare the characteristic function of X with its moment generating function MX (t) =
E(et X). The finiteness of the latter is questionable since the exponential function is un-

bounded, so that et X may be very large indeed. On the other hand, eit X lies on the unit circle

in the complex plane, so that |eit X | = 1 and giving that |φX (t)| ≤ 1 for all t ∈ R.

Example 7.78 Suppose that the random variable X may take either the value a, with probab-

ility p, or the value b, with probability 1 − p. Then

φX (t) = E(eit X ) = peita + (1 − p)eitb. △

Example 7.79 If X has the exponential distribution with parameter λ, then

φX (t) =
∫ ∞

0

eit xλe−λx dx =
λ

λ− i t
for t ∈ R.

This integral may be found either by splitting eit x into real and imaginary parts or by using

the calculus of residues. △

Example 7.80 If X has the Cauchy distribution, then

φX (t) =
∫ ∞

−∞
eit x 1

π(1 + x2)
dx = e−|t | for t ∈ R,

a result obtainable by the calculus of residues. △

3Beginners to probability theory may wish to omit this section.
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Some readers may prefer to avoid using the calculus of residues in calculating character-

istic functions, arguing instead as in the following example. The moment generating function

of a random variable X having the normal distribution with mean 0 and variance 1 is

MX (t) = E(et X ) = e
1
2 t2

for t ∈ R.

It is therefore clear that the characteristic function of X must be

φX (t) = E(eit X ) = MX (i t) = e− 1
2 t2

for t ∈ R.

It is important to realize that this argument is not rigorous unless justified. It produces the

correct answer for the normal and exponential distributions, as well as many others, but it will

not succeed with the Cauchy distribution, since that distribution has no moment generating

function in the first place. The argument may be shown to be valid whenever the moment gen-

erating function exists near the origin, the proof being an exercise in complex analysis. Thus,

the following formal procedure is acceptable for calculating the characteristic function of a

random variable X . If the moment generating function MX is finite in a non-trivial neighbour-

hood of the origin, the characteristic function of X may be found by substituting s = i t in the

formula for MX (s):

φX (t) = MX (i t) for t ∈ R. (7.81)

Example 7.82 If X has the normal distribution with mean µ and variance σ 2, then the mo-

ment generating function of X is

MX (s) = exp
(
µs + 1

2
σ 2s2

)

by (7.58), an expression valid for all s ∈ R. We substitute s = i t here, to obtain

φX (t) = exp
(
iµt − 1

2
σ 2t2

)
. △

In broad terms, characteristic functions have the same useful properties as moment gener-

ating functions, and we finish this chapter with a brief account of these.

First, we consider the question of moments. Setting rigour to one side for the moment, the

following expansion is interesting and informative:

φX (t) = E(eit X ) = E

(
1 + i t X +

1

2!
(i t X)2 + · · ·

)

= 1 + i tE(X)+
1

2!
(i t)2E(X2)+ · · · , (7.83)

which is to say that φX is the exponential generating function of the sequence 1, iE(X),
i 2E(X2), . . . . There are technical difficulties in expressing this more rigorously, but we note

that (7.83) is valid so long as E|X k | < ∞ for k = 1, 2, . . . . Under this condition, it follows

that the moments of X may be obtained in terms of the derivatives of φX :

i kE(Xk ) = φ
(k)
X (0), (7.84)

the kth derivative of φX at 0.

If the moments of X are not all finite, then only a truncated form of the infinite series in

(7.83) is valid.
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Theorem 7.85 If E|X N | < ∞ for some positive integer N, then

φX (t) =
N∑

k=0

1

k!
(i t)kE(X k)+ o(t N ) as t → 0. (7.86)

We do not prove this here, but we remind the reader briefly about the meaning of the

term o(t N ). The expression o(h) denotes some function of h which is of a smaller order of

magnitude than h as h → 0. More precisely, we write f (h) = o(h) if f (h)/h → 0 as

h → 0. The term o(h) generally represents a different function of h at each appearance. Thus,

for example, o(h) + o(h) = o(h).4 The conclusion of Theorem 7.85 is that the remainder in

(7.86) is negligible compared with the terms involving 1, t, t2, . . . , t N , when t is small. For a

proof of Theorem 7.85, see Feller (1971, p. 487) or Chung (2001, p. 168).

When adding together independent random variables, characteristic functions are just as

useful as moment generating functions.

Theorem 7.87 Let X and Y be independent random variables with characteristic func-

tions φX and φY , respectively.

(a) If a, b ∈ R and Z = a X + b, then φZ (t) = eitbφX (at).

(b) The characteristic function of X + Y is φX+Y (t) = φX(t)φY (t).

Proof (a) We have that

φZ (t) = E(eit (a X+b)) = E(eitbeit (at)X )

= eitbφX (at).

If you are in doubt about treating these complex-valued quantities as if they were real, simply

expand the complex exponential function in terms of the cosine and sine functions, and collect

the terms back together at the end.

(b) Similarly,

φX+Y = E(eit (X+Y )) = E(eit X eitY )

= E(eit X )E(eitY ) by independence. 2

Finally, we discuss the uniqueness of characteristic functions.

Theorem 7.88 (Uniqueness theorem for characteristic functions) Let X and Y have

characteristic functions φX and φY , respectively. Then X and Y have the same distribu-

tions if and only if φX (t) = φY (t) for all t ∈ R.

4This notation is sometimes termed Landau’s notation.
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That is to say, any given characteristic function φ corresponds to a unique distribution

function. However, it is not always a simple matter to find this distribution function in terms

of φ. There is a general ‘inversion formula’, but this is rather complicated and is omitted (see

Grimmett and Stirzaker (2001, p. 189)). For distributions with density functions, the inversion

formula takes on a relatively simple form.

Theorem 7.89 (Inversion theorem) Let X have characteristic function φ and density

function f . Then

f (x) =
1

2π

∫ ∞

−∞
e−it xφ(t) dt (7.90)

at every point x at which f is differentiable.

This formula is often useful, but there is an obstacle in the way of its application. If we

are given a characteristic function φ, we may only apply formula (7.90) once we know that

φ comes from a continuous random variable, but how may we check that this is the case?

There is no attractive necessary and sufficient condition on φ for this to hold, but a sufficient

condition is that ∫ ∞

−∞
|φ(t)| dt < ∞. (7.91)

This condition is only of limited value: although it holds for the characteristic function of the

normal distribution (7.82) for example, it fails for that of the exponential distribution (7.79).

Example 7.92 Those in the know will have spotted that characteristic functions are simply

Fourier transforms in disguise, and that Theorem 7.89 is a version of the Fourier inversion

theorem. The relationship between characteristic functions and Fourier analysis may easily be

made more concrete in the case of integer-valued random variables. Suppose that X is a ran-

dom variable taking values in the set {0, 1, 2, . . . } of non-negative integers, with probability

mass function p j = P(X = j) for j = 0, 1, 2, . . . . The characteristic function of X is

φ(t) =
∞∑

k=0

pkeitk . (7.93)

Suppose now that we know φ, but we wish to recover the probabilities p j . We multiply

through (7.93) by e−it j to obtain

e−it jφ(t) =
∞∑

k=0

pkeit (k− j ).

Next, we integrate with respect to t over the interval [0, 2π ], remembering that for integers m

∫ 2π

0

eimt dt =
{

2π if m = 0,

0 if m 6= 0,

thereby obtaining
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∫ 2π

0

e−it jφ(t) dt = 2πp j .

Therefore,

p j =
1

2π

∫ 2π

0

e−it jφ(t) dt for j = 0, 1, 2, . . . . (7.94)

We are merely calculating the Fourier series for φ. Notice the close resemblance between

(7.94) and the inversion formula (7.90) for density functions. △

Exercise 7.95 Show that the characteristic function of a random variable having the binomial distribu-
tion with parameters n and p is

φ(t) = (q + peit )n,

where q = 1 − p.

Exercise 7.96 Let X be uniformly distributed on (a, b). Show that

φX (t) =
eitb − eita

i t (b − a)
.

If X is uniformly distributed on (−b, b), show that

φX (t) =
1

bt
sin bt .

Exercise 7.97 Find the characteristic function of a random variable having

(a) the gamma distribution with parameters w and λ,

(b) the Poisson distribution with parameter λ.

Exercise 7.98 If X and Y are independent and identically distributed random variables, show that

φX−Y (t) = |φX (t)|2.

7.7 Problems

1. Let X and Y be random variables with equal variance. Show that U = X − Y and V = X + Y

are uncorrelated. Give an example to show that U and V need not be independent even if,
further, X and Y are independent.

2. Let X1, X2, . . . be uncorrelated random variables, each having mean µ and variance σ 2. If

X = n−1(X1 + X2 + · · · + Xn), show that

E


 1

n − 1

n∑

i=1

(Xi − X)2


 = σ 2.

This fact is of importance in statistics and is used when estimating the population variance
from knowledge of a random sample.
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3. Let X1, X2, . . . be identically distributed, independent random variables and let Sn = X1 +
X2 + · · · + Xn . Show that

E

(
Sm

Sn

)
=

m

n
for m ≤ n,

provided that all the necessary expectations exist. Is the same true if m > n?

4. Show that every distribution function has only a countable set of points of discontinuity.

5. Let X and Y be independent random variables, X having the gamma distribution with param-
eters s and λ, and Y having the gamma distribution with parameters t and λ. Use moment
generating functions to show that X + Y has the gamma distribution with parameters s + t and
λ.

6. Let X1, X2, . . . , Xn be independent random variables with the exponential distribution, pa-
rameter λ. Show that X1 + X2 + · · · + Xn has the gamma distribution with parameters n and
λ.

7. Show from the result of Problem 7.7.5 that the χ2 distribution with n degrees of freedom has
moment generating function

M(t) = (1 − 2t)−
1
2 n if t < 1

2
.

Deduce that, if X1, X2, . . . , Xn are independent random variables having the normal distribu-
tion with mean 0 and variance 1, then

Z = X2
1 + X2

2 + · · · + X2
n

has the χ2 distribution with n degrees of freedom. Hence or otherwise show that the sum of two

independent random variables, having the χ2 distribution with m and n degrees of freedom,

respectively, has the χ2 distribution with m + n degrees of freedom.

8. Let X1, X2, . . . be independent, identically distributed random variables and let N be a ran-
dom variable which takes values in the positive integers and is independent of the X i . Find the
moment generating function of

S = X1 + X2 + · · · + X N

in terms of the moment generating functions of N and X1, when these exist.

9. Random variables X1, X2, . . . , X N have zero expectations, and

E(Xm Xn) = vmn for m, n = 1, 2, . . . , N .

Calculate the variance of the random variable

Z =
N∑

n=1

an Xn,

and deduce that the symmetric matrix V = (vmn ) is non-negative definite. It is desired to find
an N × N matrix A such that the random variables

Yn =
N∑

r=1

anr Xr for n = 1, 2, . . . , N
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are uncorrelated and have unit variance. Show that this will be the case if and only if

AV A′ = I,

and show that A can be chosen to satisfy this equation if and only if V is non-singular. (Any
standard results from matrix theory may, if clearly stated, be used without proof. A′ denotes
the transpose of A.) (Oxford 1971F).

10. Prove that if X = X1 + · · · + Xn and Y = Y1 + · · · + Yn , where Xi and Y j are independent

whenever i 6= j , then cov(X,Y ) =
∑n

i=1 cov(Xi ,Yi ). (Assume that all series involved are
absolutely convergent.)

Two players A and B play a series of independent games. The probability that A wins any

particular game is p2, that B wins is q2 , and that the game is a draw is 2pq, where p + q = 1.
The winner of a game scores 2 points, the loser none; if a game is drawn, each player scores
1 point. Let X and Y be the number of points scored by A and B, respectively, in a series of n

games. Prove that cov(X,Y ) = −2npq. (Oxford 1982M)

11. The joint moment generating function of two random variables X and Y is defined to be the
function M(s, t) of two real variables defined by

M(s, t) = E(es X+tY )

for all values of s and t for which this expectation exists. Show that the joint moment generating
function of a pair of random variables having the standard bivariate normal distribution (6.73)
is

M(s, t) = exp
[

1
2
(s2 + 2ρst + t2)

]
.

Deduce the joint moment generating function of a pair of random variables having the bivariate
normal distribution (6.76) with parameters µ1, µ2, σ1, σ2, ρ.

* 12. Let X and Y be independent random variables, each having mean 0, variance 1, and finite
moment generating function M(t). If X + Y and X − Y are independent, show that

M(2t) = M(t)3M(−t)

and deduce that X and Y have the normal distribution with mean 0 and variance 1.

13. Let X have moment generating function M(t).

(a) Show that M(t)M(−t) is the moment generating function of X − Y , where Y is indep-
endent of X but has the same distribution.

(b) In a similar way, describe random variables which have moment generating functions

1

2 − M(t)
,

∫ ∞

0
M(ut)e−u du.

14. Coupon-collecting problem. There are c different types of coupon, and each coupon obtained
is equally likely to be any one of the c types. Find the moment generating function of the total
number N of coupons which you must collect in order to obtain a complete set.

15. Prove that if φ1 and φ2 are characteristic functions, then so is φ = αφ1 + (1 − α)φ2 for any
α ∈ R satisfying 0 ≤ α ≤ 1.

16. Show that X and −X have the same distribution if and only if φX is a purely real-valued
function.

17. Find the characteristic function of a random variable with density function

f (x) = 1
2

e−|x | for x ∈ R.
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18. Let X1, X2, . . . be independent random variables each having the Cauchy distribution, and let

An =
1

n
(X1 + X2 + · · · + Xn).

Show that An has the Cauchy distribution regardless of the value of n.

19. Show that φ(t) = exp(−|t |α) can be the characteristic function of a distribution with finite
variance if and only if α = 2.

20. Let X be a random variable whose moment generating function M(t) exists for |t | < h, where
h > 0. Let N be a random variable taking positive integer values such that

P(N = k) > 0 for k = 1, 2, . . . .

Show that

M(t) =
∞∑

k=1

P(N = k)E(et X | N = k) for |t | < h.

Let X = max{U1,U2, . . . ,UN }, where the Ui are independent random variables uniformly
distributed on (0, 1) and N is an independent random variable whose distribution is given by

P(N = k) =
1

(e − 1)k!
for k = 1, 2, . . . .

Obtain the moment generating function of X and hence show that if R is another independent
random variable with

P(R = r ) = (e − 1)e−r for r = 1, 2, . . . ,

then R − X is exponentially distributed. (Oxford 1981F)

21. Let X1, X2, . . . , Xn be independent random variables, each with characteristic function φ(t).
Obtain the characteristic function of

Yn = an + bn(X1 + X2 + · · · + Xn),

where an and bn are arbitrary real numbers.

Suppose that φ(t) = e−|t |α , where 0 < α ≤ 2. Determine an and bn such that Yn has the same
distribution as X1 for n = 1, 2, . . . . Find the probability density functions of X1 when α = 1
and when α = 2. (Oxford 1980F)

22. (a) Suppose that f (x) = xm , where m is a positive integer, and X is a random variable taking
values x1, x2, . . . , xN ≥ 0 with equal probabilities, and where the sum x1 + x2 + · · · +
xN = 1. Deduce from Jensen’s inequality that

N∑

i=1

f (xi ) ≥ N f (1/N).

(b) There are N horses that compete in m races. The results of different races are independent.
The probability of horse i winning any given race is pi ≥ 0, with p1+ p2+· · ·+ pN = 1.
Let Q be the probability that the same horse wins all m races. Express Q as a polynomial
of degree m in the variables p1, p2, . . . , pN .

Prove that Q ≥ N1−m .

(Cambridge 2010)
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23. Define the moment generating function of a random variable X .

If X and Y are independent random variables with moment generating functions MX (t) and
MY (t), respectively, find the moment generating function of X + Y .

For n = 1, 2, . . . , let Xn have probability density function

fn(x) =
1

(n − 1)!
xn−1e−x for x > 0.

Find the moment generating function of Xn .

Let Y1,Y2, . . . ,Yn be independent random variables, each having the same distribution as X1.
Find the moment generating function of

∑n
i=1 Yi , and deduce its distribution. (Oxford 2005)

24. (a) Let X be an exponential random variable with parameter λ. Find the moment generating

function of X , and hence find E(X3).
(b) Let X1 and X2 be independent random variables with moment generating functions

M1(t) and M2(t). Find random variables with the following moment generating func-
tions:
(i) ebt M1(at),

(ii) M1(t)M2(t),

(iii) [M1(t)]2,

(iv)
∫ 1

0 M1(ut) du.
(c) Suppose Y has moment generating function MY (t), where

MY (t) =
1

2(1 − t)
+

1

2 − t
.

Find P(Y ≤ 1).

(Oxford 2010)

25. Let p ≥ 1. By Jensen’s inequality or otherwise, find the smallest value of the constant cp such
that (a + b)p ≤ cp(a

p + bp) for all a, b ≥ 0. (Cambridge 2006)

26. Lyapunov’s inequality. Let Z be a positive random variable. By Jensen’s inequality or other-

wise, show that E(Zr )1/r ≥ E(Z s)1/s when r ≥ s > 0. Thus, if Z has finite r th moment,
then it has finite sth moment, for r ≥ s > 0.
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The main limit theorems

Summary. The law of large numbers and the central limit theorem

are two of the principal results of probability theory. The weak law of

large numbers is derived from the mean-square law via Chebyshev’s

inequality. The central limit theorem is proved using the continuity

theorem for moment generating functions. A short account is pre-

sented of Cramér’s large deviation theorem for sums of random vari-

ables. Convergence in distribution (or ‘weak convergence’) is intro-

duced, and the continuity theorem for characteristic functions stated.

8.1 The law of averages

We aim in this chapter to describe the two main limit theorems of probability theory, namely

the ‘law of large numbers’ and the ‘central limit theorem’. We begin with the law of large

numbers.

Here is an example of the type of phenomenon which we are thinking about. Before writ-

ing this sentence, we threw a fair die one million times (with the aid of a computer, actually)

and kept a record of the results. The average of the numbers which we threw was 3.500867.

Since the mean outcome of each throw is 1
6
(1 + 2 + · · · + 6) = 3 1

2
, this number is not

too surprising. If xi is the result of the i th throw, most people would accept that the running

average

an =
1

n
(xi + x2 + · · · + xn) (8.1)

approaches the mean value 3 1
2

as n gets larger and larger. Indeed, the foundations of prob-

ability theory are based upon our belief that sums of the form (8.1) converge to some limit

as n → ∞. It is upon the ideas of ‘repeated experimentation’ and ‘the law of averages’ that

many of our notions of chance are founded. Accordingly, we should like to find a theorem of

probability theory which says something like ‘if we repeat an experiment many times, then

the average of the results approaches the underlying mean value’.

With the above example about throwing a die in the backs of our minds, we suppose that

we have a sequence X1, X2, . . . of independent and identically distributed random variables,

each having mean value µ. We should like to prove that the average

1

n
(X1 + X2 + · · · + Xn) (8.2)
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converges as n → ∞ to the underlying mean value µ. There are various ways in which

random variables can be said to converge (advanced textbooks generally list four to six such

ways). One simple way is as follows.

Definition 8.3 We say that the sequence Z1, Z2, . . . of random variables converges in
mean square to the (limit) random variable Z if

E
(
[Zn − Z ]2

)
→ 0 as n → ∞. (8.4)

If this holds, we write ‘Zn → Z in mean square as n → ∞’.

Here is a word of motivation for this definition. Remember that if Y is a random variable

and E(Y 2) = 0, then Y equals 0 with probability 1. If E([Zn − Z ]2) → 0, then it follows that

Zn − Z tends to 0 (in some sense) as n → ∞.

Example 8.5 Let Zn be a discrete random variable with mass function

P(Zn = 1) =
1

n
, P(Zn = 2) = 1 −

1

n
.

Then Zn converges to the constant random variable 2 in mean square as n → ∞, since

E
(
[Zn − 2]2

)
= (1 − 2)2

1

n
+ (2 − 2)2

(
1 −

1

n

)

=
1

n
→ 0 as n → ∞. △

It is often quite simple to show convergence in mean square: just calculate a certain ex-

pectation and take the limit as n → ∞. It is this type of convergence which appears in our

first law of large numbers.

Theorem 8.6 (Mean-square law of large numbers) Let X1, X2, . . . be a sequence of

independent random variables, each with mean µ and variance σ 2. The average of the

first n of the X i satisfies, as n → ∞,

1

n
(X1 + X2 + · · · + Xn) → µ in mean square. (8.7)

Proof This is a straightforward calculation. We write

Sn = X1 + X2 + · · · + Xn

for the nth partial sum of the X i . Then

E

(
1

n
Sn

)
=

1

n
E(X1 + X2 + · · · + Xn) =

1

n
nµ = µ,
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and so

E

([
1

n
Sn − µ

]2
)

= var

(
1

n
Sn

)

=
1

n2
var
(
X1 + X2 + · · · + Xn

)
by (7.17)

=
1

n2

(
var X1 + · · · + var Xn

)
by independence and (7.24)

=
1

n2
nσ 2 =

1

n
σ 2 → 0 as n → ∞.

Hence, n−1Sn → µ in mean square as n → ∞. 2

It is customary to assume that the random variables in the law of large numbers are identi-

cally distributed as well as independent. We demand here only that the X i have the same mean

and variance.

Exercise 8.8 Let Zn be a discrete random variable with mass function

P(Zn = nα) =
1

n
, P(Zn = 0) = 1 −

1

n
.

Show that Zn converges to 0 in mean square if and only if α < 1
2

.

Exercise 8.9 Let Z1, Z2, . . . be a sequence of random variables which converges to the random variable
Z in mean square. Show that aZn + b → aZ + b in mean square as n → ∞, for any real numbers a
and b.

Exercise 8.10 Let Nn be the number of occurrences of 5 or 6 in n throws of a fair die. Use Theorem 8.6
to show that, as n → ∞,

1

n
Nn →

1

3
in mean square.

Exercise 8.11 Show that the conclusion of the mean-square law of large numbers, Theorem 8.6, remains
valid if the assumption that the Xi are independent is replaced by the weaker assumption that they are
uncorrelated.

8.2 Chebyshev’s inequality and the weak law

The earliest versions of the law of large numbers were found in the eighteenth century and

dealt with a form of convergence different from convergence in mean square. This other mode

of convergence also has intuitive appeal and is defined in the following way.

Definition 8.12 We say that the sequence Z1, Z2, . . . of random variables converges in
probability to Z as n → ∞ if

for all ǫ > 0, P(|Zn − Z | > ǫ) → 0 as n → ∞. (8.13)

If this holds, we write ‘Zn → Z in probability as n → ∞’.
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Condition (8.13) requires that for all small positive δ and ǫ and all sufficiently large n, it

is the case that |Zn − Z | ≤ ǫ with probability at least 1 − δ.

It is not clear at first sight how the two types of convergence (in mean square and in

probability) are related to one another. It turns out that convergence in mean square is a more

powerful property than convergence in probability, and we make this more precise in the next

theorem.

Theorem 8.14 If Z1, Z2, . . . is a sequence of random variables and Zn → Z in mean

square as n → ∞, then Zn → Z in probability also.

The proof of this follows immediately from a famous inequality which is usually ascribed

to Chebyshev but which was discovered independently by Bienaymé and others, and is closely

related to Markov’s inequality, Theorem 7.63. There are many forms of this inequality in the

probability literature, and we feel that the following is the simplest.

Theorem 8.15 (Chebyshev’s inequality) If Y is a random variable and E(Y 2) < ∞,

then

P(|Y | ≥ t) ≤
1

t2
E(Y 2) for t > 0. (8.16)

Proof By Markov’s inequality, Theorem 7.63, applied to the positive random variable Y 2,

P(|Y | ≥ t) = P(Y 2 ≥ t2) ≤
E(Y 2)

t2
,

as required. 2

Proof of Theorem 8.14 We apply Chebyshev’s inequality to the random variable Y = Zn−Z

to find that

P(|Zn − Z | > ǫ) ≤
1

ǫ2
E
(
[Zn − Z ]2

)
for ǫ > 0.

If Zn → Z in mean square as n → ∞, the right-hand side tends to 0 as n → ∞, and so the

left-hand side tends to 0 for all ǫ > 0 as required. 2

The converse of Theorem 8.14 is false: there exist sequences of random variables which

converge in probability but not in mean square (see Example 8.19).

The mean-square law of large numbers, Theorem 8.6, combines with Theorem 8.14 to

produce what is commonly called the ‘weak law of large numbers’.

Theorem 8.17 (Weak law of large numbers) Let X1, X2, . . . be a sequence of indep-

endent random variables, each with mean µ and variance σ 2. The average of the first n

of the X i satisfies, as n → ∞,

1

n
(X1 + X2 + · · · + Xn) → µ in probability. (8.18)
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The principal reason for stating both the mean-square law and the weak law are historical

and traditional—the first laws of large numbers to be proved were in terms of convergence in

probability. There is also a good mathematical reason for stating the weak law separately—

unlike the mean-square law, the conclusion of the weak law is valid without the assumption

that the X i have finite variance so long as they all have the same distribution. This is harder to

prove than the form of the weak law presented above, and we defer its proof until Section 8.5

and the treatment of characteristic functions therein.

There are many forms of the laws of large numbers in the literature, and each has a set of

assumptions and a set of conclusions. Some are difficult to prove (with weak assumptions and

strong conclusions) and others can be quite easy to prove (such as those above). Our selection

is simple but contains a number of the vital ideas. Incidentally, the weak law is called ‘weak’

because it may be formulated in terms of distributions alone. There is a more powerful ‘strong

law’ which concerns intrinsically the convergence of random variables themselves.

Example 8.19 Here is an example of a sequence of random variables which converges in

probability but not in mean square. Suppose that Zn is a random variable with mass function

P(Zn = 0) = 1 −
1

n
, P(Zn = n) =

1

n
.

Then, for ǫ > 0 and all large n,

P(|Zn| > ǫ) = P(Zn = n) =
1

n
→ 0 as n → ∞,

giving that Zn → ∞ in probability. On the other hand

E
(
[Zn − 0]2

)
= E(Z2

n) = 0 ·
(

1 −
1

n

)
+ n2 1

n

= n → ∞ as n → ∞,

so Zn does not converge to 0 in mean square. △

Exercise 8.20 Prove the following alternative form of Chebyshev’s inequality: if X is a random variable
with finite variance and a > 0, then

P
(
|X − E(X)| > a

)
≤

1

a2
var(X).

Exercise 8.21 Use Chebyshev’s inequality to show that the probability that in n throws of a fair die the

number of sixes lies between 1
6

n −
√

n and 1
6

n +
√

n is at least 31
36

.

Exercise 8.22 Show that if Zn → Z in probability then, as n → ∞,

aZn + b → aZ + b in probability,

for any real numbers a and b.
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8.3 The central limit theorem

Our second main result is the central limit theorem. This also concerns sums of independent

random variables. Let X1, X2, . . . be independent and identically distributed random vari-

ables, each with mean µ and non-zero variance σ 2. We know from the law of large numbers

that the sum Sn = X1 + X2 +· · ·+ Xn is about as large as nµ for large n, and the next natural

problem is to determine the order of the difference Sn − nµ. It turns out that this difference

has order
√

n.

Rather than work with the sum Sn directly, we work with the so-called standardized ver-

sion of Sn ,

Zn =
Sn − E(Sn)√

var(Sn)
. (8.23)

This is a linear function Zn = an Sn + bn of Sn , where an and bn have been chosen in such a

way that E(Zn) = 0 and var(Zn) = 1. Note that

E(Sn) = E(X1)+ E(X2)+ · · · + E(Xn) by (6.63)

= nµ.

Also,

var(Sn) = var(X1)+ · · · + var(Xn) by independence and (7.24)

= nσ 2,

and so

Zn =
Sn − nµ

σ
√

n
. (8.24)

It is a remarkable fact that the distribution of Zn settles down to a limit as n → ∞. Even more

remarkable is the fact that the limiting distribution of Zn is the normal distribution with mean

0 and variance 1, irrespective of the original distribution of the X i . This theorem is one of the

most beautiful in mathematics and is known as the ‘central limit theorem’.

Theorem 8.25 (Central limit theorem) Let X1, X2, . . . be independent and identically

distributed random variables, each with mean µ and non-zero variance σ 2. The stand-

ardized version

Zn =
Sn − nµ

σ
√

n

of the sum Sn = X1 + X2 + · · · + Xn satisfies, as n → ∞,

P(Zn ≤ x) →
∫ x

−∞

1
√

2π
e− 1

2
u2

du for x ∈ R. (8.26)

The right-hand side of (8.26) is just the distribution function of the normal distribution

with mean 0 and variance 1, and thus (8.26) may be written as

P(Zn ≤ x) → P(Y ≤ x) for x ∈ R,

where Y is a random variable with this standard normal distribution.
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Special cases of the central limit theorem were proved by de Moivre (in about 1733) and

Laplace, who considered the case when the X i have the Bernoulli distribution. Lyapunov

proved the first general version in about 1901, but the details of his proof were very compli-

cated. Here we shall give an elegant and short proof based on the method of moment gener-

ating functions. As one of our tools, we shall use a special case of a fundamental theorem of

analysis, and we present this next without proof. There is therefore a sense in which our ‘short

and elegant’ proof does not live up to that description: it is only a partial proof, since some of

the analytical details are packaged elsewhere.

Theorem 8.27 (Continuity theorem) Let Z1, Z2, . . . be a sequence of random vari-

ables with moment generating functions M1,M2, . . . and suppose that, as n → ∞,

Mn(t) → e
1
2 t2

for t ∈ R.

Then

P(Zn ≤ x) →
∫ x

−∞

1
√

2π
e− 1

2 u2

du for x ∈ R.

In other words, the distribution function of Zn converges to the distribution function of

the normal distribution if the moment generating function of Zn converges to the moment

generating function of the normal distribution. We shall use this to prove the central limit

theorem in the case when the X i have a common moment generating function

MX (t) = E(exp(t X i )) for i = 1, 2, . . . ,

although we stress that the central limit theorem is valid even when this expectation does not

exist so long as both the mean and the variance of the X i are finite.

Proof of Theorem 8.25 Let Ui = X i − µ. Then U1,U2, . . . are independent and identically

distributed random variables with mean and variance given by

E(Ui ) = 0, E(U 2
i ) = var(Ui ) = σ 2, (8.28)

and moment generating function

MU (t) = MX (t)e
−µt .

Now,

Zn =
Sn − nµ

σ
√

n
=

1

σ
√

n

n∑

i=1

Ui ,

giving that Zn has moment generating function

Mn(t) = E(exp(t Zn)) = E

(
exp

(
t

σ
√

n

n∑

i=1

Ui

))

=
[

MU

(
1

σ
√

n

)]n

by (7.51) and (7.53). (8.29)
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We need to know the behaviour of MU (t/(σ
√

n)) for large n, and to this end we use Theorem

7.55 to expand MU (x) as a power series about x = 0:

MU (x) = 1 + xE(U1)+ 1
2

x2E(U2
1 )+ o(x2)

= 1 + 1
2
σ 2x2 + o(x2) by (8.28).

Substitute this into (8.29) with x = t/(σ
√

n) and t fixed to obtain

Mn(t) =
[

1 +
t2

2n
+ o

(
1

n

)]n

→ e
1
2 t2

as n → ∞,

and the result follows from Theorem 8.27. This proof requires the existence of MX (t) for

values of t near 0 only, and this is consistent with the discussion before Theorem 7.49. We

shall see in Example 8.54 how to adapt the proof without this assumption. 2

Example 8.30 (Statistical sampling) The central limit theorem has many applications in

statistics, and here is one such. An unknown fraction p of the population are jedi knights.

It is desired to estimate p with error not exceeding 0.005 by asking a sample of individuals (it

is assumed they answer truthfully). How large a sample is needed?

Solution Suppose a sample of n individuals is chosen. Let X i be the indicator function of the

event that the i th such person admits to being a jedi knight, and assume the X i are independent,

Bernoulli random variables with parameter p. Write

Sn =
n∑

i=1

X i . (8.31)

We choose to estimate p with the ‘sample mean’ n−1Sn , which, following statistical notation,

we denote as p̂.

We wish to choose n sufficiently large that | p̂ − p| ≤ 0.005. This cannot be done, since

| p̂− p| is a random variable which may (albeit with only small probability) take a value larger

than 0.005 for any given n. The accepted approach is to set a maximal level of probability at

which an error is permitted to occur. By convention, we take this to be 0.05, and we are thus

led to the following problem: find n such that

P
(
| p̂ − p| ≤ 0.005

)
≥ 0.95.

By (8.31), Sn is the sum of independent, identically distributed random variables with

mean p and variance p(1 − p). The above probability may be written as

P

(∣∣∣∣
Sn

n
− p

∣∣∣∣ ≤ 0.005

)
= P

(
|Sn − np|

√
np(1 − p)

≤ 0.005

√
n

p(1 − p)

)

= P

(
|Sn − E(Sn)|√

var(Sn)
≤ 0.005

√
n

p(1 − p)

)
.

By the central limit theorem, (Sn − E(Sn))/
√

var(Sn) converges in distribution to the normal

distribution, and hence the final probability may be approximated by an integral of the normal

density function. Unfortunately, the range of this integral depends on p, which is unknown.
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Since p(1 − p) ≤ 1
4

for p ∈ [0, 1],

P

(
|Sn − E(Sn)|√

var(Sn)
≤ 0.005

√
n

p(1 − p)

)
≥ P

(
|Sn − E(Sn)|√

var(Sn)
≤ 0.005

√
4n

)
,

and the right-hand side is approximately P
(
|N | ≤ 0.005

√
4n
)
, where N is normal with mean

0 and variance 1. Therefore,

P
(
| p̂ − p| ≤ 0.005

)
'

∫ 0.005
√

4n

−0.005
√

4n

1
√

2π
e− 1

2 u2

du

= 28(0.005
√

4n)− 1,

where 8 is the distribution function of N . On consulting statistical tables, we find this to be

greater than 0.95 if 0.005
√

4n ≥ 1.96, which is to say that n ' 40,000. △

Exercise 8.32 A fair die is thrown 12,000 times. Use the central limit theorem to find values of a and b
such that

P(1900 < S < 2200) ≈
∫ b

a

1
√

2π
e− 1

2 x2
dx,

where S is the total number of sixes thrown.

Exercise 8.33 For n = 1, 2, . . . , let Xn be a random variable having the gamma distribution with
parameters n and 1. Show that the moment generating function of Zn = (Xn − n)/

√
n is

Mn(t) = e−t
√

n

(
1 −

t
√

n

)−n

,

and deduce that, as n → ∞,

P(Zn ≤ x) →
∫ x

−∞

1
√

2π
e− 1

2
u2

du for x ∈ R.

8.4 Large deviations and Cramér’s theorem

Let Sn be the sum of n independent, identically distributed random variables with mean µ and

variance σ 2. The weak law of large numbers asserts that Sn has approximate order nµ. By the

central limit theorem, the deviations of Sn are typically of the order σ
√

n. It is unlikely that Sn

will deviate from its mean nµ by more than order nα with α > 1
2

. The study of such unlikely

events has proved extremely fruitful in recent decades. The following theorem, proved in its

original form by Cramér in 1938, is of enormous practical use within the modern theory of

‘large deviations’, despite the low probability of the events under study.

Let X1, X2, . . . be independent, identically distributed random variables, and Sn = X1 +
X2 + · · · + Xn . For simplicity, we assume that the X i have common mean 0; if this does not

hold, we replace X i by X i − µ. We shall assume quite a lot of regularity on the distribution
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of the X i , namely that the common moment generating function M(t) = E(et X ) satisfies

M(t) < ∞ for values of t in some neighbourhood (−δ, δ) of the origin. Let t > 0. The

function g(x) = et x is strictly increasing on R, so that Sn > an if and only if g(Sn) > g(an).

By Markov’s inequality, Theorem 7.63,

P(Sn > an) = P
(
g(Sn) > g(an)

)

≤
E(g(Sn))

g(an)
=

E(et Sn)

etan
.

By Theorem 7.52, E(et Sn) = M(t)n , and so

P(Sn > an) ≤
(

M(t)

eat

)n

for t > 0.

This provides an upper bound for the chance of a ‘large deviation’ of Sn from its mean 0, in

terms of the arbitrary constant t > 0. We minimize the right-hand side over t to obtain

P(Sn > an) ≤
[
inf
{
e−at M(t) : t > 0

}]n

. (8.34)

This is an exponentially decaying bound for the probability of a large deviation.

It turns out that, neglecting sub-exponential corrections, the bound (8.34) is an equality,

and this is the content of Cramér’s theorem, Theorem 8.36. The precise result is usually stated

in logarithmic form. Let 3(t) = log M(t), and define the so-called Fenchel–Legendre trans-

form of 3 by

3∗(a) = sup
{
at −3(t) : t ∈ R

}
, a ∈ R. (8.35)

The function3∗ is illustrated in Figure 8.1.

t

y

y = at

y = 3(t)

τ

3∗(a)

Fig. 8.1 The function3(t) plotted against the line y = at , in the case when3′(0) = 0. The point
τ marks the value of t at which at −3(t) is a maximum, and this maximum is denoted 3∗(a).
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Theorem 8.36 (Large deviation theorem) Let X1, X2, . . . be independent, identically

distributed random variables with mean 0, whose common moment generating function

M(t) = E(et X) is finite in some neighbourhood of the origin. Let a > 0 be such that

P(X > a) > 0. Then 3∗(a) > 0 and

1

n
log P(Sn > an) → −3∗(a) as n → ∞. (8.37)

That is to say, P(Sn > na) decays to 0 in the manner of exp{−n3∗(a)}. If P(X > a) = 0,

then P(Sn > na) = 0 for all n. Theorem 8.36 accounts for deviations above the mean. For

deviations below the mean, the theorem may be applied to the sequence −X i .

Partial proof We begin with some properties of the function3 = log M . First,

3(0) = log M(0) = 0, 3′(0) =
M ′(0)

M(0)
= E(X) = 0.

Next,

3′′(t) =
M(t)M ′′(t)− M ′(t)2

M(t)2
=

E(et X )E(X2et X )− E(Xet X )2

M(t)2
.

By the Cauchy–Schwarz inequality, Theorem 7.30, applied to the random variables Y =
Xe

1
2

t X and Z = e
1
2

t X , the numerator is positive. Therefore, 3 is a convex function wher-

ever it is finite (see Exercise 7.73).

We turn now to Figure 8.1. Since 3 is convex with 3′(0) = 0, and since a > 0, the

supremum of at −3(t) over t ∈ R is unchanged by the restriction t > 0. That is,

3∗(a) = sup
{
at −3(t) : t > 0

}
, a > 0. (8.38)

Next, we show that3∗(a) > 0 under the conditions of the theorem. By Theorem 7.55,

at −3(t) = log

(
eat

M(t)

)
= log

(
1 + at + o(t)

1 + 1
2
σ 2t2 + o(t2)

)

for small positive t , where σ 2 = var(X). This is where we have used the assumption that

M(t) < ∞ on a neighbourhood of the origin. For sufficiently small positive t ,

1 + at + o(t) > 1 + 1
2
σ 2t2 + o(t2),

whence3∗(a) > 0 by (8.38).

It is immediate from (8.34) and (8.38) that

1

n
log P(Sn > an) ≤ −3∗(a), n ≥ 1. (8.39)

The proof of the sharpness of the limit in (8.37) is more complicated, and is omitted. A full

proof may be found in Grimmett and Stirzaker (2001, Sect. 5.11). 2
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Example 8.40 Let X be a random variable with distribution

P(X = −1) = P(X = 1) = 1
2
,

and moment generating function

M(t) = E(et X ) = 1
2
(et + e−t).

Let a ∈ (0, 1). By (8.35), the Fenchel–Legendre transformation of 3(t) = log M(t) is ob-

tained by maximizing at − 3(t) over the variable t . The function 3 is differentiable, and

therefore the maximum may be found by calculus. We have that

d

dt
[at −3(t)] = a −3′(t) = a −

M ′(t)

M(t)
= a −

et − e−t

et + e−t
.

Setting this equal to 0, we find that

et =
√

1 + a

1 − a
,

and hence

3∗(a) = log
(√
(1 − a)1−a(1 + a)1+a

)
, 0 < a < 1.

Let Sn = X1 + X2 + · · · + Xn be the sum of n independent copies of X . By the large

deviation theorem, Theorem 8.36,

[
P(Sn > an)

]1/n → e−3∗(a) =
1√

(1 − a)1−a(1 + a)1+a
as n → ∞, (8.41)

for a ∈ (0, 1). △

Exercise 8.42 Find the Fenchel–Legendre transform 3∗ in the case of the normal distribution with
mean 0 and variance 1.

Exercise 8.43 Show that the moment generating function of a random variable X is finite on a neigh-

bourhood of the origin if and only if there exist a, b > 0 such that P(|X | ≥ x) ≤ ae−bx for x > 0.

Exercise 8.44 Let X1, X2, . . . be independent random variables with the Cauchy distribution, and let
Sn = X1 + X2 + · · · + Xn . Find P(Sn ≥ an) for a > 0.

8.5 Convergence in distribution, and characteristic functions

We have now encountered the ideas of convergence in mean square and convergence in prob-

ability, and we have seen that the former implies the latter. To these two types of convergence

we are about to add a third. We motivate this by recalling the conclusion of the central limit

theorem, Theorem 8.25: the distribution function of the standardized sum Zn converges as

n → ∞ to the distribution function of the normal distribution. This notion of the convergence

of distribution functions may be set in a more general context as follows.



146 The main limit theorems

Definition 8.45 The sequence Z1, Z2, . . . is said to converge in distribution, or to con-
verge weakly, to Z as n → ∞ if

P(Zn ≤ x) → P(Z ≤ x) for x ∈ C,

where C is the set of reals at which the distribution function FZ (z) = P(Z ≤ z) is

continuous. If this holds, we write Zn ⇒ Z.

The condition involving points of continuity is an unfortunate complication of the defini-

tion, but turns out to be desirable (see Exercise 8.56).

Convergence in distribution is a property of the distributions of random variables rather

than a property of the random variables themselves, and for this reason, explicit reference to

the limit random variable Z is often omitted. For example, the conclusion of the central limit

theorem may be expressed as ‘Zn converges in distribution to the normal distribution with

mean 0 and variance 1’.

Theorem 8.14 asserts that convergence in mean square implies convergence in probability.

It turns out that convergence in distribution is weaker than both of these.

Theorem 8.46 If Z1, Z2, . . . is a sequence of random variables and Zn → Z in prob-

ability as n → ∞, then Zn ⇒ Z.

The converse assertion is generally false; see the forthcoming Example 8.49 for a sequence

of random variables which converges in distribution but not in probability. The next theorem

describes a partial converse.

Theorem 8.47 Let Z1, Z2, . . . be a sequence of random variables which converges in

distribution to the constant c. Then Zn converges to c in probability also.

Proof of Theorem 8.46 Suppose Zn → Z in probability, and write

Fn(z) = P(Zn ≤ z), F(z) = P(Z ≤ z)

for the distribution functions of Zn and Z . Let ǫ > 0, and suppose that F is continuous at the

point z. Then

Fn(z) = P(Zn ≤ z)

= P(Zn ≤ z, Z ≤ z + ǫ) + P(Zn ≤ z, Z > z + ǫ)

≤ P(Z ≤ z + ǫ)+ P(Z − Zn > ǫ)

≤ F(z + e)+ P(|Zn − Z | > ǫ).

Similarly,
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F(z − ǫ) = P(Z ≤ z − ǫ)

= P(Z ≤ z − ǫ, Zn ≤ z)+ P(Z ≤ z − ǫ, Zn > z)

≤ P(Zn ≤ z)+ P(Zn − Z > ǫ)

≤ Fn(z)+ P(|Zn − Z | > ǫ).

Thus

F(z − ǫ)− P(|Zn − Z | > ǫ) ≤ Fn(z) ≤ F(z + ǫ)+ P(|Zn − Z | > ǫ). (8.48)

We let n → ∞ and ǫ ↓ 0 throughout these inequalities. The left-hand side of (8.48) behaves

as follows:

F(z − ǫ)− P(|Zn − Z | > ǫ) → F(z − ǫ) as n → ∞
→ F(z) as ǫ ↓ 0,

where we have used the facts that Zn → Z in probability and that F is continuous at z,

respectively. Similarly, the right-hand side of (8.48) satisfies

F(z + ǫ)+ P(|Zn − Z | > ǫ) → F(z + ǫ) as n → ∞
→ F(z) as ǫ ↓ 0.

Thus, the left- and right-hand sides of (8.48) have the same limit F(z), implying that the

central term Fn(z) satisfies Fn(z) → F(z) as n → ∞. Hence Zn ⇒ Z . 2

Proof of Theorem 8.47 Suppose that Zn ⇒ c. It follows that the distribution function Fn of

Zn satisfies

Fn(z) →

{
0 if z < c,

1 if z > c.

Thus, for ǫ > 0,

P(|Zn − c| > ǫ) = P(Zn < c − ǫ)+ P(Zn > c + ǫ)

≤ Fn(c − ǫ)+ 1 − Fn(c + ǫ)

→ 0 + 1 − 1 = 0 as n → ∞. 2

The following is an example of a sequence of random variables which converges in distri-

bution but not in probability.

Example 8.49 Let U be a random variable which takes the values −1 and 1, each with prob-

ability 1
2

. We define the sequence Z1, Z2, . . . by

Zn =

{
U if n is odd,

−U if n is even.
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It is clear that Zn ⇒ U , since each Zn has the same distribution. On the other hand

Zn − U =

{
0 if n is odd,

−2U if n is even,

so that P(|Z2m − U | > 1) = P(|U | > 1
2
) = 1 for all m. Hence, Zn does not converge to U in

probability. △

Finally, we return to characteristic functions. In proving the central limit theorem we em-

ployed a result (Theorem 8.27) linking the convergence of moment generating functions to

convergence in distribution. This result is a weak form of the so-called continuity theorem, a

more powerful version of which we present next (the proof is omitted).

Theorem 8.50 (Continuity theorem) Let Z , Z1, Z2, . . . be random variables with

characteristic functions φ, φ1, φ2, . . . . Then Zn ⇒ Z if and only if

φn(t) → φ(t) for t ∈ R.

This is a difficult theorem to prove—see Feller (1971, p. 481). We close the section with

several examples of this theorem in action.

Example 8.51 Suppose that Zn ⇒ Z and a, b ∈ R. Prove that a Zn + b ⇒ a Z + b.

Solution Let φn be the characteristic function of Zn and φ the characteristic function of Z . By

the continuity theorem, Theorem 8.50, φn(t) → φ(t) as n → ∞. The characteristic function

of a Zn + b is

φa Zn+b(t) = eitbφn(at) by Theorem 7.87

→ eitbφ(at) as n → ∞
= φa Z+b(t),

and the result follows by another appeal to Theorem 8.50. A direct proof of this fact using

distribution functions is messy when a is negative. △

Example 8.52 (The weak law) Here is another proof of the weak law of large numbers,

Theorem 8.17, for the case of identically distributed random variables. Let X1, X2, . . . be

independent and identically distributed random variables with mean µ, and let

Un =
1

n
(X1 + X2 + · · · + Xn).

By Theorem 7.87, the characteristic function ψn of Un is given by

ψn(t) = φX (t/n)n, (8.53)

where φX is the common characteristic function of the X i . By Theorem 7.85,

φX (t) = 1 + i tµ+ o(t) as t → 0.
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Substitute this into (8.53) to obtain

ψn(t) =
[

1 +
i tµ

n
+ o

(
t

n

)]n

→ eiµt as n → ∞.

The limit here is the characteristic function of the constantµ, and thus the continuity theorem,

Theorem 8.50, implies that Un ⇒ µ. A glance at Theorem 8.47 confirms that the convergence

takes place in probability also, and we have proved a version of the weak law of large numbers.

This version differs from the earlier one in two regards—we have assumed that the X i are

identically distributed, but we have made no assumption that they have finite variance. △

Example 8.54 Central limit theorem. Our proof of the central limit theorem in Section 8.3

was valid only for random variables which possess finite moment generating functions. Very

much the same arguments go through using characteristic functions, and thus Theorem 8.25

is true as it is stated. △

Exercise 8.55 Let X1, X2, . . . be independent random variables, each having the Cauchy distribution.

Show that An = n−1(X1 + X2 + · · · + Xn) converges in distribution to the Cauchy distribution as
n → ∞. Compare this with the conclusion of the weak law of large numbers.

Exercise 8.56 Let Xn , Yn , Z be ‘constant’ random variables with distributions

P

(
Xn = −

1

n

)
= 1, P

(
Yn =

1

n

)
= 1, P(Z = 0) = 1.

Show that
P(Xn ≤ x) → P(Z ≤ x) for x ∈ R,

but P(Yn ≤ 0) 9 P(Z ≤ 0).

This motivates the condition of continuity in Definition 8.45. Without this condition, it would be the
case that Xn ⇒ Z but Yn ; Z .

8.6 Problems

1. Let X1, X2 . . . be independent random variables, each having the uniform distribution on the
interval (0, a), and let Zn = max{X1, X2, . . . , Xn}. Show that

(a) Zn → a in probability as n → ∞,
(b)

√
Zn →

√
a in probability as n → ∞,

(c) if Un = n(1 − Zn) and a = 1, then

P(Un ≤ x) →

{
1 − e−x if x > 0,

0 otherwise,

so that Un converges in distribution to the exponential distribution as n → ∞.

2. By applying the central limit theorem to a sequence of random variables with the Bernoulli
distribution, or otherwise, prove the following result in analysis. If 0 < p = 1 − q < 1 and
x > 0, then ∑(

n

k

)
pkqn−k → 2

∫ x

0

1
√

2π
e− 1

2 u2
du as n → ∞,

where the summation is over all values of k satisfying np − x
√

npq ≤ k ≤ np + x
√

npq .
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3. Let Xn be a discrete random variable with the binomial distribution, parameters n and p. Show

that n−1 Xn converges to p in probability as n → ∞.

4. Binomial–Poisson limit. Let Zn have the binomial distribution with parameters n and λ/n,
where λ is fixed. Use characteristic functions to show that Zn converges in distribution to the
Poisson distribution, parameter λ, as n → ∞.

5. By applying the central limit theorem to a sequence of random variables with the Poisson
distribution, or otherwise, prove that

e−n

(
1 + n +

n2

2!
+ · · · +

nn

n!

)
→

1

2
as n → ∞.

6. (a) Let 0 < a < 1 and

Tn =
∑

k: |k− 1
2

n|> 1
2

an

(
n

k

)
.

By considering the binomial distribution or otherwise, show that

T
1/n
n →

2√
(1 + a)1+a(1 − a)1−a

.

(b) Find the asymptotic behaviour of T
1/n
n , where a > 0 and

Tn =
∑

k: k>n(1+a)

nk

k!
.

7. Use the Cauchy–Schwarz inequality to prove that if Xn → X in mean square and Yn → Y in
mean square, then Xn + Yn → X + Y in mean square.

8. Use the Cauchy–Schwarz inequality to prove that if Xn → X in mean square, then E(Xn) →
E(X). Give an example of a sequence X1, X2, . . . such that Xn → X in probability but E(Xn)

does not converge to E(X).

9. If Xn → X in probability and Yn → Y in probability, show that Xn + Yn → X + Y in
probability.

10. Let X1, X2, . . . and Y1, Y2, . . . be independent random variables each having mean µ and

non-zero variance σ 2. Show that

Un =
1

√
2nσ 2




n∑

i=1

Xi −
n∑

i=1

Yi




satisfies, as n → ∞,

P(Un ≤ x) →
∫ x

−∞

1
√

2π
e− 1

2 u2
du for x ∈ R.

11. Adapt the proof of Chebyshev’s inequality to show that, if X is a random variable and a > 0,
then

P(|X | ≥ a) ≤
1

g(a)
E(g(X)),

for any function g : R → R which satisfies
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(a) g(x) = g(−x) for x ∈ R,
(b) g(0) > 0 for x 6= 0,
(c) g is increasing on [0,∞).

12. Let X be a random variable which takes values in the interval [−M,M] only. Show that

P(|X | ≥ a) ≥
E|X | − a

M − a

if 0 ≤ a < M.

13. Show that Xn → 0 in probability if and only if

E

(
|Xn |

1 + |Xn |

)
→ 0 as n → ∞.

14. Let (Xn : n ≥ 1) be a sequence of random variables which converges in mean square. Show

that E
(
[Xn − Xm]2

)
→ 0 as m, n → ∞.

If E(Xn) = µ and var(Xn) = σ 2 for all n, show that the correlation between Xn and Xm

converges to 1 as m, n → ∞.

15. Let Z have the normal distribution with mean 0 and variance 1. Find E(Z2) and E(Z4), and

find the probability density function of Y = Z2.

* 16. Let X1, X2, . . . be independent random variables each having distribution function F and den-
sity function f . The order statistics X(1), X(2), . . . , X(n) of the subsequence X1, X2, . . . , Xn

are obtained by rearranging the values of the Xi in non-decreasing order. That is to say, X(1) is
set to the smallest observed value of the Xi , X(2) is set to the second smallest value, and so on,
so that X(n) = max{X1, X2, . . . , Xn}. The sample median Yn of the sequence X1, X2, . . . , Xn

is the ‘middle value’, so that Yn is defined to be

Yn =
{

X(r+1) if n = 2r + 1 is odd,

1
2
(X(r) + X(r+1)) if n = 2r is even.

Assume that n = 2r + 1 is odd, and show that Yn has density function

fn(y) = (r + 1)

(
n

r

)
F(y)r [1 − F(y)]r f (y).

Deduce that, if F has a unique median m, then

P(Zn ≤ x) →
∫ x

−∞

1
√

2π
e− 1

2 u2
du for u ∈ R,

where Zn = (Yn − m)
√

4n f (m)2.

17. The sequence (Xi ) of independent, identically distributed random variables is such that

P(X i = 0) = 1 − p, P(Xi = 1) = p.

If f is a continuous function on [0, 1], prove that

Bn(p) = E

(
f

(
X1 + · · · + Xn

n

))
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is a polynomial in p of degree at most n. Use Chebyshev’s inequality to prove that for all p
with 0 ≤ p ≤ 1, and any ǫ > 0,

∑

k∈K

(
n

k

)
pk(1 − p)n−k ≤

1

4nǫ2
,

where K = {k : 0 ≤ k ≤ n, |k/n − p| > ǫ}. Using this and the fact that f is bounded and
uniformly continuous in [0, 1], prove the following version of the Weierstrass approximation
theorem:

lim
n→∞

sup
0≤p≤1

| f (p)− Bn(p)| = 0.

(Oxford 1976F)

18. Let Zn have the geometric distribution with parameter λ/n, where λ is fixed. Show that Zn/n

converges in distribution as n → ∞, and find the limiting distribution.

* 19. Let (Xk : k = 1, 2, . . . ) and (Yk : k = 1, 2, . . . ) be two sequences of independent random
variables with

P(Xk = 1) = P(Xk = −1) = 1
2

and

P(Yk = 1) = P(Yk = −1) =
1

2

(
1 −

1

k2

)
,

P(Yk = k + 1) = P(Yk = −k − 1) =
1

2k2
,

for k = 1, 2, . . . . Let

Sn =
n∑

k=1

Xk√
n
, Tn =

n∑

k=1

Yk√
n
,

and let Z denote a normally distributed random variable with mean 0 and variance 1.

Prove or disprove the following:

(a) Sn converges in distribution to Z ,
(b) the mean and variance of Tn converge to the mean and variance of Z ,
(c) Tn converges in distribution to Z .

State carefully any theorems which you use. (Oxford 1980F)

* 20. Let X j , j = 1, 2, . . . , n, be independent identically distributed random variables with probab-

ility density function e− 1
2

x2/√
2π , −∞ < x < ∞. Show that the characteristic function of

Y = X2
1

+ X2
2

+ · · · + X2
n is (1 − 2iθ)−

1
2

n . Consider a sequence of independent trials where
the probability of success is p for each trial. Let N be the number of trials required to obtain
a fixed number of k successes. Show that, as p tends to zero, the distribution of 2N p tends to
the distribution of Y with n = 2k. (Oxford 1979F)

21. Let X1, X2, . . . , Xn be independent and identically distributed random variables such that

P(X1 = 1) = P(X1 = −1) = 1
2
.

Derive the moment generating function of the random variable Yn =
∑n

j=1 a j X j , where
a1, a2, . . . , an are constants.

In the special case a j = 2− j for j ≥ 1, show that Yn converges in distribution as n → ∞ to
the uniform distribution on the interval (−1, 1).
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* 22. X and Y are independent, identically distributed random variables with mean 0, variance 1,
and characteristic function φ. If X + Y and X − Y are independent, prove that

φ(2t) = φ(t)3φ(−t).

By making the substitution γ (t) = φ(t)/φ(−t) or otherwise, show that, for any positive inte-
ger n,

φ(t) =

{
1 −

1

2

(
t

2n

)2

+ o
([

t/2n
]2)

}4n

.

Hence, find the common distribution of X and Y . (Oxford 1976F)

23. Let u(t) and v(t) be the real and imaginary parts, respectively, of the characteristic function of
the random variable X . Prove that

(a) E(cos2 t X) = 1
2
[1 + u(2t)],

(b) E(cos s X cos t X) = 1
2
[u(s + t)+ u(s − t)].

Hence, find the variance of cos t X and the covariance of cos t X and cos s X in terms of u and
v.

Consider the special case when X is uniformly distributed on [0, 1]. Are the random variables
{cos jπX : j = 1, 2, . . . } (i) uncorrelated, (ii) independent? Justify your answers. (Oxford
1975F)

24. State the central limit theorem.

The cumulative distribution function F of the random variable X is continuous and strictly
increasing. Show that Y = F(X) is uniformly distributed. Find the probability density function
of the random variable − log(1 − Y ), and calculate its mean and variance.

Let {Xk} be a sequence of independent random variables whose corresponding cumulative
distribution functions {Fk } are continuous and strictly increasing. Let

Zn = −
1

√
n

n∑

k=1

(
1 + log[1 − Fk(Xk)]

)
, n = 1, 2, . . . .

Show that, as n → ∞, {Zn} converges in distribution to a normal distribution with mean zero
and variance one. (Oxford 2007)
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9

Branching processes

Summary. The branching process is a fundamental model for the ran-

dom growth of populations. The method of generating functions, and

in particular the random sum formula, provides the key to the study of

this process. The criterion for the ultimate extinction of a branching

process is stated and proved.

9.1 Random processes

Until now, we have been developing the basic terminology and results of probability theory,

next, we turn our attention to simple applications. The passing of time plays an essential part

in the world which we inhabit, and consequently many applications of probability involve

quantities which develop randomly as time passes. Such randomly evolving processes are

called random processes or stochastic processes, and there are many different types of these.

Most real processes in nature, such as the pollen count in Phoenix or the position of Swansea

City in the football league, develop according to rules which are too complicated to describe

exactly, and good probabilistic models for these processes can be very complicated indeed.

We shall stick to some of the simplest random processes, and the specific processes which we

shall consider in some depth are

(a) branching processes: modelling the growth of a self-reproducing population (such as

mankind),

(b) random walks: modelling the movement of a particle which moves erratically within a

medium (a dust particle in the atmosphere, say),

(c) Poisson processes and related processes: modelling processes such as the emission of

radioactive particles from a slowly decaying source, or the length of the queue at the

supermarket cash register.

There is a fairly complete theory of each of these three types of process, of which the

main features are described in Chapters 9–11, respectively. In contrast, the general theory of

stochastic processes is much more challenging and is outside the range of this book. At one

extreme, probabilists study ‘concrete’ processes such as those above, often designed to meet

the needs of a particular application area, and at the other extreme there is an abstract theory

of ‘general’ stochastic processes. Any tension between these two extremes is resolved through

the identification of key properties which are shared by large families of processes and yet are

sufficiently specific to allow the development of a useful theory. Probably the most important
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such property is the so-called ‘Markov property’. We do not discuss this here, but refer the

reader to Chapter 12 for an account of Markov processes in discrete time.

9.2 A model for population growth

We define the term nomad to be a type of hypothetical object which is able to reproduce itself

according to the following rules. At time n = 0, there exists a single nomad. This nomad lives

for a unit of time and then, at time n = 1, it dies in the act of childbirth and is replaced by

a family of offspring nomads. These nomads have similar biographies, each surviving only

until time n = 2 and then each dying and being replaced by a family of offspring. This death–

birth process continues at all subsequent time points n = 3, 4, . . . . If we know the sizes of all

the individual nomad families, then we know everything about the development of the nomad

population, and we might represent this in the usual way as a family tree (see Figure 9.1). The

problem is that different nomads may have different numbers of offspring, and these numbers

may not be entirely predictable in advance. We shall assume here that the family sizes are

random variables which satisfy the following two conditions:

I. the family sizes are independent random variables each taking values in {0, 1, 2, . . . },
II. the family sizes are identically distributed random variables with known mass function

p, so that the number C of children of a typical nomad has mass function P(C = k) = pk

for k = 0, 1, 2, . . . .

Such a process is called a branching process and may be used as a simple model for bacter-

ial growth or the spread of a family name (to give but two examples). Having established

the model, the basic problem is to say something about how the development of the process

depends on the family-size mass function p. In order to avoid trivialities, we shall suppose

throughout this chapter that

pk 6= 1 for k = 0, 1, 2, . . . . (9.1)

Z0 = 1

Z1 = 3

Z2 = 1

Z3 = 4

Z4 = 7

Fig. 9.1 A typical nomad family tree, with generation sizes 1, 3, 1, 4, 7, . . . .

We introduce some notation. The set of nomads born at time n is called the nth generation

of the branching process, and we write Zn for the number of such nomads. The evolution of
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the process is described by the sequence Z0, Z1, . . . of random variables, and it is with this

sequence that we work. Specific properties of the Zn are given in the next section, and we

close this section with a list of interesting questions.

(a) What is the mean and variance of Zn?

(b) What is the mass function of Zn?

(c) What is the probability that nomadkind is extinct by time n?

(d) What is the probability that nomadkind ultimately becomes extinct?

9.3 The generating-function method

The first step in the study of this branching process is to explain how to find the distributions

of the Z i in terms of the family-size mass function p. Clearly, Z0 = 1 and

P(Z1 = k) = pk for k = 0, 1, 2, . . . , (9.2)

since Z1 is the number of children of the founding nomad. It is not easy to give the mass

function of Z2 directly, since Z2 is the sum of a random number Z1 of random family sizes:

writing Ci for the number of children of the i th nomad in the first generation, we have that

Z2 = C1 + C2 + · · · + CZ1
,

that is, Z2 is the sum of the family sizes of the Z1 nomads in the first generation. More

generally, for n = 1, 2, . . . ,

Zn = C ′
1 + C ′

2 + · · · + C ′
Zn−1

, (9.3)

where C ′
1,C ′

2, . . . are the numbers of children of the nomads in the (n − 1)th generation. The

sum of a random number of random variables is treated better by using probability generating

functions than by using mass functions. We write

Gn(s) = E(s Zn ) =
∞∑

k=0

skP(Zn = k)

for the probability generating function of Zn , and

G(s) =
∞∑

k=0

sk pk

for the probability generating function of a typical family size. We wish to express Gn in terms

of G, and we do this in the following theorem.

Theorem 9.4 The probability generating functions G, G0, G1, . . . satisfy

G0(s) = s, Gn(s) = Gn−1(G(s)), for n = 1, 2, . . . , (9.5)

and hence Gn is the nth iterate of G,

Gn(s) = G(G(· · · G(s) · · · )) for n = 0, 1, 2, . . . . (9.6)
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Proof We have Z0 = 1, and so G0(s) = s. Equation (9.3) expresses Zn as the sum of

Zn−1 independent random variables, each having probability generating function G, and so

the random sum formula, Theorem 4.36, may be applied with X i = C ′
i and N = Zn−1 to

deduce that

Gn(s) = Gn−1(G(s)). (9.7)

By iteration,

Gn(s) = Gn−1(G(s)) = Gn−2(G(G(s))) = · · ·
= G1(G(G(· · · (s) · · · ))),

where G1 = G by (9.2). 2

Theorem 9.4 contains the information necessary for studying the development of the pro-

cess. The next result is an immediate corollary.

Theorem 9.8 The mean value of Zn is

E(Zn) = µn, (9.9)

where µ =
∑

k kpk is the mean of the family-size distribution.

Proof By the theory of probability generating functions,

E(Zn) = G′
n(1) by (4.26)

= G′
n−1(G(1))G

′(1) by (9.5)

= G′
n−1(1)G

′(1) since G(1) = 1, by (4.9)

= E(Zn−1)µ.

Therefore,

E(Zn) = µE(Zn−1) = µ2E(Zn−2) = · · ·
= µnE(Z0) = µn. 2

The variance of Zn may be derived similarly in terms of the mean µ and the variance σ 2

of the family-size distribution. See Exercise 9.12.

It follows by Theorem 9.8 that

E(Zn) →





0 if µ < 1,

1 if µ = 1,

∞ if µ > 1,

indicating that the behaviour of the process depends substantially on which of the three cases

µ < 1, µ = 1, µ > 1 holds. We shall see this in more detail in the next two sections, where it
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is shown that if µ ≤ 1, the nomad population is bound to become extinct, whereas if µ > 1,

there is a strictly positive probability that the line of descent of nomads will continue forever.

This dependence on the mean family-size µ is quite natural since ‘µ < 1’ means that each

nomad gives birth to (on average) strictly fewer nomads than are necessary to fill the gap

caused by its death, whereas ‘µ > 1’ means that each death results (on average) in an increase

in the population. The case when µ = 1 is called critical since then the mean population-size

equals 1 for all time; in this case, random fluctuations ensure that the population size will take

the value 0 sooner or later, and henceforth nomadkind will be extinct.

Exercise 9.10 Show that, in the above branching process,

Gn(s) = Gr (Gn−r (s))

for any r = 0, 1, 2, . . . , n. This may be proved either directly from the conclusion of Theorem 9.4 or by
adapting the method of proof of (9.7).

Exercise 9.11 Suppose that each family size of a branching process contains either one member only
(with probability p) or is empty (with probability 1 − p). Find the probability that the process becomes
extinct at or before the nth generation.

Exercise 9.12 Let µ and σ 2 be the mean and variance of the family-size distribution. Adapt the proof
of Theorem 9.8 to show that the variance of Zn , the size of the nth generation of the branching process,
is given by

var(Zn) =





nσ 2 if µ = 1,

σ 2µn−1µ
n − 1

µ− 1
if µ 6= 1.

9.4 An example

The key to the analysis of branching processes is the functional equation

Gn(s) = Gn−1(G(s)), (9.13)

relating the probability generating functions of Zn and Zn−1 and derived in Theorem 9.4.

There are a few instances in which this equation may be solved in closed form, and we consider

one of these cases here. Specifically, we suppose that the mass function of each family size is

given by

pk = ( 1
2
)k+1 for k = 0, 1, 2, . . . ,

so that each family size is one member smaller than a geometrically distributed random vari-

able with parameter 1
2 (remember (2.16)) and has probability generating function

G(s) =
∞∑

k=0

sk ( 1
2
)k+1 =

1

2 − s
for |s| < 2.

We proceed as follows in order to solve (9.13). First, if |s| ≤ 1,
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G1(s) = G(s) =
1

2 − s
.

Secondly, we apply (9.13) with n = 2 to find that

G2(s) = G(G(s))

=
1

2 − (2 − s)−1
=

2 − s

3 − 2s
if |s| ≤ 1.

The next step gives

G3(s) = G2(G(s)) =
3 − 2s

4 − 3s
if |s| ≤ 1.

It is natural to guess that

Gn(s) =
n − (n − 1)s

n + 1 − ns
if |s| ≤ 1, (9.14)

for any n ≥ 1, and this is proved easily from (9.13), by the method of induction.

The mass function of Zn follows by expanding the right-hand side of (9.14) as a power

series in s, to find that the coefficient of sk is

P(Zn = k) =





n

n + 1
if k = 0,

nk−1

(n + 1)k+1
if k = 1, 2, . . . .

(9.15)

In particular,

P(Zn = 0) =
n

n + 1
→ 1 as n → ∞,

so that this branching process becomes extinct sooner or later, with probability 1.

There is a more general case of greater interest. Suppose that the mass function of each

family size is given by

pk = pqk for k = 0, 1, 2, . . . ,

where 0 < p = 1 − q < 1. The previous example is the case when p = q = 1
2
, but we

suppose here that p 6= 1
2

so that p 6= q . In this case,

G(s) =
p

1 − qs
if |s| < q−1,

and the solution to (9.13) is

Gn(s) = p
(qn − pn)− qs(qn−1 − pn−1)

(qn+1 − pn+1)− qs(qn − pn)
, (9.16)

valid for n = 1, 2, . . . and |s| ≤ 1; again, this can be proved from (9.13) by induction on n.

The mass function of Zn is rather more complicated than (9.15) but may be expressed in very

much the same way. The probability of extinction is found to be
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P(Zn = 0) = Gn(0) by (4.9)

= p
qn − pn

qn+1 − pn+1
=

µn − 1

µn+1 − 1
,

where µ = q/p is the mean family-size. Hence

P(Zn = 0) →
{

1 if µ < 1,

µ−1 if µ > 1,

giving that ultimate extinction is certain if µ < 1 and less than certain if µ > 1. Combined

with the result when p = q = 1
2

and µ = q/p = 1, this shows that ultimate extinction is

certain if and only if µ ≤ 1. We shall see in the next section that this is a special case of a

general result.

Exercise 9.17 Find the mean and variance of Zn when the family-size distribution is given by pk = pqk

for k = 0, 1, 2, . . . , and 0 < p = 1 − q < 1. Deduce that var(Zn) → 0 if and only if p > 1
2

.

9.5 The probability of extinction

In the previous example, ultimate extinction of the branching process is certain if and only if

the mean family-size µ satisfies µ ≤ 1. This conclusion is valid for all branching processes

(except for the trivial branching process in which every family size equals 1 always), and we

shall prove this. First, we define the extinction probability

e = P
(
Zn = 0 for some n ≥ 0

)
.

Next, we show how to find e. Let En = {Zn = 0} be the event that the branching process is

extinct (in that nomadkind has died out) by the nth generation, and let en = P(En). Now,

{
Zn = 0 for some n ≥ 0

}
=

∞⋃

n=0

En.

If Zn = 0, then necessarily Zn+1 = 0, so that En ⊆ En+1, and in particular en ≤ en+1. Since

the sequence (En) of events is increasing, we may use the continuity of probability measures,

Theorem 1.54, to obtain that

e = lim
n→∞

en. (9.18)

How do we calculate e in practice? Clearly, if p0 = 0, then e = 0, since all families are

non-empty. The next theorem deals with the general case.

Theorem 9.19 (Extinction probability theorem) The probability e of ultimate extinc-

tion is the smallest non-negative root of the equation

x = G(x). (9.20)
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Proof Since en = P(Zn = 0), we have by (4.9) that en = Gn(0). By (9.5) and (9.6),

Gn(s) = Gn−1(G(s)) = G(G(· · · (s) · · · ))
= G(Gn−1(s)).

Set s = 0 to find that en = Gn(0) satisfies

en = G(en−1) for n = 1, 2, . . . (9.21)

with the boundary condition e0 = 0. Now take the limit as n → ∞. By (9.18), en → e. Fur-

thermore, G is a power series with radius of convergence at least 1, giving that G is continuous

on [0, 1]. It follows that e is a root of the equation e = G(e), as required.

In order to show that e is the smallest non-negative root of (9.20), suppose that η is any

non-negative root of (9.20); we shall show that e ≤ η. First, G is non-decreasing on [0, 1]
since it has non-negative coefficients, and hence

e1 = G(0) ≤ G(η) = η

by (9.21). Similarly,

e2 = G(e1) ≤ G(η) = η

by (9.21), giving by induction that

en ≤ η for n = 1, 2, . . . .

Hence, e = limn→∞ en ≤ η. 2

The last theorem explains how to find the probability of ultimate extinction, the next tells

us when extinction is bound to occur.

Theorem 9.22 (Extinction/survival theorem) Assume that p1 6= 1. The probability e

of ultimate extinction satisfies e = 1 if and only if the mean family-size µ satisfies µ ≤ 1.

We have eliminated the special case with p1 = 1, since in this trivial case all families have

size 1, so that µ = 1 and e = 0.

Proof We may suppose that p0 > 0, since otherwise e = 0 and µ > 1. We have seen that e

is the smallest non-negative root of the equation x = G(x). On the interval [0, 1], G is

(a) continuous, since its radius of convergence is at least 1,

(b) non-decreasing, since G′(x) =
∑

k kxk−1 pk ≥ 0,

(c) convex, since G′′(x) =
∑

k k(k − 1)xk−2 pk ≥ 0,

and so a sketch of G looks something like the curves in Figure 9.2. Generally speaking, there

are either one or two intersections between the curve y = G(x) and the line y = x in the

interval [0, 1]. If the derivative G′(1) satisfies G′(1) > 1, the geometry of Figure 9.2(a)

indicates that there are two distinct intersections (and, in particular e < 1). On the other

hand, if G′(1) ≤ 1, Figure 9.2(b) indicates that there is a unique such intersection, and in this

case x = 1 is the unique root in [0, 1] of the equation x = G(x). However, G′(1) = µ, and in

summary e = 1 if and only if µ ≤ 1. 2
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1

1

1

1

e

e

y = x

y = xy = G(x)

y = G(x)

Fig. 9.2 The curve y = G(x) and the line y = x, in the two cases (a) G ′(1) > 1 and (b)
G ′(1) ≤ 1.

Exercise 9.23 If the family-size distribution of a branching process has mass function pk = pqk for
k = 0, 1, 2, . . . and 0 < p = 1 − q < 1, use Theorem 9.19 to show that the probability that the process

becomes extinct ultimately is p/q if p ≤ 1
2

.

Exercise 9.24 If each family size of a branching process has the binomial distribution with parameters
2 and p (= 1 − q), show that the probability of ultimate extinction is

e =

{
1 if 0 ≤ p ≤ 1

2
,

(q/p)2 if 1
2

≤ p ≤ 1.

9.6 Problems

1. Let X1, X2, . . . be independent random variables, each with mean µ and variance σ 2, and let
N be a random variable which takes values in the positive integers {1, 2, . . . } and which is
independent of the Xi . Show that the sum

S = X1 + X2 + · · · + X N

has variance given by

var(S) = σ 2E(N) + µ2 var(N).

If Z0, Z1, . . . are the generation sizes of a branching process in which each family size has

mean µ and variance σ 2, use the above fact to show that

var(Zn) = σ 2µn−1 + µ2 var(Zn−1),

= µ var(Zn−1)+ σ 2µ2n−2.

Deduce an expression for var(Zn) in terms of µ, σ 2, and n.
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2. Use the result of Problem 9.6.1 to show that, if Z0, Z1, . . . is a branching process whose family

sizes have mean µ (> 1) and variance σ 2, then var(Zn/µ
n) → σ 2/[µ(µ− 1)] as n → ∞.

3. By using the partition theorem and conditioning on the value of Zm , show that if Z0, Z1, . . .
is a branching process with mean family-size µ, then

E(Zm Zn) = µn−mE(Z2
m) if m < n.

4. If (Zn : 0 ≤ n < ∞) is a branching process in which Z0 = 1 and the size of the r th generation
Zr has the generating function Pr (s), prove that

Pn(s) = Pr (Pn−r (s)) for 1 ≤ r ≤ n − 1.

Suppose that the process is modified so that the initial generation Z0 is Poisson with parameter
λ, and the number of offspring of each individual is also Poisson with parameter λ. Find a
function f such that if Hn(s) is the generating function of the total number of individuals
Z0 + Z1 + · · · + Zn , then

Hn(s) = f (s Hn−1(s)).

(Oxford 1977F)

5. A branching process (Xn : n ≥ 0) has P(X0 = 1) = 1. Let the total number of individuals
in the first n generations of the process be Zn , with probability generating function Qn . Prove
that, for n ≥ 2,

Qn(s) = s P1(Qn−1(s)),

where P1 is the probability generating function of the family-size distribution. (Oxford 1974F)

6. (a) Explain what is meant by the term ‘branching process’.
(b) Let Xn be the size of the nth generation of a branching process in which each family size

has probability generating function G, and assume that X0 = 1. Show that the probability
generating function Gn of Xn satisfies Gn+1(s) = Gn(G(s)) for n ≥ 1.

(c) Show that G(s) = 1 − α(1 − s)β is the probability generating function of a non-negative
integer-valued random variable when α, β ∈ (0, 1), and find Gn explicitly when G is thus
given.

(d) Find the probability that Xn = 0, and show that it converges as n → ∞ to 1 − α1/(1−β).
Explain why this implies that the probability of ultimate extinction equals 1 − α1/(1−β).

(Cambridge 2001)
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Random walks

Summary. After a general introduction to random walks, it is proved

that a one-dimensional simple random walk is recurrent if and only if

it is symmetric. The Gambler’s Ruin Problem is discussed.

10.1 One-dimensional random walks

There are many practical instances of random walks. Many processes in physics involve

atomic and sub-atomic particles which migrate about the space which they inhabit, and we

may often model such motions by random-walk processes. In addition, random walks may

often be detected in non-physical disguises, such as in models for gambling, epidemic spread,

and stockmarket indices. We shall consider only the simplest type of random walk in this chap-

ter, and we describe this in terms of a hypothetical particle which inhabits a one-dimensional

set (that is to say, a line) and which moves randomly within this set as time passes.

For simplicity, we assume that both space and time are discrete. We shall observe the

particle’s position at each of the discrete time-points 0, 1, 2, . . . , and we assume that at each

of these times the particle is located at one of the integer positions . . . ,−2,−1, 0, 1, 2, . . .

of the real line. The particle moves in the following way. Let p be a real number satisfying

0 < p < 1, and let q = 1 − p. During each unit of time, the particle moves its location

either one unit leftwards (with probability q) or one unit rightwards (with probability p).

More specifically, if Sn denotes the location of the particle at time n, then

Sn+1 =

{
Sn + 1 with probability p,

Sn − 1 with probability q,

and we suppose that the random direction of each jump is independent of all earlier jumps.

Therefore,

Sn = S0 + X1 + X2 + · · · + Xn for n = 0, 1, 2, . . . , (10.1)

where S0 is the starting position and X1, X2, . . . are independent random variables, each

taking either the value −1 with probability q or the value 1 with probability p. We call the

process S0, S1, . . . a simple random walk. It is called symmetric random walk if p = q = 1
2

and asymmetric random walk otherwise.

Random walks are examples of so-called Markov chains, and as such are studied in Chap-

ter 12. In particular, the one-dimensional calculations of the current chapter are extended there

to a general number d of dimensions (see Section 12.5).
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Example 10.2 (Gambling) A gambler enters a casino with £1000 in his pocket and sits at a

table, where he proceeds to play the following game. The croupier flips a coin repeatedly, and

on each flip the coin shows heads with probability p and tails with probability q = 1 − p.

Whenever the coin shows heads, the casino pays the gambler £1, and whenever the coin shows

tails, the gambler pays the casino £1. That is, at each stage the gambler’s capital increases by

£1 with probability p and decreases by £1 with probability q . Writing Sn for the gambler’s

capital after n flips of the coin, we have that S0 = 1000, and S0, S1, . . . is a simple random

walk. If the casino refuses to extend credit, then the gambler becomes bankrupt at the first

time the random walk visits the point 0, and he may be interested in the probability that he

ultimately becomes bankrupt. It turns out that

P
(
Sn = 0 for some n ≥ 1

)
{
< 1 if p > 1

2
,

= 1 if p ≤ 1
2
,

(10.3)

so that a compulsive gambler can avoid ultimate bankruptcy (with positive probability) if and

only if the odds are stacked in his favour. We shall respect the time-honoured tradition of

probability textbooks by returning later to this example. △

In the following exercises, S0, S1, . . . is a random walk on the integers in which p

(= 1 − q) is the probability that any given step is to the right.

Exercise 10.4 Find the mean and variance of Sn when S0 = 0.

Exercise 10.5 Find the probability that Sn = n + k given that S0 = k.

10.2 Transition probabilities

Consider a simple random walk starting from the point S0 = 0. For a given time point n and

location k, what is the probability that Sn = k? The probabilities of such transitions of the

random walker are calculated by primitive arguments involving counting, and the following

result is typical.

Theorem 10.6 Let un = P(Sn = S0) be the probability that a simple random walk

revisits its starting point at time n. Then un = 0 if n is odd, and

u2m =
(

2m

m

)
pmqm (10.7)

if n = 2m is even.

Proof We may suppose without loss of generality that S0 = 0. If S0 = Sn = 0, then the walk

made equal numbers of leftward and rightward steps in its first n steps This is impossible if n

is odd, giving that un = 0 if n is odd. Suppose now that n = 2m for some integer m. From

(10.1),

S2m = X1 + X2 + · · · + X2m ,

so that S2m = 0 if and only if exactly m of the X i equal +1 and exactly m equal −1 (giving

m rightward steps and m leftward steps). There are
(

2m
m

)
way of dividing the X i into two sets
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with equal sizes, and the probability that each of the first set equals +1 and each of the second

set equals −1 is pmqm . Equation (10.7) follows. 2

More general transition probabilities may be calculated similarly. Perhaps the simplest

argument proceeds as follows. For i ≥ 1, the random variable 1
2
(X i + 1) has the Bernoulli

distribution with parameter p, giving that Bn = 1
2
(Sn + n) has the binomial distribution with

parameters n and p. Hence,

P(Sn = k | S0 = 0) = P
(
Bn = 1

2(n + k)
)

=
(

n
1
2
(n + k)

)
p

1
2
(n+k)q

1
2
(n−k). (10.8)

This is non-zero whenever k is such that 1
2
(n + k) is an integer between 0 and n. The result of

Theorem 10.6 is retrieved by setting k = 0.

Exercise 10.9 Find P(S2n+1 = 1 | S0 = 0).

Exercise 10.10 Show that un = P(Sn = S0) satisfies

∞∑

n=0

un

{
< ∞ if p 6= q,

= ∞ if p = q,

and deduce that an asymmetric random walk revisits its starting point only finitely often with probability

1. You will need Stirling’s formula (see Theorem A.4): n! ∼ (n/e)n
√

2πn as n → ∞.

Exercise 10.11 Consider a two-dimensional random walk in which a particle moves between the points
{(i, j ) : i, j = . . . ,−1, 0, 1, . . . } with integer coordinates in the plane. Let p, q, r, s be numbers such
that 0 < p, q, r, s < 1 and p + q + r + s = 1. If the particle is at position (i, j ) at time n, its position at
time n + 1 is

(i + 1, j ) with probability p, (i, j + 1) with probability q,

(i − 1, j ) with probability r, (i, j − 1) with probability s,

and successive moves are independent of each other. Writing Sn for the position of the particle after n

moves, we have that

Sn+1 =





Sn + (1, 0) with probability p,

Sn + (0, 1) with probability q,

Sn − (1, 0) with probability r,

Sn − (0, 1) with probability s,

and we suppose that S0 = (0, 0). Let vn = P(Sn = (0, 0)) be the probability that the particle revisits its
starting point at time n. Show that vn = 0 if n is odd and

v2m =
m∑

k=0

(2m)!
k!2(m − k)!2

(pr)k(qs)m−k

if n = 2m is even.
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10.3 Recurrence and transience of random walks

Consider a simple random walk starting from the point S0 = 0. In the subsequent motion, the

random walk may or may not revisit its starting point. If the walk is bound (with probability

1) to revisit its starting point, we call it recurrent, and otherwise we call it transient. We shall

see that a simple random walk is recurrent if and only if it is symmetric (in that p = q = 1
2
),

and there is a simple intuitive reason why this is the case. The position at time n is the sum

Sn = X1 + X2 + · · ·+ Xn of independent random variables, each having mean value E(X) =
p − q and finite variance, and hence

1

n
Sn → p − q as n → ∞

in mean square, by the law of large numbers, Theorem 8.6. Thus, if p > q , the walk tends to

drift linearly towards +∞, whilst if p < q , the drift is linear towards −∞. If p = q , then

n−1Sn → 0 in mean square and the walk remains ‘centred’ at its starting point 0.

Theorem 10.12 The probability that a simple random walk ever revisits its starting point

is given by

P
(
Sn = 0 for some n = 1, 2, . . .

∣∣ S0 = 0
)

= 1 − |p − q|. (10.13)

Hence the walk is recurrent if and only if p = q = 1
2

.

Proof We use generating functions in this proof. The basic step is as follows. We suppose

that S0 = 0 and we write

An = {Sn = 0}

for the event that the walk revisits its starting point at time n, and

Bn =
{

Sn = 0, Sk 6= 0 for 1 ≤ k ≤ n − 1
}

for the event that the first return of the walk to its starting point occurs at time n. If An occurs,

then exactly one of B1, B2, . . . , Bn occurs, giving by (1.14) that

P(An) =
n∑

k=1

P(An ∩ Bk). (10.14)

Now An ∩ Bk is the event that the walk returns for the first time at time k and then returns

again after a subsequent time n − k. Hence,

P(An ∩ Bk) = P(Bk)P(An−k) for 1 ≤ k ≤ n, (10.15)

since transitions in disjoint intervals of time are independent of each other. We write fn =
P(Bn) and un = P(An), and substitute (10.15) into (10.14) to obtain

un =
n∑

k=1

fkun−k for n = 1, 2, . . . . (10.16)
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In this equation, we know the ui from (10.7) and we want to find the fk . The form of the

summation as a convolution suggests the use of generating functions, and so we introduce the

generating functions of the sequences of ui and fk ,

U(s) =
∞∑

n=0

unsn, F(s) =
∞∑

n=0

fnsn,

noting that u0 = 1 and f0 = 0. These sequences converge absolutely if |s| < 1, since |un | ≤ 1

and | fn| ≤ 1 for each n. We multiply both sides of (10.16) by sn and sum over n to find

∞∑

n=1

unsn =
∞∑

n=1

n∑

k=1

fkun−k sn

=
∞∑

k=1

∞∑

n=k

fkskun−ksn−k by interchanging the order of summation

=
∞∑

k=1

fksk
∞∑

m=0

umsm by setting m = n − k

= F(s)U(s) if |s| < 1. (10.17)

The left-hand side of the equation equals U(s)− u0s0 = U(s)− 1, and so we have that

U(s) = U(s)F(s)+ 1 if |s| < 1.

Hence,

F(s) = 1 −
1

U(s)
if |s| < 1. (10.18)

Finally, by Theorem 10.6,

U(s) =
∞∑

n=0

unsn

=
∞∑

m=0

u2ms2m since un = 0 when n is odd

=
∞∑

m=0

(
2m

m

)
(pqs2)m

= (1 − 4 pqs2)−
1
2 if |s| < 1,

by the extended binomial theorem, Theorem A.3. This implies by (10.18) that

F(s) = 1 −
√

1 − 4 pqs2 if |s| < 1, (10.19)

from which expression the fk may be found explicitly. To prove the theorem, we note that
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P
(
Sn = 0 for some n ≥ 1

∣∣ S0 = 0
)

= P(B1 ∪ B2 ∪ · · · )
= f1 + f2 + · · · by (1.14)

= lim
s↑1

∞∑

n=1

fnsn by Abel’s lemma1

= F(1)

= 1 −
√

1 − 4pq by (10.19).

Finally, remember that p + q = 1 to see that

√
1 − 4pq =

√
(p + q)2 − 4 pq

=
√
(p − q)2 = |p − q|. 2

Thus, if p = q = 1
2

, the walk is bound to return to its starting point. Let

T = min{n ≥ 1 : Sn = 0}

be the (random) time until the first return. We have shown that P(T < ∞) = 1 if p = q = 1
2

.

Against this positive observation we must set the following negative one: although T is finite

(with probability 1), it has infinite mean in that E(T ) = ∞. To see this, just note that

E(T ) =
∞∑

n=1

n fn

= lim
s↑1

∞∑

n=1

n fnsn−1 by Abel’s lemma

= lim
s↑1

F ′(s).

From (10.19), if p = q = 1
2

, then

F(s) = 1 −
√

1 − s2 for |s| < 1

and

F ′(s) =
s

√
1 − s2

→ ∞ as s ↑ 1.

In other words, although a symmetric random walk is certain to return to its starting point, the

expected value of the time which elapses before this happens is infinite.

1For a statement of Abel’s lemma, see the footnote on p. 55.
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Exercise 10.20 Consider a simple random walk with p 6= q. Show that, conditional on the walk return-
ing to its starting point at some time, the expected number of steps taken before this occurs is

4pq

|p − q|(1 − |p − q|)
.

Exercise 10.21 Show that a symmetric random walk revisits its starting point infinitely often with prob-
ability 1.

Exercise 10.22 Show that a symmetric random walk starting from the origin visits the point 1 with
probability 1.

10.4 The Gambler’s Ruin Problem

The Gambler’s Ruin Problem is an old chestnut of probability textbooks. It concerns a game

between two players, A and B, say, who compete with each other as follows. Initially A

possesses £a and B possesses £(N − a), so that their total capital is £N , where N ≥ 1. A coin

is flipped repeatedly and comes up either heads with probability p or tails with probability q,

where 0 < p = 1 − q < 1. Each time heads turns up, player B gives £1 to player A, while

each time tails turns up, player A gives £1 to player B. This game continues until either A or

B runs out of money. We record the state of play by noting A’s capital after each flip. Clearly,

the sequence of such numbers is a random walk on the set {0, 1, . . . , N}. This walk starts at

the point a and follows a simple random walk until it reaches either 0 or N , at which time

it stops. We speak of 0 and N as being absorbing barriers since the random walker sticks to

whichever of these points it hits first. We shall say that A wins the game if the random walker

is absorbed at N , and that B wins the game if the walker is absorbed at 0. It is fairly clear (see

Exercises 10.41–10.42) that there is zero probability that the game will continue forever, so

that either A or B (but not both) will win the game. What is the probability that A wins the

game? The answer is given in the following theorem.

Theorem 10.23 (Gambler’s Ruin) Consider a simple random walk on {0, 1, . . . , N}
with absorbing barriers at 0 and N. If the walk begins at the point a, where 0 ≤ a ≤ N,

then the probability v(a) that the walk is absorbed at N is given by

v(a) =





(q/p)a − 1

(q/p)N − 1
if p 6= q,

a/N if p = q = 1
2
.

(10.24)

Thus, the probability that player A wins the game is given by equation (10.24). Our proof

of this theorem uses the jargon of the Gambler’s Ruin Problem.

Proof The first step of the argument is simple, and provides a difference equation for the

numbers v(0), v(1), . . . , v(N). Let H be the event that the first flip of the coin shows heads.

We use the partition theorem, Theorem 1.48, to see that

P(A wins) = P(A wins | H )P(H )+ P(A wins | H c)P(H c), (10.25)
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where, as usual, H c is the complement of H . If H occurs, A’s capital increases from £a to

£(a + 1), giving that P(A wins | H ) = v(a + 1). Similarly, P(A wins | H c) = v(a − 1). We

substitute these expressions into (10.25) to obtain

v(a) = pv(a + 1)+ qv(a − 1) for 1 ≤ a ≤ N − 1. (10.26)

This is a second-order difference equation subject to the boundary conditions

v(0) = 0, v(N) = 1, (10.27)

since if A starts with £0 (or £N), he or she has already lost (or won) the game. We solve

(10.26) by the standard methods described in Appendix B, obtaining as general solution

v(a) =
{
α + β(q/p)a if p 6= q,

α + βa if p = q = 1
2
,

where α and β are constants which are found from the boundary conditions (10.27) as re-

quired. 2

There is another standard calculation which involves difference equations and arises from

the Gambler’s Ruin Problem. This deals with the expected length of the game. Once again,

we formulate this in terms of the related random walk.

Theorem 10.28 (Recurrence/transience of random walk) Consider a simple random

walk on {0, 1, . . . , N} with absorbing barriers at 0 and N. If the walk begins at the point

a, where 0 ≤ a ≤ N, then the expected number e(a) of steps before the walk is absorbed

at either 0 or N is given by

e(a) =





1

p − q

(
N
(q/p)a − 1

(q/p)N − 1
− a

)
if p 6= q,

a(N − a) if p = q = 1
2
.

(10.29)

Thus, the expected number of flips of the coin before either A or B becomes bankrupt in

the Gambler’s Ruin Problem is given by (10.29).

Proof Let F be the number of flips of the coin before the game ends, and let H be the event

that the first flip shows heads as before. By the partition theorem, Theorem 2.42, we have that

E(F) = E(F | H )P(H )+ E(F | H c)P(H c). (10.30)

Now, if H occurs then, after the first flip of the coin, A’s capital increases from £a to £(a +1),

giving that E(F | H ) = 1 + e(a + 1), where the 1 arises from the first flip, and e(a + 1) is the

mean number of subsequent flips. Similarly, E(F | H c) = 1 + e(a − 1), and (10.30) becomes

e(a) =
[
1 + e(a + 1)

]
p +

[
1 + e(a − 1)

]
q

or

pe(a + 1)− e(a)+ qe(a − 1) = −1 for 1 ≤ a ≤ N − 1. (10.31)
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The boundary conditions for this second-order difference equation are

e(0) = e(N) = 0,

since the game is finished already if it starts in locations 0 or N . We solve (10.31) in the

standard manner (as shown in Appendix B) to obtain (10.29). 2

Finally, what are A’s fortunes if the opponent is infinitely rich? In practice, this situation

cannot arise, but the hypothetical situation may help us to understand the consequences of

a visit to the casino at Monte Carlo. In this case, A can never defeat the opponent, but A

might at least hope to be spared ultimate bankruptcy in order to play the game forever. The

probability that A is ultimately bankrupted is given by our final theorem about random walks

in one dimension.

Theorem 10.32 Consider a simple random walk on {0, 1, 2, . . . } with an absorbing bar-

rier at 0. If the walk begins at the point a (≥ 0), the probability π(a) that the walk is

ultimately absorbed at 0 is given by

π(a) =
{
(q/p)a if p > q,

1 if p ≤ q.
(10.33)

Thus, the probability that player A is able to play forever is strictly positive if and only if

the odds are stacked in his or her favour at each flip of the coin. This justifies equation (10.3).

An intuitive approach to this theorem is to think of this new game as the limit of the previous

game as the total capital N tends to infinity while A’s initial capital remains fixed at a. Thus,

P(A is bankrupted) = lim
N→∞

[1 − v(a)],

where v(a) is given by (10.24), and it is easy to see that the value of this limit is given by

(10.33). There is a limiting argument here which requires some justification, but we shall use

a different approach which avoids this.

Proof The sequence π(0), π(1), . . . satisfies the difference equation

π(a) = pπ(a + 1)+ qπ(a − 1) for a = 1, 2, . . . , (10.34)

derived in exactly the same way as (10.26). The general solution is

π(a) =
{
α + β(q/p)a if p 6= q,

α + βa if p = q = 1
2
,

(10.35)

where α and β are constants. Unfortunately, we have only one boundary condition, namely

π(0) = 1. Using this condition we find that

α + β = 1 if p 6= q,

α = 1 if p = q,
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and hence,

π(a) =

{
β(q/p)a + 1 − β if p 6= q,

1 + βa if p = q = 1
2
,

(10.36)

for some β ∈ R. Now, π(a) is a probability, and so 0 ≤ π(a) ≤ 1 for all a. Hence, if p = q,

then β = 0, giving π(a) = 1 for all a. On the other hand, if p < q, then (q/p)a → ∞ as

a → ∞. Thus, β = 0 if p < q , and we have proved that

π(a) = 1 if p ≤ q, for a = 0, 1, 2, . . . . (10.37)

It is not quite so easy to find the correct value of β in (10.36) for the case when p > q,

and we shall do this by calculating π(1) explicitly for this case. For the remaining part of the

proof we write π(a) = πp,q(a) in order to emphasize the roles of p and q; thus, (10.37) reads

πp,q(a) = 1 if p ≤ q, for a = 0, 1, 2, . . . . (10.38)

Consider a simple random walk T0, T1, . . . starting from T0 = 0 in which each step is to

the right with probability p or to the left with probability q, and let C be the event that the

walk revisits its starting point: C = {Tn = 0 for some n ≥ 1}. From Theorem 10.12,

P(C) = 1 − |p − q|. (10.39)

On the other hand, the usual conditioning argument yields

P(C) = P(C | H )P(H )+ P(C | H c)P(H c),

where H is the event that the first move is to the right. Now, P(C | H ) = πp,q(1), since this is

the probability that a walk ever reaches 0 having started from 1. Also, P(C | H c) = πq,p(1),

since this is the probability that the ‘mirror image’ walk (in which each step of T is replaced

by an opposite step) reaches 0 starting from 1. Thus,

P(C) = pπp,q(1)+ qπq,p(1),

which combines with (10.39) to give

1 − |p − q| = pπp,q(1)+ qπp,q(1). (10.40)

If p ≥ q , then πq,p(1) = 1 by (10.38), and (10.40) becomes

1 − (p − q) = pπp,q(1)+ q,

implying that

πp,q(1) = q/p if p > q.

Substitute this into (10.36) to find that β = 1 if p > q , and the theorem is proved. 2
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Exercise 10.41 Show that, in the Gambler’s Ruin Problem, the game terminates with probability 1. You
may find it useful to partition the sequence of coin tosses into disjoint runs of length N , and to consider
the event that one of these runs contains only steps to the right.

Exercise 10.42 Use Theorem 10.23 to show that, in the Gambler’s Ruin Problem, the probability that
B wins the game is

µ(a) =





(p/q)N−a − 1

(p/q)N − 1
if p 6= q,

(N − a)/N if p = q = 1
2
,

where £(N − a) is B’s initial capital. Deduce that

P(A wins)+ P(B wins) = 1,

and hence that there is zero probability that the game will fail to terminate.

Exercise 10.43 Consider the Gambler’s Ruin Problem with the difference that A’s initial capital is uni-
formly distributed on the set {0, 1, 2, . . . , N}. What is the probability A wins the game?

Exercise 10.44 Consider the Gambler’s Ruin Problem with 0 < p < 1 and p 6= 1
2

. Suppose A’s initial
capital is £k, where 1 ≤ k < N , and we are given that A wins the game. What is the probability that the
first step was from k to k − 1?

10.5 Problems

1. Two particles perform independent and simultaneous symmetric random walks starting from
the origin. Show that the probability that they are at the same position after n steps is

(
1

2

)2n n∑

k=0

(
n

k

)2

.

Hence or otherwise show that
n∑

k=0

(
n

k

)2

=
(

2n

n

)
.

2. Consider a random walk on the integers with absorbing barriers at 0 and N in which, at each
stage, the particle may jump one unit to the left (with probability α), remain where it is (with
probability β), or jump one unit to the right (with probability γ ), where α,β, γ > 0 and
α + β + γ = 1. If the particle starts from the point a, where 0 ≤ a ≤ N , show that the
probability that it is absorbed at N is given by equation (10.24) with p = 1 − q = γ /(α + γ ).
Find the mean number of stages before the particle is absorbed at one or other of the barriers.

3. A particle performs a random walk on the set {−N ,−N + 1, . . . , N − 1, N} and is absorbed
if it reaches −N or N , where N > 1. The probability of a step of size −1 is q = 1 − p, with
0 < p < 1. Suppose that the particle starts at 0. By conditioning on the first step and using
Theorem 10.23, or otherwise, show that when p 6= q, the probability of the particle being
absorbed at N or −N before returning to 0 is

(p − q)(pN + qN )

pN − qN
.

What is this probability when p = q? (Oxford 1983M)
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4. Consider a random walk on the integers in which the particle moves either two units to the
right (with probability p) or one unit to the left (with probability q = 1 − p) at each stage,
where 0 < p < 1. There is an absorbing barrier at 0 and the particle starts at the point a
(> 0). Show that the probability π(a) that the particle is ultimately absorbed at 0 satisfies the
difference equation

π(a) = pπ(a + 2)+ qπ(a − 1) for a = 1, 2, . . . ,

and deduce that π(a) = 1 if p ≤ 1
3

.

Suppose that the particle is absorbed whenever it hits either N or N + 1. Find the probability
πN (a) that it is absorbed at 0 rather than at N or N + 1, having started at a, where 0 ≤ a ≤
N + 1. Deduce that, as N → ∞,

πN (a) →

{
1 if p ≤ 1

3 ,

θa if p > 1
3
,

where θ = 1
2
{
√

1 + (4q/p) − 1}.
Deduce that if a fair coin is tossed repeatedly, the probability that the number of heads ever

exceeds twice the number of tails is 1
2
(
√

5 − 1).

5. Consider a simple random walk with an absorbing barrier at 0 and a ‘retaining’ barrier at N .
That is to say, the walk is not allowed to pass to the right of N , so that its position Sn at time
n satisfies

P(Sn+1 = N | Sn = N) = p, P(Sn+1 = N − 1 | Sn = N) = q,

where p + q = 1. Set up a difference equation for the mean number e(a) of jumps of the walk
until absorption at 0, starting from a, where 0 ≤ a ≤ N . Deduce that

e(a) = a(2N − a + 1) if p = q = 1
2 ,

and find e(a) if p 6= q.

6. Let N be the number of times that an asymmetric simple random walk revisits its starting point.
Show that N has mass function

P(N = k) = α(1 − α)k for k = 0, 1, 2, . . . ,

where α = |p − q| and p is the probability that each step of the walk is to the right.

7. A slot machine functions as follows. At the first pull, the player wins with probability 1
2

. At

later pulls, the player wins with probability 1
2 if the previous pull was lost, and with probability

p (< 1
2

) if won. Show that the probability un that the player wins at the nth pull satisfies

un + ( 1
2

− p)un−1 = 1
2

for n > 1.

Deduce that

un =
1 + (−1)n−1( 1

2
− p)n

3 − 2p
for n ≥ 1.

8. Consider the two-dimensional random walk of Exercise 10.11, in which a particle inhabits
the integer points {(i, j) : i, j = . . . ,−1, 0, 1, . . . } of the plane, moving rightwards, up-
wards, leftwards or downwards with respective probabilities p, q, r , and s at each step, where
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p, q, r, s > 0 and p+q +r +s = 1. Let Sn be the particle’s position after n steps, and suppose
that S0 = (0, 0). Let vn be the probability that Sn = (0, 0), and prove that

v2m =
(

2m

m

)2 (1

4

)2m

if p = q = r = s = 1
4
.

Use Stirling’s formula to show that

∞∑

n=0

vn = ∞ if p = q = r = s = 1
4
.

Deduce directly that the symmetric random walk in two dimensions is recurrent.

9. Here is another way of approaching the symmetric random walk in two dimensions of Problem
10.5.8. Make the following change of variables. If Sn = (i, j ), set Xn = i + j and Yn = i − j ;

this is equivalent to rotating the axes through an angle of 1
4
π . Show that X0, X1, . . . and

Y0, Y1, . . . are independent symmetric random walks in one dimension. Deduce by Theorem
10.6 that

P
(
S2m = 0

∣∣ S0 = 0
)

=

[(
2m

m

)(
1

2

)2m
]2

,

where 0 = (0, 0).

10. In the two-dimensional random walk of Problem 10.5.8, let Dn be the Euclidean distance
between the origin and Sn . Prove that, if the walk is symmetric,

E(D2
n) = E(D2

n−1)+ 1 for n = 1, 2, . . . ,

and deduce that E(D2
n) = n.

* 11. A particle performs a random walk on the integers starting at the origin. At discrete intervals
of time, it takes a step of unit size. The steps are independent and equally likely to be in the
positive or negative direction. Determine the probability generating function of the time at
which the particle first reaches the integer n (≥ 1).

In a two-dimensional random walk, a particle can be at any of the points (x, y) which have
integer coordinates. The particle starts at (0, 0) and at discrete intervals of time, takes a step
of unit size. The steps are independent and equally likely to be any of the four nearest points.
Show that the probability generating function of the time taken to reach the line x + y = m is

{
1 −

√
1 − s2

s

}m

for |s| ≤ 1.

Let (X,Y ) be the random point on the line x + y = m which is reached first. What is the
probability generating function of X − Y ? (Oxford 1979F)

12. Consider a symmetric random walk on the integer points of the cubic lattice {(i, j, k) : i, j, k =
. . . ,−1, 0, 1, . . . } in three dimensions, in which the particle moves to one of its six neighbour-

ing positions, chosen with equal probability 1
6

, at each stage. Show that the probability wn that
the particle revisits its starting point at the nth stage is given by

w2m+1 = 0,

w2m =
(

1

2

)2m (2m

m

) ∑

(i, j,k):
i+ j+k=m

(
m!

3m i ! j ! k!

)2

.
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Use Stirling’s formula to show that

∞∑

n=0

wn < ∞.

Deduce that the symmetric random walk in three dimensions is transient (the general argument
in Problem 10.5.6 may be useful here).

13. Show that the symmetric random walk on the integer points

Zd =
{
(i1, i2, . . . , id ) : i j = . . . ,−1, 0, 1, . . . , j = 1, 2, . . . , d

}

is recurrent if d = 1, 2 and transient if d ≥ 3. You should use the results of Problems 10.5.8
and 10.5.12, and you need do no more calculations.

14. The generating-function argument used to prove Theorem 10.12 has a powerful application to
the general theory of ‘recurrent events’. Let η be an event which may or may not happen at
each of the time points 0, 1, 2, . . . (η may be the visit of a random walk to its starting point,
or a visit to the dentist, or a car accident outside the department). We suppose that η occurs at
time 0. Suppose further that the intervals between successive occurrences of η are independent,
identically distributed random variables X1, X2, . . . , each having mass function

P(X = k) = fk for k = 1, 2, . . . ,

so that η occurs at the times 0, X1, X1 + X2, X1 + X2 + X3, . . . . There may exist a time after
which η never occurs. That is to say, there may be an Xi which takes the value ∞, and we
allow for this by requiring only that f = f1 + f2 + · · · satisfies f ≤ 1, and we set

P(X = ∞) = 1 − f.

We call η recurrent if f = 1 and transient if f < 1. Let un be the probability that η occurs at
time n. Show that the generating functions

F(s) =
∞∑

n=1

fnsn , U(s) =
∞∑

n=0

unsn

are related by
U(s) = U(s)F(s) + 1,

and deduce that η is recurrent if and only if
∑

n un = ∞.

15. The university buys light bulbs which have random lifetimes. If the bulb in my office fails on
day n, then it is replaced by a new bulb which lasts for a random number of days, after which
it is changed, and so on. We assume that the lifetimes of the bulbs are independent random
variables X1, X2, . . . each having mass function

P(X = k) = (1 − α)αk−1 for k = 1, 2, . . . ,

where α satisfies 0 < α < 1. A new light bulb is inserted in its socket on day 0. Show that the
probability that the bulb has to be changed on day n is 1 − α, independently of n.
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Random processes in continuous time

Summary. This account of random processes in continuous-time is

centred on the Poisson process. The relationship between the Poisson

process and the exponential distribution is exposed, via the lack-of-

memory property. The simple birth and birth–death processes are

described, followed by an introduction to queueing theory.

11.1 Life at a telephone switchboard

Branching processes and random walks are two examples of random processes. Each is a

random sequence, and we call them discrete-time processes since they involve observations at

the discrete times n = 0, 1, 2 . . . . Many other processes involve observations which are made

continuously as time passes, and such processes are called continuous-time processes. Rather

than being a family (Zn : n = 0, 1, 2 . . . ) of random variables indexed by the non-negative

integers, a continuous-time process is a family Z = (Z t : t ≥ 0) of random variables indexed

by the continuum [0,∞), where we think of Z t as being the value of the process at time t . The

general theory of continuous-time processes is rather deep and quite difficult, but most of the

main difficulties are avoided if we restrict our attention to processes which take integer values

only, that is, processes for which Z t is a (random) integer for each t , and all our examples are

of this form. The principal difference between studying such continuous-time processes and

studying discrete-time processes is merely that which arises in moving from the integers to

the reals: instead of establishing recurrence equations and difference equations (for example,

(9.5) and (10.26)), we shall establish differential equations.

Here is our basic example. Bill is the head porter at the Grand Hotel, and part of his job

is to answer incoming telephone calls. He cannot predict with certainty when the telephone

will ring; from his point of view, calls seem to arrive at random. We make two simplifying

assumptions about these calls. First, we assume that Bill deals with every call instantaneously,

so that no call is lost unless it arrives at exactly the same moment as another (in practice, Bill

has to get to the telephone and speak, and this takes time—more complicated models take

account of this). Secondly, we assume that calls arrive ‘homogeneously’ in time, in the sense

that the chance that the telephone rings during any given period of time depends only upon

the length of this period (this is an absurd assumption of course, but it may be valid for certain

portions of the day). We describe time by a parameter t taking values in [0,∞), and propose

the following model for the arrivals of telephone calls at the switchboard. We let Nt represent

the number of calls which have arrived in the time interval [0, t]: that is, Nt is the number of

incoming calls which Bill has handled up to and including time t . We suppose that the random

process N = (Nt : t ≥ 0) evolves in such a way that the following conditions are valid:
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A. Nt is a random variable taking values in {0, 1, 2, . . . },
B. N0 = 0,

C. Ns ≤ Nt if s ≤ t ,

D. independence: if 0 ≤ s < t then the number of calls which arrive during the time interval

(s, t] is independent of the arrivals of calls prior to time s,

E. arrival rate: there exists a number λ (> 0), called the arrival rate, such that,1 for small

positive h,

P
(
Nt+h = n + 1

∣∣ Nt = n
)

= λh + o(h),

P
(
Nt+h = n

∣∣ Nt = n
)

= 1 − λh + o(h).
(11.1)

Condition E merits a discussion. It postulates that the probability that a call arrives in some

short interval (t, t + h] is approximately a linear function of h, and that this approximation

becomes better and better as h becomes smaller and smaller. It follows from (11.1) that the

chance of two or more calls in the interval (t, t + h] satisfies

P
(
Nt+h ≥ n + 2

∣∣ Nt = n
)

= 1 − P
(
Nt+h equals n or n + 1

∣∣ Nt = n
)

= 1 − [λh + o(h)] − [1 − λh + o(h)]
= o(h),

so that the only two possible events having significant probabilities (that is, with probability

greater than o(h)) involve either no call arriving in (t, t +h] or exactly one call arriving in this

time interval.

This is our model for the arrival of telephone calls. It is a primitive model based on the

idea of random arrivals, and obtained with the aid of various simplifying assumptions. For a

reason which will soon be clear, this random process N = (Nt : t ≥ 0) is called a Poisson

process with rate λ. Poisson processes may be used to model many phenomena, such as

(a) the arrival of customers in a shop,

(b) the clicks emitted by a Geiger counter as it records the detection of radioactive particles,

(c) the incidence of deaths in a small town with a reasonably stable population (neglecting

seasonal variations).

The Poisson process provides an exceptionally good model for the emission of radioactive

particles when the source has a long half-life and is decaying slowly.

We may represent the outcomes of a Poisson process N by a graph of Nt against t (see

Figure 11.1). Let Ti be the time at which the i th call arrives, so that

Ti = inf{t : Nt = i}. (11.2)

Then T0 = 0, T0 ≤ T1 ≤ T2 ≤ · · · , and Nt = i if t lies in the interval [Ti , Ti+1). We note

that T0, T1, T2, . . . is a sequence of random variables whose values determine the process N

completely: if we know the Ti , then Nt is given by

Nt = max{n : Tn ≤ t}.

The sequence of Ti may be thought of as the ‘inverse process’ of N .

1Recall Landau’s notation from p. 127: o(h) denotes some function of h which is of smaller order of magnitude
than h as h → 0. More precisely, we write f (h) = o(h) if f (h)/h → 0 as h → 0. The term o(h) generally represents
different functions of h at each appearance. Thus, for example, o(h)+ o(h) = o(h).
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N(t)
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3

4

T1 T2 T3 T4 t

Fig. 11.1 A sketch of the graph of a Poisson process.

Conditions A–E are our postulates for a Poisson process N . In the next two sections, we

present some consequences of these postulates, answering such questions as

(a) what is the mass function of Nt for a given value of t?

(b) what can be said about the distribution of the sequence T0, T1, . . . of times at which calls

arrive?

Exercise 11.3 If N is a Poisson process with rate λ, show that

P(Nt+h = 0) =
[
1 − λh + o(h)

]
P(Nt = 0)

for small positive values of h. Hence, show that p(t) = P(Nt = 0) satisfies the differential equation

p′(t) = −λp(t).

Solve this equation to find p(t).

Exercise 11.4 (Thinning) Suppose that telephone calls arrive at the exchange in the manner of a
Poisson process N = (Nt : t ≥ 0) with rate λ, and suppose that the equipment is faulty so that
each incoming call fails to be recorded with probability q (independently of all other calls). If N ′

t is the

number of calls recorded by time t , show that N ′ = (N ′
t : t ≥ 0) is a Poisson process with rate λ(1 −q).

Exercise 11.5 (Superposition) Two independent streams of telephone calls arrive at the exchange, the
first being a Poisson process with rate λ and the second being a Poisson process with rate µ. Show that
the combined stream of calls is a Poisson process with rate λ+ µ.

11.2 Poisson processes

A Poisson process with rate λ is a random process which satisfies postulates A–E of Section

11.1. Our first result establishes the connection to the Poisson distribution.
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Theorem 11.6 For each t > 0, the random variable Nt has the Poisson distribution with

parameter λt . That is, for t > 0,

P(Nt = k) =
1

k!
(λt)ke−λt for k = 0, 1, 2, . . . . (11.7)

It follows from (11.7) that the mean and variance of Nt grow linearly in t as t increases:

E(Nt ) = λt, var(Nt ) = λt for t > 0. (11.8)

Proof Just as we set up difference equations for discrete-time processes, here we set up

‘differential–difference’ equations. Let

pk(t) = P(Nt = k).

Fix t ≥ 0 and let h be small and positive. The basic step is to express Nt+h in terms of Nt as

follows. We use the partition theorem, Theorem 1.48, to see that, if k ≥ 1,

P(Nt+h = k) =
k∑

i=0

P(Nt+h = k | Nt = i)P(Nt = i )

= P(Nt+h = k | Nt = k − 1)P(Nt = k − 1)

+ P(Nt+h = k | Nt = k)P(Nt = k)+ o(h) by (11.1)

= [λh + o(h)]P(Nt = k − 1)+ [1 − λh + o(h)]P(Nt = k)+ o(h) by (11.1)

= λhP(Nt = k − 1)+ (1 − λh)P(Nt = k)+ o(h), (11.9)

giving that

pk(t + h)− pk(t) = λh
[

pk−1(t)− pk(t)
]
+ o(h), (11.10)

valid for k = 1, 2, . . . . We divide both sides of (11.10) by h and take the limit as h ↓ 0 to

obtain

p′
k(t) = λpk−1(t)− λpk(t) for k = 1, 2, . . . , (11.11)

where p′
k(t) is the derivative of pk(t) with respect to t . When k = 0, (11.9) becomes

P(Nt+h = 0) = P(Nt+h = 0 | Nt = 0)P(Nt = 0)

= (1 − λh)P(Nt = 0)+ o(h),

giving in the same way

p′
0(t) = −λp0(t). (11.12)

Equations (11.11) and (11.12) are a system of ‘differential–difference’ equations for the

functions p0(t), p1(t), . . . , and we wish to solve them subject to the boundary condition N0 =
0, which is equivalent to the condition

pk(0) =

{
1 if k = 0,

0 if k 6= 0.
(11.13)

We present two ways of solving this family of equations.
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Solution A (by induction) Equation (11.12) involves p0(t) alone. Its general solution is

p0(t) = Ae−λt , and the arbitrary constant A is found from (11.13) to equal 1. Hence,

p0(t) = e−λt for t ≥ 0. (11.14)

Substitute this into (11.11) with n = 1 to obtain

p′
1(t)+ λp1(t) = λe−λt

which, with the aid of an integrating factor and the boundary condition, yields

p1(t) = λte−λt for t ≥ 0. (11.15)

Continue in this way to find that

p2(t) = 1
2
(λt)2e−λt .

Now guess the general solution (11.7) and prove it from (11.11) by induction.

Solution B (by generating functions) This method is nicer and has further applications. We

use the probability generating function of Nt , namely

G(s, t) = E(s Nt ) =
∞∑

k=0

pk(t)s
k .

We multiply both sides of (11.11) by sk and sum over the values k = 1, 2, . . . to find that

∞∑

k=1

p′
k(t)s

k = λ

∞∑

k=1

pk−1(t)s
k − λ

∞∑

k=1

pk(t)s
k .

Add (11.12) to this in the obvious way and note that

∞∑

k=1

pk−1(t)s
k = sG(s, t)

and (plus or minus a dash of mathematical rigour)

∞∑

k=0

p′
k(t)s

k =
∂G

∂ t
,

to obtain
∂G

∂ t
= λsG − λG, (11.16)

a differential equation subject to the boundary condition

G(s, 0) =
∞∑

k=0

pk(0)s
k = 1 by (11.13). (11.17)
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Equation (11.16) may be written in the form

1

G

∂G

∂ t
= λ(s − 1).

This resembles a partial differential equation, but for each given value of s it may be integrated

in the usual manner with respect to t , giving that

log G = λt (s − 1)+ A(s),

where A(s) is an arbitrary function of s. Use (11.17) to find that A(s) = 0 for all s, and hence

G(s, t) = e−λt (s−1) =
∞∑

k=0

(
1

k!
(λt)k e−λt

)
sk .

Reading off the coefficient of sk , we have that

pk(t) =
1

k!
(λt)ke−λt

as required. 2

Exercise 11.18 If N is a Poisson process with rate λ, show that var(Nt /t) → 0 as t → ∞.

Exercise 11.19 If N is a Poisson process with rate λ, show that, for t > 0,

P(Nt is even) = e−λt cosh λt,

P(Nt is odd) = e−λt sinh λt .

Exercise 11.20 If N is a Poisson process with rate λ, show that the moment generating function of

Ut =
Nt − E(Nt )√

var(Nt )

is

Mt (x) = E(exUt ) = exp
[
−x

√
λt + λt (ex/

√
λt − 1)

]
.

Deduce that, as t → ∞,

P(Ut ≤ u) →
∫ u

−∞

1
√

2π
e− 1

2
v2

dv for u ∈ R.

This is the central limit theorem for a Poisson process.
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11.3 Inter-arrival times and the exponential distribution

Let N be a Poisson process with rate λ. The arrival times T0, T1, . . . of N are defined as

before by T0 = 0 and

Ti = inf{t : Nt = i} for i = 1, 2, . . . . (11.21)

In other words, Ti is the time of arrival of the i th telephone call. The inter-arrival times

X1, X2, . . . are the times between successive arrivals,

X i = Ti − Ti−1 for i = 1, 2, . . . . (11.22)

The distributions of the X i are very simple to describe.

Theorem 11.23 In a Poisson process with rate λ, the inter-arrival times X1, X2, . . . are

independent random variables, each having the exponential distribution with parameter

λ.

This result demonstrates an intimate link between the postulates for a Poisson process

and the exponential distribution. Theorem 11.23 is only the tip of the iceberg: a deeper in-

vestigation into continuous-time random processes reveals that the exponential distribution is

a cornerstone for processes which satisfy an independence condition such as assumption D.

The reason for this is that the exponential distribution is the only continous distribution with

the so-called lack-of-memory property.

Definition 11.24 A positive random variable X is said to have the lack-of-memory
property if

P
(
X > u + v

∣∣ X > u
)

= P(X > v) for u, v ≥ 0. (11.25)

Thinking about X as the time which elapses before some event A, say, then condition

(11.25) requires that if A has not occurred by time u, then the time which elapses subsequently

(between u and the occurrence of A) does not depend on the value of u: ‘the random variable

X does not remember how old it is when it plans its future’.

Theorem 11.26 The continuous random variable X has the lack-of-memory property if

and only if X is exponentially distributed.

Proof If X is exponentially distributed with parameter λ then, for u, v ≥ 0,

P
(
X > u + v

∣∣ X > u
)

=
P(X > u + v and X > u)

P(X > u)

=
P(X > u + v)

P(X > u)
since u ≤ u + v

=
e−λ(u+v)

e−λu
from Example 5.22

= e−λv = P(X > v),

so that X has the lack-of-memory property.
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Conversely, suppose that X is positive and continuous, and has the lack-of-memory prop-

erty. Let G(u) = P(X > u) for u ≥ 0. The left-hand side of (11.25) is

P
(
X > u + v

∣∣ X > u
)

=
P(X > u + v)

P(X > u)
=

G(u + v)

G(u)
,

and so G satisfies the ‘functional equation’

G(u + v) = G(u)G(v) for u, v ≥ 0. (11.27)

The function G(u) is non-increasing in the real variable u, and all non-zero non-increasing

solutions of (11.27) are of the form

G(u) = e−λu for u ≥ 0, (11.28)

where λ is some constant. It is an interesting exercise in analysis to derive (11.28) from

(11.27), and we suggest that the reader check this. First, use (11.27) to show that G(n) =
G(1)n for n = 0, 1, 2, . . . , then deduce that G(u) = G(1)u for all non-negative rationals u,

and finally use monotonicity to extend this from the rationals to the reals. 2

Sketch proof of Theorem 11.23 Consider X1 first. Clearly,

P(X1 > u) = P(Nu = 0) for u ≥ 0,

and Theorem 11.6 gives

P(X1 > u) = e−λu for u ≥ 0,

so that X1 has the exponential distribution with parameter λ. From the independence assump-

tion D, arrivals in the interval (0, X1] are independent of arrivals subsequent to X1, and it

follows that the ‘waiting time’ X2 for the next arrival after X1 is independent of X1. Further-

more, arrivals occur ‘homogeneously’ in time (since the probability of an arrival in (t, t + h]
does not depend on t but only on h—remember (11.1)), giving that X2 has the same distribu-

tion as X1. Similarly, all the X i are independent with the same distribution as X1. 2

The argument of the proof above is incomplete, since the step involving independence

deals with an interval (0, X1] of random length. It is not entirely a trivial task to make this step

rigorous, and it is for this reason that the proof is only sketched here. The required property

of a Poisson process is sometimes called the ‘strong Markov property’, and we return to this

for processes in discrete rather than continuous time in Section 12.7.

We have shown above that, if N is a Poisson process with parameter λ, the times

X1, X2, . . . between arrivals in this process are independent and identically distributed with

the exponential distribution, parameter λ. This conclusion characterizes the Poisson process,

in the sense that Poisson processes are the only ‘arrival processes’ with this property. More

properly, we have the following. Let X∗
1, X∗

2 , . . . be independent random variables, each hav-

ing the exponential distribution with parameter λ (> 0), and suppose that the telephone at the

Grand Hotel is replaced by a very special new model which is programmed to ring at the times

T ∗
1 = X∗

1 , T ∗
2 = X∗

1 + X∗
2 , T ∗

3 = X∗
1 + X∗

2 + X∗
3 , . . . ,
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so that the time which elapses between the (i − 1)th and the i th call equals X∗
i . Let

N∗
t = max{k : T ∗

k ≤ t}

be the number of calls which have arrived by time t . Then the process N∗ = (N∗
t : t ≥ 0) is

a Poisson process with rate λ, so that from Bill’s point of view the new telephone behaves in

exactly the same way (statistically speaking) as the old model.

Example 11.29 Suppose that buses for downtown arrive at the bus stop on the corner in the

manner of a Poisson process. Knowing this, David expects to wait an exponentially distributed

period of time before a bus will pick him up. If he arrives at the bus stop and Doris tells him

that she has been waiting 50 minutes already, then this is neither good nor bad news for him,

since the exponential distribution has the lack-of-memory property. Similarly, if he arrives just

in time to see a bus departing, then he need not worry that his wait will be longer than usual.

These properties are characteristics of the Poisson process. △

Exercise 11.30 Let M and N be independent Poisson processes, M having rate λ and N having rate µ.
Use the result of Problem 6.9.4 to show that the process M + N = (Mt + Nt : t ≥ 0) is a Poisson
process with rate λ+ µ. Compare this method with that of Exercise 11.5.

Exercise 11.31 If Ti is the time of the i th arrival in the Poisson process N , show that Nt < k if and only
if Tk > t . Use Theorem 11.23 and the central limit theorem, Theorem 8.25, to deduce that, as t → ∞,

P

(
Nt − λt

√
λt

≤ u

)
→
∫ u

−∞

1
√

2π
e− 1

2
v2

dv for u ∈ R.

Compare this with Exercise 11.20.

Exercise 11.32 Calls arrive at a telephone exchange in the manner of a Poisson process with rate λ, but
the operator is frequently distracted and answers every other call only. What is the common distribution
of the time intervals which elapse between successive calls which elicit responses?

11.4 Population growth, and the simple birth process

The ideas of the last sections have many applications, one of which is a continuous-time

model for population growth. We are thinking here of a simple model for phenomena such as

the progressive cell division of an amoeba, and we shall formulate the process in these terms.

A hypothetical type of amoeba multiplies in the following way. At time t = 0, there are a

number I , say, of initial amoebas in a large pond. As time passes, these amoebas multiply in

number by the process of progressive cell division. When an amoeba divides, the single parent

amoeba is replaced by exactly two identical copies of itself. The number of amoebas in the

pond grows as time passes, but we cannot say with certainty how many there will be in the

future, since cell divisions occur at random times (rather as telephone calls arrived at random

in the earlier model). We make the following two assumptions about this process.2

2In practice, amoebas and bacteria multiply at rates which depend upon their environments. Although there is
considerable variation between the life cycles of cells in the same environment, these generally lack the degrees of
homogeneity and independence which we postulate here.
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Division rate: each amoeba present in the pond at time t has a chance of dividing during the

short time interval (t, t + h]. There exists a constant λ (> 0), called the birth rate, such that

the probability that any such amoeba

(a) divides once in the time interval (t, t + h] equals λh + o(h),

(b) does not divide in the time interval (t, t + h] equals 1 − λh + o(h).

Independence: for each amoeba at time t , all the future divisions of this amoeba occur indep-

endently both of its past history and of the activities (past and future) of all other amoebas

present at time t .

Each amoeba present at time t has probability λh + o(h) of dividing into two amoebas by

time t + h, probability 1 − λh + o(h) of giving rise to one amoeba (itself) by time t + h, and

consequently probability o(h) of giving rise to more than two amoebas by t + h. Let Mt be

the number of amoebas present at time t . From the previous observations, it is not difficult to

write down the way in which the distribution of Mt+h depends on Mt . Suppose that Mt = k.

Then Mt+h ≥ k, and

P
(
Mt+h = k

∣∣ Mt = k
)

= P(no division)

= [1 − λh + o(h)]k

= 1 − λkh + o(h). (11.33)

Also,

P
(
Mt+h = k + 1

∣∣Mt = k
)

= P(exactly one division)

=
(

k

1

)
[λh + o(h)][1 − λh + o(h)]k−1

= λkh + o(h), (11.34)

since there are k possible choices for the cell division. Finally,

P
(
Mt+h ≥ k + 2

∣∣Mt = k
)

= 1 − P
(
Mt+h is k or k + 1

∣∣Mt = k
)

= 1 − [λkh + o(h)] − [1 − λkh + o(h)]
= o(h). (11.35)

Consequently, the process M evolves in very much the same general way as the Poisson

process N , in that if Mt = k, then either Mt+h = k or Mt+h = k + 1 with probability

1 − o(h). The big difference between M and N lies in a comparison of (11.34) and (11.1): the

rate at which M increases is proportional to M itself, whereas a Poisson process increases at a

constant rate. The process M is called a simple (linear) birth process or a pure birth process.

We treat it with the same techniques which we used for the Poisson process.

Theorem 11.36 If M0 = I and t > 0, then

P(Mt = k) =
(

k − 1

I − 1

)
e−Iλt(1 − e−λt )k−I for k = I, I + 1, . . . . (11.37)
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Proof Let

pk(t) = P(Mt = k),

as before. We establish differential–difference equations for pI (t), pI+1(t), . . . in just the

same way as we found (11.11) and (11.12). Thus, we have from the partition theorem that, for

h > 0,

P(Mt+h = k) =
∑

i

P
(
Mt+h = k

∣∣Mt = i
)
P(Mt = i)

=
[
1 − λkh + o(h)

]
P(Mt = k)+

[
λ(k − 1)h + o(h)

]
P(Mt = k − 1)+ o(h)

by (11.33)–(11.35), giving that

pk(t + h)− pk(t) = λ(k − 1)hpk−1(t)− λkhpk(t)+ o(h).

Divide this equation by h and take the limit as h ↓ 0 to obtain

p′
k(t) = λ(k − 1)pk−1(t)− λkpk(t) for k = I, I + 1, . . . . (11.38)

The equation for p′
I (t) involves pI−1(t), and we note that pI−1(t) = 0 for all t . We can solve

(11.38) recursively subject to the boundary condition

pk(0) =

{
1 if k = I,

0 if k 6= I.
(11.39)

That is to say, first find pI (t), then pI+1(t), . . . , and formula (11.37) follows by induction.

The method of generating functions works also. If we multiply through (11.38) by sk and

sum over k, we obtain the partial differential equation

∂G

∂ t
= λs(s − 1)

∂G

∂s
, (11.40)

where G = G(s, t) is the generating function

G(s, t) =
∞∑

k=I

pk(t)s
k .

It is not difficult to solve this differential equation subject to the boundary condition G(s, 0) =
s I , but we do not require such skills from the reader. 2

The mean and variance of Mt may be calculated directly from (11.37) in the usual way.

These calculations are a little complicated since Mt has a negative binomial distribution, and

it is simpler to use the following trick. Writing

µ(t) = E(Mt ) =
∞∑

k=I

kpk(t),

we have, by differentiating blithely through the summation again, that
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µ′(t) =
∞∑

k=I

kp′
k(t) =

∞∑

k=I

k
[
λ(k − 1)pk−1(t)− λkpk(t)

]
(11.41)

from (11.38). We collect the coefficients of pk(t) together here, to obtain

µ′(t) = λ

∞∑

k=I

[
(k + 1)kpk(t)− k2 pk(t)

]
(11.42)

= λ

∞∑

k=I

kpk(t) = λµ(t), (11.43)

which is a differential equation in µ with boundary condition

µ(0) = E(M0) = I.

This differential equation has solution

µ(t) = I eλt , (11.44)

showing that (on average) amoebas multiply at an exponential rate (whereas a Poisson process

grows linearly on average, remember (11.8)). The same type of argument may be used to

calculate E(M2
t ). This is more complicated and leads to an expression for the variance of Mt ,

var(Mt ) = I e2λt(1 − e−λt ). (11.45)

An alternative method of calculating the mean and variance of Mt proceeds by way of the

differential equation (11.40) for the probability generating function G(s, t) of Mt . Remember

that

G(1, t) = 1,
∂G

∂s

∣∣∣∣
s=1

= µ(t).

We differentiate throughout (11.40) with respect to s and substitute s = 1 to obtain

∂2G

∂s∂ t

∣∣∣∣∣
s=1

= λ
∂G

∂s

∣∣∣∣
s=1

.

Assuming that we may interchange the order of differentiation in the first term here, this

equation becomes

µ′(t) = λµ(t),

in agreement with (11.43). The variance may be found similarly, by differentiating twice.

Exercise 11.46 Show that, in the simple birth process above, the period of time during which there are
exactly k (≥ I ) individuals is a random variable having the exponential distribution with parameter λk.

Exercise 11.47 Deduce from the result of Exercise 11.46 that the time TI,J required by the birth process
to grow from size I to size J (> I ) has mean and variance given by

E(TI,J ) =
J−1∑

k=I

1

λk
, var(TI,J ) =

J −1∑

k=I

1

(λk)2
.



11.5 Birth and death processes 193

Exercise 11.48 Show that the variance of the simple birth process Mt is given by

var(Mt ) = I e2λt (1 − e−λt ).

11.5 Birth and death processes

It is usually the case that in any system involving births, there are deaths also. Most telephone

calls last for only a finite time, and most bacteria die out after their phases of reproduction.

We introduce death into the simple birth process of the last section by replacing the division

postulate of the last section by two postulates concerning divisions and deaths, respectively.

We shall suppose that our hypothetical type of amoeba satisfies the following.

Division rate: each amoeba present in the pond at time t has a chance of dividing in the short

time interval (t, t + h]. There exists a constant λ (> 0), called the birth rate, such that the

probability that any such amoeba

(a) divides once during the time interval (t, t + h] equals λh + o(h),

(b) divides more than once during the time interval (t, t + h] equals o(h).

Death rate: each amoeba present at time t has a chance of dying, and hence being removed

from the population, during the short time interval (t, t + h]. There exists a constant µ (> 0),

called the death rate, such that the probability that any such amoeba dies during the time

interval (t, t + h] equals µh + o(h).

We assume also that deaths occur independently of other deaths and of all births. For the

time interval (t, t + h], there are now several possibilities for each amoeba present at time t:

(i) death, with probability µh + o(h),

(ii) a single division, with probability λh + o(h),

(iii) no change of state, with probability [1−λh+o(h)][1−µh+o(h)] = 1−(λ+µ)h+o(h),

(iv) some other combination of birth and death (such as division and death, or two divisions),

with probability o(h).

Only possibilities (i)–(iii) have probabilities sufficiently large to be taken into account. Simil-

arly, the probability of two or more amoebas changing their states (by division or death) during

the time interval (t, t + h] equals o(h).

We write L t for the number of amoebas which are alive at time t , and we find the dis-

tribution of L t in the same way as before. The first step mimics (11.33)–(11.35), and similar

calculations to those equations give that, for k = 0, 1, 2, . . . ,

P(L t+h = k | L t = k) = 1 − (λ+ µ)kh + o(h), (11.49)

P(L t+h = k + 1 | L t = k) = λkh + o(h), (11.50)

P(L t+h = k − 1 | L t = k) = µkh + o(h), (11.51)

P(L t+h > k + 1 or L t+h < k − 1 | L t = k) = o(h). (11.52)

Note that, if L t = k, the rate of birth in the population is λk and the rate of death is µk.

This linearity in k arises because there are k independent possibilities for a birth or a death—

remember (11.34).
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This birth–death process differs from the simple birth process in a very important

respect—it has an absorbing state, in the sense that if at some time there are no living cells,

then there will never be any living cells subsequently.

Unlike the Poisson process and the simple birth process, it is not very easy to write down

the mass function of L t explicitly, since the corresponding differential–difference equations

are not easily solved by recursion. The method of generating functions is still useful.

Theorem 11.53 If L0 = I , then L t has probability generating function

E(sL t ) =





(
λt (1 − s)+ s

λt (1 − s)+ 1

)I

if µ = λ,

(
µ(1 − s)− (µ− λs)et (µ−λ)

λ(1 − s)− (µ− λs)et (µ−λ)

)I

if µ 6= λ.

(11.54)

Proof The differential–difference equations for pk(t) = P(L t = k) are

p′
k(t) = λ(k − 1)pk−1(t)− (λ+ µ)kpk(t)+ µ(k + 1)pk+1(t), (11.55)

valid for k = 0, 1, 2, . . . subject to the convention that p−1(t) = 0 for all t . The boundary

condition is

pk(0) =

{
1 if k = I,

0 if k 6= I.
(11.56)

Recursive solution of (11.55) fails since the equation in p′
0(t) involves both p0(t) and p1(t)

on the right-hand side. We solve these equations by the method of generating functions, first

introducing the probability generating function

G(s, t) = E(sL t ) =
∞∑

k=0

pk(t)s
k .

Multiply throughout (11.55) by sk and sum over k to obtain the partial differential equation

∂G

∂ t
= (λs − µ)(s − 1)

∂G

∂s
,

with boundary condition G(s, 0) = s I . The diligent reader may check that the solution is

given by (11.54). 2

It is possible that this birth–death process L will become extinct ultimately, in that L t = 0

for some t . The probability that this happens is easily calculated from the result of Theorem

11.53.

Theorem 11.57 Let L0 = I , and write e(t) = P(L t = 0) for the probability that the

process is extinct by time t. As t → ∞,

e(t) →
{

1 if λ ≤ µ,

(µ/λ)I if λ > µ.
(11.58)
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Hence, extinction is certain if and only if the death rate is at least as big as the birth rate.

We shall prove Theorem 11.57 directly, while noting two alternative proofs using random

walks and branching processes, respectively.

First, the theorem is reminiscent of the Gambler’s Ruin Problem and Theorem 10.32.

Actually, (11.58) may be derived directly from the conclusion of Theorem 10.32 by studying

what is called the ‘embedded random walk’ of the birth–death process, see Grimmett and

Stirzaker (2001, Sect. 6.11) for the details.

Secondly, there is an ‘embedded branching process’ of amoebas. On dying, an amoeba

is replaced by either no amoeba or by two amoebas, with respective probabilities µ/(λ+ µ)

and λ/(λ+µ). One may now use the extinction probability theorem for branching processes,

Theorem 9.19.

Proof Clearly,

e(t) = P(L t = 0) = G(0, t).

By (11.54),

G(0, t) =





(
λt

λt + 1

)I

if λ = µ,

(
µ− µet (µ−λ)

λ− µet (µ−λ)

)I

if λ 6= µ,

and the result follows immediately. 2

Exercise 11.59 Let m(t) be the expected size at time t of the population in a birth–death process with
birth rate λ and death rate µ. Use (11.55) to show that m satisfies the differential equation

m′(t) = (λ− µ)m(t).

Hence find m(t) in terms of the initial size of the population.

Exercise 11.60 A birth–death process L has birth rate λ and death rate µ. If the population has size k at
time t , show that the subsequent length of time which elapses before there is either a birth or a death is
a random variable having the exponential distribution with parameter (λ+ µ)k.

Exercise 11.61 Let L be a birth–death process with birth rate 1 and death rate 1. Suppose that L0 is
a random variable having the Poisson distribution with parameter α. Show that the probability that the
process is extinct by time t is exp[−α/(t + 1)].

11.6 A simple queueing model

We all know how it feels to be waiting in a queue, whether it be buying postage stamps at the

post office at lunchtime, calling an insurance company, waiting for a response from a website,

or waiting to be called in for a minor operation at the local hospital.

There are many different types of queue, and there are three principal ways in which we

may categorize them, according to the ways in which

(a) people arrive in the system,
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(b) these people are stored in the system prior to their service,

(c) these people are served.

In many queues, only the method (b) of storage of waiting customers can be predicted with

certainty—first come, first served is a common ‘queue discipline’ in shops, although there are

many other possibilities. On the other hand, it is generally impossible to predict exactly when

people will join the queue and how long they will require for service, and this is the reason

why probability theory is important in describing queueing systems. The theory of queues is

an old favourite amongst probabilists, as it is a rich source of interesting and diverse problems.

We shall consider a simple model of a queue. There are many others, most of which are

more complicated than this one, and the reader may find amusement in devising some of these.

Our example goes as follows. In the German delicatessen in the market, Angela is the only

shop assistant. Customers arrive in the shop, wait for their turn to be served by Angela, and

then leave after their service has been completed. There is randomness in the way in which

they arrive and in the lengths of their service times (people rarely visit good delicatessens and

buy only one type of cheese). We suppose the following.

Arrivals: Customers arrive in the manner of a Poisson process with rate λ (> 0). That is to

say, if Nt is the number who have arrived by time t , then N = (Nt : t ≥ 0) is a Poisson

process with rate λ.

Service: The service time of each customer is a random variable having the exponential distri-

bution with parameter µ (> 0), and the service times of different customers are independent

random variables.

Independence: Service times are independent of arrival times, and Angela works no faster

when the shop is crowded than she does when the shop is nearly empty.

Input Output

Queue

Customer
being served

X X X X X

Fig. 11.2 A simple queue.

It is not very important to us how a customer is stored between his or her arrival and

departure, but for the sake of definiteness we shall suppose that Angela tolerates no disorder,

insisting that her customers form a single line and always serving the customer at the head

of this line in the usual way. This queue discipline is called first come, first served or first in,

first out. Thus, Angela’s shop looks something like Figure 11.2. Other delicatessens are less

disciplined, with customers milling around in the shop and the shop assistant serving people

chosen at random.

The arrivals assumption is equivalent to demanding that the times between successive

arrivals are independent, exponentially distributed random variables with parameter λ. Our
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assumption that both inter-arrival times and service times have the exponential distribution is

crucial for this example, since only the exponential distribution has the lack-of-memory prop-

erty, Theorem 11.26. This assumption has the following consequence. If we glance through

the shop window at a certain time t , seeing ten people within, say, then the times of the next

arrival and the next departure do not depend on the times of the last arrival and the last depart-

ure. Thus, for example, for h > 0, the probability of a single arrival during the time interval

(t, t + h] equals λh + o(h), and the probability of no arrival equals 1 − λh + o(h).

Also, if Angela is serving someone at time t , then the probability that she is still serving

this person at time t + h equals P(S > t + h − τ | S > t − τ ), where S is the service time of

the customer in question and τ is the time at which the service period began. Now,

P
(
S > t + h − τ

∣∣ S > t − τ
)

= P(S > h)

= e−µh = 1 − µh + o(h),

by Theorem 11.26 and the lack-of-memory property (11.24). Therefore, for h > 0, if Angela

is serving someone at time t , then the probability that this service is completed during the time

interval (t, t + h] equals µh + o(h).

Let Qt be the number of people in the queue, including the person being served, at time

t , and suppose that Q0 = 0. The process Q = (Qt : t ≥ 0) is a type of birth–death process

since, if Qt = k, say, then Qt+h equals one of k − 1, k, k + 1 with probability 1 − o(h). The

only events which may happen with significant probability (that is, larger than o(h)) during

the time interval (t, t + h] are a single departure, a single arrival, or no change of state. More

precisely, if k ≥ 1,

P
(
Qt+h = k

∣∣ Qt = k
)

= P(no arrival, no departure) + o(h)

= [1 − λh + o(h)][1 − µh + o(h)] + o(h)

= 1 − (λ+ µ)h + o(h), (11.62)

P
(
Qt+h = k − 1

∣∣ Qt = k
)

= P(no arrival, one departure) + o(h)

= [1 − λh + o(h)][µh + o(h)] + o(h)

= µh + o(h), (11.63)

and, for k ≥ 0,

P
(
Qt+h = k + 1

∣∣ Qt = k
)

= P(one arrival, no departure) + o(h)

=

{
[λh + o(h)][1 − µh + o(h)] + o(h) if k ≥ 1,

λh + o(h) if k = 0,

= λh + o(h). (11.64)

Finally,

P
(
Qt+h = 0

∣∣ Qt = 0
)

= P(no arrival) + o(h)

= 1 − λh + o(h). (11.65)

Equations (11.62)–(11.65) are very similar to the corresponding equations (11.49)–(11.51)

for the simple birth–death process, the only significant difference being that arrivals and de-

partures occur here at rates which do not depend upon the current queue size (unless it is
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empty, so that departures are impossible), whereas in the simple birth–death process, the cor-

responding rates are linear functions of the current population size. It may seem at first sight

that this queueing process is simpler than the birth–death process, but the truth turns out to

be the opposite: there is no primitive way of calculating the mass function of Qt for t > 0.

The difficulty is as follows. As usual, we may use (11.62)–(11.65) to establish a system of

differential–difference equations for the probabilities

pk(t) = P(Qt = k),

and these turn out to be

p′
k(t) = λpk−1(t)− (λ+ µ)pk(t)+ µpk+1(t) for k = 1, 2, . . . , (11.66)

and

p′
0(t) = λp0(t)+ µp1(t), (11.67)

subject to the boundary condition

pk(0) =

{
1 if k = 0,

0 otherwise.

We cannot solve this system of equations recursively since the equation (11.67) for p0(t)

involves p1(t) also. Furthermore, the method of generating functions leads to the differential

equation
∂G

∂ t
=

s − 1

s

[
λsG − µG + µp0(t)

]

for G(s, t) = E(sQ t ), and this equation involves the unknown function p0(t). Laplace trans-

forms turn out to be the key to solving (11.66) and (11.67), and the answer is not particularly

pretty:

pk(t) = Jk(t)− Jk+1(t) for k = 0, 1, 2, . . . , (11.68)

where

Jk(t) =
∫ t

0

(
λ

µ

) 1
2 k

k

s
e−s(λ+µ) Ik(2s

√
λµ) ds

and Ik (t) is a modified Bessel function. We shall not prove this here, of course, but refer those

interested to Feller (1971, p. 482).

The long-term behaviour of the queue is of major interest. If service times are long in

comparison with inter-arrival times, the queue will tend to grow, so that after a long period of

time it will be very large. On the other hand, if service times are relatively short, it is reasonable

to expect that the queue length will settle down into some ‘steady state’. The asymptotic

behaviour of the queue length Qt as t → ∞ is described by the sequence

πk = lim
t→∞

pk(t) for k = 1, 2, . . . , (11.69)

of limiting probabilities, and it is to this sequence π0, π1, . . . that we turn our attention. It is

in fact the case that the limits exist in (11.69), but we shall not prove this. Neither do we prove

that
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0 = lim
t→∞

p′
k(t) for k = 0, 1, 2, . . . , (11.70)

which follows intuitively from (11.69) by differentiating both sides of (11.69) and interchang-

ing the limit and the differential operator. The values of the πk are found by letting t → ∞
in (11.66)–(11.67) and using (11.69)–(11.70) to obtain the following difference equations for

the sequence π0, π1, . . . :

0 = λπk−1 − (λ+ µ)πk + µλk+1 for k = 1, 2, . . . , (11.71)

0 = −λπ0 + µπ1. (11.72)

We call a non-negative sequence π0, π1, . . . a steady-state distribution of the queue if it sat-

isfies (11.71)–(11.72) together with
∞∑

k=0

πk = 1. (11.73)

Theorem 11.74 If λ < µ, the queue has a unique steady-state distribution given by

πk =
(

1 −
λ

µ

)(
λ

µ

)k

for k = 0, 1, 2, . . . . (11.75)

If λ ≥ µ, there is no steady-state distribution.

We call the ratio ρ = λ/µ the traffic intensity of the queue; ρ is the ratio of the arrival rate

to the service rate. We may interpret Theorem 11.74 as follows:

(a) if ρ < 1, the queue length Qt settles down as t → ∞ into a steady-state or ‘equilibrium’

distribution, for which the probability that k customers are present equals (1 − ρ)ρk ,

(b) if ρ ≥ 1, there is no steady-state distribution, indicating that the rate of arrival of new

customers is too large for the single server to cope, and the queue length either grows

beyond all bounds or it has fluctuations of large order.

Theorem 11.74 may remind the reader of the final theorem, Theorem 10.32, about a ran-

dom walk with an absorbing barrier. Just as in the case of the simple birth–death process, there

is a random walk embedded in this queueing process, and this random walk has a ‘retaining’

barrier at 0 which prevents the walk from visiting the negative integers but allows the walk to

revisit the positive integers.

Proof of Theorem 11.74 We wish to solve the difference equations (11.71)–(11.72), and we

do this recursively rather than using the general method of Appendix B. We find π1 in terms

of π0 from (11.72):

π1 = ρπ0.

We substitute this into (11.71) with k = 1 to find that

π2 = ρ2π0,

and we deduce the general solution
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πk = ρkπ0 for k = 0, 1, 2, . . . (11.76)

by induction on k. Now, π0, π1, . . . is a steady-state solution if and only if (11.73) holds. By

(11.76),
∞∑

k=0

πk = π0

∞∑

k=0

ρk .

If ρ < 1, then (11.73) holds if and only if π0 = 1 − ρ. On the other hand, if ρ ≥ 1, (11.73)

holds for no value of π0, and the proof is complete. 2

Exercise 11.77 If Q is the above queueing process with arrival rate λ and service rate µ, and a customer
arrives to find exactly k customers waiting ahead (including the person being served), show that this
customer leaves the queueing system after a length of time which has the gamma distribution with
parameters k + 1 and µ.

Exercise 11.78 Show that pk(t) = (1 − ρ)ρk is a solution to equations (11.66)–(11.67) so long as
ρ = λ/µ < 1. This proves that, if the process begins in its steady-state distribution, then it has this
distribution for all time.

Exercise 11.79 A queue has three servers A1, A2, A3, and their service times are independent random
variables, Ai ’s service times having the exponential distribution with parameterµi . An arriving customer
finds all three servers unoccupied and chooses one at random, each being equally likely. If the customer
is still being served at time t , what is the probability that A1 was chosen?

11.7 Problems

1. If N is a Poisson process with rate λ, what is the distribution of Nt − Ns for 0 ≤ s ≤ t?

2. If N is a Poisson process with rate λ, show that cov(Ns , Nt ) = λs if 0 ≤ s < t .

3. Three apparently identical robots, called James, Simon, and John, are set to work at time
t = 0. Subsequently, each stops working after a random length of time, independently of the
other two, and the probability that any given robot stops in the short time interval (t, t + h) is
λh + o(h). Show that each robot works for a period of time with the exponential distribution,
parameter λ, and that the probability that at least one of the three has stopped by time t is

1 − e−3λt .

What is the probability that they stop work in the order James, Simon, John?

* 4. Let X1, X2, X3, . . . be a sequence of independent, identically distributed random variables
having the distribution function

F(x) =
{

1 − e−λx for x ≥ 0,

0 for x < 0,

where λ is a positive constant. If Sn =
∑n

i=1 Xi , prove that Sn has density function

fn(x) =
1

(n − 1)!
λnxn−1e−λx for x ≥ 0.

Deduce that Nt = max{n : Sn ≤ t} has a Poisson distribution.
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The excess life et is defined by
et = SNt +1 − t.

If g(t, x) = P(et > x) then, by considering the distribution of et conditional on the value of
X1, show that

g(t, x) = e−λ(t+x) +
∫ t

0
g(t − u, x)λe−λu du.

Find a solution of this equation. (Oxford 1976F)

5. Tourist coaches arrive at Buckingham Palace in the manner of a Poisson process with rate
λ, and the numbers of tourists in the coaches are independent random variables, each having
probability generating function G(s). Show that the total number of tourists who have arrived
at the palace by time t has probability generating function

exp
(
λt [G(s)− 1]

)
.

This is an example of a so-called ‘compound’ Poisson process.

6. The probability of one failure in a system occurring in the time interval (t, t+τ) is λ(t)τ+o(τ),
independently of previous failures, and the probability of more than one failure in this interval
is o(τ), where λ is a positive integrable function called the rate function.

Prove that the number of failures in (0, t) has the Poisson distribution with mean
∫ t

0 λ(x) dx .

Let T be the time of occurrence of the first failure. Find the probability density function of T

and show that, if λ(t) = c/(1 + t) where c > 0, the expected value of T is finite if and only if
c > 1. (Oxford 1981F)

This is an example of a so-called ‘inhomogeneous’ Poisson process.

7. A ‘doubly stochastic’ Poisson process is an inhomogenous Poisson process in which the rate
function λ(t) is itself a random process. Show that the simple birth process with birth rate λ is
a doubly stochastic Poisson process N for which λ(t) = λNt .

8. In a simple birth process with birth rate λ, find the moment generating function of the time
required by the process to grow from size I to size J (> I ).

9. Show that the moment generating function of the so-called ‘extreme-value’ distribution with
density function

f (x) = exp(−x − e−x ) for x ∈ R,

is
M(t) = Ŵ(1 − t) if t < 1.

Let TJ be the time required by a simple birth process with birth rate λ to grow from size 1 to
size J , and let

UJ = λTJ − log J.

Show that UJ has moment generating function

MJ (t) =
1

J t

J−1∏

i=1

(
i

i − t

)
if t < 1,

and deduce that, as J → ∞,

MJ (t) → M(t) if t < 1.

[You may use the fact that J tŴ(J − t)/Ŵ(J )→ 1 as J → ∞.] It follows that the distribution
of UJ approaches the extreme-value distribution as J → ∞.
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10. Consider a birth–death process whose birth and death rates satisfy λ = µ. If the initial popula-
tion size is I , show that the time T until the extinction of the process has distribution function

P(T ≤ t) =
(

λt

λt + 1

)J

for t > 0,

and deduce that, as I → ∞, the random variable UI = λT/I has limiting distribution function
given by

P(UI ≤ t) → e−1/t for t ≥ 0.

11. A population develops according to the following rules:

(a) during the interval (t, t + dt), an individual existing at time t has (independently of its
previous history) probability λdt + o(dt) of having a single offspring (twins, triplets, etc,
being impossible) and a probability µdt + o(dt) of dying, where λ and µ are absolute
constants,

(b) in the interval (t, t + dt), there is a probability θdt + o(dt) that a single immigrant will
join the population,

(c) subpopulations descending from distinct individuals develop independently.

If pn(t) denotes the probability that the population consists of n individuals at time t , show
that

φ(z, t) =
∞∑

n=0

zn pn(t)

satisfies the partial differential equation

∂φ

∂t
= (λz − µ)(z − 1)

∂φ

∂z
+ θ(z − 1)φ.

In the particular case when λ = µ = θ = 1 and the population is empty at time t = 0, show
that the size of the population at time t has mean t , and calculate its variance. (Oxford 1964F)

12. Consider the ‘birth–death–immigration’ process of Problem 11.7.11 and suppose that
λ,µ, θ > 0. Use the ideas and methods of Section 11.6 to show that this process has a steady-
state distribution if and only if λ < µ, and in this case, the steady-state distribution is given
by

πn = π0
1

n!

(
λ

µ

)n Ŵ(n + (θ/λ))

Ŵ(θ/λ)
for n = 0, 1, 2, . . . ,

where π0 is chosen so that
∑

n πn = 1.

13. The ‘immigration–death’ process is obtained from the birth–death–immigration process of
Problem 11.7.11 by setting the birth rate λ equal to 0. Let D = (Dt : t ≥ 0) be an immigration–
death process with positive immigration rate θ and death rate µ. Suppose that D0 = I , and set
up the system of differential equations which are satisfied by the probability functions

pk(t) = P(Dt = k).

Deduce that the probability generating function G(s, t) = E(s Dt ) satisfies the partial differen-
tial equation

∂G

∂t
= (s − 1)

(
θG − µ

∂G

∂s

)

subject to the boundary condition G(s, 0) = s I . Solve this equation to find that

G(s, t) =
[
1 + (s − 1)e−µt

]I
exp

[
θ(s − 1)(1 − e−µt )/µ

]
.
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14. In the immigration–death process of Problem 11.7.13, show that there is a steady-state distri-
bution (in the jargon of Section 11.6) for all positive values of θ and µ. Show further that this
distribution is the Poisson distribution with parameter θ/µ.

15. A robot can be in either of two states: state A (idle) and state B (working). In any short time
interval (t, t + h), the probability that it changes its state is λh + o(h), where λ > 0. If p(t) is
the probability that it is idle at time t given that it was idle at time 0, show that

p′(t) = −2λp(t)+ λ.

Hence find p(t).

Let q(t) be the probability that the robot is working at time t given that it was working at time
0. Find q(t), and find the distribution of the earliest time T at which there is a change of state.

If there are N robots operating independently according to the above laws and pk(t) is the
probability that exactly k are idle at time t , show that

p′
k (t) = λ(N − k + 1)pk−1(t)− λN pk (t)+ λ(k + 1)pk+1(t),

for k = 0, 1, . . . , N , subject to the rule that p−1(t) = pN+1(t) = 0.

If all the robots are idle at time 0, show that the number of idle robots at time t has the binomial
distribution with parameters N and e−λt cosh λt .

16. Prove that, in a queue whose input is a Poisson process and whose service times have the
exponential distribution, the number of new arrivals during any given service time is a random
variable with the geometric distribution.

17. Customers arrive in a queue according to a Poisson process with rate λ, and their service times
have the exponential distribution with parameter µ. Show that, if there is only one customer in
the queue, then the probability that the next customer arrives within time t and has to wait for
service is

λ

λ+ µ
(1 − e−(λ+µ)t ).

18. Customers arrive in a queue according to a Poisson process with rate λ, and their service times
have the exponential distribution with parameter µ, where λ < µ. We suppose that the number
Q0 of customers in the system at time 0 has distribution

P(Q0 = k) = (1 − ρ)ρk for k = 0, 1, 2, . . . ,

where ρ = λ/µ, so that the queue is ‘in equilibrium’ by the conclusion of Exercise 11.78.
If a customer arrives in the queue at time t , find the moment generating function of the total
time which it spends in the system, including its service time. Deduce that this time has the
exponential distribution with parameter µ(1 − ρ).

19. Customers arrive at the door of a shop according to a Poisson process with rate λ, but they are
unwilling to enter a crowded shop. If a prospective customer sees k people inside the shop, he

or she enters the shop with probability ( 1
2
)k and otherwise leaves, never to return. The service

times of customers who enter the shop are random variables with the exponential distribution,
parameter µ. If Qt is the number of people within the shop (excluding the single server) at
time t , show that pk(t) = P(Qt = k) satisfies

p′
k (t) = µpk+1(t)−

(
λ

2k
+ µ

)
pk(t)+

λ

2k−1
pk−1(t) for k = 1, 2, . . . ,

p′
0(t) = µp1(t)− λp0(t).
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Deduce that there is a steady-state distribution for all positive values of λ and µ, and that this
distribution is given by

πk = π02− 1
2 k(k−1)ρk for k = 0, 1, 2 . . . ,

where ρ = λ/µ and π0 is chosen appropriately.

20. (a) The fire alarm in Mill Lane is set off at random times. The probability of an alarm during
the time interval (u, u + h) is λ(u)h + o(h), where the ‘intensity function’ λ(u) may vary
with the time u. Let N(t) be the number of alarms by time t , and set N(0) = 0. Show,
subject to reasonable extra conditions to be stated clearly, that pi (t) = P(N(t) = i)

satisfies

p′
i (t) = −λ(t)pi (t), p′

i (t) = λ(t)
[

pi−1(t)− pi (t)
]

for i ≥ 1.

Deduce that N(t) has the Poisson distribution with parameter 3(t) =
∫ 1

0 λ(u) du.
(b) The fire alarm in Clarkson Road is different. The number M(t) of alarms by time t is

such that
P
(
M(t + h) = m + 1

∣∣M(t) = m
)

= λmh + o(h),

where λm = αm + β, m ≥ 1, and α, β > 0. Show, subject to suitable extra conditions,
that pm (t) = P(M(t) = m) satisfies a set of differential–difference equations to be
specified. Deduce without solving these equations in their entirety that M(t) has mean
β(eαt − 1)/α, and find the variance of M(t).

(Cambridge 2001)

21. (a) Define an inhomogeneous Poisson process with rate function λ(u).
(b) Show that the number of arrivals in an inhomogeneous Poisson process during the interval

(0, t) has the Poisson distribution with mean
∫ t

0 λ(u) du.
(c) Suppose that 3 = (3(t) : t ≥ 0) is a non-negative, real-valued random process. Con-

ditional on 3, let N = (N(t) : t ≥ 0) be an inhomogeneous Poisson process with rate
function3(u). Such a process N is called a doubly stochastic Poisson process. Show that
the variance of N(t) cannot be less than its mean.

(d) Now consider the process M(t) obtained by deleting every odd-numbered point in an
ordinary Poisson process with rate λ. Check that

E(M(t)) = 1
4
(2λt + e−2λt − 1), var(M(t)) = 1

16
(4λt − 8λte−2λt − e−4λt + 1).

Deduce that M(t) is not a doubly stochastic Poisson process.

(Cambridge 2011)

22. (a) Give the definition of a Poisson process N = (Nt : t ≥ 0) with rate λ, using its transition
rates. Show that, for each t ≥ 0, the distribution of Nt is Poisson with a parameter to be
specified.
Let J0 = 0 and let J1, J2, . . . denote the jump times of N . What is the distribution of
(Jn+1 − Jn : n ≥ 0)? You do not need to justify your answer.

(b) Let n ≥ 1. Compute the joint probability density function of (J1, J2, . . . , Jn) given
{Nt = n}. Deduce that, given {Nt = n}, (J1, J2, . . . , Jn) has the same distribution as
the non-decreasing rearrangement of n independent uniform random variables on [0, t].

(c) Starting from time 0, passengers arrive on platform 9 3
4

at King’s Cross station, with
constant rate λ > 0, in order to catch a train due to depart at time t > 0. Using the above
results, or otherwise, find the expected total time waited by all passengers (the sum of the
passengers’ waiting times).

(Cambridge 2012)
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Markov chains

Summary. The chapter begins with an introduction to discrete-time

Markov chains, and to the use of matrix products and linear algebra in

their study. The concepts of recurrence and transience are introduced,

and a necessary and sufficient criterion for recurrence is proved. This

is used to derive Pólya’s theorem: symmetric random walk is recur-

rent in one and two dimensions, and transient in higher dimensions.

It is shown how to calculate hitting probabilities and hitting times.

Stopping times are introduced, and the strong Markov property is

presented. After a section on the classification of states, there is a dis-

cussion of invariant distributions. The convergence theorem is proved

for positive recurrent chains. A criterion for time reversibility is pre-

sented, and applied in the special case of random walk on a finite

graph.

12.1 The Markov property

A stochastic process is said to have the ‘Markov property’ if, conditional on its present value,

its future is independent of its past. This is a very restrictive assumption, but it has two benefits.

First, many processes in nature may be thus modelled, and secondly, the mathematical theory

of such processes is strikingly beautiful and complete.

Let S be a countable set called the state space, and let X = (Xn : n ≥ 0) be a sequence

of random variables taking values in S. The Xn are functions on some common probability

space, but we shall not be specific about that. The following is an informal way of explaining

what it means to be a Markov chain: the sequence X is a Markov chain if, conditional on the

present value Xn , the future (Xr : r > n) is independent of the past (Xm : m < n).

Definition 12.1 The sequence X is called a Markov chain if it satisfies the Markov
property

P
(
Xn+1 = in+1

∣∣ X0 = i0, X1 = i1, . . . , Xn = in

)
= P

(
Xn+1 = in+1

∣∣ Xn = in

)

(12.2)

for all n ≥ 0 and all i0, i1, . . . , in+1 ∈ S. The Markov chain is called homogeneous if,

for all i, j ∈ S, the conditional probability P(Xn+1 = j | Xn = i ) does not depend on

the value of n.
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Here are some examples of Markov chains. Each has a coherent theory relying on an

assumption of independence tantamount to the Markov property.

(a) Branching processes. The branching process of Chapter 9 is a simple model of the

growth of a population. Each member of the nth generation has a number of offspring

that is independent of the past.

(b) Random walk. A particle performs a random walk on the line, as in Chapter 10. At each

epoch of time, it jumps a random distance that is independent of previous jumps.

(c) Poisson process. The Poisson process of Section 11.2 satisfies a Markov property in

which time is a continuous variable rather than a discrete variable, and thus the Poisson

process is an example of a continuous-time Markov chain. The Markov property holds

since arrivals after time t are independent of arrivals before t .

(d) Markov chain Monte Carlo. Here is an important example of the use of Markov chains

in statistics. Whereas classical statistics results in a simple estimate of an unknown par-

ameter, Bayesian statistics results in a distribution. Such ‘posterior’ distributions are

often complicated, and it can be difficult to extract information. The Markov chain Monte

Carlo method works as follows. First, construct a Markov chain with the posterior π as

its so-called invariant distribution. Secondly, simulate this chain for a sufficiently long

time that the outcome is ‘nearly’ distributed as π .

The basic theory of Markov chains is presented in this chapter. For simplicity, all Markov

chains here will be assumed to be homogeneous. In order to calculate probabilities associated

with such a chain, we need to know two quantities:

(a) the transition matrix P = (pi, j : i, j ∈ S) given by pi, j = P(X1 = j | X0 = i), and

(b) the initial distribution λ = (λi : i ∈ S) given by λi = P(X0 = i ).

By the assumption of homogeneity,

P(Xn+1 = j | Xn = i) = pi, j for n ≥ 0.

The pair (λ, P) is characterized as follows.

Proposition 12.3

(a) The vector λ is a distribution in that λi ≥ 0 for i ∈ S, and
∑

i∈S λi = 1.

(b) The matrix P = (pi, j ) is a stochastic matrix in that

(i) pi, j ≥ 0 for i, j ∈ S, and

(ii)
∑

j∈S pi, j = 1 for i ∈ S, so that P has row sums 1.

Proof (a) Since λi is a probability, it is non-negative. Also,
∑

i∈S

λi =
∑

i∈S

P(X0 = i) = P(X0 ∈ S) = 1.

(b) Since pi, j is a probability, it is non-negative. Finally,
∑

j∈S

pi, j =
∑

j∈S

P(X1 = j | X0 = i)

= P(X1 ∈ S | X0 = i ) = 1. 2
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The following will be useful later.

Theorem 12.4 Let λ be a distribution and P a stochastic matrix. The random sequence

X = (Xn : n ≥ 0) is a Markov chain with initial distribution λ and transition matrix P

if and only if

P
(
X0 = i0, X1 = i1, . . . , Xn = in

)
= λi0 pi0,i1 · · · pin−1,in (12.5)

for all n ≥ 0 and i0, i1, . . . , in ∈ S.

Proof Write Ak for the event {Xk = ik}, so that (12.5) may be written as

P(A0 ∩ A1 ∩ · · · ∩ An) = λi0 pi0,i1 · · · pin−1,in . (12.6)

Suppose X is a Markov chain with initial distribution λ and transition matrix P. We prove

(12.6) by induction on n. It holds trivially when n = 0. Suppose N (≥ 1) is such that (12.6)

holds for n < N . Then

P(A0 ∩ A1 ∩ · · · ∩ AN ) = P(A0 ∩ A1 ∩ · · · ∩ AN−1)P
(

AN

∣∣ A0 ∩ A1 ∩ · · · ∩ AN−1

)

= P(A0 ∩ A1 ∩ · · · ∩ AN−1)P(AN | AN−1)

by the Markov property. Now P(AN | AN−1) = piN−1,iN , and the induction step is complete.

Suppose conversely that (12.6) holds for all n and sequences (im). Setting n = 0, we

obtain the initial distribution P(X0 = i0) = λi0 . Now,

P
(

An+1

∣∣ A0 ∩ A1 ∩ · · · ∩ An

)
=

P(A0 ∩ A1 ∩ · · · ∩ An+1)

P(A0 ∩ A1 ∩ · · · ∩ An)

so that, by (12.6),

P
(
An+1

∣∣ A0 ∩ A1 ∩ · · · ∩ An

)
= pin,in+1

. (12.7)

Since this does not depend on the states i0, i1, . . . , in−1, X is a homogeneous Markov chain

with transition matrix P.

The last step may be made more formal by writing

P(An+1 | An) =
P(An ∩ An+1)

P(An)

and

P(An ∩ An+1) =
∑

i0,i1,...,in−1

P(A0 ∩ A1 ∩ · · · ∩ An ∩ An+1)

=
∑

i0,i1,...,in−1

P
(
An+1

∣∣ A0 ∩ A1 ∩ · · · ∩ An

)
P(A0 ∩ A1 ∩ · · · ∩ An)

= pin,in+1 P(An),

by (12.7). 2
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The Markov property (12.2) asserts in essence that the past affects the future only via the

present. This is made formal in the next theorem, in which Xn is the present value, F is a

future event, and H is a historical event.

Theorem 12.8 (Extended Markov property) Let X be a Markov chain. For n ≥ 0, for

any event H given in terms of the past history X0, X1, . . . , Xn−1, and any event F given

in terms of the future Xn+1, Xn+2, . . . ,

P(F | Xn = i, H ) = P(F | Xn = i) for i ∈ S. (12.9)

Proof A slight complication arises from the fact that F may depend on the infinite future.

There is a general argument of probability theory that allows us to restrict ourselves to the

case when F depends on the values of the process at only finitely many times, and we do not

explain this here.

By the definition of conditional probability and Theorem 12.4,

P(F | Xn = i, H ) =
P(H, Xn = i, F)

P(H, Xn = i )

=
∑
<n

∑
>n λi0 pi0,i1 · · · pin−1,i pi,in+1

· · ·∑
<n λi0 pi0,i1 · · · pin−1,i

=
∑

>n

pi,in+1 pin+1,in+2 · · ·

= P(F | Xn = i ),

where
∑
<n sums over all sequences (i0, i1, . . . , in−1) corresponding to the event H , and∑

>n sums over all sequences (in+1, in+2, . . . ) corresponding to the event F . 2

Exercise 12.10 Let Xn be the greatest number shown in the first n throws of a fair six-sided die. Show
that X = (Xn : n ≥ 1) is a homogeneous Markov chain, and write down its transition probabilities.

Exercise 12.11 Let X and Y be symmetric random walks on the line Z. Is X + Y necessarily a Markov
chain? Explain.

Exercise 12.12 A square matrix with non-negative entries is called doubly stochastic if all its row sums
and column sums equal 1. If P is doubly stochastic, show that Pn is doubly stochastic for n ≥ 1.

12.2 Transition probabilities

Let X be a Markov chain with transition matrix P = (pi, j ). The elements pi, j are called the

one-step transition probabilities. More generally, the n-step transition probabilities are given

by

pi, j (n) = P(Xn = j | X0 = i),

and they form a matrix called the n-step transition matrix P(n) = (pi, j (n) : i, j ∈ S). The

matrices P(n) satisfy a collection of equations named after Chapman and Kolmogorov.
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Theorem 12.13 (Chapman–Kolmogorov equations) We have that

pi, j (m + n) =
∑

k∈S

pi,k(m)pk, j (n)

for i, j ∈ S and m, n ≥ 0. That is to say, P(m + n) = P(m)P(n).

Proof By the definition of conditional probability,

pi, j (m + n) = P(Xm+n = j | X0 = i)

=
∑

k∈S

P
(
Xm+n = j

∣∣ Xm = k, X0 = i
)
P(Xm = k | X0 = i ). (12.14)

By the extended Markov property, Theorem 12.8,

P
(
Xm+n = j

∣∣ Xm = k, X0 = i
)

= P(Xm+n = j | Xm = k),

and the claim follows. 2

By the Chapman–Kolmogorov equations, Theorem 12.13, the n-step transition probab-

ilities form a matrix P(n) = (pi, j (n)) that satisfies P(n) = P(1)n = Pn . One way of

calculating the probabilities pi, j (n) is therefore to find the nth power of the matrix P. When

the state space is finite, then so is P, and this calculation is usually done best by diagonalizing

P. We illustrate this with an example.

Example 12.15 (Two-state Markov chain) Suppose S = {1, 2} and

P =

(
1 − α α

β 1 − β

)
,

where α, β ∈ (0, 1). Find the n-step transition probabilities.

Solution A (by diagonalization) In order to calculate the n-step transition matrix Pn , we shall

diagonalize P. The eigenvalues κ of P are the roots of the equation det(P − κ I ) = 0, which

is to say that (1 − α − κ)(1 − β − κ)− αβ = 0, with solutions

κ1 = 1, κ2 = 1 − α − β.

Therefore,

P = U−1

(
1 0

0 1 − α − β

)
U

for some invertible matrix U . It follows that

Pn = U−1

(
1 0

0 (1 − α − β)n

)
U,
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and so

p1,1(n) = A + B(1 − α − β)n, (12.16)

for some constants A, B which are found as follows. Since p1,1(0) = 1 and p1,1(1) = 1 − α,

we have that A + B = 1 and A + B(1 − α − β) = 1 − α. Therefore,

A =
β

α + β
, B =

α

α + β
.

Now, p1,2(n) = 1 − p1,1(n), and p2,2(n) is found by interchanging α and β. In summary,

Pn =
1

α + β

(
β + α(1 − α − β)n α − α(1 − α − β)n

β − β(1 − α − β)n α + β(1 − α − β)n

)
.

We note for future reference that

Pn →
1

α + β

(
β α

β α

)
as n → ∞,

which is to say that

pi,1(n) →
β

α + β
, pi,2(n) →

α

α + β
for i = 1, 2.

This conclusion may be stated as follows. The distribution of Xn settles down to a limiting

distribution (β, α)/(α + β), which does not depend on the choice of initial state i . This hints

at a general property of Markov chains to which we shall return in Sections 12.9–12.10.

Solution B (by difference equations) By conditioning on the value of Xn (or, alternatively,

by the Chapman–Kolmogorov equations),

p1,1(n + 1) = P(Xn+1 = 1 | X0 = 1)

= P(Xn+1 = 1 | Xn = 1)p1,1(n)+ P(Xn+1 = 1 | Xn = 2)p1,2(n)

= (1 − α)p1,1(n)+ βp1,2(n)

= (1 − α)p1,1(n)+ β(1 − p1,1(n)).

This is a difference equation with boundary condition p1,1(0) = 1. Solving it in the usual

way, we obtain (12.16). This is a neat solution when there are only two states, but the solution

is more complicated when there are more than two. △

Finally, we summarize the matrix method illustrated in Example 12.15. Suppose the state

space is finite, |S| = N , say, so that P is an N × N matrix. It is a general result for stochastic

matrices that κ1 = 1 is an eigenvalue of P, and no other eigenvalue has larger absolute

value.1 We write κ1 (= 1), κ2, . . . , κN for the (possibly complex) eigenvalues of P , arranged

in decreasing order of absolute value. We assume for simplicity that the κi are distinct, since

1This is part of the so-called Perron–Frobenius theorem, for which the reader is referred to Grimmett and Stirzaker
(2001, Sect. 6.6).
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the diagonalization of P is more complicated otherwise. There exists an invertible matrix U

such that P = U−1 K U , where K is the diagonal matrix with entries κ1, κ2, . . . , κN . Then

Pn = (U−1 K U)n = U−1 K nU = U−1




κn
1 0 · · · 0

0 κn
2 · · · 0

...
...
. . . 0

0 0 · · · κn
N




U, (12.17)

from which the individual probabilities pi, j (n) may in principle be found.

The situation is considerably simpler if the chain has two further properties that will be

encountered soon, namely ‘irreducibility’ (see Section 12.3) and ‘aperiodicity’ (see Definition

12.74 and Theorem 12.75). Under these conditions, by the Perron–Frobenius theorem, κ1 = 1

is the unique eigenvalue with absolute value 1, so that κn
k → 0 as n → ∞, for k ≥ 2. By

(12.17), the long-run transition probabilities of the chain satisfy

Pn → U−1




1 0 · · · 0

0 0 · · · 0

...
...
. . . 0

0 0 · · · 0




U as n → ∞. (12.18)

One may gain further information from (12.18) as follows. The rows of U are the normalized

left eigenvectors of P , and the columns of U−1 are the normalized right eigenvectors. Since

P is stochastic, P1′ = 1′, where 1′ is the column vector of ones. Therefore, the first column

of U−1 is constant. By examining the product in (12.18), we find that pi, j (n) → π j for some

vector π = (π j : j ∈ S) that does not depend on the initial state i .

Remark 12.19 (Markov chains and linear algebra) Much of the theory of Markov chains

involves the manipulation of vectors and matrices. The equations are usually linear, and thus

much of the subject can be phrased in the language of linear algebra. For example, if X0 has

distribution λ, interpreted as a row vector (λi : i ∈ S), then

P(X1 = j) =
∑

i∈S

λi pi, j for j ∈ S,

so that the distribution of X1 is the row vector λP. By iteration, X2 has distribution λP2,

and so on. We therefore adopt the convention that probability distributions are by default row

vectors, and they act on the left side of matrices. Thus, λ′ denotes the transpose of the row

vector λ, and is itself a column vector.

Exercise 12.20 Let X be a Markov chain with transition matrix P, and let d ≥ 1. Show that Yn = Xnd

defines a Markov chain with transition matrix Pd .

Exercise 12.21 A fair coin is tossed repeatedly. Show that the number Hn of heads after n tosses forms
a Markov chain.

Exercise 12.22 A flea hops randomly between the vertices of a triangle. Find the probability that it is
back at its starting point after n hops.
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12.3 Class structure

An important element in the theory of Markov chains is the interaction between the state space

S and the transition mechanism P .

Let X be a homogeneous Markov chain with state space S and transition matrix P. For

i, j ∈ S, we say that i leads to j , written i → j , if pi, j (n) > 0 for some n ≥ 0. By setting

n = 0, we have that i → i for all i ∈ S. We write i ↔ j if i → j and j → i , and in this case

we say that i and j communicate.

Proposition 12.23 The relation ↔ is an equivalence relation.

Proof We must show that the relation ↔ is reflexive, symmetric, and transitive. Since i → i ,

we have that i ↔ i . The relation is trivially symmetric in that j ↔ i whenever i ↔ j . Suppose

that i, j, k ∈ S satisfy i ↔ j and j ↔ k. Since i → j and j → k, there exist m, n ≥ 0 such

that pi, j (m) > 0 and p j,k(n) > 0. By the Chapman–Kolmogorov equations, Theorem 12.13,

pi,k(m + n) =
∑

l∈S

pi,l(m)pl,k(n)

≥ pi, j (m)p j,k(n) > 0,

so that i → k. Similarly, k → i , and hence i ↔ k. Therefore, ↔ is transitive. 2

Since ↔ is an equivalence relation, it has equivalence classes, namely the subsets of S of

the form Ci = { j ∈ S : i ↔ j }. These classes are called communicating classes. The chain X

(or the state space S) is called irreducible if there is a single communicating class, which is to

say that i ↔ j for all i, j ∈ S.

A subset C ⊆ S is called closed if

i ∈ C, i → j ⇒ j ∈ C. (12.24)

If the chain ever hits a closed set C , then it remains in C forever afterwards. If a singleton set

{i} is closed, we call i an absorbing state.

Proposition 12.25 A subset C of states is closed if and only if

pi, j = 0 for i ∈ C, j /∈ C. (12.26)

Proof Let C ⊆ S. If (12.26) fails, then so does (12.24), and C is not closed.

Suppose conversely that (12.26) holds. Let k ∈ C , l ∈ S be such that k → l. Since k → l,

there exists m ≥ 0 such that P(Xm = l | X0 = k) > 0, and so there exists a sequence

k0 (= k), k1, . . . , km (= l) with pkr ,kr+1 > 0 for r = 0, 1, . . . ,m − 1. By (12.26), kr ∈ C for

all r , so that l ∈ C . Statement (12.24) follows. 2
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1

2

3

4

5
6

C1

C2

C3

Fig. 12.1 The arrows indicate possible transitions of the chain of Example 12.27. The communi-
cating classes are circled.

Example 12.27 Let S = {1, 2, 3, 4, 5, 6} and

P =




1
2

1
2

0 0 0 0

0 0 1 0 0 0

1
3

0 0 1
3

1
3

0

0 0 0 1
2

1
2

0

0 0 0 0 0 1

0 0 0 0 1 0




.

Possible transitions of the chain are illustrated in Figure 12.1. The equivalence classes are

C1 = {1, 2, 3}, C2 = {4}, and C3 = {5, 6}. The classes C1 and C2 are not closed, but C3 is

closed. △

Exercise 12.28 Find the communicating classes, and the closed communicating classes, when the tran-
sition matrix is

P =




1
2

0 0 0 1
2

0 1
2

0 1
2

0

0 0 1 0 0

0 1
4

1
4

1
4

1
4

1
2

0 0 0 1
2




.

It may be useful to draw a diagram.

Exercise 12.29 If the state space is finite, show that there must exist at least one closed communicating
class. Give an example of a transition matrix with no such class.
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12.4 Recurrence and transience

Let X be a homogeneous Markov chain with state space S and transition matrix P . For reasons

of economy of notation, we write henceforth Pi (A) for P(A | X0 = i ), and similarly Ei (Z)

for the conditional mean E(Z | X0 = i).

The first-passage time to state j is defined as

T j = min{n ≥ 1 : Xn = j},

and the first-passage probabilities are given by

fi, j (n) = Pi (T j = n).

If a chain starts in state i , is it bound to return to i at some later time?

Definition 12.30 A state i is called recurrent if Pi (Ti < ∞) = 1. A state is called

transient if it is not recurrent.2

Here is a criterion for recurrence in terms of the transition matrix P and its powers.

Theorem 12.31 The state i is recurrent if and only if

∞∑

n=0

pi,i (n) = ∞.

We saw earlier that simple random walk on the line is recurrent if and only it is unbiased

(see Theorem 10.12). The proof used generating functions, and the method may be extended

to prove Theorem 12.31. We introduce next the generating functions to be used in the current

proof. For i, j ∈ S, let

Pi, j (s) =
∞∑

n=0

pi, j (n)s
n, Fi, j (s) =

∞∑

n=0

fi, j (n)s
n,

with the conventions that fi, j (0) = 0 and pi, j (0) = δi, j , the Kronecker delta defined by

δi, j =

{
1 if i = j,

0 otherwise.
(12.32)

We let

fi, j = Fi, j (1) = Pi(T j < ∞), (12.33)

and note that i is recurrent if and only if fi,i = 1.

In proving Theorem 12.31, we shall make use of the following.

2The word ‘persistent’ is sometimes used instead of recurrent.
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Theorem 12.34 For i, j ∈ S, we have that

Pi, j (s) = δi, j + Fi, j (s)Pj, j (s), s ∈ (−1, 1].

Proof By conditioning on the value of T j ,

pi, j (n) =
∞∑

m=1

Pi (Xn = j | T j = m)Pi(T j = m), n ≥ 1. (12.35)

The summand is 0 for m > n, since in this case the first passage to j has not taken place by

time n. For m ≤ n,

Pi (Xn = j | T j = m) = Pi(Xn = j | Xm = j, H ),

where H = {Xr 6= j for 1 ≤ r < m} is an event defined prior to time m. By homogeneity

and the extended Markov property, Theorem 12.8,

Pi (Xn = j | T j = m) = P(Xn = j | Xm = j) = P j (Xn−m = j).

We substitute this into (12.35) to obtain

pi, j (n) =
n∑

m=1

p j, j(n − m) fi, j (m), n ≥ 1.

Multiply through this equation by sn and sum over n ≥ 1 to obtain

Pi, j (s)− pi, j (0) = Pj, j (s)Fi, j (s).

The claim follows since pi, j (0) = δi, j . 2

Proof of Theorem 12.31 By Theorem 12.34 with i = j ,

Pi,i (s) =
1

1 − Fi,i (s)
for |s| < 1. (12.36)

In the limit as s ↑ 1, we have by Abel’s lemma3 that

Fi,i (s) ↑ Fi,i (1) = fi,i , Pi,i (s) ↑
∞∑

n=0

pi,i (n).

By (12.36),
∞∑

n=0

pi,i (n) = ∞ if and only if fi,i = 1,

as claimed. 2

The property of recurrence is called a class property, in that any pair of communicating

states are either both recurrent or both transient.

3See the footnote on p. 55.
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Theorem 12.37 Let C be a communicating class.

(a) Either every state in C is recurrent or every state is transient.

(b) Suppose C contains some recurrent state. Then C is closed.

Proof (a) Let i ↔ j and i 6= j . By Theorem 12.31, it suffices to show that

∞∑

n=0

pi,i (n) = ∞ if and only if

∞∑

n=0

p j, j(n) = ∞. (12.38)

Since i ↔ j , there exist m, n ≥ 1 such that

α := pi, j (m)p j,i(n) > 0.

By the Chapman–Kolmogorov equations, Theorem 12.13,

pi,i (m + r + n) ≥ pi, j (m)p j, j(r)p j,i(n) = αp j, j (r ) for r ≥ 0.

We sum over r to obtain

∞∑

r=0

pi,i (m + r + n) ≥ α

∞∑

r=0

p j, j (r).

Therefore,
∑

r pi,i (r) = ∞ whenever
∑

r p j, j(r) = ∞. The converse holds similarly, and

(12.38) is proved.

(b) Assume i ∈ C is recurrent and C is not closed. By Proposition 12.25, there exist j ∈ C ,

k /∈ C such that p j,k > 0. Since C is a communicating class and k /∈ C , we have that k 9 j .

By part (a), j is recurrent. However,

P j (Xn 6= j for all n ≥ 1) ≥ P j (X1 = k) = p j,k > 0,

a contradiction. Therefore, C is closed. 2

Theorem 12.39 Suppose that the state space S is finite.

(a) There exists at least one recurrent state.

(b) If the chain is irreducible, all states are recurrent.

Here is a preliminary result which will be useful later.

Proposition 12.40 Let i, j ∈ S. If j is transient, then pi, j (n) → 0 as n → ∞.

Proof of Proposition 12.40 Let j be transient. By Theorem 12.31 and Abel’s lemma, we

have that Pj, j (1) < ∞. By Theorem 12.34, Pi, j (1) < ∞, and hence the nth term in this sum,

pi, j (n), tends to zero as n → ∞. 2
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Proof of Theorem 12.39 Suppose |S| < ∞.

(a) We have that

1 =
∑

j∈S

Pi(Xn = j) =
∑

j∈S

pi, j (n). (12.41)

Assume every state is transient. By Proposition 12.40, for all j ∈ S, pi, j (n) → 0 as n → ∞.

This contradicts (12.41).

(b) Suppose the chain is irreducible. By Theorem 12.37, either every state is recurrent or every

state is transient, and the claim follows by part (a). 2

Exercise 12.42 A Markov chain X has an absorbing state s to which all other states lead. Show that all
states except s are transient.

Exercise 12.43

(a) Let j be a recurrent state of a Markov chain. Show that
∑

n pi, j (n) = ∞ for all states i such that
i → j .

(b) Let j be a transient state of a Markov chain. Show that
∑

n pi, j (n) < ∞ for all states i .

12.5 Random walks in one, two, and three dimensions

One-dimensional random walks were explored in some detail in Chapter 10. The purpose of

the current section is to extend the theory to higher dimensions within the context of Markov

chains.

The graphs in this section are d-dimensional lattices. Let Z = {. . . ,−1, 0, 1 . . . } denote

the integers, and let Zd be the set of all d-vectors of integers, written x = (x1, x2, . . . , xd)

with each xi ∈ Z. The set Zd may be interpreted as a graph with vertex set Zd , and with edges

joining any two vectors x , y which are separated by Euclidean distance 1. Two such vertices

are declared adjacent and are said to be neighbours. We denote the ensuing graph by Zd also,

and note that each vertex has exactly 2d neighbours. The graphs Z and Z2 are drawn in Figure

12.2. Note that Zd is connected in that any given pair of vertices is joined by a path of edges.

Fig. 12.2 The line Z and the square lattice Z2.
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Let d ≥ 1. The symmetric random walk on Zd is the Markov chain on the state space Zd

which, at each step, jumps to a uniformly chosen neighbour. The transition matrix is given by

px,y =





1

2d
if y is a neighbour of x,

0 otherwise.

Since the graph is connected, the chain is irreducible. By Theorem 12.37, either every state is

recurrent or every state is transient.

Theorem 12.44 (Pólya’s theorem) The symmetric random walk on Zd is recurrent if

d = 1, 2 and transient if d ≥ 3.

The case d = 1 was proved at Theorem 10.12, and the cases d = 2, 3 featured in Exercise

10.11 and Problems 10.5.8 and 10.5.12.

Proof Let d = 1 and X0 = 0. The walker can return to 0 only after an even number of steps.

The probability of return after 2n steps is the probability that, of the first 2n steps, exactly n

are to the right. Therefore,

p0,0(2n) =
(

1

2

)2n (
2n

n

)
. (12.45)

By Stirling’s formula, Theorem A.4,

p0,0(2n) =
(

1

2

)2n
(2n)!
(n!)2

∼
1

√
πn
. (12.46)

In particular,
∑

n p0,0(2n) = ∞. By Theorem 12.31, the state 0 is recurrent.

Suppose that d = 2. There is a clever but special way to handle this case, which we defer

until after this proof. We develop instead a method that works also when d ≥ 3. The walk is

at the origin 0 := (0, 0) at time 2n if and only if it has taken equal numbers of leftward and

rightward steps, and also equal numbers of upward and downward steps. Therefore,

p0,0(2n) =
(

1

4

)2n n∑

m=0

(2n)!
[m! (n − m)!]2

.

Now,
n∑

m=0

(2n)!
[m! (n − m)!]2

=
(

2n

n

) n∑

m=0

(
n

m

)(
n

n − m

)
=
(

2n

n

)2

,

by (A.2). Therefore,

p0,0(2n) =
(

1

2

)4n (
2n

n

)2

. (12.47)

This is simply the square of the one-dimensional answer (12.45) (this is no coincidence), so

that

p0,0(2n) ∼
1

πn
. (12.48)

Therefore,
∑

n p0,0(2n) = ∞, and hence 0 is recurrent.
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Suppose finally that d = 3, the general case d ≥ 3 is handled similarly. By the argument

that led to (12.47), and a little reorganization,

p0,0(2n) =
(

1

6

)2n ∑

i+ j+k=n

(2n)!
(i ! j ! k!)2

=
(

1

2

)2n (
2n

n

) ∑

i+ j+k=n

(
n!

3ni ! j ! k!

)2

≤
(

1

2

)2n (2n

n

)
M

∑

i+ j+k=n

n!
3ni ! j ! k!

, (12.49)

where

M = max

{
n!

3ni ! j ! k!
: i, j, k ≥ 0, i + j + k = n

}
.

It is not difficult to see that the maximum M is attained when i , j , and k are all closest to 1
3 n,

so that

M ≤
n!

3n
(
⌊ 1

3
n⌋!
)3 .

Furthermore, the final summation in (12.49) equals 1, since the summand is the probability

that, in allocating n balls randomly to three urns, the urns contain i , j , and k balls, respectively.

It follows that

p0,0(2n) ≤
(2n)!

12nn!
(
⌊ 1

3
n⌋!
)3

which, by Stirling’s formula, is no bigger than Cn− 3
2 for some constant C . Therefore,

∞∑

n=0

p0,0(2n) < ∞,

implying that the origin 0 is transient. 2

This section closes with an account of the ‘neat’ way of studying the two-dimensional

random walk (see also Problem 10.5.9). It is the precisely ‘squared’ form of (12.47) that

suggests an explanation using independence. Write Xn = (An, Bn) for the position of the

walker at time n, and let Yn = (Un, Vn), where

Un = An − Bn, Vn = An + Bn.

Thus, Yn is derived from Xn by referring to a rotated and rescaled coordinate system, as

illustrated in Figure 12.3.
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(An, Bn)

Un/
√

2

Vn/
√

2

Fig. 12.3 The new coordinate system for the process Y = (Yn).

The key fact is that U = (Un) and V = (Vn) are independent, symmetric random walks

on the line Z. This is checked by a set of four calculations of the following type. First,

P
(
Yn+1 − Yn = (1, 1)

)
= P(An+1 − An = 1)

= P
(
Xn+1 − Xn = (1, 0)

)
= 1

4
,

and similarly for the other three possibilities for Yn+1 − Yn , namely (−1, 1), (1,−1), and

(−1,−1). It follows that U and V are symmetric random walks. Furthermore, they are indep-

endent since

P
(
Yn+1 − Yn = (u, v)

)
= P(Un+1 − Un = u)P(Vn+1 − Vn = v) for u, v = ±1.

Finally, Xn = 0 if and only if Yn = 0, and this occurs if and only if both Un = 0 and

Vn = 0. Therefore, in agreement with (12.47),

p0,0(2n) = P0(Un = 0)P0(Vn = 0) =
[(

1

2

)2n (
2n

n

)]2

,

by (12.45). The corresponding argument is invalid in three or more dimensions.

Exercise 12.50 The infinite binary tree T is the tree-graph in which every vertex has exactly three
neighbours. Show that a random walk on T is transient.

Exercise 12.51 Consider the asymmetric random walk on the line Z that moves one step rightwards
with probability p, or one step leftwards with probability q (= 1 − p). Show that the walk is recurrent

if and only if p = 1
2

.
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Exercise 12.52 In a variant of Exercise 12.51, the walker moves two steps rightwards with probability

p, and otherwise one step leftwards. Show that the walk is recurrent if and only if p = 1
3

.

12.6 Hitting times and hitting probabilities

Let A ⊆ S. The hitting time of the subset A is the earliest epoch n of time at which Xn ∈ A:

H A = inf{n ≥ 0 : Xn ∈ A}. (12.53)

The infimum of an empty set is taken by convention to be ∞, so that H A takes values in the

extended integers {0, 1, 2, . . . } ∪ {∞}. Note that H A = 0 if X0 ∈ A.

In this section, we study the hitting probability

h A
i = Pi(H

A < ∞)

of ever hitting A starting from i , and also the mean value of H A. If A is closed, then h A
i is

called an absorption probability.

Theorem 12.54 The vector h A = (h A
i : i ∈ S) is the minimal non-negative solution to

the equations

h A
i =





1 for i ∈ A,
∑

j∈S

pi, j h
A
j for i /∈ A. (12.55)

In saying that h A is the minimal non-negative solution, we mean the following: for any

non-negative solution (xi : i ∈ S) of (12.55), we have that h A
i ≤ xi for all i ∈ S. The vector

h A = (h A
i ) multiplies P on its right side in (12.55), and is therefore best considered as a

column vector.

Proof We show first that the hitting probabilities satisfy (12.55). Certainly h A
i = 1 for i ∈ A,

since H A = 0 in this case. For i /∈ A, we condition on the first step of the chain to obtain

h A
i =

∑

j∈S

pi, j Pi(H
A < ∞ | X1 = j ) =

∑

j∈S

pi, j h
A
j

as required for (12.55).

We show next that the h A
i are minimal. Let x = (xi : i ∈ S) be a non-negative solution to

(12.55). In particular, h A
i = xi = 1 for i ∈ A. Let i /∈ A. Since x satisfies (12.55),

xi =
∑

j∈S

pi, j x j =
∑

j∈A

pi, j x j +
∑

j /∈A

pi, j x j . (12.56)

Since x j = 1 for j ∈ A, and x is non-negative, we have that
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xi ≥
∑

j∈A

pi, j

= Pi (X1 ∈ A) = Pi(H
A = 1).

We iterate this as follows. By expanding the final summation in (12.56),

xi = Pi (X1 ∈ A)+
∑

j /∈A

pi, j

(
∑

k∈A

p j,kxk +
∑

k/∈A

p j,kxk

)

≥ Pi(X1 ∈ A)+ Pi(X1 /∈ A, X2 ∈ A)

= Pi (H
A ≤ 2).

By repeated substitution, we obtain xi ≥ Pi (H
A ≤ n) for all n ≥ 0. Take the limit as n → ∞

to deduce as required that xi ≥ Pi (H
A < ∞) = h A

i . 2

We turn now to the mean hitting times, and we write

k A
i = Ei (H

A),

noting that k A
i = ∞ if Pi (H

A = ∞) > 0.

Theorem 12.57 The vector k A = (k A
i : i ∈ S) is the minimal non-negative solution to

the equations

k A
i =





0 for i ∈ A,

1 +
∑

j∈S

pi, j k
A
j for i /∈ A. (12.58)

Proof This is very similar to the last proof. We show first that the k A
i satisfy (12.58). Cer-

tainly, k A
i = 0 for i ∈ A, since H A = 0 in this case. For i /∈ A, we condition on the first step

of the chain to obtain

k A
i =

∑

j∈S

pi, j [1 + E j (H
A)] = 1 +

∑

j∈S

pi, j k
A
j

as required for (12.58).

We show next that the k A
i are minimal. Let y = (yi : i ∈ S) be a non-negative solution to

(12.58). In particular, k A
i = yi = 0 for i ∈ A. Let i /∈ A. Since y satisfies (12.58),

yi = 1 +
∑

j∈S

pi, j y j = 1 +
∑

j /∈A

pi, j y j

= 1 +
∑

j /∈A

pi, j

(
1 +

∑

k /∈A

p j,k yk

)

≥ Pi(H
A ≥ 1)+ Pi (H

A ≥ 2).
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By iteration,

yi ≥
n∑

m=1

Pi(H
A ≥ m) for n ≥ 1,

and we send n → ∞ to obtain

yi ≥
∞∑

m=1

Pi (H
A ≥ m) = k A

i ,

as required. We have used the elementary fact that EM =
∑∞

m=1 P(M ≥ m) for a random

variable M taking non-negative integer values (see Problem 2.6.6). 2

Example 12.59 (Gambler’s ruin) Let S be the non-negative integers {0, 1, 2, . . . }, and

p ∈ (0, 1). A random walk on S moves one unit rightwards with probability p, and one unit

leftwards with probability q (= 1 − p), and has an absorbing barrier at 0. Find the probability

of ultimate absorption from a given starting point.

Solution Let hi be the probability of absorption starting at i . By Theorem 12.54, (hi) is the

minimal non-negative solution to the equations

h0 = 1, hi = phi+1 + qhi−1 for i ≥ 1.

Suppose p 6= q . The difference equation has general solution

hi = A + B(q/p)i for i ≥ 0.

If p < q, the boundedness of the hi forces B = 0, and the fact h0 = 1 implies A = 1.

Therefore, hi = 1 for all i ≥ 0.

Suppose p > q. Since h0 = 1, we have A + B = 1, so that

hi = (q/p)i + A
(
1 − (q/p)i

)
.

Since hi ≥ 0, we have A ≥ 0. By the minimality of the hi , we have A = 0, and hence

hi = (q/p)i , in agreement with Theorem 10.32.

Suppose finally that p = q = 1
2
. The difference equation has solution

hi = A + Bi,

and the above arguments yield B = 0, A = 1, so that hi = 1. △

Example 12.60 (Birth–death chain) Let (pi : i ≥ 1) be a sequence of numbers satisfying

pi = 1 − qi ∈ (0, 1). The above gambler’s ruin example may be extended as follows. Let X

be a Markov chain on {0, 1, 2, . . . } with transition probabilities

pi,i+1 = pi , pi,i−1 = qi for i ≥ 1,

and p0,0 = 1. What is the probability of ultimate absorption at 0, having started at i?
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Solution As in Example 12.59, the required probabilities hi are the minimal non-negative

solutions of

h0 = 1, hi = pihi+1 + qi hi−1 for i ≥ 1.

Set ui = hi−1 − hi and reorganize this equation to obtain that

ui+1 = (qi/pi)ui for i ≥ 1,

so that ui+1 = γiu1, where

γi =
q1q2 · · · qi

p1 p2 · · · pi

.

Now, u1 + u2 + · · · + ui = h0 − hi , so that

hi = 1 − u1(γ0 + γ1 + · · · + γi−1) for i ≥ 1,

where γ0 = 1. It remains to determine the constant u1.

There are two situations. Suppose first that S =
∑∞

k=0 γk satisfies S = ∞. Since hi ≥ 0

for all i , we have that u1 = 0, and therefore hi = 1 for all i . On the other hand, if S < ∞, the

hi are minimized when 1 − u1S = 0, which is to say that u1 = 1/S and

hi =
∞∑

k=i

γk

/ ∞∑

k=0

γk for i ≥ 0.

Thus, hi < 1 for i ≥ 1 if and only if S < ∞. △

Exercise 12.61 Let X be a Markov chain on the non-negative integers {0, 1, 2, . . . } with transition prob-
abilities satisfying

p0,1 = 1, pi,i+1 + pi,i−1 = 1, pi,i+1 = pi,i−1

(
i + 1

i

)2

for i ≥ 1.

Show that P0(Xn ≥ 1 for all n ≥ 1) = 6/π2 . You may use the fact that
∑∞

k=1 k−2 = 1
6
π2.

Exercise 12.62 Consider Exercise 12.61 with the difference that

pi,i+1 = pi,i−1

(
i + 1

i

)α
for i ≥ 1,

where α > 0. Find the probability P0(Xn ≥ 1 for all n ≥ 1) in terms of α.

12.7 Stopping times and the strong Markov property

The Markov property of Definition 12.1 requires that, conditional on the value of the chain

at a given time n, the future evolution of the chain is independent of its past. We frequently

require an extension of this property to a random time n. It is not hard to see that the Markov

property cannot be true for all random times, and it turns out that the appropriate times are

those satisfying the following definition.
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Definition 12.63 A random variable T : � → {0, 1, 2, . . . } ∪ {∞} is called a stop-
ping time for the chain X if, for all n ≥ 0, the event {T = n} is given in terms of

X0, X1, . . . , Xn only.

That is to say, a random time T is a stopping time if you can tell whether it equals any

given time by examining only the present and past of the chain. Random times that ‘look into

the future’ are not stopping times.

The principal examples of stopping times are the hitting times of Section 12.6. Let A ⊆ S,

and consider the hitting time H A given in (12.53). Note that

{H A = n} = {Xn ∈ A} ∩


 ⋂

0≤m<n

{Xm /∈ A}


 ,

so that H A is indeed a stopping time: one can tell whether or not H A = n by examining

X0, X1, . . . , Xn only.

Two related examples: it is easily checked that T = H A + 1 is a stopping time, and that

T = H A − 1 is not. See Exercise 12.70 for a further example.

Theorem 12.64 (Strong Markov property) Let X be a Markov chain with transition

matrix P, and let T be a stopping time. Given that T < ∞ and XT = i , the sequence

Y = (Yk : k ≥ 0), given by Yk = XT +k , is a Markov chain with transition matrix P and

initial state Y0 = i . Furthermore, given that T < ∞ and XT = i , Y is independent of

X0, X1, . . . , XT −1.

Proof Let H be an event given in terms of X0, X1, . . . , XT −1. It is required to show that

P
(
XT +1 = i1, XT +2 = i2, . . . , XT +n = in, H

∣∣ T < ∞, XT = i
)

= Pi(X1 = i1, X2 = i2, . . . , Xn = in)P(H | T < ∞, XT = i). (12.65)

The event H ∩ {T = m} is given in terms of X1, X2, . . . , Xm only. Furthermore, XT = Xm

when T = m. We condition on the event H ∩ {T = m} ∩ {Xm = i } and use the Markov

property (12.9) at time m to deduce that

P(XT +1 = i1, XT +2 = i2, . . . , XT +n = in, H, T = m, XT = i)

= Pi (X1 = i1, X2 = i2, . . . , Xn = in)P(H, T = m, XT = i).

Now sum over m = 0, 1, 2, . . . and divide by P(T < ∞, XT = i) to obtain (12.65). 2

Example 12.66 (Gambler’s ruin) Let S be the non-negative integers {0, 1, 2, . . . }, and p ∈
(0, 1). Consider a random walk X on S which moves one step rightwards with probability p,

one step leftwards with probability q (= 1 − p), and with an absorbing barrier at 0. Let H be

the time until absorption at 0. Find the distribution (and mean) of H given X1 = 1.
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Solution We shall work with the probability generating function of H . A problem arises since

it may be the case that P1(H = ∞) > 0. One may either work with the conditional generating

function E1(s
H | H < ∞), or, equivalently, we can use the fact that, when |s| < 1, sn → 0

as n → ∞. That is, we write

G(s) = E1(s
H ) =

∞∑

n=0

snP1(H = n) for |s| < 1,

valid regardless of whether or not P1(H = ∞) = 0. Henceforth, we assume that |s| < 1, and

later we shall use Abel’s lemma to take the limit as s ↑ 1.4

By conditioning on the first step of the walk, we find that

G(s) = pE1(s
H | X1 = 2)+ qE1(s

H | X1 = 0).

Let us consider the first expectation. The first step is from state 1 to state 2. Having arrived

at state 2, we require the probability generating function of the first-passage time to state 0.

This is the sum of the first-passage time (denoted H ′) to state 1 plus the consequent passage

time (denoted H ′′) to state 0. The random variables H ′ and H ′′ have the same distribution as

H . Furthermore, by conditioning on H ′ and using the strong Markov property, H ′ and H ′′ are

independent. It follows that

E1(s
H | X1 = 2) = E1(s

1+H ′+H ′′
)

= sE2(s
H ′
)E1(s

H ′′
) = sG(s)2.

Therefore,

G(s) = psG(s)2 + qs. (12.67)

This is a quadratic in G(s) with solutions

G(s) =
1 ±

√
1 − 4 pqs2

2 ps
. (12.68)

Since G is continuous wherever it is finite, we must choose one of these solutions and stick

with it for all |s| < 1. Since G(0) ≤ 1 and the positive root diverges as s ↓ 0, we take the

negative root in (12.68) for all |s| < 1.

The mass function of H is obtained from the coefficients in the expansion of G(s) as a

power series:

P1(H = 2k − 1) =
(

1/2

k

)
(−1)k−1 (4pq)k

2p
=

(2k − 2)!
k! (k − 1)!

·
(pq)k

p
,

for k = 1, 2, . . . . This uses the extended binomial theorem, Theorem A.3.

4See the footnote on p. 55 for a statement of Abel’s lemma.
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It is not certain that H < ∞. Since P1(H < ∞) = lims↑1 G(s), we have by (12.68) and

Abel’s lemma that

P1(H < ∞) =
1 −

√
1 − 4 pq

2 p
.

It is convenient to write

1 − 4pq = 1 − 4 p + 4p2 = (1 − 2p)2 = |p − q|2,

so that

P1(H < ∞) =
1 − |p − q|

2 p
=

{
1 if p ≤ q,

q/p if p > q,

as in Theorem 10.32 and Example 12.59.

We turn to the mean value E1(H ). When p > q , P1(H = ∞) > 0, and so E1(H ) = ∞.

Suppose p ≤ q. By differentiating (12.67),

pG2 + 2 psGG′ − G′ + q = 0 for |s| < 1, (12.69)

which we solve for G′ to find that

G′(s) =
pG(s)2 + q

1 − 2psG(s)
for |s| < 1.

By Abel’s lemma, E1(H ) = lims↑1 G′(s), so that

E1(H ) = lim
s↑1

(
pG2 + q

1 − 2psG

)
=





∞ if p = q,

1

q − p
if p < q.

△

Exercise 12.70

(a) Let H A be the hitting time of the set A. Show that T = H A − 1 is not generally a stopping time.

(b) Let L A be the time of the last visit of a Markov chain to the set A, with the convention that L A = ∞
if infinitely many visits are made. Show that L A is not generally a stopping time.

12.8 Classification of states

We saw in Definition 12.30 that a state i is recurrent if, starting from i , the chain returns to i

with probability 1. The state is transient if it is not recurrent. If the starting state i is recurrent,

the chain is bound to return to it. Indeed, it is bound to return infinitely often.
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Theorem 12.71 Suppose X0 = i , and let Vi = |{n ≥ 1 : Xn = i}| be the number of

subsequent visits by the Markov chain to i . Then Vi has the geometric distribution

Pi (Vi = r) = (1 − f ) f r for r = 0, 1, 2, . . . , (12.72)

where f = fi,i is the return probability, fi,i = Pi (Xn = i for some n ≥ 1). In particu-

lar,

(a) Pi(Vi = ∞) = 1 if i is recurrent,

(b) Pi(Vi < ∞) = 1 if i is transient.

We return in Theorem 12.105 to the more detailed question of the rate of divergence of

the number of visits to i in the recurrent case. The proof makes use of the recurrence time of

a state i . Let

Ti = inf{n ≥ 1 : Xn = i} (12.73)

be the first-passage time to i . If X0 = i , then Ti is the recurrence time of i , with mean

µi = Ei (Ti ).

Proof Let fi,i = Pi (Ti < ∞), so that i is recurrent if fi,i = 1 and transient if fi,i < 1. Let

T r
i be the epoch of the r th visit to i , with T r

i = ∞ if Vi < r . Since the T r
i are increasing,

Pi (Vi ≥ r) = Pi(T
r
i < ∞)

= Pi

(
T r

i < ∞
∣∣ T r−1

i < ∞
)
Pi (T

r−1
i < ∞)

= fi,i Pi (T
r−1
i < ∞) for r ≥ 1,

by the strong Markov property, Theorem 12.64. By iteration, Pi (Vi ≥ r) = f r
i,i , as required

for (12.72). We send r → ∞ to find that

Pi (Vi = ∞) =

{
1 if fi,i = 1,

0 if fi,i < 1,

and the theorem is proved. 2
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Definition 12.74

(a) The mean recurrence time µi of the state i is defined by

µi = Ei (Ti) =





∞∑

n=1

n fi,i (n) if i is recurrent,

∞ if i is transient.

(b) If i is recurrent, we call it null if µi = ∞, and positive (or non-null) if µi < ∞.

(c) The period di of the state i is given by5

di = gcd{n : pi,i (n) > 0}.

The state i is called aperiodic if di = 1, and periodic if di > 1.

(d) State i is called ergodic if it is aperiodic and positive recurrent.

It was proved in Theorem 12.37 that recurrence is a class property. This conclusion may

be extended as follows.

Theorem 12.75 If i ↔ j , then

(a) i and j have the same period,

(b) i is recurrent if and only if j is recurrent,

(c) i is positive recurrent if and only if j is positive recurrent,

(d) i is ergodic if and only if j is ergodic.

We may therefore speak of a communicating class C as being recurrent, transient, ergodic,

and so on. An irreducible chain has a single communicating class, and thus we may attribute

these adjectives (when appropriate) to the chain itself.

Proof We may assume i 6= j .

(a) Since i ↔ j , there exist m, n ≥ 1 such that

α := pi, j (m)p j,i(n) > 0.

By the Chapman–Kolmogorov equations, Theorem 12.13,

pi,i (m + r + n) ≥ pi, j (m)p j, j(r)p j,i(n) = αp j, j(r) for r ≥ 0. (12.76)

In particular, pi,i (m + n) ≥ α > 0, so that di | m + n. Therefore, if di ∤ r , then di ∤ m + r + n,

so that pi,i (m + n + r) = 0. In this case, by (12.76), p j, j(r) = 0, and hence d j ∤ r . Therefore,

di | d j . By the reverse argument, d j | di , and hence di = d j .

(b) This was proved at Theorem 12.37.

(c) For this proof, we look ahead slightly to Theorem 12.83. Suppose that i is positive re-

current, and let C be the communicating class of states containing i . Since i is recurrent, by

5The greatest common divisor of the set N is denoted gcd{N}.
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Theorem 12.37(b), C is closed. If X0 ∈ C , then Xn ∈ C for all n, and the chain is irreducible

on the state space C . By part (a) of Theorem 12.83, it possesses an invariant distribution, and

by part (b) every state (of C) is positive recurrent. If i ↔ j then j ∈ C , so j is positive

recurrent.

(d) This follows from (a), (b), and (c). 2

Finally in this section, we note that recurrent states are visited regardless of the initial

distribution. This will be useful later.

Proposition 12.77 If the chain is irreducible and j ∈ S is recurrent, then

P(Xn = j for some n ≥ 1) = 1,

regardless of the distribution of X0.

Proof Let i , j be distinct states and recall the passage probability

fi, j = Pi (Xn = j for some n ≥ 1).

Since the chain is irreducible, there exists a least integer m (≥ 1) such that p j,i(m) > 0. Since

m is least, it is the case that

p j,i(m) = P j (Xm = i, Xr 6= j for 1 ≤ r < m). (12.78)

Suppose X0 = j , Xm = i , and no return to j takes place after time m. By (12.78), with

conditional probability 1 no return to j ever takes place. It follows by the Markov property at

time m that

p j,i(m)(1 − fi, j ) ≤ 1 − f j, j .

If j is recurrent, then f j, j = 1, so that fi, j = 1 for all i ∈ S.

Let λi = P(X0 = i) for i ∈ S. With T j = inf{n ≥ 1 : Xn = j} as usual,

P(T j < ∞) =
∑

i∈S

λi fi, j = 1,

by conditioning on X0. 2

Exercise 12.79 Let X be an irreducible Markov chain with period d. Show that Yn = Xnd defines an
aperiodic Markov chain.

Exercise 12.80 Let 0 < p < 1. Classify the states of the Markov chains with transition matrices




0 p 0 1 − p

1 − p 0 p 0
0 1 − p 0 p

p 0 1 − p 0


 ,




1 − 2p 2p 0
p 1 − 2p p
0 2 p 1 − 2p


 .

Exercise 12.81 Let i be an aperiodic state of a Markov chain. Show that there exists N ≥ 1 such that
pi,i (n) > 0 for all n ≥ N .
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12.9 Invariant distributions

We turn now towards the study of the long-term behaviour of a Markov chain: what can be

said about Xn in the limit as n → ∞? Since the sequence (Xn : n ≥ 0) is subject to random

fluctuations, it does not (typically) converge to any given state. On the other hand, we will

see in the next section that its distribution settles into an equilibrium. In advance of stating

this limit theorem, we first explore the possible limits. Any distributional limit is necessarily

invariant under the evolution of the chain, and we are led to the following definition.

Definition 12.82 Let X be a Markov chain with transition matrix P. The vector π =
(πi : i ∈ S) is called an invariant distribution6 of the chain if:

(a) πi ≥ 0 for all i ∈ S, and
∑

i∈S πi = 1,

(b) π = πP.

An invariant distribution is invariant under the passage of time: if X0 has distribution π ,

then Xn has distribution πPn , and πPn = πP · Pn−1 = πPn−1 = · · · = π , so that every Xn

has distribution π .

Theorem 12.83 Consider an irreducible Markov chain.

(a) There exists an invariant distribution π if and only if some state is positive recurrent.

(b) If there exists an invariant distribution π , then every state is positive recurrent, and

πi =
1

µi

for i ∈ S,

where µi is the mean recurrence time of state i . In particular, π is the unique in-

variant distribution.

We shall prove Theorem 12.83 by exhibiting an explicit solution of the vector equation

ρ = ρP . In looking for a solution, it is natural to consider a vector ρ with entries indicative

of the proportions of time spent in the various states. Towards this end, we fix a state k ∈ S

and start the chain from this state. Let Wi be the number of subsequent visits to state i before

the first return to the initial state k. Thus, Wi may be expressed in either of the forms

Wi =
∞∑

m=1

1(Xm = i, Tk ≥ m) =
Tk∑

m=1

1(Xm = i), i ∈ S, (12.84)

where Tk = inf{n ≥ 1 : Xn = k} is the first return time to the starting state k, and 1(A) = 1A

is the indicator function of A. Note that Wk = 1 if Tk < ∞. Our candidate for the vector ρ is

given by

ρi = Ek(Wi ), i ∈ S. (12.85)

Recall that Ek (Z) denotes the mean of Z given that X0 = k.

6Also known as a stationary, or equilibrium, or steady-state distribution. An invariant distribution is sometimes
referred to as an invariant measure, but it is more normal to reserve this expression for a non-negative solution π of
the equation π = π P with no assumption of having sum 1, or indeed of even having finite sum.
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Proposition 12.86 For an irreducible, recurrent chain, and any given k ∈ S, the vector ρ =
(ρi : i ∈ S) satisfies:

(a) ρk = 1,

(b)
∑

i∈S ρi = µk , regardless of whether or not µk < ∞,

(c) ρ = ρP,

(d) 0 < ρi < ∞ for i ∈ S.

Here is a useful consequence of the last theorem and proposition. Consider an irreducible,

positive recurrent Markov chain, and fix a state k. Since the chain is positive, we have µk <

∞. By Theorem 12.83, there exists a unique invariant distribution π , and πk = 1/µk . By

Proposition 12.86(b, c), ν := πkρ satisfies ν = νP and
∑

i∈S νi = 1. By the uniqueness of

the invariant distribution, π = ν. Therefore, ρi = νi/πk = πi/πk . We state this conclusion as

a corollary.

Corollary 12.87 Let i, k ∈ S be distinct states of an irreducible, positive recurrent Markov

chain with invariant distribution π . The mean number of visits to state i between two consec-

utive visits to k equals πi/πk .

Proof of Proposition 12.86 (a) Since the chain is assumed recurrent, Pk(Tk < ∞) = 1. By

(12.84), Wk = 1, so that ρk = Ek(1) = 1.

(b) Since the time between two visits to state k must be spent somewhere, we have that

Tk =
∑

i∈S

Wi ,

where Wi is given by (12.84). By an interchange of expectation and summation,7

µk = Ek(Tk) =
∑

i∈S

Ek(Wi ) =
∑

i∈S

ρi .

(c) By (12.84) and a further interchange, for j ∈ S,

ρ j =
∞∑

m=1

Pk(Xm = j, Tk ≥ m). (12.88)

The event {Tk ≥ m} depends only on X0, X1, . . . , Xm−1. By the extended Markov property,

Theorem 12.8, for m ≥ 1,

Pk(Xm = j, Tk ≥ m) =
∑

i∈S

Pk(Xm−1 = i, Xm = j, Tk ≥ m)

=
∑

i∈S

Pk

(
Xm = j

∣∣ Xm−1 = i, Tk ≥ m
)
Pk(Xm−1 = i, Tk ≥ m)

=
∑

i∈S

pi, j Pk(Xm−1 = i, Tk ≥ m). (12.89)

7Care is necessary when interchanging limits. This interchange is justified by the footnote on p. 40. The forthcom-
ing interchange at (12.90) holds since the order of summation is irrelevant to the value of a double sum of non-negative
reals.
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By (12.88)–(12.89) and another interchange of limits,

ρ j =
∑

i∈S

∞∑

m=1

pi, j Pk(Xm−1 = i, Tk ≥ m). (12.90)

We rewrite this with r = m − 1 to find that

ρ j =
∑

i∈S

pi, j

∞∑

r=0

Pk(Xr = i, Tk ≥ r + 1) =
∑

i∈S

pi, jρi ,

where the last equality holds by separate consideration of the two cases i = k and i 6= k. In

summary, ρ = ρP .

(d) We shall use the fact that ρk = 1. Since the chain is irreducible, there exist m, n ≥ 0 such

that pi,k(m), pk,i(n) > 0. Since ρ = ρP and hence ρ = ρPr for r ≥ 1, we have that

ρk ≥ ρi pi,k(m), ρi ≥ ρk pk,i (n).

Since ρk = 1,

pk,i(m) ≤ ρi ≤
1

pi,k(n)
,

and the proof is complete. 2

Proof of Theorem 12.83 (a) Suppose k ∈ S is positive recurrent, so that µk < ∞. Let ρ be

given by (12.85). By Proposition 12.86, π := (1/µk)ρ is an invariant distribution.

(b) Suppose that π is an invariant distribution of the chain. We show first that

πi > 0 for i ∈ S. (12.91)

Since
∑

i∈S πi = 1, there exists k ∈ S with πk > 0. Let i ∈ S. By irreducibility, there exists

m ≥ 1 such that pk,i (m) > 0. We have that π = πP , so that π = πPm . Therefore,

πi =
∑

j∈S

π j p j,i(m) ≥ πk pk,i(m) > 0,

and (12.91) follows.

By irreducibility and Theorem 12.37, either all states are transient or all are recurrent. If

all states are transient, then pi, j (n) → 0 as n → ∞ by Proposition 12.40. Since π = πPn ,

π j =
∑

i

πi pi, j (n) → 0 as n → ∞, for i, j ∈ S, (12.92)

which contradicts (12.91). Therefore, all states are recurrent. A small argument is needed to

justify the limit in (12.92) when S is infinite, and this is deferred to Lemma 12.95.
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We show next that the existence of π implies that all states are positive, and that πi = µ−1
i

for i ∈ S. Suppose that X0 has distribution π . Since π is invariant,

(X1, X2, . . . , Xn−1) and (X0, X1, . . . , Xn−2) have the same joint distributions. (12.93)

Now,8

πiµi = P(X0 = i)

∞∑

n=1

Pi(Ti ≥ n) =
∞∑

n=1

P(Ti ≥ n, X0 = i).

However, P(Ti ≥ 1, X0 = i) = P(X0 = i ), and for n ≥ 2,

P(Ti ≥ n, X0 = i) = P(X0 = i, Xm 6= i for 1 ≤ m ≤ n − 1)

= P(Xm 6= i for 1 ≤ m ≤ n − 1)− P(Xm 6= i for 0 ≤ m ≤ n − 1)

= P(Xm 6= i for 0 ≤ m ≤ n − 2)− P(Xm 6= i for 0 ≤ m ≤ n − 1)

= an−2 − an−1

by (12.93), where

ar = P(Xm 6= i for 0 ≤ m ≤ r ).

We sum over n to obtain

πiµi = P(X0 = i)+ a0 − lim
n→∞

an = 1 − lim
n→∞

an.

However, an → P(Xm 6= i for all m) = 0 as n → ∞, by the recurrence of i and Proposition

12.77.

We have shown that

πiµi = 1, (12.94)

so that µi = π−1
i < ∞ by (12.91). Hence µi < ∞, and all states of the chain are positive.

Furthermore, (12.94) specifies πi uniquely as µ−1
i . 2

Here is the little lemma used to establish the limit in (12.92). It is a form of the so-called

bounded convergence theorem.

Lemma 12.95 Let λ = (λi : i ∈ S) be a distribution on the countable set S. Let αi(n) satisfy

|αi (n)| ≤ M < ∞ for all i ∈ S and all n, and in addition

lim
n→∞

αi(n) = 0 for i ∈ S.

Then ∑

i∈S

λiαi(n) → 0 as n → ∞.

8If T takes values in the non-negative integers, E(T ) =
∑∞

n=1 P(T ≥ n).
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Proof Let F be a finite subset of S, and write

∑

i∈S

|λiαi(n)| ≤
∑

i∈F

λi |αi (n)| + M
∑

i /∈F

λi

→ M
∑

i /∈F

λi as n → ∞, since F is finite

→ 0 as F ↑ S, since
∑

i∈S

λi < ∞. 2

A B

Fig. 12.4 Find the mean number of visits to B before returning to the starting state A.

Exercise 12.96 A particle starts at A and executes a symmetric random walk on the graph of Figure
12.4. At each step it moves to a neighbour of the current vertex chosen uniformly at random. Find
the invariant distribution of the chain. Using the remark after Proposition 12.86 or otherwise, find the
expected number of visits to B before the particle returns to A.

Exercise 12.97 Consider the symmetric random walk on the line Z. Show that any invariant distribution

π satisfies πn = 1
2
(πn−1 + πn+1), and deduce that the walk is null recurrent.

12.10 Convergence to equilibrium

The principal result for discrete-time Markov chains is that, subject to reasonable conditions,

its distribution converges to the unique invariant distribution.

Theorem 12.98 (Convergence theorem for Markov chains) Consider a Markov chain

that is aperiodic, irreducible, and positive recurrent. For i, j ∈ S,

pi, j (n) → π j as n → ∞,

where π is the unique invariant distribution of the chain.

Proof The proof uses an important technique known as ‘coupling’. Construct an ordered

pair Z = (X,Y) of independent Markov chains X = (Xn : n ≥ 0), Y = (Yn : n ≥ 0),
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each of which has state space S and transition matrix P . Then Z = (Zn : n ≥ 0) is given by

Zn = (Xn,Yn), and it is easy to check that Z is a Markov chain with state space S × S and

transition probabilities

pi j,kl = P
(
Zn+1 = (k, l)

∣∣ Zn = (i, j )
)

= P(Xn+1 = k | Xn = i )P(Yn+1 = l | Yn = j) by independence

= pi,k p j,l .

Since X is irreducible and aperiodic, for i, j, k, l ∈ S there exists N = N(i, j, k, l) such that

pi,k(n)p j,l(n) > 0 for all n ≥ N (see Exercise 12.81). Therefore, Z is irreducible. Only here

is the aperiodicity used.

Suppose that X is positive recurrent. By Theorem 12.83, X has a unique stationary distri-

bution π , and it is follows that Z has the stationary distribution ν = (νi, j : i, j ∈ S) given

by νi, j = πiπ j . Therefore, Z is also positive recurrent, by Theorem 12.83. Let X0 = i and

Y0 = j , so that Z0 = (i, j). Fix s ∈ S and let

T = min{n ≥ 1 : Zn = (s, s)}

be the first-passage time of Z to (s, s). By the recurrence of Z and Proposition 12.77,

Pi j (T < ∞) = 1, (12.99)

where Pi j denotes the probability measure conditional on Z0 = (i, j ).

S

n

s

T

Fig. 12.5 The two chains X and Y evolve until the first time T at which both chains are simultan-
eously in state s. Conditional on the event {T ≤ n}, Xn and Yn have the same distribution.

The central idea of the proof is the following observation, illustrated in Figure 12.5. Since

T is a stopping time, by the strong Markov property, Xn and Yn have the same conditional
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distributions given the event {T ≤ n}. We shall use this fact, together with the finiteness of T ,

to show that the limiting distributions of X and Y are independent of their starting points.

More precisely,

pi,k(n) = Pi j (Xn = k)

= Pi j (Xn = k, T ≤ n)+ Pi j (Xn = k, T > n)

= Pi j (Yn = k, T ≤ n)+ Pi j (Xn = k, T > n)

since, given that T ≤ n, Xn and Yn are identically distributed

≤ Pi j (Yn = k)+ Pi j (T > n)

= p j,k(n)+ Pi j (T > n),

where we have used the strong Markov property. This, and the related inequality with i and j

interchanged, yields

∣∣pi,k (n)− p j,k(n)
∣∣ ≤ Pi j (T > n) → 0 as n → ∞

by (12.99). Therefore,

pi,k(n)− p j,k(n) → 0 as n → ∞, for i, j, k ∈ S. (12.100)

Thus, if the limit limn→∞ pik(n) exists, then it does not depend on the choice of i . To show

that the limit exists, write

πk − p j,k(n) =
∑

i∈S

πi

[
pi,k(n)− p j,k(n)

]
→ 0 as n → ∞, (12.101)

by Lemma 12.95. The proof is complete. 2

Example 12.102 Here is an elementary example which highlights the necessity of aperiod-

icity in the convergence theorem, Theorem 12.98. Let X be a Markov chain with state space

S = {1, 2} and transition matrix

P =
(

0 1

1 0

)
.

Thus, X alternates deterministically between the two states. It is immediate that P2m = I and

P2m+1 = P for m ≥ 0, and, in particular, the limit limn→∞ pi, j (n) exists for no i, j ∈ S.

The proof of Theorem 12.98 fails since the paired chain Z is not irreducible: for example,

if Z0 = (0, 1), then Zn 6= (0, 0) for all n. △

Example 12.103 (Coupling game) A pack of playing cards is shuffled, and the cards dealt

(face up) one by one. A friend is asked to select some card, secretly, from amongst the first six

or seven cards, say. If the face value of this card is m (aces count 1 and court cards count 10),

the next m − 1 cards are allowed to pass, and your friend is asked to note the face value of

the mth card. Continuing according to this rule, there arrives a last card in this sequence, with

face value X , say, and with fewer than X cards remaining. We call X your friend’s ‘score’.



238 Markov chains

With high probability, you are able to guess accurately your friend’s score, as follows. You

follow the same rules as the friend, starting for simplicity at the first card. You obtain thereby

a score Y , say. There is a high probability that X = Y .

Why is this the case? Suppose your friend picks the m1th card, m2th card, and so on, and

you pick the n1 (= 1)th, n2th, . . . . If mi = n j for some i , j , the two of you are ‘stuck together’

forever after. When this occurs first, we say that ‘coupling’ has occurred. Prior to coupling,

each time you read the value of a card, there is a positive probability that you will arrive at

the next stage on exactly the same card as the other person. If the pack of cards were infinitely

large, then coupling would take place sooner or later. It turns out that there is a reasonable

chance that coupling takes place before the last card of a regular pack of 52 cards has been

dealt. △

A criterion for transience or recurrence was presented at Theorem 12.31. We now have a

criterion for null recurrence.

Theorem 12.104 Let X be an irreducible, recurrent Markov chain. The following are

equivalent.

(a) There exists a state i such that pi,i (n) → 0 as n → ∞.

(b) Every state is null recurrent.

As an application, consider a symmetric random walk on the graphs Z or Z2 of Section

12.5. By (12.46) or (12.48) as appropriate, p0,0(n) → 0 as n → ∞, from which we deduce

that the one- and two-dimensional random walks are null recurrent. This may be compared

with the method of Exercise 12.97.

Proof We shall prove only that (a) implies (b). See Grimmett and Stirzaker (2001, Thm

6.2.9) for the other part. If the chain X is positive recurrent and, in addition, aperiodic, then

pi,i (n) →
1

µi

> 0,

by Theorems 12.83 and 12.98. Therefore, (a) does not hold. The same argument may be

applied in the periodic case by considering the chain Yn = Xnd where d is the period of

the chain. Thus (a) implies (b). 2

This section closes with a discussion of the long-run proportion of times at which a Markov

chain is in a given state. Let i ∈ S and let

Vi (n) =
n∑

k=1

1(Xk = i)

denote the number of visits to i up to time n. Recall from Definition 8.45 that Zn ⇒ Z means

Zn converges to Z in distribution.
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Theorem 12.105 Let i ∈ S. If the chain is irreducible and positive recurrent,

1

n
Vi (n) ⇒

1

µi

as n → ∞,

irrespective of the initial distribution of the chain.

There are various modes of convergence of random variables, of which we have chosen

convergence in distribution for the sake of simplicity. (It is equivalent to convergence in prob-

ability in this case, see Theorem 8.47.) A more powerful result is valid, but it relies on the

so-called strong law of large numbers, which is beyond the range of this volume.

Proof The law of large numbers tells us about the asymptotic behaviour of the sum of ind-

ependent, identically distributed random variables, and the key to the current proof is to write

Vi(n) in terms of such a sum. Let

U1 = inf{n ≥ 1 : Xn = i }

be the time until the first visit to i , and for m ≥ 1, let Um be the time between the mth and

(m + 1)th visits. Since the chain is assumed positive recurrent, we have that P(Um < ∞) = 1

and µi = Ei (U1) < ∞. The first passage time U1 may have a different distribution from the

remaining Um if X0 6= i .

By the strong Markov property, the random variables U1,U2, . . . are independent, and

U2,U3, . . . are identically distributed. Moreover,

Vi (n) ≥ x if and only if S⌈x⌉ ≤ n,

where ⌈x⌉ is the least integer not less than x , and

Sm =
m∑

r=1

Ur

is the time of the mth visit to i . Therefore,

P

(
1

n
Vi(n) ≥

1 + ǫ

µi

)
= P (SN ≤ n) , (12.106)

where N =
⌈
(1 + ǫ)n/µi

⌉
. By the weak law of large numbers, Theorem 8.17,

1

N
SN =

1

N
U1 +

1

N

N∑

r=2

Ur

⇒ µi as n → ∞, (12.107)

where we have used the fact that U1/N → 0 in probability (see Theorem 8.47 and Problem

8.6.9). Since n/N → µi/(1 + ǫ), we have by (12.106)–(12.107) that
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P

(
1

n
Vi (n) ≥

1 + ǫ

µi

)
= P

(
1

N
SN ≤

n

N

)
→

{
0 if ǫ > 0,

1 if ǫ < 0.

There is a gap in this proof, since Theorem 8.17 assumed that a typical summand U2, say,

has finite variance. If that is not known, then it is necessary to appeal to the more powerful

conclusion of Example 8.52 whose proof uses the method of characteristic functions. 2

Exercise 12.108 Let π be the unique invariant distribution of an aperiodic, irreducible Markov chain X.
Show that P(Xn = j ) → π j as n → ∞, regardless of the initial distribution of X0.

12.11 Time reversal

An important observation of physics is that many equations are valid irrespective of whether

time flows forwards or backwards. Invariance under time-reversal is an important property of

certain Markov chains.

Let X = (Xn : 0 ≤ n ≤ N) be an irreducible, positive recurrent Markov chain, with

transition matrix P and invariant distribution π . Suppose further that X0 has distribution π ,

so that Xn has distribution π for every n. The ‘reversed chain’ Y = (Yn : 0 ≤ n ≤ N) is given

by reversing time: Yn = X N−n for 0 ≤ n ≤ N . Recall from Theorem 12.83(b) that πi > 0 for

i ∈ S.

Theorem 12.109 The sequence Y is an irreducible Markov chain with transition matrix

P̂ = ( p̂i, j : i, j ∈ S) given by

p̂i, j =
π j

πi

p j,i for i, j ∈ S, (12.110)

and with invariant distribution π .

Proof We check first that P̂ is a stochastic matrix. Certainly its entries are non-negative, and

also ∑

j∈S

p̂i, j =
1

πi

∑

j∈S

π j p j,i =
1

πi

πi = 1,

since π = πP.

Next we show that π is invariant for P̂ . By (12.110),
∑

i∈S

πi p̂i, j =
∑

i∈S

π j p j,i = π j ,

since P has row sums 1.

By Theorem 12.4,

P
(
Y0 = i0, Y1 = i1, . . . , Yn = in

)
= P

(
X N−n = in, X N−n+1 = in−1, . . . , X N = i0

)

= πin pin,in−1 · · · pi1,i0

= πi0 p̂i0,i1 · · · p̂in−1,in by (12.110).

By Theorem 12.4 again, Y has transition matrix P̂ and initial distribution π . 2
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We call the chain Y the time reversal of the chain X, and we say that X is reversible if X

and its time reversal have the same transition probabilities.

Definition 12.111 Let X = (Xn : 0 ≤ n ≤ N) be an irreducible Markov chain such that

X0 has the invariant distribution π . The chain is reversible if X and its time reversal Y

have the same transition matrices, which is to say that

πi pi, j = π j p j,i for i, j ∈ S. (12.112)

Equations (12.112) are called the detailed balance equations, and they are pivotal to the

study of reversible chains. More generally we say that a transition matrix P and a distribution

λ are in detailed balance if

λi pi, j = λ j p j,i for i, j ∈ S.

An irreducible chain X with invariant distribution π is said to be reversible in equilibrium if

its transition matrix P is in detailed balance with π .

It turns out that, for an irreducible chain, P is in detailed balance with a distribution λ

if and only if λ is the unique invariant distribution. This provides a good way of finding the

invariant distribution of a reversible chain.

Theorem 12.113 Let P be the transition matrix of an irreducible chain X, and suppose

that π is a distribution satisfying

πi pi, j = π j p j,i for i, j ∈ S. (12.114)

Then π is the unique invariant distribution of the chain. Furthermore, X is reversible in

equilibrium.

Proof Suppose that π is a distribution that satisfies (12.114). Then

∑

i∈S

πi pi, j =
∑

i∈S

π j p j,i = π j

∑

i∈S

p j,i = π j ,

since P has row sums 1. Therefore, π = πP, whence π is invariant. The reversibility in

equilibrium of X follows by Definition 12.111. 2

The above discussion of reversibility is restricted to an irreducible, positive recurrent

Markov chain with only finitely many time points 0, 1, 2, . . . , N . Such a chain on the singly

infinite time set 0, 1, 2, . . . is called reversible if the finite subsequences X0, X1, . . . , X N are

reversible for all N ≥ 0. The discussion may also be extended to the doubly infinite time set

. . . ,−2,−1, 0, 1, 2, . . . , subject to the assumption that Xn has the invariant distribution π for

all n.

Time reversibility is a very useful concept in the theory of random networks. There is a

valuable analogy using the language of flows. Let X be a Markov chain with state space S

and invariant distribution π . To this chain there corresponds the following directed network
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(or graph). The vertices of the network are the states of the chain, and an arrow is placed from

vertex i to vertex j if pi, j > 0. One unit of a notional material (‘probability’) is distributed

about the vertices and allowed to flow along the arrows. A proportion πi of the material is

placed initially at vertex i . At each epoch of time and for each vertex i , a proportion pi, j of

the material at i is transported to each vertex j .

It is immediate that the amount of material at vertex i after one epoch is
∑

j π j p j,i , which

equals πi since π = πP. That is to say, the deterministic flow of probability is in equilibrium:

there is ‘global balance’ in the sense that the total quantity leaving each vertex is balanced by

an equal quantity arriving there. There may or may not be ‘local balance’, in the sense that, for

every i, j ∈ S, the amount flowing from i to j equals the amount flowing from j to i . Local

balance occurs if and only if πi pi, j = π j p j,i for i, j ∈ S, which is to say that P and π are in

detailed balance.

Example 12.115 (Birth–death chain with retaining barrier) Consider a random walk X =
(Xn : n ≥ 0) on the non-negative integers {0, 1, 2, . . . } which, when at i ≥ 1, moves one step

rightwards with probability pi , or one step leftwards with probability qi (= 1 − pi ). When at

i = 0, it stays at 0 with probability q0 and otherwise moves to 1. We assume for simplicity

that 0 < pi < 1 for all i . This process differs from the birth–death chain of Example 12.60 in

its behaviour at 0.

Under what conditions on the pi is the Markov chain X reversible in equilibrium? If this

holds, find the invariant distribution.

Solution We look for a solution to the detailed balance equations (12.114), which may be

written as

πi−1 pi−1 = πiqi for i ≥ 1.

By iteration, the solution is

πi = ρiπ0 for i ≥ 0, (12.116)

where ρ0 = 1 and

ρi =
pi−1 pi−2 · · · p0

qiqi−1 · · · q1
for i ≥ 1.

The vector π is a distribution if and only if
∑

i πi = 1. By (12.116),

∑

i∈S

πi = π0

∑

i∈S

ρi .

We may choose π0 appropriately if and only if S =
∑

i ρi satisfies S < ∞, in which case we

set π0 = 1/S.

By Theorem 12.113, X is reversible in equilibrium if and only if S < ∞, in which case

the invariant distribution is given by πi = ρi/S. △

Example 12.117 (Ehrenfest dog–flea model) Two dogs, Albert and Beatrice, are infested

by a total of m fleas that jump from one dog to the other at random. We assume that, at each

epoch of time, one flea, picked uniformly at random from the m available, passes from its
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current host to the other dog. Let Xn be the number of fleas on Albert after n units of time has

passed. Thus, X = (Xn : n ≥ 0) is an irreducible Markov chain with transition matrix

pi,i+1 = 1 −
i

m
, pi,i−1 =

i

m
for 0 ≤ i ≤ m.

Rather than solve the equation π = πP to find the invariant distribution, we look for solutions

of the detailed balance equations πi pi, j = π j p j,i . These equations amount to

πi−1

(
m − i + 1

m

)
= πi ·

i

m
for 1 ≤ i ≤ m.

By iteration,

πi =
(

m

i

)
π0,

and we choose π0 = 2−m so that π is a distribution. By Theorem 12.113, π is the unique

invariant distribution. △

Exercise 12.118 Consider a random walk on a triangle, illustrated in Figure 12.6. The state space is
S = {1, 2, 3}, and the transition matrix is

P =




0 α 1 − α

1 − α 0 α

α 1 − α 0


 ,

where 0 < α < 1. Show that the detailed balance equations possess a solution if and only if α = 1
2

.

1

2

3
α

α

α 1 − α

1 − α

1 − α

Fig. 12.6 Transition probabilities for a random walk on a triangle.

Exercise 12.119 Can a reversible Markov chain be periodic? Explain.

Exercise 12.120 A random walk moves on the finite set {0, 1, 2, . . . , N}. When in the interior of the
interval, it moves one step rightwards with probability p, or one step leftwards with probability q
(= 1 − p). When it is at either endpoint, 0 or N , and tries to leave the interval, it is retained at its current
position. Assume 0 < p < 1, and use the detailed balance equations to find the invariant distribution.
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12.12 Random walk on a graph

A graph G = (V, E) is a set V of vertices, pairs of which are joined by edges. That is, the

edge set E is a set of distinct unordered pairs 〈u, v〉 of distinct elements of V . A graph is

usually represented in the manner illustrated in Figure 12.7. The lattice graphs Zd in Section

12.5 are examples of infinite graphs.

1

2

3

4

5

6

7
8

Fig. 12.7 A graph G with 8 vertices. A random walk on G moves around the vertex set. At each
step, it moves to a uniformly random neighbour of its current position.

Here is some language and notation concerning graphs. A graph is connected if, for every

distinct pair u, v ∈ V , there exists a path of edges from u to v. We write u ∼ v if 〈u, v〉 ∈ E ,

in which case we say that u and v are neighbours. The degree d(v) of vertex v is the number

of edges containing v, that is, d(v) = |{u ∈ V : v ∼ u}|.

There is a rich theory of random walks on finite and infinite graphs. Let G = (V , E) be

a connected graph with d(v) < ∞ for all v ∈ V . A particle moves about the vertices of G,

taking steps along the edges. Let Xn be the position of the particle at time n. At time n + 1, it

moves to a uniformly random neighbour of Xn . More precisely, a random walk is the Markov

chain X = (Xn : n ≥ 0) with state space V and transition matrix

pu,v =





1

d(u)
if v ∼ u,

0 otherwise.

(12.121)

When G is infinite, the main question is to understand the long-run behaviour of the walk,

such as whether or not it is transient or recurrent. This was the question addressed in Section

12.5 for the lattice graphs Zd . In this section, we consider a finite connected graph G. It will

be useful to note that
∑

v∈V

d(v) = 2|E|, (12.122)

since each edge contributes 2 to the summation.
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Theorem 12.123 Random walk on the finite connected graph G = (V, E) is an irre-

ducible Markov chain with unique invariant distribution

πv =
d(v)

2|E |
for v ∈ V .

The chain is reversible in equilibrium.

Proof Since G is connected, the chain is irreducible. The vector π is certainly a distribution

since πv ≥ 0 for v ∈ V , and
∑
v∈V πv = 1 by (12.122). By Theorem 12.113, it suffices to

check the detailed balance equations (12.114), namely

d(u)

2|E |
pu,v =

d(v)

2|E |
pv,u, for u, v ∈ V .

This holds by the definition (12.121) of the transition probabilities. 2

Example 12.124 (Erratic knights) A knight is the sole inhabitant of a chess board, and it

performs random moves. Each move is chosen at random from the set of currently permissible

moves, as illustrated in Figure 12.8. What is the invariant distribution of the Markov chain

describing the knight’s motion?

2

3

34

4

4

4

4

6

6

6

6

88

88

Fig. 12.8 A map for the erratic knight. The arrows indicate permissible moves. If the knight is
at a square from which there are m permissible moves, then it selects one of these with equal
probability 1/m. The numbers are the degrees of the corresponding graph vertices.

Solution Let G = (V , E) be the graph given as follows. The vertex set V is the set of squares

of the chess board, and the edge set E is given as follows: two vertices u, v are joined by an

edge if and only if the move between u and v is a legal knight-move. The knight performs
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a random walk on G. In order to find the invariant distribution, we must count the vertex

degrees. The four corners have degree 2, and so on, as indicated in the upper right corner of

Figure 12.8. The sum of the vertex degrees is

∑

v∈V

d(v) = 4 · 2 + 8 · 3 + 20 · 4 + 16 · 6 + 16 · 8 = 336,

and the invariant distribution is given by Theorem 12.123 as πv = d(v)/336. △

Exercise 12.125 An erratic king performs random (but legal) moves on a chess board. Find his invariant
distribution.

12.13 Problems

1. A transition matrix is called doubly stochastic if its column sums equal 1, that is, if∑
i∈S pi, j = 1 for j ∈ S.

Suppose an irreducible chain with N (< ∞) states has a doubly stochastic transition matrix.
Find its invariant distribution. Deduce that all states are positive recurrent and that, if the chain
is aperiodic, then pi, j (n) → 1/N as n → ∞.

2. Let X be a discrete-time Markov chain with state space S = {1, 2} and transition matrix

P =
(

1 − α α

β 1 − β

)
.

Classify the states of the chain. Suppose that 0 < αβ < 1. Find the n-step transition probabil-
ities and show directly that they converge to the unique invariant distribution. For what values
of α and β is the chain reversible in equilibrium?

3. We distribute N black balls and N white balls in two urns in such a way that each contains
N balls. At each epoch of time, one ball is selected at random from each urn, and these two
balls are interchanged. Let Xn be the number of black balls in the first urn after time n. Write
down the transition matrix of this Markov chain, and find the unique invariant distribution. Is
the chain reversible in equilibrium?

4. Consider a Markov chain on the set S = {0, 1, 2, . . . } with transition probabilities

pi,i+1 = ai , pi,0 = 1 − ai ,

where (ai : i ≥ 0) is a sequence of constants satisfying 0 < ai < 1 for all i . Let b0 = 1 and
bi = a0a1 · · · ai−1 for i ≥ 1. Show that the chain is

(a) recurrent if and only if bi → 0 as i → ∞,
(b) positive recurrent if and only if

∑
i bi < ∞,

and write down the invariant distribution when the last condition holds.

5. At each time n, a random number Sn of students enter the lecture room, where S0, S1, S2, . . .

are independent and Poisson distributed with parameter λ. Each student remains in the room
for a geometrically distributed time with parameter p, different times being independent. Let
Xn be the number of students present at time n. Show that X is a Markov chain, and find its
invariant distribution.
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6. Each morning, a student takes one of three books (labelled 1, 2, and 3) from her shelf. She
chooses book i with probability αi , and choices on successive days are independent. In the
evening, she replaces the book at the left-hand end of the shelf. If pn denotes the probability
that on day n she finds the books in the order 1, 2, 3 from left to right, show that pn converges
as n → ∞, and find the limit.

7. Let X be an irreducible, positive recurrent, aperiodic Markov chain with state space S. Show
that X is reversible in equilibrium if and only if

pi1,i2 pi2,i3 · · · pin−1,in pin ,i1 = pi1,in pin ,in−1
· · · pi2,i1 ,

for all finite sequences i1, i2, . . . , in ∈ S.

8. A special die is thrown repeatedly. Its special property is that, on each throw, the outcome is
equally likely to be any of the five numbers that are different from the immediately previous
number. If the first score is 1, find the probability that the (n + 1)th score is 1.

9. A particle performs a random walk about the eight vertices of a cube. Find

(a) the mean number of steps before it returns to its starting vertex S,
(b) the mean number of visits to the opposite vertex T to S before its first return to S,
(c) the mean number of steps before its first visit to T .

10. Markov chain Monte Carlo. We wish to simulate a discrete random variable Z with mass
function satisfying P(Z = i) ∝ πi , for i ∈ S and S countable. Let X be an irreducible Markov
chain with state space S and transition matrix P = (pi, j ). Let Q = (qi, j ) be given by

qi, j =





min
{

pi, j , (π j /πi )p j,i

}
if i 6= j,

1 −
∑

j : j 6=i

qi, j if i = j.

Show that Q is the transition matrix of a Markov chain which is reversible in equilibrium, and
has invariant distribution equal to the mass function of Z .

11. Let i be a state of an irreducible, positive recurrent Markov chain X, and let Vn be the number

of visits to i between times 1 and n. Let µ = Ei (Ti ) and σ 2 = Ei ([Ti −µ]2) be the mean and

variance of the first return time to the starting state i , and assume 0 < σ 2 < ∞.

Suppose X0 = i . Show that

Un =
Vn − (n/µ)√

nσ 2/µ3

converges in distribution to the normal distribution N(0, 1) as n → ∞.

12. Consider a pack of cards labelled 1, 2, . . . , 52. We repeatedly take the top card and insert it
uniformly at random in one of the 52 possible places, that is, on the top or on the bottom or in
one of the 50 places inside the pack. How long on average will it take for the bottom card to
reach the top?

Let pn denote the probability that after n iterations, the cards are found to be in increasing
order from the top. Show that, irrespective of the initial ordering, pn converges as n → ∞,
and determine the limit p. You should give precise statements of any general results to which
you appeal.

Show that, at least until the bottom card reaches the top, the ordering of the cards inserted
beneath it is uniformly random. Hence or otherwise show that, for all n,

|pn − p| ≤
52(1 + log 51)

n
.

(Cambridge 2003)
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13. Consider a collection of N books arranged in a line along a bookshelf. At successive units of
time, a book is selected randomly from the collection. After the book has been consulted, it
is replaced on the shelf one position to the left of its original position, with the book in that
position moved to the right by one. That is, the selected book and its neighbour to the left
swap positions. If the selected book is already in the leftmost position, it is returned there. All
but one of the books have plain covers and are equally likely to be selected. The other book
has a red cover. At each time unit, the red book will be selected with probability p, where
0 < p < 1. Each other book will be selected with probability (1 − p)/(N − 1). Successive
choices of book are independent.

Number the positions on the shelf from 1 (at the left) to N (at the right). Write Xn for the
position of the red book after n units of time. Show that X is a Markov chain, with non-zero
transition probabilities given by:

pi,i−1 = p for i = 2, 3, . . . , N,

pi,i+1 =
1 − p

N − 1
for i = 1, 2, . . . , N − 1,

pi,i = 1 − p −
1 − p

N − 1
for i = 2, 3, . . . , N − 1,

p1,1 = 1 −
1 − p

N − 1
,

pN,N = 1 − p.

If (πi : i = 1, 2, . . . , N) is the invariant distribution of the Markov chain X, show that

π2 =
1 − p

p(N − 1)
π1, π3 =

1 − p

p(N − 1)
π2.

Deduce the invariant distribution. (Oxford 2005)

* 14. Consider a Markov chain with state space S = {0, 1, 2, . . . } and transition matrix given by

pi, j =

{
qp j−i+1 for i ≥ 1 and j ≥ i − 1,

qp j for i = 0 and j ≥ 0,

and pi, j = 0 otherwise, where 0 < p = 1 − q < 1.

For each p ∈ (0, 1), determine whether the chain is transient, null recurrent, or positive recur-
rent, and in the last case find the invariant distribution. (Cambridge 2007)

15. Let (Xn : n ≥ 0) be a simple random walk on the integers: the random variables ξn :=
Xn − Xn−1 are independent, with distribution

P(ξ = 1) = p, P(ξ = −1) = q,

where 0 < p < 1 and q = 1 − p. Consider the hitting time τ = inf{n : Xn = 0 or Xn = N},
where N > 1 is a given integer. For fixed s ∈ (0, 1), define

Hk = E
(
sτ 1(Xτ = 0)

∣∣ X0 = k
)

for k = 0, 1, . . . , N .

Show that the Hk satisfy a second-order difference equation, and hence find Hk . (Cambridge
2009)

16. An erratic bishop starts at the bottom left of a chess board and performs random moves. At
each stage, she picks one of the available legal moves with equal probability, independently of
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earlier moves. Let Xn be her position after n moves. Show that (Xn : n ≥ 0) is a reversible
Markov chain, and find its invariant distribution.

What is the mean number of moves before she returns to her starting square?

17. A frog inhabits a pond with an infinite number of lily pads, numbered 1, 2, 3 . . . . She hops
from pad to pad in the following manner: if she happen to be on pad i at a given time, she hops
to one of the pads (1, 2, . . . , i, i + 1) with equal probability.

(a) Find the equilibrium distribution of the corresponding Markov chain.
(b) Suppose the frog starts on pad k and stops when she returns to it. Show that the expected

number of times the frog hops is e(k − 1)!, where e = 2.718 . . . . What is the expected
number of times she will visit the lily pad k + 1?

(Cambridge 2010)

18. Let (Xn : n ≥ 0) be a simple, symmetric random walk on the integers {. . . ,−1, 0, 1, . . . },
with X0 = 0 and

P
(
Xn+1 = i ± 1

∣∣ Xn = i
)

= 1
2
.

For each integer a ≥ 1, let Ta = inf{n ≥ 0 : Xn = a}. Show that Ta is a stopping time.

Define a random variable Yn by the rule

Yn =

{
Xn if n < Ta ,

2a − Xn if n ≥ Ta .

Show that (Yn : n ≥ 0) is also a simple, symmetric random walk.

Let Mn = max{Xi : 0 ≤ i ≤ n}. Explain why {Mn ≥ a} = {Ta ≤ n} for a ≥ 1. By using the
process (Yn : n ≥ 0) constructed above, show that, for a ≥ 1,

P
(
Mn ≥ a, Xn ≤ a − 1

)
= P(Xn ≥ a + 1),

and thus,
P(Mn ≥ a) = P(Xn ≥ a)+ P(Xn ≥ a + 1).

Hence compute P(Mn = a), where a and n are positive integers with n ≥ a. [Hint: if n is
even, then Xn must be even, and if n is odd, then Xn must be odd.] (Cambridge 2010)
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Elements of combinatorics

The number of permutations of n distinct objects is

n! = n(n − 1)(n − 2) · · · 2 · 1,

and is pronounced ‘n factorial’. The number of ordered subsequences of length r from these

n objects is n(n − 1) · · · (n − r + 1), which may be written as

n Pr :=
n!

(n − r)!
.

If the ordering of these r objects is not important, then any of the r ! possible orderings gives

rise to the same subset, and the number of such combinations is then

nCr :=
1

r ! n Pr =
n!

r ! (n − r)!
.

This is usually called the binomial coefficient, written as
(

n

r

)
:=

n!
r ! (n − r)!

,

and pronounced ‘n choose r ’. It is useful to note that
(

n

r

)
=

n(n − 1) · · · (n − r + 1)

r !
, (A.1)

since this formal definition makes sense even when n is a general real number.

There are entire volumes devoted to combinatorial identities. Of the many such identities

we highlight one, namely the following:

(
2n

n

)
=

n∑

r=0

(
n

r

)(
n

n − r

)
, (A.2)

the proof of which is left as a small exercise.

The binomial theorem states that

(1 + x)n =
n∑

r=0

(
n

r

)
xr ,

valid for x ∈ R and n = 1, 2, . . . . There is a more general version that holds even when n is

fractional, or even negative.
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Theorem A.3 (Extended binomial theorem) Let y ∈ R. We have that

(1 + x)y =
∞∑

r=0

(
y

r

)
xr for |x | < 1,

where the binomial coefficients are given by (A.1).

It is often necessary to compare the rate of growth of n! with polynomial and exponential

functions of n. The requisite formula is called Stirling’s formula.

Theorem A.4 (Stirling’s formula) We have that

n! ∼ (n/e)n
√

2πn as n → ∞,

where an ∼ bn means an/bn → 1.

A ‘short’ proof of Stirling’s formula has been given by Romik (2000), and a proof of a

slightly weaker result without the identification of the constant
√

2π is provided in Norris

(1997, Sect. 1.12).

Partial proof We prove only the weaker ‘logarithmic asymptotic’

log n! ∼ n log n as n → ∞. (A.5)

Since log is increasing on the interval [1,∞), we have that

∫ n

1

log x dx ≤
n∑

k=1

log k ≤
∫ n+1

1

log x dx,

which is to say that

n log n − n + 1 ≤ log n! ≤ (n + 1) log(n + 1)− n.

Equation (A.5) follows by dividing by n log n and letting n → ∞. 2

Readers are referred to Graham et al. (1994) for further information about these and related

topics.
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Difference equations

We say that the sequence x0, x1, . . . satisfies a difference equation if

a0xn+k + a1xn+k−1 + · · · + ak xn = 0 for n = 0, 1, 2, . . . , (B.1)

where a0, a1, . . . , ak is a given sequence of real numbers and a0 6= 0. We generally suppose

that ak 6= 0, and in this case we call (B.1) a difference equation of order k. Difference equa-

tions occur quite often in the study of random processes, particularly random walks, and it is

useful to be able to solve them. We describe here how to do this.

Just as in solving differential equations, we require boundary conditions in order to solve

difference equations. To see this, note that (B.1) may be rewritten as

xn+k = −
1

a0

(a1xn+k−1 + a2xn+k−2 + · · · + ak xn) for n = 0, 1, 2, . . . (B.2)

since a0 6= 0. Thus, if we know the values of x0, x1, . . . , xk−1, equation (B.2) with n = 0

provides the value of xk . Next, equation (B.2) with n = 1 tells us the value of xk+1, and so on.

That is to say, there is a unique solution of (B.1) with specified values for x0, x1, . . . , xk−1. It

follows that, if ak 6= 0, the general solution of (B.1) contains exactly k independent arbitrary

constants, and so exactly k independent boundary conditions are required in order to solve

(B.1) explicitly.

The principal step involved in solving (B.1) is to find the roots of the auxiliary equation

a0θ
k + a1θ

k−1 + · · · + ak−1θ + ak = 0, (B.3)

a polynomial in θ of degree k. We denote the (possibly complex) roots of this polynomial by

θ1, θ2, . . . , θk . The general solution of (B.1) is given in the next theorem.
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Theorem B.4 Let a0, a1, . . . , ak be a sequence of real numbers with a0 6= 0.

(a) If the roots θ1, θ2, . . . , θk of the auxiliary equation are distinct, the general solution

of (B.1) is

xn = c1θ
n
1 + c2θ

n
2 + · · · + ckθ

n
k for n = 0, 1, 2, . . . , (B.5)

where c1, c2, . . . , ck are arbitrary constants.

(b) More generally, if θ1, θ2, . . . , θr are the distinct roots of the auxiliary equation and

mi is the multiplicity of θi for i = 1, 2, . . . , r , the general solution of (B.1) is

xn = (a1 + a2n + · · · + am1
nm1−1)θn

1

+ (b1 + b2n + · · · + bm2
nm2−1)θn

2 + · · ·
+ (c1 + c2n + · · · + cmr nmr −1)θn

r for n = 0, 1, 2, . . . , (B.6)

where the k numbers a1, . . . , am1 , b1 . . . , bm2 , . . . , c1, . . . , cmr are arbitrary con-

stants.

The auxiliary equation may not possess k real roots, and thus some or all of θ1, θ2, . . . , θk

may have non-zero imaginary parts. Similarly, the arbitrary constants in Theorem B.4 need not

necessarily be real, and the general solution (B.6) is actually the general solution for complex

solutions of the difference equation (B.1). If we seek real solutions only of (B.1), then this

fact should be taken into account when finding the values of the constants.

We do not prove this theorem, but here are two ways of going about proving it, should one

wish to do so. The first way is constructive, and uses the generating functions of the sequences

of ai and xi (see Hall (1967, p. 20)). The second way is to check that (B.5) and (B.6) are indeed

solutions of (B.1) and then to note that they contain the correct number of arbitrary constants.

Here is an example of the theorem in action.

Example B.7 Find the solution of the difference equation

xn+3 − 5xn+2 + 8xn+1 − 4xn = 0

subject to the boundary conditions x0 = 0, x1 = 3, x3 = 41.

Solution The auxiliary equation is

θ3 − 5θ2 + 8θ − 4 = 0

with roots θ = 1, 2, 2. The general solution is therefore

xn = a1n + (b + cn)2n,

where the constants a, b, c are found from the boundary conditions to be given by a = 1,

b = −1, c = 2. △
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An important generalization of Theorem B.4 deals with difference equations of the form

a0xn+k + a1xn+k−1 + · · · + akxn = g(n) for n = 0, 1, 2, . . . , (B.8)

where g is a given function of n, not always equal to 0. There are two principal steps in solving

(B.8). First, we find a solution of (B.8) by any means available, and we call this a particular

solution. Secondly, we find the general solution to the difference equation obtained by setting

g(n) = 0 for all n:

a0xn+k + a1xn+k−1 + · · · + ak xn = 0 for n = 0, 1, 2, . . . ,

this solution is called the complementary solution.

Theorem B.9 Suppose that a0, a1, . . . , ak is a given sequence of real numbers and that

a0 6= 0. The general solution of (B.8) is

xn = κn + πn for n = 0, 1, 2 . . . , (B.10)

where κ0, κ1, . . . is the complementary solution and π0, π1, . . . is a particular solution.

This may be proved in the same general way as Theorem B.4. We finish with an example.

Example B.11 Find the solution of the difference equation

xn+2 − 5xn+1 + 6xn = 4n + 2 (B.12)

subject to the boundary conditions x0 = 5, x4 = −37.

Solution The right-hand side of (B.12) is a polynomial function of n, and this suggests that

there may be a particular solution which is a polynomial. Trial and error shows that

xn = 2n + 4 for n = 0, 1, 2, . . .

is a particular solution. The general solution of the difference equation

xn+2 − 5xn+1 + 6xn = 0

is

xn = a2n + b3n for n = 0, 1, 2, . . . ,

where a and b are arbitrary constants. It follows that the general solution of (B.12) is

xn = a2n + b3n + 2n + 4 for n = 0, 1, 2 . . . .

The constants a and b are found from the boundary conditions to be given by a = 2, b = −1.

△



Answers to exercises

Chapter 1

1.17. Yes.

1.21. 6
10

.

1.30. Compare 1 − ( 5
6
)4 with 1 − ( 35

36
)24.

1.36. 1
8
.

1.43. Either A or B must have zero probability.

1.46. (a) (1 − p)m , (b) 1
2
[1 + (q − p)n], where p + q = 1.

1.52. (a) 46
63

, (b) 16
37

.

1.53. 4
3(

2
3 )

n − 1
3(−

1
3)

n .

Chapter 2

2.11. Only V is a random variable.

2.12. c = 1.

2.26. P(Y = 0) = e−λ coshλ, P(Y = 1) = e−λ sinhλ.

2.37. npq .

Chapter 3

3.8. x = 0 x = 1 x = 2

y = 0 11·43
13·51

88
13·51

1
13·17

y = 1 88
13·51

8
13·51 0

y = 2 1
13·17

0 0

3.9. pX (i) = θ i (θ + θ2 + θ3) for i = 0, 1, 2.

3.29. Take Y = X , so that X + Y takes even values only—it cannot then have the Poisson

distribution.

Chapter 4

4.4. (a) V (s) = 2U(s), (b) V (s) = U(s)+ (1 − s)−1, (c) V (s) = sU ′(s).

4.5. u2n =
(

2n

n

)
pnqn, u2n+1 = 0.

4.32. E(X) = −
d1

ds

∣∣∣∣
s=1

. E(log X) = lim
y→0

1(−y)− 1

y
.
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Chapter 5

5.12. Yes.

5.13. FY (y) =
{

FX (y) if y ≥ 0,

0 if y < 0.

5.19. c = 1
2

.

5.30. F(x) =





0 if x < 0,

x2 if 0 ≤ x < 1,

1 if x ≥ 1.

5.31. F(x) =

{
1
2

ex if x ≤ 0,

1 − 1
2

e−x if x > 0.

5.32. f (x) = F ′(x) if x 6= 0.

5.33. F(x) = exp(−e−x ).

5.45. w = 1, arbitrary positive λ.

5.48. 2/π .

5.54. (a) f A(x) = 1
2
λ exp

(
− 1

2
λ[x − 5]

)
if x > 5.

(b) fB(x) = λe−λ−1 if x > 1.

(c) fC (x) = λx−2 exp
(
−λ[x−1 − 1]

)
if x < 1.

(d) fD(x) = 1
2
λx− 3

2 exp
(
−λ[x− 1

2 − 1]
)

if x < 1.

5.68. c = 6, E(X) = 1
2
, var(X) = 1

20
.

5.69. e2.

5.70. 2
3
.

Chapter 6

6.25. c = 6
7

and F(x, y) = 6
7
( 1

3
x3y + 1

8
x2y2) if 0 ≤ x ≤ 1, 0 ≤ y ≤ 2.

6.26. P(X + Y ≤ 1) = 1 − 2e−1, P(X > Y ) = 1
2

.

6.35. c = 3, fX (x) = 3x2 if 0 < x < 1, and fY (y) = 3
2
(1 − y2) if 0 < y < 1. X and Y

are dependent.

6.36. X , Y , and Z are independent, and P(X > Y ) = P(Y > Z) = 1
2
.

6.45. fX+Y (u) = 1
2

u2e−u if u > 0.

6.47. X + Y has the normal distribution with mean 0 and variance 2.

6.54. fU,V (u, v) =
1

4πσ 2
exp

(
−

1

4σ 2
[u2 + (v − 2µ)2]

)
, which factorizes, so that U and

V are independent.

6.60. fX |Y (x | y) = y−1 and fY |X (y | x) = ex−y, if 0 < x < y < ∞.

6.70. E
√

X2 + Y 2 = 2
3

and E(X2 + Y 2) = 1
2

.

6.71. Let X and Z be independent, X having the normal distribution with mean 0, and

variance 1, and Z taking the values ±1 each with probability 1
2
. Define Y = X Z .

6.72. E(X | Y = y) = 1
2

y and E(Y | X = x) = x + 1.

Chapter 7

7.59. (a) [λ/(λ− t)]w if t < λ, (b) exp(−λ+ λet).
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7.60. µ3 + 3µσ 2.

7.72. The discrete distribution that places probability 1
2

on the each value 0 and 2µ.

7.97. (a) [λ/(λ− i t)]w, (b) exp(−λ+ λeit ).

Chapter 8

8.32. a = −
√

6, b = 2
√

6.

8.42. 3∗(a) = 1
2
a2.

8.44.
1

2
−

1

π
tan−1 a.

Chapter 9

9.11. 1 − pn .

Chapter 10

10.4. E(Sn) = n(p − q), var(Sn) = 4 pqn.

10.5. pn.

10.9.

(
2n + 1

n

)
pn+1qn.

10.43. If p = 1
2

, it is 1
2

. If p 6= 1
2

, it is
1

θ N − 1

(
θ N+1 − 1

(N + 1)(θ − 1)
− 1

)
, where θ = q/p.

10.44. q

(
θ k−1 − 1

θ k − 1

)
, where θ = q/p.

Chapter 11

11.3. p(t) = e−λt if t ≥ 0.

11.32. The gamma distribution with parameters 2 and λ.

11.59. m(t) = m(0)e(λ−µ)t .
11.79. e−µ1t/(e−µ1t + e−µ2t + e−µ3t ).

Chapter 12

12.10. S = {1, 2, 3, 4, 5, 6} and

P =




1
6

1
6

1
6

1
6

1
6

1
6

0 1
3

1
6

1
6

1
6

1
6

0 0 1
2

1
6

1
6

1
6

0 0 0 2
3

1
6

1
6

0 0 0 0 5
6

1
6

0 0 0 0 0 1




.

12.11. Not necessarily. For example, let X = (Xn) be a symmetric random walk with X0 =
0. Let R be independent of X and equally likely to take the values ±1, and set Yn =
RXn and Zn = Xn +Yn . Now consider P(Zn+1 = 0 | Zn = 0, Z1 = z) for z = 0, 2.
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12.22. 1
3

+ 2
3
(− 1

2
)n .

12.28. {1, 5}, {3}, {2, 4}. The first two are closed.

12.29. The process X on the integers Z given by Xn = n.

12.62. 1/ζ(α), where ζ(s) =
∑∞

k=1 k−s is the Riemann zeta function.

12.80. All states are positive recurrent. They have period 2 in the first case. In the second

case, thay have period 2 if p = 1
2

and are aperiodic otherwise.

12.96. 1
14

for the corners and 1
7

for the other vertices. The mean number is 2.

12.119. Yes. Take S = {1, 2}, P(X0 = 1) = 1
2
, p1,2 = p2,1 = 1.

12.120. πk = θ k(1 − θ)/(1 − θ N+1), where θ = p/q .

12.125. 1
140

for the corners, 1
84

for other side squares, 2
105

for other squares.



Remarks on problems

Chapter 1

1. Expand (1 + x)n + (1 − x)n .

2. No.

6. 79
140

and 40
61

.

7. 11
50

.

8.
√

3/(4πn)( 27
32
)n .

9. If X and Y are the numbers of heads obtained,

P(X = Y ) =
∑

k

P(X = k)P(Y = k) =
∑

k

P(X = k)P(Y = n − k)

= P(X + Y = n).

10. 1 − (1 − p)(1 − p2)2 and 1 − (1 − p)(1 − p2)2 − p + p[1 − (1 − p)2]2.

12. To do this rigorously is quite complicated. You need to show that the proportion 1
10

is correct for any single one of the numbers 0, 1, 2, . . . , 9.

13. Use the Partition Theorem 1.48 to obtain the difference equations. Either iterate these

directly to solve them, or set up a matrix recurrence relation, and iterate this.

14. (a) Induction. (b) Let Ai be the event that the i th key is hung on its own hook.

15. Use the result of Problem 1.11.14(a).

16. Conditional probabilities again. The answer is 1
4
(2e−1 + e−2 + e−4).

18.
⋃n

i=1 Ai →
⋃∞

i=1 Ai as n → ∞.

19. Show n = 6.

Chapter 2

2. Use Theorem 2.42 with X and Bi chosen appropriately. The answer is m(r) = r/p.

3. E(X2) =
∑

x2P(X = x), the sum of non-negative terms.

4. α < −1 and c = 1/ζ(−α), where ζ(p) =
∑

k k−p is the Riemann zeta function.

5. For the last part, show that G(n) = P(X > n) satisfies G(m + n) = G(m)G(n), and

solve this relation.

6. The summation here is
∑∞

k=0

∑∞
i=k+1 P(X = i). Change the order of summation.

For the second part, use the result of Exercise 1.20.

7. This generalizes the result of Problem 2.6.6.

8. This is sometimes called Banach’s matchbox problem. First, condition on which

pocket is first emptied. You may find the hint more comprehensible if you note that

2(n − h)ph = (2n − h)ph+1. The mean equals (2n + 1)p0 − 1.

9. (1 − pn)/[pn(1 − p)].
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Chapter 3

1. Use the result of Exercise 1.35, with Theorem 3.27.

2. a = b = 1
2
. No.

4. P(Un = k) = P(Un ≥ k)− P(Un ≥ k + 1), and P(Un ≥ k) =
(

1 −
k − 1

N

)n

.

5. P(U > k) = P(X > k)P(Y > k).

6. Let 1k be the indicator function of the event that, when there are 2k ends, a new hoop

is created at the next step. Then E(1k) = k
/(

2k
2

)
= 1/(2k − 1). The mean final

number of hoops is
∑n

k=1 E(1k).

7. Use Theorem 2.42 with Bi = {N = i − 1}.
9. (a) 1

2
, (b) 1

6
(3

√
5 − 1), (c) 5

6
.

10. Let Z i be the indicator function that the i th box is empty. The total number of empty

boxes is S = Z1 + Z2 + · · · + Z M . Also, E(Z i ) = (M − 1)N /M N and E(S) =
ME(Z1).

11. Adapt the hint for Problem 3.6.10.

12. In calculating the mean, remember that the expectation operator E is linear. The an-

swer here is c
(

1 + 1
2

+ 1
3

+ · · · + 1
c

)
, a much more elegant solution than that pro-

posed for Problem 2.6.7.

13. c[1 − (1 − c−1)n], by using indicator functions.

14. Condition on the value of N . X has the Poisson distribution with parameter λp.

15. var(Un) = (n − 1)pq − (3n − 5)(pq)2.

16. (a) The means are 7 and 0, and both variances equal 35
6

. To locate the extremal prob-

abilities, find the number of ways in which the various possible outcomes can occur.

For example, P(X = x) is maximized at x = 7. To verify (in)dependence, it is

convenient to use a simple fact of the type P(X = 3, Y = 0) = 0.

Chapter 4

1. Note that P(X = k) = uk−1 − uk .

2. ( 1
6
)7
(

13!
6! 7!

− 49

)
.

3. 9
19

, 6
19

, 4
19

. The mean number of throws is 3.

4. [q/(1 − ps)]N . The variance is N p(1 − p)−2.

5. The first part of this problem may be done by way of Theorem 4.36, with N+1 having

a geometric distribution and the X i having the Bernoulli distribution. Alternatively,

use the methods of Chapter 3. The answer to the first part is 2(1 − p)pr(2 − p)−r−1,

and to the second part
(

n
r

)
( 1

2
)n+1 pn−r (2 − p)r+1.

6. For the third part, find the real part of G X (θ), where θ is a primitive complex root of

unity.

8. G X (s) = G N (
1
2
+ 1

2
s), giving by independence that G = G N satisfies the functional

equation G(s) = G( 1
2

+ 1
2

s)2. Iterate this to obtain G(s) = G
(
1 + (s − 1)/m

)m
,

where m = 2n , use Taylor’s theorem and take the limit as n → ∞.

9. This is an alternative derivation of the result of Problem 3.6.12.

10. P(A wins) = a/(a + b − ab). The mean number of shots is (2 − a)/(a + b − ab).

11. This is essentially a reprise of Problem 4.5.8.
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Chapter 5

3. n ≥ 4.

4. fY (y) =
√

2/π exp(− 1
2

y2) for y > 0.
√

2/π and 1 − (2/π).

5. Let F−1(y) = sup{x : F(x) = y}. Find P(F(X) ≤ y).

6. Note that x ≤ F(y) if and only if F−1(x) ≤ y, whenever 0 < F(y) < 1.

7. Integrate by parts. You are proving that E(X) =
∫

P(X > x) dx , the continuous

version of Problem 2.6.6.

8. Apply the conclusion of Problem 5.8.7 to Y = g(X), express the result as a double

integral and change the order of integration.

10. fY (y) =
3

(1 − y)2
exp

(
−

y + 2

1 − y

)
for −2 < y < 1.

11. This distance has distribution function (2/π) tan−1 x for 0 ≤ x < ∞.

12. Assume that the centre is uniform on the rectangle [0, a] × [0, b], and that the acute

angle θ between the needle and a line of the first grid is uniform on [0, 1
2
π ]. There

is no intersection if and only if the centre lies within an inner rectangle of size

(a − ℓ cos θ)× (b − ℓ sin θ). Hence, the probability of an intersection is

2

πab

∫ π/2

0

[
ab − (a − ℓ cos θ)(b − ℓ sin θ)

]
dθ =

2ℓ

πab
(a + b − 1

2ℓ).

13. Let Xk be the position of the kth break (in no special order). The pieces form a

polygon if no piece is longer than the sum of the other lengths, which is equivalent

to each piece having length less than 1
2

. This fails to occur if and only if the disjoint

union A0 ∪ A1 ∪ · · · ∪ An occurs, where A0 is the event there is no break in (0, 1
2
],

and Ak is the event of no break in (Xk, Xk + 1
2
] for k ≥ 1 (remember the permanent

break at 1). Now, P(A0) = ( 1
2 )

n, and for k ≥ 1,

P(Ak) =
∫ 1

0

P(Ak | Xk = x) dx =
∫ 1

2

0

( 1
2 )

n−1 dx = ( 1
2 )

n .

14. Find P(Y ≤ y) for y ∈ R.

Chapter 6

1. For the first part, find the joint density function of X and XY by the method of change

of variables, and then find the marginal density function of XY .

2. No.

3. The region
{
(x, y, z) :

√
4xz < y ≤ 1, 0 ≤ x, z ≤ 1

}
has volume 5

36
+ 1

6
log 2.

4. min{X, Y } > u if and only if X > u and Y > u.

5. Show that G(y) = P(Y > y) satisfies G(x + y) = G(x)G(y), and solve this

equation. The corresponding question for integer-valued random variables appears

at Problem 2.6.5.

6. If you can do Problem 6.9.4 then you should be able to do this one.

P(U ≤ x, V ≤ y) = F(y)n − [F(y)− F(x)]n for x < y.
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9. fY (y) = 1
4
(3y + 1)e−y for 0 < y < ∞.

11. Use Theorem 6.62 with g(x, y) =
√

x2 + y2 and change to polar coordinates. The

variance equals σ 2(2 − 1
2π).

12. Draw the regions in question in the (x, y)-plane. It is useful to prove that R2 =
X2 + Y 2 and 2 = tan−1(Y/X) are independent, having an exponential and uniform

distributions, respectively.

(a) 1 − exp(− 1
2

a2/σ 2).

(b) α/(2π).

13. (a) (i) 1 − e−λX is uniformly distributed on (0, 1).

(ii) min{X,Y } has the exponential distribution with parameter 2λ.

(iii) X − Y has the bilateral exponential distribution.

(b) The answer is 0 if a < 1 and a/(1 + a) if a ≥ 1.

14. This is largely an exercise in changes of variables, but there is a much better argument

which shows 1
2

to be the answer to (b).

20. E(Y | X = x) = 1
2

x for 0 < x < 1.

21. You could use Problem 5.8.7 for the first part. The covariance is 1
36

.

22. f8(φ) = 1
2

sinφ for 0 < φ < π . The intersection of a plane through C with the

surface of the planet is called a great circle. There is a two–one correspondence

between hemispheres and great circles. The key fact for the second part is that the

intersection of the surfaces of two hemispheres with radius 1 has area 2α, where α is

the angle between the two corresponding great circles at their points of intersection.

The answers to the next two parts are (π + φ)/(2π) and (π − φ)/(2π).

23. Picking a random point on the surface is equivalent to picking a random hemisphere

(with pole at that point), and this in turn is equivalent to picking a random great circle,

and then flipping a fair coin to choose a hemisphere. The answer is 1−(an/2
n), where

an = n2 − n + 2.

24. The final answer is no, and an explanation would be appreciated.

25. Use the Jacobian method to find the joint pdf of X and Z .

27. For part (iii) of (a), use the Jacobian method with U = X .

28. (d) One needs the derivative of the quadratic to be negative at −1 and positive at 1.

Chapter 7

2. The identity
∑
(X i − X)2 =

∑[
X i − µ− (X − µ)

]2 =
∑
(X i − µ)2 − n(X − µ)2

may be useful.

3. E(Sn/Sn) = nE(X1/Sn) and E(Sm/Sn) = mE(X1/Sn). The result is generally false

when m > n. See also Problem 3.6.8.

4.
∣∣{x : F(x)− limy↑x F(y) > 1/n}

∣∣ < n.

6. Use moment generating functions.

7. For the middle part, find the moment generating function of X2
1 and use Theorem

7.52.

8. This is basically the same argument as in the random sum formula, Theorem 4.36.

MS(t) = G N (MX (t)).

9. var(Z) =
∑

amvmnan .

10. Let Z i be the indicator function that A wins the i th game.



Remarks on problems 263

11. M(sσ1, tσ2) exp(sµ1 + tµ2).

12. To do the last part, show first that ψ(t) = M(t)/M(−t) satisfies ψ(t) = ψ(2−n t)2
n
.

Show that ψ(t) = 1 + o(t2) as t → 0, and deduce that ψ(t) = 1 by taking the

limit above as n → ∞. Hence, M(t) = M(−t), and the original equation become

M(t) = M( 1
2

t)4. Repeat the procedure to obtain M(t) = exp( 1
2

t2).

13. (b) Remember the result of Problem 7.7.8. The answer to the last part is XY , where

Y has which distribution?

14. Remember Problem 4.5.9.

15. This is similar to Problem 7.7.13.

16. eit x = cos tx + i sin tx .

17. Use the inversion theorem, Theorem 7.89, or remember the density function and char-

acteristic function of the Cauchy distribution.

19. φ′′(0) = 0 if α > 2. What does this imply about such a distribution?

22. Q = pm
1 + pm

2 + · · · + pm
N .

23. Xn has a gamma distribution.

24. (c) Let A, B be random variables and consider the moment generating function of a

random variable Y that equals A with probability 1
2 and B otherwise.

25. Put a = b to obtain a lower bound for cp, and use Jensen’s inequality.

26. Let 0 < s ≤ r and t = r/s ≥ 1. Apply Jensen’s inequality to Y = Z s to obtain

E(Y t) ≥ E(Y )t .

Chapter 8

1. P(Zn ≤ b) = (b/a)n for 0 < b < a.

3. Use Theorem 8.14.

5. The left-hand side equals P(X1 + X2 + · · · + Xn ≤ n) for appropriately distributed

random variables.

6. (a) 2−nTn = P(Sn > an) with Sn as in (8.41). (b) Use the Poisson distribution.

8. Adapt Example 8.19.

9. If x + y > ǫ, then either x > 1
2
ǫ or y > 1

2
ǫ.

10. Let Z i = X i − Yi .

12. |X | ≤ a(1 − I )+ M I , where I is the indicator function of the event that |X | ≥ a.

13. Combine the results of Problems 8.6.11 and 8.6.12.

14. Use the Cauchy–Schwarz inequality.

15. Moment generating functions may be useful for the first part. Y has a χ2 distribution.

16. Express P(Zn ≤ x) in terms of the density function of Yn and take the limit as

n → ∞. It is rather complicated.

17. Bn(p) =
∑

k f (k/n)
(

n
k

)
pkqn−k , where q = 1 − p. For the last part, note that

n−1
∑

X i converges to p, so that, by continuity, Bn(p) is close to f (p) with large

probability. The error probability is controlled using the boundedness of f .

18. The exponential distribution.

19. True, false, and true.

22. This is very similar to Problem 7.7.12.

24. Both mean and variance equal 1.
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Chapter 9

1. Zn has variance σ 2µn−1(µn − 1)/(µ− 1) if µ 6= 1 and nσ 2 if µ = 1.

4. f (s) = eλ(s−1).

6. Gn(s) = 1 − α(1−βn )/(1−β)(1 − s)β
n
.

Chapter 10

1. The first part is a variation of the result of Theorem 10.6. For the second part, follow

the first walk for the first n steps and then return along the second walk, reversed.

2. Either solve the difference equation, or relate it to equation (10.26). The number of

stages required is N1 + N2 + · · ·+ NM , where M is the number of moves (remember

Theorem 10.28) and each Ni has a geometric distribution. Alternatively, solve the

appropriate difference equation.

3.
1

N
.

4. There is only one solution to pθ3 − θ + q = 0 with absolute value not exceeding 1,

when p ≤ 1
3

.

5. e(a) =
p

(q − p)2
(ρN − ρN−a )+

a

q − p
if p 6= q .

6. Use Theorem 10.12.

8. For the final part, the general argument in Problem 10.5.6 may be useful. See also

Section 12.5.

10. Either condition on the value of Dn−1, or write D2
n = X2

n + Y 2
n , in the obvious

notation.

11. The answer to the first part is
[(

1−
√

1 − s2
)
/s
]n

. The remaining part of the question

is not dissimilar to Problem 10.5.9.

12. This is the three-dimensional version of Problem 10.5.8. See also Section 12.5.

15. Use the result of Problem 10.5.14, or the lack-of-memory property of the geometric

distribution.

Chapter 11

1. Poisson, with parameter λ(t − s).

2. Condition on Ns .

3. 1
6
.

4. To obtain the integral equation, condition on X1. The solution of the integral equation

is g(t, x) = e−λx .

5. Use the random sum formula, Theorem 4.36.

8. The time between the i th and (i + 1)th birth has the exponential distribution with

parameter λi .

10. Find P(T ≤ t) = P(L t = 0) from the result of Theorem 11.53.

11. To find the mean m(t), differentiate throughout with respect to z and set z = 1, to

obtain

∂2φ

∂z∂ t

∣∣∣∣∣
z=1

= φ(1, t),

giving m′(t) = 1 since m(t) = ∂φ/∂z
∣∣
z=1

. Hence, m(t) = t . The variance may be

found similarly.
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14. The following argument is not completely rigorous but is illuminating. Let t → ∞ in

the formula for G(s, t) given in Problem 11.7.13 to obtain G(s, t) → exp[ρ(s − 1)]
where ρ = θ/µ. This is the probability generating function of the Poisson distri-

bution. Rewrite this in terms of characteristic functions and appeal to the continuity

theorem for a watertight argument.

15. p(t) = e−λt cosh λt = q(t). The time to the first change of state has the exponential

distribution with parameter λ. Use independence for the last part.

16. Condition on the length of the service time.

22. (c) The mean total is 1
2

tE(Nt ) = 1
2
λt2, by either calculation or symmetry.

Chapter 12

1. πi = 1/N for i ∈ S.

2. Recall Example 12.15. The chain is reversible in equilibrium when 0 < αβ < 1.

3. In ‘physical’ models of this type, one can start by looking for a solution to the detailed

balance equations. In this case, we have πi =
(

N
i

)2/(2N
N

)
.

4. The chain is irreducible and P0(T > n) = bn , where T is the first return time of 0.

Recall Problem 2.6.6. The final answer is π j = b j

/∑
i bi .

5. The Markov property holds by the lack-of-memory property of the geometric dis-

tribution (Problem 2.6.5). For the invariant distribution, look for a solution of the

detailed balance equations (you may pick an easy equation to start).

6. Either solve the equation π = πP, or argue as follows. If the state is i jk, then i was

the last book chosen and, of the books j and k, j was the last chosen. Therefore,

πi j k = αiα j/(α j + αk).

7. Assume reversibility. By passing the π term along the product, we may see that

πi1 pi1,i2 pi2,i3 · · · pin ,i1 = pi2,i1 pi3,i2 · · · pi1,inπi1 . For the converse, sum over the in-

termediate j2, . . . , jn−1 to obtain p j1, jn (n − 1)p jn, j1 = p j1, jn p jn, j1(n − 1), and let

n → ∞.

8. Either slog it out, or consider a collapsed chain with two states, 1 and 0 (representing

‘not 1’). Now use the result of Problem 12.13.2.

9. (a) 8, (b) 1, (c) 10. Use Theorem 12.57 and symmetry for the last part.

10. Check that Q and π are in detailed balance.

11. Use the fact that Un ≥ x if and only if Wa(n) ≤ n, where Wk is the time of the

kth return to i , and a(n) =
⌈
(n/µ) + x

√
nσ 2/µ3

⌉
. Now, Wa(n) is the sum of a(n)

independent, identically distributed random variables, and a(n)/n → 1/µ.

12. 52
1

+ 52
2

+ · · · + 52
51

≤ 52(1 + log 51). Use conditional probability and Markov’s

inequality for the last part.

13. The quick way is to look for a solution of the detailed balance equations.

14. Solve the equation π = πP to find πk = ρkπ0, where ρ = p/q . The chain is positive

recurrent if and only if p < q . In order to distinguish between transience and null

recurrence, consider a simple random walk on S at the times of leftward steps.

16. Bishops move diagonally. Starting at a corner, a bishop can reach 32 vertices, of

which 14 have degree 7, 10 have degree 9, 6 have degree 11, and 2 have degree 13.

Finally, 40.

17. (a) Solve recursively in terms of π1, guess the answer, and prove by induction. Alter-

natively, read part (b).
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absolute continuity, 66
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absorption probability, 221
adjacency, 217
aperiodic state, 228
arithmetic/geometric means, 124
auxiliary equation, 252
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Banach–Kuratowski theorem, 6
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Bernoulli distribution, 26
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Bertrand’s paradox, 76
beta distribution, 69
bilateral/double exponential distribution, 68,
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binomial
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b. distribution, 26

pgf, 53
b.–Poisson limit theorem, 28, 150

birth process
simple b. p., 190

birth–death
b.–d. chain, 223, 242
b.–d. process, 193

birth–death–immigration process, 202
bivariate normal distribution, 100
Bonferroni’s inequality, 20
Boole’s inequality, 19
bounded convergence theorem, 234
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extinction of b. p., 163
Buffon
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B.’s noodle, 79
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C. distribution, 108, 110
C. set, 109
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Cauchy distribution, 69

characteristic function, 125
mean, 75
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moments, 111

Cauchy–Schwarz inequality, 116
central limit theorem, 139, 149
centre of gravity, 31
change of variables, 71, 93
Chapman–Kolmogorov equations, 208
characteristic function, 119, 125
Chebyshev’s inequality, 137
Chevalier de Méré, 11
chi-squared distribution, 69
class property, 215
closed class, 212
combination, 250
communicating
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c. states, 212

complementary solution, 254
conditional

c. expectation, 33, 99
c. pdf, 96
c. probability, 11

continuity
c. of probability measures, 16
c. theorem, 140, 148

continuous random variable, 66
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convergence
c. in distribution, 146
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weak c., 146

convergence theorem for Markov chains, 235
convex function, 122
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correlation coefficient, 115
countable set, 6
coupling game, 237
coupon-collecting problem, 36, 49, 59, 131
covariance, 114
Cramér’s theorem, 142

de Méré’s paradox, 11
degree, 244
density function, 66

conditional pdf, 96
joint pdf, 86

dependence, 41, 84
detailed balance equations, 241
difference equation, 252

auxiliary equation, 252
complementary solution, 254
particular solution, 254

difference set, 5
Dirichlet pgf, 56
discrete

d. random variable, 23
expectation of d. r. v., 30

d. sample space, 9
distribution, 206

F-d., 104
t-d., 104
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Bernoulli d., 26
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bilateral/double exponential d., 68, 79
binomial d., 26
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chi-squared d., 69
equilibrium d., 231
exponential d., 64, 69
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geometric d., 26
invariant d., 231
log-normal d., 112
negative binomial d., 27
normal d., 69
Poisson d., 26
stationary d., 231
steady-state d., 199
tail of d., 121
uniform d., 64, 68

distribution function, 62
joint d. f., 83
marginal d. f., 84

doubly stochastic matrix, 208

Ehrenfest dog–flea model, 242
equiprobable outcomes, 9
ergodicity, 228
erratic

e. bishops, 248
e. kings, 246
e. knights, 245

event, 4
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dependence, 12
elementary e., 4
increasing sequence, 16
independence, 12
pairwise independence, 13

event space, 5
expectation, 30, 73

conditional e., 33, 99
linearity of e., 40, 97

expected value, 30
experiment, 3
exponential distribution, 64, 69
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lack-of-memory property, 103, 187
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moments, 74, 111
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extinction
e. probability, 163
e. probability theorem, 163
e./survival theorem, 164

extreme-value distribution, 68, 201
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first-passage

probability, 214
time, 214

Fubini’s theorem, 86
functions of random variables, 71, 93

Gambler’s Ruin Problem, 173, 223, 248
gambling, 167
gamma distribution, 69, 92
gamma function, 69, 70
Gaussian distribution, 69
generating function, 50

Dirichlet g. f., 56
moment g. f., 117
probability g. f., 52

geometric distribution, 26
lack-of-memory property, 36



Index 269
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h. probability, 221
h. time, 221
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independence, 12, 41, 84, 88, 98
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Markov’s i., 121

inter-arrival time, 187
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inversion theorem, 128
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Jacobian formula, 93
Jensen’s inequality, 122
joint

j. continuity, 85
j. distribution function, 83
j. mgf, 131
j. pdf, 86
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Kronecker delta, 214

lack-of-memory property
of exponential distribution, 103, 187
of geometric distribution, 36
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large deviation theorem, 144
law of large numbers, 135, 137, 148
law of the subconscious statistician, 31, 73
Lebesgue decomposition theorem, 110
linearity of expectation, 40, 97
log-normal distribution, 112
Lyapunov’s inequality, 133

marginal
m. distribution function, 84
m. pdf, 88

m. pmf, 39
Markov chain, 205

convergence theorem for M. c., 235
homogeneous M. c., 205
initial distribution, 206
M. c. Monte Carlo, 206, 247
reversibility in equilibrium, 241, 247
reversible M. c., 241
transition matrix, 206
transition probabilities, 208

Markov property, 205
Markov’s inequality, 121
mass function, 24
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doubly stochastic m., 208
stochastic m., 206
transition m., 206

mean, 30
mean recurrence time, 228
measurability, 61
median, 64, 122, 124
mgf, 117
moment generating function, 117

joint mgf, 131
moments, 54, 111

negative binomial distribution, 27
pgf, 53

neighbours, 217, 244
nomad, 158
normal distribution, 69
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mgf, 118
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standard n. d., 151

normal number, 20
null state, 228

order statistics, 151

Pólya’s theorem, 218
pairwise independence, 13, 44
paradox

Bertrand’s p., 76
de Méré’s p., 11
Simpson’s p., 19

particular solution, 254
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p. theorem, 14, 34
pdf, 66

joint pdf, 86
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permutation, 250
persistence, 214
pgf, 52
Planet Zog, 105
pmf, 24
Poisson distribution, 26

pgf, 53
Poisson process, 182, 183, 206
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doubly stochastic P. p., 201, 204
inhomogeneous P. p., 201
inter-arrival time, 187
superposition, 183
thinned P. p., 183
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joint pmf, 38
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probability space, 3, 7
pure birth process, 190

queue discipline, 196
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random process, 157
random sum formula, 57
random variable, 61

continuous r. v., 66
discrete r. v., 23, 61
image of r. v., 24
independence, 41
joint continuity of r. v.s, 85
standardized r. v., 139
uncorrelated r.v.s, 117

random walk, 167, 206, 217, 248
recurrence/transience, 170, 218
reflected r. w., 249
simple r. w., 167
symmetric r. w., 167
transition probabilities, 168

rate function, 201
recurrence, 170, 214, 227

r. time, 228

mean r. t., 228
retaining barrier, 178, 199, 242, 243
reversible Markov chain, 241, 247
Riemann zeta function, 258, 259

sample space, 4
discrete s. s., 9

Simpson’s paradox, 19
singular distribution, 110
standard deviation, 114
state, 205

absorbing s., 212
aperiodic s., 228
ergodic s., 228
null s., 228
persistent s., 214
positive s., 228
recurrent s., 214, 227
s. space, 205
transient s., 214, 227

statistical sampling, 141
stick breaking, 78, 80
Stirling’s formula, 19, 251
stochastic

s. matrix, 206
s. process, 157

stopping time, 224
strong Markov property, 188, 225
supporting tangent theorem, 123
symmetric difference, 5

tail, 121
theorem of total probability, 14
time reversal, 240
traffic intensity, 199
transience, 170, 214, 227
transition

t. matrix, 206
t. probabilities, 208

trial, 3

uncorrelated, 117
uniform distribution, 64, 68

mean, 74
uniqueness theorem

u. t. for characteristic functions, 127
u. t. for mgfs, 120
u. t. for moments, 112
u. t. for pgfs, 52

variance, 32, 73, 113
Venn diagram, 8

weak convergence, 146
Weierstrass approximation theorem, 152
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