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Quantum gravity and time reversibility
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The meaning of time-reversal and CPT invariances of a theory is discussed both in the context of theories
defined on flat spacetime as well as in general relativity. It is argued that quantum gravity cannot be time-
reversal or CPT invariant; that an "arrow of time" must be fundamentally built into the theory. However, a
weaker form of CPT invariance could still hold, in which case the fundamental "arrow of time" would not
show up in the measurements of observers who perform scattering experiments. Consequences of this
weaker hypothesis are explored.

I. INTRODUCTION

Prior to the parity-violation experiments of the
1950's, it was generally assumed that all physical
theories describing nature must respect the full
symmetry group of the spacetime structure of
special relativity —the extended Poincare group.
By now, of course, it is well established that na-
ture respects neither the parity symmetry P nor
the combined operation of charge conjugation and

parity CP. On the other hand, it is well known
that for a quantum field theory satisfying the
Wightman axioms (which include the assumption
of invariance under restricted Poincarh transfor-
mations), a symmetry operation corresponding to
the combined operation CPT, where T denotes
time reversal, always exists. Thus, there are
strong grounds for believing that —at least in the
context of theories formulated in flat spacetime-
nature does respect CPT symmetry. In view of
the known CP violation this means that nature does
not respect time-reversal invariance (though its
failure to do so is extremely "small" ). However,
the CPT symmetry implies that a "fundamental
arrow of time" does not exist in its own right but
can be picked out only in conjunction with a choice
of "particle vs antiparticle" or "right-handed vs
lef t-handed. »

The lack of a fundamental arrow of time in the
laws of physics implied by CPT invariance might,
at first glance, appear to conflict with the fact
that we commonly see grossly time-irreversikle
behavior; in particular, entropy is commonly seen
to increase but does not decrease. However, at
second glance this apparent arrow of time can be
easily explained without appeal to time-irreversi-
ble laws of physics by the fact that the initial con-
ditions of most systems we observe have low en-
tropy. Since the entropy of a state is a measure
of the fraction of time a system spends in states
with the same macroscopic appearance as the
given state, ' a system in a state of relatively low

entropy is likely to change quickly its macroscopic
appearance to that of a state of higher entropy,
while a system in a state of maximum entropy will
not change its appearance over a very long period
of time, much longer than typical observation
time scales. Thus, the apparently time-irrever-
sible behavior we observe can be blamed on initial
conditions. However, if one pursues this question
further, one is. led to ask why the initial states of
many of the systems we observe have such re-
markably low entropy. This may be traced back
to the low entropy (as implied by the absence of
significant gravitational clumping) at the "big
bang" origin of our universe. But why was the
initial entropy of our universe so low'7 Recently,
Penrose' has speculated that this is because there
is a fundamental arrow of time in the laws of
physics; that in the quantum theory of gravity
there are no restrictions on behavior near final
singularities but that allowed initial singularities
ar e greatly restricted by a condition which im-
plies low entropy. Penrose proposed this condi-
tion to be the vanishing of the 'Weyl tensor.

The purpose of this paper is to present some
arguments of. a much more direct nature for the
failure of time and CPT invariance in quantum
gravity. Vfe know very little at present about the
quantum theory of gravity. The theories which we
do have (specifically flat-spacetime quantum the-
ories and general relativity) do not manifest CPT
violation and there is certainly no experimental
evidence for the failure of CPT due to quantum-
gravity effects. Thus, one might expect that any
arguments for the failure of CPT in quantum gra-
vity would be tenuous at best. However, there is
one effect —predicted by calculations of quantum
field theory in curved spacetime —for which there
are strong grounds for believing that it will re-
main a feature of the full quantum theory of gra-
vity: particle creation by black holes. As will be
discussed more fully in Sec. III, a small extra-
polation of the known results on this effect leads
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to the conclusion that black holes will evaporate,
and in this process an initial pure state will evolve
to a final density matrix. A simple proof will be
given in Sec. III that such an evolution is incom-
patible with T or CPT invariance. ' Furthermore,
an analysis of the effects of particle creation by
white holes shows that great difficulties arise if
one attempts to incorporate them into a consistent
picture of the dynamics of a self-gravitating quan-
tum system. Such an incorporation would be nec-
essary if one wishes to maintain time-reversible
laws of dynamics. Thus, there are remarkably
strong grounds for believing that quantum gravity
displays a fundamental arrow of time, which mani-
fests itself in at least the following two dramatic
ways: (I) Pure states may evolve to density ma-
trices, but never vice versa. (2) Black holes
may exist but white holes cannot.

Although the above arguments conclude that there
must be a failure of ti.me-reversal invariance,
there are grounds for believing that this fail-
ure cannot be too drastic. As argued in detail
elsewhere, ' there is good reason to believe that
black-hole thermodynamics arises simply from
ordinary thermodynamics applied to a self-gra-
vitating quantum system. However, in order for
ordinary thermodynamics to apply to a self-gra-
vitating quantum system, it is essential that the
dynamics yield no "piling up of states, ' that the
microcanonical density matrix be preserved under
dynamical evolution. This condition is automatic-
ally satisfied by evolution described by an ordin-
ary, unitary S matrix, but it is far from automatic
with the type of evolution considered here. If one
wishes to preserve the interpretation of black-
hole thermodynamics as ordinary thermodynamics,
it is crucial that the failure of T or CPT symme-
try not be so great as to violate this condition.

In view of the above remark as well as the
cherished place held by CPT invariance in Poin-
carb-invariant theories, it is natural to ask how
close one could come to recovering some form of
CPT invariance from the non-CPT-invariant the-
ory. Remarkably, as discussed in Sec. IV, there
is a simple condition that could still hold on the
scattering process which yields an effective CPT
invariance in the following sense: Suppose an ob-
server makes measurements on an evolving self-
gravitating quantum system only at times when the
gravitational field is weak. (In between his mea-
surements, strong quantum-gravitational effects
may occur. ) Suppose he records his sequence of
measurements on a piece of paper (or better yet,
makes a motion picture out of them) and on another
piece of paper records the CPT image of these ob-
servations, i.e., he lists the observations in the
opposite order, changes particles to antiparticles,

etc. If the condition of Sec. IV holds, then a
second observer handed these pieces of paper
would have no grounds for deciding which was the
actual measurement sequence and which was the
artificially constructed sequence; he could not tell
if the motion picture were running forward or
backward. Thus, the arrow of time of quantum
gravity may be undetectable in this sense if all
measurements are taken at times when the gravi-
tational field is weak. (On the other hand, as
discussed in Sec. IV, measurements taken in the
strong gravitational field region should display
the arrow of time. ) An immediate consequence of
this postulate of Sec. IV is the above-mentioned
condition required for thermodynamic behavior.
Further consequences are also explored in Sec.
IV.

We begin our investigation in Sec. II by review-
ing the notion of Poincarb invariance of a theory
formulated on flat spacetime. We then discuss
classical general relativity and show that although
there is no meaningful sense in which the theory
displays restricted Poincar6 invariance, it does
display a P and T invariance. The arguments
that quantum gravity cannot be T or CP T invar-
iant are given in Sec. III, and the nature and con-
sequence of the weaker version of CPT invariance
are discussed in Sec. IV.

II. SPACETIME SYMMETRIES OF PHYSICAL THEORIES

Special relativity asserts that spacetime struc-
ture is described by the manifold R, with a flat
Lorentz metric g,„defined on it. The isometry
group of flat spacetime is the extended Poincarb
group O'. It seems natural to expect that physical
theories defined in the context of special relativity
will preserve this symmetry structure of the un-
derlying spacetime. The motion of the Poincarb
invariance of a theory can be formulated as fol-
lows.

Let 6 denote the physical state space of a theo-
ry. For a classical field theory, Q typically
would consist of solutions of a field equation; in a
quantum theory, 6 would be composed of rays in
a Hilbert space or could be taken as the space of
density matrices. If the theory is well formulated,
given a state s (=Q, the theory should predict the
outcomes (or, at least, the probabilities'for the
outcomes) of any measurements by any observer
in spacetime. Furthermore, it should be possible
to uniquely characterize each s(=S by the mea-
surements of any complete family of inertial ob-
servers. Now, two different families of inertial
observers are related by a Poincare transforma-
tion g c6 . The physical theory is said to be.
Poincard invariant if for eachg (=6', there is a
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map f,: S-6 satisfying the following property:
If inertial families 0, and 0, are related by Poin-
care transformation g, then for each s&9 the
outcomes (or probability of outcomes) of mea-
surements made by 0, on state s must be identi-
cal to the outcomes (or probability of outcomes)
of measurements made by 0, on f,(s).

The failure of a theory to satisfy Poincarb in-
variance does not necessarily imply incompatibili-
ty with special relativity. The causal and other
properties of spacetime could still be correctly
described by Minkowski spacetime (R, ri,„)even
if a physical theory defined on this spacetime does
not share all of its symmetries. However, the
failure of a theory to satisfy invariance under re-
stricted Poincarh transformations (i.e., under d"„
the connected component of 6' which contains the
identity element) would imply an ability to pick out
a preferred position, direction, or velocity in
spacetime. This would violate the basic motiva-
tional spirit of special relativity, even if it might
not contradict the assertions of special relativity
concerning spacetime structure. There are pre-
sently no theoretical or experimental grounds for
believing that any physical theory describing na-
ture which is formulated in the framework of spe-
cial relativity (i.e., any nongravitational theory)
violates restricted Poincarb invariance. On the
other hand, the failure of invariance under the im-
proper Poincare transformations P, T, and PT
(i.e., the nonexistence of maps fr, fp, and f») is
generally viewed as a much less serious violation
of the spirit of special relativity. As already
mentioned above, it -is well known that weak inter-
actions violate P invariance, and their violation of
CP invariance together with the CPT theorem
shows that they also violate T invariance.

Another important distinction between restricted
and improper Poincare invariance should be em-
phasized. For a restricted Poincard transforma-
tion g @6,', the assertion that f, is the map of
state space corresponding to g can, in principle,
be checked experimentally. We can translate,
rotate, and/or boost our apparatus corresponding
to g and check, for all s(=-Q, whether the results
of our new measurements on the state f,(s) are
identical to our old measurements on s. How-
ever, we have no way of making our apparatus run
backwards in time, nor can we parity invert it.
Thus, we cannot, in principle, experimentally
check whether proposed maps fr or fp truly repre-
sent time and parity reflections. This does not
mean that the notion of T and P symmetries of a
theory is arbitrary. In any Poincare-invariant
theory, the collection of maps f, must satisfy

(2.1)

This group property puts considerable restrictions
on possible candidates for fr and f~ and, as il-
lustrated below, may even uniquely specify them.
Thus, in most theories the maps f, for improper
Poincare transformation are as well determined
or nearly as well determined as the ones for the
restricted transformations. However, it should
be kept in mind that the impossibility of direct
experimental verification of the correctness of
the choice of maps for improper Poincar6 trans-
formations means that there is always a possibil-
ity that we could "re-educate" ourselves to a new
notion of what time and parity inversion mean in
a theory.

Quantum theories provide a very important ex-
ample which illustrates many of the above re-
marks. As already mentioned above, the physical
state space Scan be taken to consist of rays of a
Hilbert space BC. We can view the maps f, :8-$
as arising from maps on the Hilbert space U:X

Since transition probabilities are measur-
able, the requirement that for all s&6 the prob-
abilities of 0,'s measurement on f,(s) are the
same as 0,'s on s implies that for all g, y cX,

U, (U,')-'U, U,'(U, ) '= ~,U, . (2.4)

It follows immediately that for g|,g2 c ISL(2, C), we

l(g, 0) =
l (U,P, U, Q) (2.2)

As is well known, Eq. (2.2) implies that (read-
justing phases, if necessary) U must be either
unitary or antiunitary. For restricted Poincarb
transformations, continuity requires U, to be uni-
tary. The group property, Ecl. (2. 1), implies that
the (U,) form a projective representation of the
Poincarb group,

U~ U~ = v(g~, g2)U~j~n, (2.3)

where lro(g„g, )
l
=1. As was proved long ago by

Wigner, ' all such projective representations of the
restricted Poincare group arise from true repre-
sentations (i.e. , &u =1) of its covering group
ISL(2, C), the inhomogeneous SL(2, C) transforma-
tions. These representations were also analyzed
by Wigner.

Suppose we have a quantum theory which is in-
variant under restricted Poincarb transforma-
tions, and suppose further that the associated
representation of ISL(2, C) is irreducible. If the
theory is also time-reversal invariant, it must be
possible to find a unitary or antiunitary map which
extends this representation to a (projective) rep-
resentation of a covering group6 of 6,' U6". Let
U~ and U~ be two candidates for this time-rever-
sal operator which are either both unitary or both
antiunitary. Then for any geISL(2, C) there must
be a phase factor & such that
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have Q, , = &, &, . Thus, the (~,}yield a one-
dimensional representation of ISL(2, C). But the
only one-dimensional representation of this group
is the trivial one &,= 1 for all g.

Setting &,= I in Eq. (2.4), we see that the lin-
ear map Ur(Ur) ' commutes with all operators U,
of an irreducible unitary representation. Hence,
by the Hilbert-space version of Schur's lemma,
Ur(UP ' must be a multiple of the identity opera-
tor, i.e., U~ and U~, can differ only by phase.
Thus, we have shown that for a quantum theory
with restricted Poincarh invariance given by an
irreducible representation of ISL(2, C) the group
theory requirement, Eq. (2. 1), uniquely deter
mines a time-reversal operator (if one exists at
all) in each unitary or antiunitary class up to an
overall phase factor. Furthermore, if the Hamil-
tonian —that is, the self-adjoint operator which
generates the one-parameter unitary subgroup
representing time translations —is positive, then
it is not difficult to show that no unitary time-
reversal operator can exist. Thus, in this case
the only possible ambiguity in U~ is phase, so
there is no possible ambiguity in the ray map fr,
and the notion of the time-reversal invariance of
such a theory is completely well defined. Similar
remarks apply to invariance under the other im-
proper transformations P and PT. This illustrates
the above general remark that the maps fr and f~
may be well determined even though we cannot
make a direct experimental verification of their
correctness.

The quantum-mechanical theory of the Acyl
neutrino provides an excellent example of a re-
spectable theory which satisfies restricted Poin-
car6 invariance but not full Poincarb invariance.
Here 6 is taken as the rays of the Hilbert space
of positive-frequency solutions of the neutrino
equation. The group ISL(2, C) acts naturally on
this Hilbert space and provides the maps U, yield-
ing restricted Poincarb invariance. However, it
is not difficult to show that no map U~ represent-
ing parity can exist: An antiunitary U~ conflicts
with positivity of the Hamiltonian while a unitary
U~ conflicts with a helicity relation. On the other
hand, an antiunitary map U~ representing time-
reversal symmetry does exist.

In quantum field theories, there may exist anoth-
er map, U~, unrelated to spacetime symmetries,
which represents the symmetry under exchange of
particles and antiparticles. This charge-conjuga-
tion map U~ is required to map the particle sub-
space into the antiparticle subspace and vice ver-
sa„and must commute with all transformations
U, associated with Poincarb invariance.

The quantum field theory of the free neutrino
field does not possess such a charge-conjugation

symmetry. However, it does possess a map U~„
representing the combined operation of charge
conjugation and parity, i.e., U~~ exchanges par-
ticle and antiparticle subspaces and satisfies the
group theory relations required of a parity opera-
tor. If CP were an exact symmetry of nature, it
probably would be worthwhile to "re-educate"
ourselves to regard this notion of CP symmetry
as our new notion of P symmetry. However,
since CP is not an exact symmetry of nature,
there appears to be little advantage gained by do-
ing so.

As the example of the neutrino makes clear, re-
stricted Poincarb invariance certainly does not
imply full Poincarh invariance, and respectable
quantum field theories may also fail to possess
charge-conjugation symmetry. However, it is
known that "respectable" quantum field theories
always possess a symmetry map corresponding
to the combined operation of C, P, and T. This
CPT theorem' may be stated in our language as
follows.

CPT theorem. In any quantum field theory sat-
isfying the Wightman axioms —which require in-
variance under restricted Poincarb transforma-
tions —then although the individual maps fc, f~,
and fr need not exist, a map fc» always exists,
i.e., there is always a symmetry operation which
exchanges the particle and antiparticle subspaces
and satisfies the group properties required of the
PT transformation.

The CPT theorem shows that although there may
be respectable flpt-spacetime quantum field theo-
ries which are not time-reversal invariant, one
cannot pick out a direction of time without a cor-
responding specification of particle vs antiparti-
cle or "left handed" vs 'right handed. " In this
sense, flat-spacetime quantum .field theories can-
not possess a fundamental arrow of time.

%e now turn our attention to the notion of sym-
metries in classical general relativity. General
relativity negates the assertion of special relativity
that spacetime is the manifold R with flat metric
g,„defined on it. Rather, it makes no a priori
assertion as to what the spacetime manifold M is
and it allows the Lorentz metric g,b defined on M
to be any solution of Einstein's equation. The cru-
cial point is that general relativity is not a theory
formulated on Minkowski spacetime. Thus, there
is no isometry group underlying the structure of
the theory. Similarly, there are no natural, pre-
ferred families of inertial observers and, in gen-
eral, no way of relating the observers of one sol-
ution [i.e., a spacetime (M, g„)]to observers of
another solution [i.e., a different spacetime (M',

g,',)]. Thus, the notions of Poincar6 invariance
discussed at the beginning of this section for flat-
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spacetime theories cannot even be formulated for
general relativity. In no meaningful sense can the
Poincarh group be made to act on the space of sol-
utions of general relativity. General relativity is
fundamentally not a Poincard-invariant theory.

Given that even the notion of restricted Poincarb
invariance is not applicable to general relativity,
it might be thought that no meaningful notion of
parity- and time-reversal invariance couldbe for-
mulated either. However, we shall now argue that,
in fact, such notions can be defined and that gener-
al relativity is a parity- and time-reversal-in-
variant theory. The key point is that our physical
interpretation of a solution requires the time and
space orientations of the spacetime to be speci-
fied. ' To say that a solution describes a black
hole rather than a while hole requires a specifica-
tion of future vs past; to describe the circular po-
larization properties of a gravitational wave re-
quires a specification of orientation. Thus, we
should take our state space 6 of general relativity
to consist of not merely the pairs (M, g„) but
rather the quadruples (M, g„, time orientation,
space orientation). (More precisely, 6 is the
equivalence class of such quadruples under dif-
feomorphisms. ) On this state space 6, we can
define fr:P-p and f~:S-S to be the maps which
leave M and g„unchanged but reverse, respec-
tively, the time and space orientation. Then, in
as strong an intuitive sense as for flat-spacetime
theories, . an observer "running backward in time"
in the spacetime fr(s) should see the same thing
as the corresponding observer (going forward in
time) in the spacetime s. Thus, the maps fr and

f~ express the time- and parity- inversion symme-
try of classical general relativity. The only sense
in which the notion of these symmetries is any
weaker here than the corresponding notions in
flat-spacetime theories is that we no longer have
the guidance of the restricted Poincarb maps to
help determine what fr and fp should be via the
group requirement, Eq. (2.1). Here, we have to
rely more on physical intuition to argue that these
maps express time and parity symmetries.

The defintion of the above maps fr, and f~ may
appear to be sufficiently trivial that it is worth
emphasizing that their existence rests on what is,
in fact, a nontrivial feature of classical general
relativity; Although Einstein's equation greatly
restricts possible metrics, there is no rule in
general relativity which restricts the time or
space orientation of a solution. For this reason,
the time reverse of any solution —i.e., the same
metric with the opposite choice of "future" vs
"past" made on each light cone —as well as the
parity reverse of any solution —i.e., the same me-
tric with the opposite choice of orientation —are

equally valid solutions.
The time- and parity-reversal invariance of

classical general relativity together with the CPT
theorem of flat-spacetime theories give strong en-
couragement to believe that quantum gravity should
also be CPT invariant. However, in the next sec-
tion, we shall argue that this is not the case. In
terms of the classical limit of the quantum theory,
our conclusions should mean the following: If we

examine the classical spacetimes which are valid
limits of quantum-gravity solutions, we do not ob-
tain the full solution space 6 of classical general
relativity but only a portion ' of it. The choice
of time orientation is no longer arbitrary; a re-
versal of time orientation of a solution in 6' may
no longer lie in O'. In particular, we believe that
there will be solutions in g' describing black holes
but no solutions describing white holes. Thus, the
apparently trivial map fr does not restrict to a
map on the physically allowable classical solutions
6', and time reversal as well as CPT symmetry
is violated.

III. FAILURE OF TIME REVERSIBILITY AND CPT
IN QUANTUM GRAVITY

By the term 'quantum, gravity" we mean that
fundamental theory of nature which fully describes
effects occurring in strong gravitational fields.
We know very little about this theory other than the
fact that it should contain flat-spacetime quantum
field theories, quantum field theory in a curved
background, and classical general relativity as
appropriate limits. Since it is not even clear what
concepts the theory will use to describe spacetime
structure it might seem premature to attempt to
analyze its time reversibility or CPT behavior.
However, whatever the nature of the full theory,
it should be able to describe scattering, i.e.,
situations in what there are asymptotic regions in
the past and future where quantum gravitational
effects are not important and thus where our pre-
sently available theories are adequate to describe
what takes place, even if they cannot describe
what happens in between these regions. The ex-
istence of a T or CPT symmetry of the full theory
will imply some conditions on the scattering the-
ory. We shall show that these conditions are in-
compatible with features of the theory predicted
from a modest extrapolation of results on particle
creation by black holes.

In situations where scattering theory is applica-
ble, we can characterize a physical state in com-
pletely conventional terms by its appearance in the
asymptotic past; alternatively, we can characterize
it by its behavior in the asymptotic future. Let
S,„denote the set of "in" states. We shall take
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S[cP, + (1 —c) p ]=cSp, +(1 —c}Sp . (3.1)

The reason for Eq. (3.1) is not the superposition
principle but rather the noninterference of probab-
ilities. Consider, . for simplicity, the case where

p, and p~ represent pure states p, = g S P, p = Q
Let us prepare the "in" state by having our

system interact with a second system so that the
initial state of the total system is 4'= c~~'g S n
+(1 —c)'~'$P, where n and P are orthogonal
states of the second system. If we do not mea-
sure the state of the second system, then the ini-
tial density matrix of the first system will be
cp, + (1 —c)p, and thus the final dens ity matrix will
be S[cp,+ (1 —c)p,]. On the other hand, if we do

measure the state of the second system, then with
probability c the initial density matrix will be p,
and with probability (1 —c) it will be p . Conse-
quently the final density matrix will be given by
cSp, +(1 —c) Sp, . If Eq. (3.1) did not hold, then
measurements of the second system would affect
the probability of outcomes for the first system.
If this happened, the Einstein-Podolsky-Rosen
paradox mould be a true paradox, i.e., noncausal
propagation of information could be achieved. To
prevent this from happening, Eq, (3.1) must hold.

Equation (3.1}allows us to extend S to a linear
map on the vector space of trace class self-ad-
joint operators on X„. It is convenient at times
to employ the index notation used by Hawking.
Since a density matrix p„ is an element of X„
SX„, where X„is the dual space of K„, we can
represent it as a two-index object p„"~. (Raised
indices correspond to X„;lowered indices corre-

6„to consist of the collection of density matrices
on a Hilbert space X„', i.e., the'positive self-
adjoint operators on X„with unit trace. Normal-
ly, one could get away with taking 6„to be the
rays of X„, since the theory of scattering of den-
sity matrices can be trivially recovered from the
theory of scattering of pure states, but for reasons
to be made clear below, it is essential that we use
the full collection of density matrices here. Sim-
ilarly, 6,„t is assumed to consist of density ma-
trices on a Hilbert space X,u, . The relation be-
tween the in and our characterizations of the physi-
cal states is given by the scattering (or "super-
scattering") map'0 S:Q„-@,„„which tells us
which "out" state to associate with a given "in" state,
i.e., it gives the behavior of the system in the a
asymptotic future, given its behavior in. the asymp-
totic past.

We first establish some general properties of
the S map which we will need in our discussion
below. The first is that 8 is linear in the sense
that for all p„p, (=-@„and all c with 0 ~ c ~1, me

have

spond to 3',„.) Since S is a linear map on density
matrices, it can be represented as a four-index
object 8', ~, where lower case latin indices refer
to X,u, and upper case latin indices refer to X„.

An important condition on S (which we shall use
in Sec. IV but not in the argument below) follows
immediately from conservation of probability.
Conservation of probability states that tr(S p)
= trpp 1,8~~

a & C EIaCPDPEt (3.2)

for all p"~. Equation (3.2) is equivalent to
a D D~.c = ~e (3.3)

/
Oin Pin Pout p ~out Pout Pin ' (s.4)

Since the composition of two CI'T transforma-
tions must be the identity, we have

eineout I
& eoutein (s.5)

i.e., these maps are inverses of each other. We
mill make use of this fact in our notation by drop-
ping the in and out labels and simply writing O„
—

Ow 8 —
O~

Now, if f~» is to physically represent the ac-
tion of CPT, the states p„and ep„physically
must be CPT reverses of each other. Since the
CPT reverse of a pure state must be a pure state,
8 must arise from an antiunitary (or unitary) map
8:X„-X,„,defined on the Hilbert space; that is,
for all p(=Q„, we must have

ep= ep8 (s.6}

This implies that 9 is linear and thus may be
represented as 8',~ in the index notation. As-
suming 8 is antilinear, we can express it as a
linear map from X,„to X,„, and represent it in

where 6~ denotes the identity operator.
Suppose nom that quantum gravity were CPT

invariant. (Similar remarks apply to time -rever-
sal invariance alone. ) Then the theory should pos-
sess a map fc», acting on the solution set, which
physically corresponds to reversing parity and
time and interchanging particles with antiparti-
cles. As discussed in Sec. II, flat-spacetime
quantum field theories and ciassical general rela-
tivity possess such a map. Since we know very
little of the structure of the theory of quantum
gravity, there is little we can say about what the
full action of fc» would have to be here. How-
ever, the existence of such a CPT symmetry in
the full theory induces on scattering states the
maps Oi Qf g t and 8 t S t Qi as fo]]ows
A quantum-gravity solution with in state p„and
out state p,„,= Sp„will get mapped by fc» into
a solution with in state p,', and out state p,'„,= g p,', .
We define
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the index notation by 8,„. In this notation, Eq.
(3.6) becomes

„a D aD
O ec =~~c~'-

Antiunitarity of 0 then implies
a D D aO.c =~c 8 ~c'=&'~

(3.7)

(s.6)

0=SO 'S. (s. 10)

Equation (3.10) is the key condition which we shall
use in our argument below. Note that an imme-
diate consequence of Eq. (3.10) is that s ' exists
and ls given by

(s. 11)

The above discussion is quite general and makes
assumptions which are weaker than those normally
made in scattering theory. Nevertheless, the
above conditions are already strong enough to be
inconsistent with a feature expected to occur in
quantum gravity: the evolution of an initial pure
state to a final (nonpure) density matrix. Thus,
we first review the rather strong arguments for
expecting this behavior in quantum gravity. Then
we prove the incompatibility of this type of evolu-
tion with the existence of a map 9 satisfying Eq.
(3.10). We conclude that this map cannot exist
and thus that quantum gravity cannot be CI'T in-
variant.

The evidence for evolution from a pure state to
a mixed state in quantum gravity comes from
studies of p3rticle creation by black holes.
Calculations in quantum field theory on a fixed
black-hole background show that the particles
emerging from the vicinity of the black hole are
described by a thermal density matrix, ' i.e.,
starting from the incoming pure state ~0,„), a
distant observer will detect an outgoing mixed
state. The reason for this is simply that in the
final pure state jointly describing particles which
emerge a~d particles which go into the black hole,
there is a very high degree of correlation between
the "horizon states' and the "infinity states. "
Thus, when one "traces out" over the unobserved
degrees of freedom of the horizon states, one ob-
tains a, (nonpure) density matrix for the emerging
particles. In the context of this calculation, the
use of a density matrix to describe the emerging
particles is only a convenience; the 'true" evolu-

[Equation (3.6) remains valid if 8 is unitary rather
than antiunitary. j

Finally, we return to the definition of 0, Eq.
(3.4), and use the fact that p, „,= sp, „, p,'„,=so,',
to obtain a relation between 9 and S. We have

(s.9)

Since this holds for all p„, we obtain

tion, including particles which go into the black
hole, is still described by an ordinary, unitary S
matrix. However, the flux of energy from the
black hole due to particle creation must cause a
back-reaction effect on the gravitational'field.
Although a complete back-reaction calculation has
not yet been carried out even in the semiclassical
approximation, by far the most plausible possibil-
ity is that the black hole remains a black hole and
simply decreases its mass at the rate determined
by the energy fl.ow to infinity. Since the rate of
mass loss increases as the mass decreases, this
leads to the prediction that the black hole will
evaporate completely in a finite time (with life-
time proportional to M'). A spacetime diagram
describing a classical model of this process is
given in Fig. 1. At the 'time" indicated by the
hypersurface S„ the joint black-hole and exterior
systems should be describable by a pure state,
but with a density matrix describing the exterior
region alone. However, at time S, the black hole
has disappeared completely and thus the entire
system must be described in terms of a density
matrix. The interior black-hole states which cor-
related with the exterior states have been swal-
lowed by the singularity within the black hole which
has then disappeared. Thus, we are led to the
conclusion that in quantum gravity, the formation
and subsequent evaporation of a black hole can re-
sult in scattering dynamics in which an initial pure
state evolves to a final density matrix.

Within the realm of (relatively) conservative
ideas, it would seem that this conclusion could be
avoided only in the following two ways: (1) Per-
haps the black hole does not evaporate completely
but leaves behind a remnant in a state correlated
with the emitted radiation, so the total system is
still in a pure state. (3) Perhaps the black hole

singula

FIG. 1. A spacetime diagram describing the process
of black-hole formation and evaporation.
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does evaporate completely but somehow the
emitted radiation ends up in a pure state. We now
discuss these two possibilities in turn.

With regard to the first possibility, we expect
the semiclassical particle creation calculations
(and consequent predictions of black-hole mass
loss) to be valid until curvatures of the Planck
scale are achieved. Thus, it does not appear
plausible that a remnant of significantly more
than the Planck mass could be produced. In order
to produce a pure state, the states of this rem-
nant must be able to correlate with all the states
of the radiation arising from the decomposition of
its thermal density matrix. In order for this to
be possible, the number of "internal states" of the
Planck mass remnant must be enormous —at least
as large as all the possible states of emitted ra-
diation. This seems highly implausible already,
but it also conflicts with the interpretation of the
formula S=-,'A for black-hole entropy as arising
from the number of internal states of the black
hole. For a Planck-size black hole, this formula
indicates that there should only be -1 internal
state, not the enormous number which are re-
quired.

With regard to the second possibility, the semi-
classical calculation unambiguously shows the
emerging radiation to be described by a thermal
density matrix —not a pure state —from the parti-
cle creation on a fixed black-hole background.
However, the idea that when back reaction is
properly taken into account the final state of the
emitted radiation might be pure is not as far
fetched an idea as it might at first appear. Con-
sider the example of an ordinary hot body initially
in a pure state which radiates photons into empty
space. At a finite stage in this process, the pho-
tons will be in a mixed state, since the states of
the photons will be correlated with the states of
the atoms in the hot body. However, at the end
of this process, the originally hot body will have
cooled to absolute zero, and the photons will be
described by a pure state (with the photons emitted
at late times correlated with the ones emitted
earlier). However, there is good reason to be-
lieve that this phenomenon does not occur in the
black-hole case. The key point is that the internal
states of the hot body are causally able to directly
produce the later radiation, and thus there is no
obstacle to the transference of their correlations
to the later emitted radiation. On the other hand,
in the black-hole case, the emitted particles do
not come from within the black hole but are pro-
duced outside of it. The semiclassical calculation
gives every indication that at time S~ in Fig. 1,
the external radiation is highly correlated with the
internal black-hole states. But the internal black-

o=+P((f&( SP;, (3.13)

where each p; is positive, and p, p, =1. Linear-
ity of 8 implies

ZP p(A& S4&)= ISED.

Let Xc R,„, be orthogonal to g. If we take the ex-
pectation value of the operators in Eq. (3.14) in
the state y, we obtain

But each term in the sum is non-negative since p,
is positive and the density matrix s(p, S p, } is a
positive operator and thus has non-negative expec-
tation values. Consequently, . we must have

for all i and all X orthogonal to (. This implies

s(4g 4&)= 0 0

for all i, i.e., each initial pure state P, must
evolve to the same final pure state g. In that
case, the initial pure state F'P must evolve to the
final state 8$, for all i. This is manifestly im-
possible if there is more than one g„ i.e., if the
density matrix a does not represent a pure state.
Thus, CPT invariance —and, by the same argu-
ment, time-reversal invariance —is incompatible
with evolution of a pure state to a density matrix. '

In fact, the above argument really proves a
stronger result: If one has evolution of a pure
state to a density matrix, then & ' cannot exist,

hole configuration should not be able to influence
the external region at a later time. If the classi-
cal picture of the black-hole evaporation process
illustrated in Fig. 1 has any validity in quantum
gravity, the correlations carried by the internal
states should propagate into the spacetime sin-
gularity and be lost forever. Consequently, the
final emitted radiation at time S, will not be in a
pure state.

Our next task is to prove that dynamical evolu-
tion of a pure state into a density matrix is incom-
patible with CPT symmetry. The reason is that if
the density matrix p representing a pure state
evolves to the density matrix Sp representing a
mixed state, then according to Eq. (3.10), the
mixed state 0 'g p must evolve to the pure state
8p. But suppose we have

So= PS( (3.12)

for a density matrix oc:S,„and a pure state g
&X,„,. We can expand 0 in. terms of its eigenvec-
tars" Q, :
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i.e., s cannot be one-to-one and onto. [Nonexis-
tence of S ' contradicts CPT invariance, by Eq.
(3.11).] That s ' does not exist here should not
be considered surprising. Classically, distinct
initial data describing collapse can produce identi-
cal exterior black-hole geometries at a later time.
Thus, in the quantum theory one would expect that
distinct initial states could produce the saxne black
hole and hence, after evayoration, the same final
state. For evolution by an ordinary S matrix, the
failure of S to be one-to-one would-lead to an im-
mediate inconsistency, but no such inconsistency
arises for an 8 evolution. The nonexistence of
& ' shows that time reversal and CPT invariance
fail in a rather dramatic way: Time-reversed
dynamics does not merely fail to be the same as
forward in time evolution; time-reversed dynamics
simply does not exist.

Above, we have argued for the failure of CPT
invariance in quantum gravity solely on the basis
of scattering dynamics. Further support for this
conclusion comes from consideration of effects in
the strong field regime. If CPT invariance held,
then since it is possible to produce a state corre-
sponding to our classical notion of a black hole,
it must also be possible to produce the CPT re-
verse of a black hole —namely, a white hole. If
Fig. 1 represents the history of the formation and
evaporation of a black hole, then Fig. 1 turned up-
side down must represent the history of such a
white hole. The first major problem one encoun-
ters in trying to incorporate white holes into a
consistent picture of dynamics is determinism.
Although for a black hole there does not appear to
be any serious difficulty in determining the state
at S, from the state at S„ for a white hole it does
not appear plausible that from a full knowledge of
the state at S2 one could predict the state of the
system at S,." Thus, if one wishes to maintain
deterministic evolution forward in time, this near-
ly forces one into adopting alternative (1) above of
having a black-hole remnant remain after black-
hole evaporation, so that in the time-reversed pic-
ture a "pre-white-hole" structure can be present
at S,. Even so, further serious problems re-
main. It has recently been shown that if the ini-
tial white-hole state is uncorrelated with incoming
radiation from 5, then an enormous particle and
energy flux will emerge when the white-hole hori-
zon terminates. There is also evidence that the
white-hole horizon will become singular. Thus, if
white holes are to behave like the time reverse of
black holes, one must postulate that white holes
are always "born" in states which are highly cor-
related with incoming radiation. This appears
highly unnatural (even though the time reverse of
this statement —that the black. -hole state is highly

correlated with the outgoing particle creation —ap-
pears perfectly natural). But even if one makes
this postulate, further problems occur: In a
spacetime wi. th a white hole, if one stations an ob-
server at 8 to measure the incoming radiation,
then by the usual measurement rules of quantum
theory he would destroy whatever correlations
might have been put in by "knocking" the system
into a simple product of the state he measures at
y times a white-hole state. Thus, such an ob-
server should be able to induce the above patho-
logical behavior of the white hole.

While these arguments do not' prove that white
holes cannot exist, they do show that severe dif-
ficulties arise if one attempts to incorporate them
into quantum-gravitational dynamics. These dif-
ficulties can be avoided entirely if one abandons
the requirement of CPT invariance, for then there
is no need to yostulate that white holes exist at all,

Thus, we conclude that if our extrapolations of
the classical and semiclassical theory of black
holes to quantum gravity are not grossly wrong,
time reversal and CPT invariance cannot hold in
the full quantum theory; a fundamental arrow of
time must be present. Specifically, we have ar-
gued above that the following three dramatic xnan-
ifestations of time reversal and CPT noninvariance
are present: (i) Pure states can evolve to density
matrices, but not vice versa. (ii) Distinct initial
states can evolve to the same final state, so S '
does not exist and "time-reversed scattering dy-
namics" cannot even be defined. (iii) Black holes
can exist, but white holes cannot. Nevertheless,
we shall show in the next section that the arrow
of time implied by these dramatic violations of
CPT invariance could be hidden from observers
who do not make measurements at times when the
gravitational field is strong; that an effective CPT
invariance of quantum gravity could still hold.

IV. CPT SYMMETRY WITHOUT CPT SYMMETRY

The conclusion of the previous section that CPT
symmetry is violated in quantum gravity does not
contradict any other established results. As
discussed in Sec. II, since general relativity is
not a Poincarh-invariant theory, the CPT theorem
is inapplicable. Furthermore, although there is
no experimental evidence for CPT violation, this
also does not conflict with our conclusion, since
we certainly do not expect quantum-gravitational
effects to produce a measurable inQuence on lab-
oratory experiments. Nevertheless, on aesthetic
grounds alone it would be disturbing if CPT in-
variance —which is believed to hold exactly in flat-
spacetime theories —were to be abandoned here in
a ruthless manner. Therefore, it is natural to in-
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O-1gp-1

where S~:6,„,-6,„ is defined by

fA tf 4 A
~c —~ ca ~

(4.3)

(4 4)

First, we show that full CPT invariance implies
Eq. (4. 3). By the arguments of the previous sec-
tion, full CPT invariance implies that 8 must be
one-to-one and onto and that pure states must
evolve to pure states. It is possible to show that
every such linear s which conserves probability
arises from a unitary or antiunitary S matrix
acting on pure states. In the unitary case, we
have

D
~ bC C~b ~

Unitarity of S implies that

3t —g-~

(4.6)

(4 ~ 6)

[In the antiunitary case, the analog of Eq. (3 ~ 7)
holds and we again get Eq. (4.6).] Equation (4.3)

quire as to whether it is possible to recover some
weaker notion of CPT invariance in quantum gra-
vity.

. Remarkably, despite the conclusions of the pre-
vious section, it is possible that a form of CPT
invariance could hold which would make it impos-
sible for an observer to detect directly the failure
of CPT symmetry from scattering experiments
without appealing to the underlying framework of
the theory. The key point in the formulation of
this notion of effective CPT symmetry in scatter-
ing theory is that, although there is no CPT opera-
tor for the full theory, it should still be possible
to identify the free-field asymptotic in and out
states as CPT reverses of each other. In other
words, the map 8: X,„-X,„, of the previous sec-
tion —as well, of course, as the map 8 it induces
on density matrices —should still exist. The fail-
ure of full CPT symmetry is expressed by the fact
that Eq. (3.10) cannot hold. However, the follow-
ing condition could still hold and would express an
effective CPT invariance of the theory. Let g
&X„be a pure in state. In general g will evolve
to a (mixed) density matrix p. However, one
could ask for the probability p((- &f&) =( Q l p l P&

that one would measure the final state to be the
pure state &f& cX,„,. Then it is possible that for
all g c:X„and p c X,„„we have

f (C- e}=f(8'e- ~C). (4. 1)

In terms of the superscattering map 3, Eq. (4. 1)
says that

& 013(g g) I & &
= «(13(e '& ~ '4)

l e4& (4 2)

for all P, P. Equation (4.2) is equivalent to

then follows immediately from Eqs. (4. 6) and
(3.11). Thus, if full CPT invariance held, Eq.
(4.3) would be valid.

However, as argued in the previous section, full
CPT invariance cannot hold; Eq. (3.10) is incon-
sistent with the evolution from a pure state to a
density matrix. To show that our new condition,
Eq. (4. 1) or Eq. (4.3), is not inconsistent with
this type of dynamics it suffices to consider the
following simple example. Let X„and X«, be
of finite dimension n and suppose every pure state
/&X, „. (and consequently every density matrix
pc@„)evolves to the density matrix I/n5'„ in@,„,.
This is an extreme example of evolution of pure
states to density matrices. Here 3 ' certainly does
not exist, so Eq. (3.10) cannot hold. However,
for all g and &f&, both sides of Eq. (4. 1) are equal
to I/n, so Eq. (4. 1}[and hence Eq. (4.3}]does
hold. Thus, our new condition does not contradict
the type of dynamics believed to hold in quantum
gravity.

The physical meaning of Eq. (4. 1) may be eluci-
dated as follows. Suppose an observer performs
a sequence of scattering experiments, recording
in each case the initial (pure) state and the final
(pure) state which he measures. Suppose he then
fabricates new scattering data by CPT reversing
his actual data, i.e., he records as his "in" state
the CPT reverse of his measured "out" state and re-
cords as his "out" state the CPTreverse of the cor-
responding in" state. If Eq. (4.1) holds, then if
he gives his true data and his fabricated data to a
second physicist, this physicist would have no way
of determining (even on a statistical basis) which
data set is which. In this sense, the fundamental
arrow of time of quantum gravity would be unde-
tectable to our observer. One would have "CPT
symmetry without CPT symmetry. "

On the other hand, our observer could deduce
the CPT noninvariance of the theory in the follow-
ing way. He could repeatedly prepare the system
to be in the same initial state g. By varying what
he measures of the out state, he would find that
his measurements were not consistent with the out
state being a pure state; he would have to assign
it a density matrix p. The arguments of Sec. III
should then suffice to convince him of the failure
of CPT symmetry, but if he wishes to see this
experimentally, he could —by having his system
interact with a second system for a time —prepare
the initial state of his system to be the CPT re-
verse of the density matrix p. He would then f ind that-
the out state was not described by the CPT re-
verse of g, in violation of CPT symmetry. No-
tice, however, that to deduce this violation the
observer does have to make some (admittedly very
minimal) assumptions about the underlying struc-



2752 ROBERT M. WA LD 21

ture of the theory. In a sense, it is really the
description of the scattering process which is not
CPT invariant; the actual sequence of measure-
ments which are made axe CPT invariant in the
sense described above.

This point deserves further elucidation. The
framework of quantum theory provides a descrip-
tion of phenomena in terms of state vectors (or
density matrices) and associated concepts. If one
views this framework as describing objective
physical reality, one is led to the notion of CPT
invariance described in Sec. III. It was shown
there that this notion of CPT invariance is incom-
patible with evolution believed to hold in quantum
gravity. However, an alternative viewpoint which

one could take concerning quantum theory is that
it is simply a set of rules which enables one to
calculate probabilities of outcomes of experi-
ments; that there is no physical reality to state
vectors and related concepts. If one takes this
latter point of view, then the only reasonable no-
tion of CPT invariance which one would have is
the weaker notion discussed above; that the CPT
reverse of a sequence of measurements is as like-
ly as the original sequence. If Eq. (4. 1) is valid,
this notion of CPT invariance &could hold for scat-
tering experiments in quantum gravity.

Suppose our observer searches for further evi-
dence of CPT violation by making measurements
in the strong gravitational field regime. He may
encounter centers of strong gravitational attrac-
tion and wish to know if they are black holes or
white holes. He could determine this by attempt-
ing to enter the region, but a safer way would be
to simply throw a probe toward the center of at-
traction. If the probe never returns, it is a black
hole, while if it eventually comes flying back out
at great speed, it is a white hole. Thus, by per-
forming such experiments our observer should be
able to discover that black holes occur but white
holes do not, in violation of CPT symmetry.
However, this conclusion is open to the charge
that it is again really only our description of the
process which violates CPT symmetry. To dem-
onstrate CPT violation in the weaker form de-
scribed above, one should give a sequence of mea-
surements that our observer might make such that
the CPT reverse of this sequence is not equally
probable. Since the probe experiment is essen-
tially a scattering experiment, it would not display
violation of the weak notion of CPT symmetry if
Eq. (4. 1) holds; the probability of starting in a
-given initial state with probe and ending in a spe-
cific final state without probe would be equal to the
probability of starting with the CPT reverse of the
final state and havi'ng the probe be manufactured by
particle creation by the black hole so that it ap-

pears at the end of the process in the CPT reverse
of the original initial state. However, if instead
of asking our observer to do a scattering experi-
ment we ask him (or better yet, ask a family of
observers) to measure the spacetime geometry in
the strong field region, then they should have no
difficulty discovering a direct violation of CPT
symmetry in their data, since —even excluding
the black-hole region —the spacetime geometry
of Fig. 1 is not isometric to its time reverse.
Thus, for example, when a black hole is formed,
there should be an inward flux of positive energy,
whereas as a black hole evaporates, there should
be an inward flux of negative energy. Thus, an
observer near (but remaining outside of) a black
hole who measures the energy density of matter
(say by measuring its effect on the spacetime
geometry) should (almost always) find positive-
energy density early and negative-energy density
late. The CPT reverse of these observations—
negative-energy density early and positive-energy
density late —should (almost) never occur. Thus,
one should be able to detect an arrow of time from
examination of the laboratory notebooks of obser-
vers who enter the strong-field region. I say
"should" because our knowledge of the measure-
ment process in the strong-field region is suf-
ficiently uncertain that it remains conceivable that
when all effects are properly taken into account
one would find CPT symmetry in strong-field mea-
surements also. For example, the above mea-
surement of the spacetime geometry by observers
who go near to a black hole but do not fall in could
yield results significantly different from what one
would expect from Fig. 1, on account of effects
like those analyzed by Unruh. Thus, it is possi-
ble —although, in my opinion, unlikely —that
the CPT symmetry implied by Eq. (4. 1) for scat-
tering measurements also extends to strong-field
measurements. "

Thus far, the only argument presented for the
validity of Eq. (4. 1) has been the aesthetic one
that CPT symmetry should not be ruthlessly aban-
doned in quantum gravity. However, some im-
portant supporting evidence for the validity of Eq.
(4. 1) comes from the existence of black-hole
thermodynamics.

The most natural explanation of the laws of
black-hole thermodynamics is that they are sim-
ply the ordinary laws of thermodynamics applied
to a self-gravitating quantum system. ' But or-
dinary thermodynamics is based on the idea that
systems spend "equal times in equal volumes" of
the classical phase space of "equal times in sub-
spaces of equal dimension' of the quantum Hilbert
space. In particular, difficulties would arise if
the dynamics permitted a "piling up of states, "



QUANTUM GRA VITY AND TIME RE VERS IBILIT Y 2753

i.e., if the microcanonical density matrix were not
preserved under dynamical evolution. If there is
no piling up of states in the dynamics of a self-
gravitating system in a box, then there should be
no piling up of states in scattering theory either.
Thus, if one were to consider an ensemble of in
states having the property that for each /AX„
the sum over i of the probability that the ith mem-
ber of the ensemble is in state g is unity ti.e., an
ensemble represented by the unnormalizable. den-
sity matrix 6"3), then the ensemble describing
the out states should also have this property. In
other words, the requirement of no piling up of
states in scattering dynamics means that the equa-
tion

(4.7)

first discussed by Hawking" must be satisfied.
Now, with evolution by an ordinary S matrix, Eq.
(4. 7) follows immediately from Eq. (4.5) together
with the unitarity of S. But for the type of evolu-
tion considered here, Eq. (4.7) is by no means
automatic. Without Eq. (4.7), the interpretation
of black-hole thermodynamics as arising from
ordinary ther modynamics would be in serious
jeopardy. However, given Eq. (4. 1) [and hence
Eq. (4.3)], we can obtain Eq. (4.7) immediately
from conservation of probability, Eq. (3.3), and
the properties of 9, Eq. (3.8). Thus, the exis-
tence of black-hole thermodynamics provides some
evidence in support of Eq. (4.1).

Let us now explore some of the consequences of
our weaker notion of CPT invariance with regard
to the black-hold formation and evaporation pro-
cesses. Our first task is to define the notion of
a black hole in the context of quantum gravity. To
do this, we make use of the idea that if a black
hole does not form, an initial pure state should
evolve to a final pure state, since it is only the
"loss of information" into the black-hole singular-
ity which is responsible for the production of a
density matrix. It seems natural to assume that
the collection of initial pure states which evolves
to final pure states forms a (nontrivial) linear sub-
space V C &,„. We define the "pre-black-hole"
states to be the orthogonal complement P~ of V.
In other words, the quantum-gravity states which
contain a black hole with probability one are de-
fined to be those which arise from any initial state
in W (or any initial density matrix formed from
states in W). This notion of a black hole is close-
ly analogous to the classical notion, where a
black-hole spacetime is one in which there is an
initial data surface Z whose domain of dependence
includes ', but not all the information on Z prop-
agates to l'. A generic in state, of course, will
have nontrivial projections onto both V and 8',

i.e., it will have a probability of forming a black
hole which is greater than zero but less than one.

The evolution of in states lying in V should be
given by an ordinary unitary scattering matrix.
Thus, the out states resulting from in states in V
should also form a linear subspace, which we
shall denote by s[V]. (Note that, by definition,
3[V] is a subspace of pure states, not density ma-
trices. ) Let Pc S[V], i.e., we suppose there is a
pure state gc=K„which evolves to p. Suppose
our weak form of CPT invariance holds. Then
Eq. (4. 1) holds, and since p(g- p) =1, we have

p(e-'y- eq) =1, (4.8)

i.e., the pure state 8 '$ evolves to the pure state
8(. This means that 8'p c V. Thus, we have
shown that

3[v]c 8[v]. (4.9)

s[wj. e[v]

or, equivalently,

s[w] ce[w].

(4. 10)

(4. 11)

However, the span of 8[v] and S[w] must be all
of X,„,. If not, we could find a $ c K,„, which is
orthogonal to both subspaces. This would mean
that the probability of & arising from a pure state
in V or a pure state in W is zero. But Eq. (4.1)
then implies that the state 8 '$ has vanishing
probability of evolving to any state in 8[V] or
8[W], i.e., any state in BC,„„which contradicts
conservation of probability. Thus, we have

s[v] ea[w]=x.„,. (4. 12)

But the only way Eqs. (4.9), (4. 11), and (4. 12)
can simultaneously hold is if equality holds in

Eqs. (4.9) and (4. 11), i,e.,
s[v]= e[v],
s[w] = e[w].

(4. 13)

(4. 14)

Equation (4. 14) says that the states resulting
from black-hole evaporation are precisely the
CPT reverse of the initial states which collapse

On the other hand, each y (= lV will evolve to a
density matrix p(=-S,„,. We can decompose each
such p in terms of the pure states occurring in its
spectral resolution. Let. S[W] denote the linear
span of all the pure states occurring in all such
density matrices. We claim that s[w] is ortho-
gonal to 8[V]. Namely, if it were not, we could
find a X c 8[V] and a ~ c W such that p(v —A. )c0.
Consequently, by Eq. (4. 1), it follows that the
vector 8 'A. (= V would evolve to a state with a non-
zero projection onto 8[W]. Since 8[W] is ortho-
gonal to 8[V], this contradicts Eq. (4.9). Thus



ROBERT M. WAI D 21

to form black holes. This conclusion is not im-
plausible, since if one CPT reverses the Hawking
evaporation radiation predicted by the semiclas-
sical theory, it seems likely that a black hole wi. ll
form. This could be taken as further supporting
evidence for our weakened CPT condition.

Since scattering takes W to S[W]= 8[W] and the
orthogonal complement, V of W to the orthogonal
complement 8[V] of 8[W], Eq. (4.7) must hold
when restricted to 8', i.e., S must take the projec-
tion operator onto W to the projection operator onto
8[W]. This means that if all initial collapse states
in 8' are "equally likely, " then all final evaporation
products in 8[W] will also be equally likely. Now
the "most probable way' of forming a b1.ack hole
by a self-gravitating system in a box would be cal-
culated by assuming all states in the box analog
of 8' are equally likely and finding the macroscopic
description of collapse which corresponds to the
largest subspace of W. The most probable way of
evaporating a black hole would be calculated in a
similar way, weighting each final evaporation, state
by its probability of occurrence, assuming the
initial states in 8' were equally likely. By the
above results we obtain the following conclusion:
Assuming our weak form of CPT invariance and
assuming that our scattering results can be taken
over to the analysis of a self-gravitating system in
a box, the CPT reverse of the most Probable way
of forming a black hole is the most probable way
a black hole ~ill evaporate. This can be true de-
spite the fact that the "inner workings' of the col-
lapse and evaporation processes are by no means
the CPT reverse of each other.

At first glance, the above conclusion may ap-
pear implausible. The standard semiclassical pic-
ture of black-hole evaporation involves the produc-
tion of thermal radiation at ever increasing tem-
perature appearing to emanate from a region of
ever decreasing size. On the other hand, for a
dense gas in a large box, one would expect the
most probable mode of collapse to be Jeans-type
instability, which is certainly not the CPT re-
verse of the Hawking evaporation radiation. How-
ever, for the equilibrium black hole which would
form in cases where Jeans instability is applicable,
the slow, adiabatic evaporation predicted by semi-
classical calculations would be very greatly su-
pressed by absorption of radiation by the black
hole. It is perfectly plausible that the most prob-
able way by which such a black hole would evapo-
rate would involve large Quctuations not describ-
able by the semiclassical theory. Thus, the end
product could well look like the CPT reverse of
the initial conditions for Jeans instability. On the

other hand, for a small black hole in a box with
little radiation, the semiclassical predictions
should give the most probable way this black hole
will evaporate. But, here Jeans instability is not
applicable, and it is entirely plausible that the
most probable way of forming a black hole would
be by the CPTreverse of Hawking radiation.

In summary, we have argued here that although
CPT symmetry is violated, a weaker form of CPT
symmetry could still hold in scattering theory.
The arguments in favor of this are mainly aesthet-
ic but also receive support from the fact that this
type of CPT symmetry implies an important rela-
tion, Eq. (4.7), for black-hole thermodynamics.
It also implies interesting predictions for the
black-hole formation and evaporation processes,
but not enough is known about the full details of
these processes in quantum gravity for these
predictions to be stringently tested.

Finally, it is interesting to note that the type
of evolution considered here —that is, a pure state
evolving to a density matrix with the weak form of
CPT symmetry holding —has many features in
common with measurement theory. The evolution
of a pure state to a density matrix does not truly
constitute a measurement, since a crucial part of
the measurement process is the selection of the
final pure state out of the various possibilities.
Nevertheless, one could correctly describe (in
the sense of giving correct predictions of probabil-
ities) the action of a measuring apparatus or ob-
server as converting an initial pure state to a final
density matrix. The arguments presented here
suggest that time-irreversible processes may oc-
cur during measurements. However, since (at
least in ordinary quantum mechanics) the weak
form of CPT invariance does hold for the mea-
surement process, this arrow of time may be
completely hidden from us. (In the gravitational
case, we can observe the strong-field region,
but it is not at all clear that we can measure the
inner workings of a measurement process. ) The
relationship of processes occurring in quantum
gravity to those of measurement theory appears
worthy of further investigation.
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cludes a measuring apparatus (or an observer) in
state o. , the probability that the final state will be p
(with a certain report of the measuring apparatus des-
cribed by state P ) equals the probability that the state
8 'P (with the measuring apparatus in the CPT re-
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require) then the final report of the measuring ap-
paratus need not show CPT-invariant results.


