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Quantum anomalies are violations of classical scaling symmetries caused by divergences
that appear in the quantization of certain classical theories. Although they play a
prominent role in the quantum field theoretical description of many-body systems,
their influence on experimental observables is difficult to discern. In this study, we
discovered a distinctive manifestation of a quantum anomaly in the momentum-space
dynamics of a two-dimensional (2D) Fermi superfluid of ultracold atoms. The measured
pair momentum distributions of the superfluid during a breathing mode cycle exhibit
a scaling violation in the strongly interacting regime.We found that the power-law
exponents that characterize long-range phase correlations in the system are modified
by the quantum anomaly, emphasizing the influence of this effect on the critical
properties of 2D superfluids.

S
ymmetries and their violations are funda-
mental concepts in physics. A prominent
type is conformal symmetry, which gives
rise to the peculiar effect of scale invar-
iance, where the properties of a system are

unchanged under a transformation of scale. For
instance, a HamiltonianH(x) is said to be scale
invariant when H(lx) = laH(x), where l is a
scaling factor and a is a real number. Scaling
symmetries such as these can be violated by
quantum fluctuations, which is a phenomenon
known as a quantum anomaly. Such anomalous
symmetrybreaking iswidelydiscussed inquantum
field theory (1) and has fundamental implica-
tions in the contexts of high-energy physics and
phase transitions. However, unambiguous exper-
imental signatures of this effect, particularly in
many-body systems, have so far been elusive.
Here, we report the direct observation of a
quantum anomaly in the dynamics of a two-
dimensional Fermi superfluid.
Two-dimensional (2D) systems with contact

interactions, V(x) º d2(x), are of particular in-
terest in the context of scale-invariance violation
because the d2 potential does not introduce a
characteristic scale to the Hamiltonian. At the
classical level, the transformation x→lx rescales
the interaction potential as V(lx)º l−2V(x), ex-
actly the same way as the kinetic energy, and
therefore the classical 2D gas is intrinsically scale
invariant (2, 3). However, at the quantum me-
chanical level, this is no longer true because the d2

scattering potential supports a two-body bound
state for arbitrarily weak attraction (4–6). The

bound state has a characteristic length a2D, which
describes the expected size of the molecule and
introduces a spatial scale. This additional length
scale is connected with the binding energy scale
EB, and it breaks the scaling relation between
interaction and kinetic energy, which leads to a
quantum anomaly.
How does this quantum anomaly influence the

behavior of 2D systems at macroscopic scales?
This question is especially relevant for 2D super-
fluids, which exhibit algebraic, hence scale-free,
decay of phase correlations (7, 8) described by
the Berezinskii-Kosterlitz-Thouless (BKT) mech-
anism. In this context, how does the introduc-
tion of a short-distance scale (a2D) affect the
long-range behavior, such as spatial coherence
and transport properties, in 2D superfluids?
These questions are at the heart of many-body
physics of 2D systems, and answering them
may provide insights into the general phenom-
enology of other lower dimensional systems
such as exciton-polariton condensates (9) and
graphene (10, 11).
In the field of ultracold atomic gases, 2D Bose

gases in the weakly repulsive instead of inter-
acting limit are demonstrably scale invariant
(3, 12, 13), suggesting that the bound state plays
a negligible role in these systems. However, in
2D Fermi gases, particularly in the strongly
interacting regime, the effect of the additional
length scale a2D becomes appreciable, for in-
stance in the thermodynamic equation of state
(14–19). On this basis, various theoretical works
have predicted a quantitatively pronounced
effect of the scale-invariance violation in this
regime (20–23).
In harmonically trapped gases, a notable

manifestation of this anomaly is an interaction-
induced correction to the collective breathing
mode frequency with respect to the noninter-
acting value (4, 20–22, 24) of twice the trap fre-
quency. Although previous studies on breathing
modes found no evidence of such a correction

(25), the observation of an anomalous frequency
shift at low temperatures has been reported in
recent experiments (26, 27). However, the rela-
tive magnitude of these shifts (~1 to 2%) is
several times smaller than the theoretical pre-
diction (~10%), raising questions on the physi-
cal relevance of the quantum anomaly for the
dynamical properties of 2D Fermi gases. Rather
than the breathing mode frequencies, here we
explore the spatial coherence properties in mo-
mentum space, which reveal the scale-invariance
breaking effect that is nearly absent in theposition-
space density profiles.
In our experiments,weprepareda gas of ~2× 104

6Li atoms in the lowest two hyperfine states,
trapped in a highly anisotropic potential and
cooled to low temperatures deep in the super-
fluid phase. The ratio of absolute temperature to
the Fermi temperature (T/TF) is in the range of
~0.05 to 0.1. The radial and axial trap frequencies
of the harmonic potential are wr = 2p × 23 Hz
and wz = 2p × 7.1 kHz, respectively, correspond-
ing to an aspect ratio wz/wr ≈ 310. With the
relevant thermodynamic scales kept smaller
than the axial confinement energy, we ensure
that the system is in the kinematically 2D regime.
By tuning the interactions between fermions
around a Feshbach resonance, we access the
2D Bose-Einstein condensate to the Bardeen-
Cooper-Schrieffer (BEC-BCS) crossover region.
The interactions in the 2D many-body system
are described by a dimensionless parameter
ln(kFa2D), where kF is the Fermi momentum
and a2D is the 2D scattering length obtained
from the 3D scattering length (5, 6, 28). For
lnðkFa2DÞ ≪�1, we are in the BEC regime,
whereas lnðkFa2DÞ ≫ 1 corresponds to the BCS
regime. The strongly correlated regime located
between these limits occurs when 1/ kF ~ a2D.
This crossover region exhibits some notable fea-
tures, such as enhanced critical temperature Tc
(14) and a large pseudogap region above Tc where
pairing is strongly density dependent (29).
We investigated the interplay between quan-

tum anomaly and phase correlations by measur-
ing the dynamical evolution of the gas both in
position space (i.e., in situ) and in momentum
space. Measuring the momentum distribution
is particularly important as it encodes informa-
tion of phase fluctuations in the superfluid. First,
we brought the system out of its equilibrium
configuration by resonantly modulating the har-
monic trapping potential at twice the trap fre-
quency 2wr (Fig. 1, A and B). This protocol excites
the 2D isotropic breathingmodewhereby the gas
undergoes periodic cycles of compression and
expansion. After a fixed duration (10 cycles), the
drive was stopped, and the cloud evolved in the
original potential for a variable time t. In con-
trast to previous works, which investigated the
frequency of the breathing mode, we focus on
how the shapes of the in situ and momentum
distributions change within a single breathing
cycle. Because the damping rate of the breathing
mode is very small (~0.01wr) (26), the motion is
essentially isentropic, which allows the direct
probing of scale-invariant behavior.
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To measure the pair momentum distribution
n(k), we used a matter wave focusing technique
that has been previously demonstrated for 2D
gases (30, 31). First, we rapidly ramped the offset
magnetic field to the weakly interacting limit
of strongly bound dimers. Immediately after the
ramp, we switched off the trapping potential and
released the sample to ballistically expand in a
shallow harmonic potential for a quarter period
Texp/4 = p/2wexp = 21.8 ms, where wexp is the
shallow trap frequency. The Texp/4 evolution
maps the initial momentum distribution of par-
ticles to the spatial distribution. As the time scale
of the magnetic field ramp (tramp ~ 50 ms) is
shorter than the intrinsic time scales of the
many-body system, the measured spatial distri-
bution at t = Texp/4 reflects, to a very good ap-
proximation, the initial momentum distribution
of pairs. The strong enhancement of the low-
momentum modes in n(k), as seen in Fig. 1D,
signals superfluidity in the system as it is related
to long-range spatial coherence in the system
(7, 14).
In Fig. 1E, we show an example of the mea-

sured time-evolution of the in situ r(r,t) (orange)
and momentum distributions n(k,t) (blue) taken
at the interaction parameter ln(kFa2D) ≈ 1. The
in situ distribution exhibits periodic compres-
sion and expansion at approximately twice the
trap frequency (wB ≈ 2wr), as expected. In con-
trast, n(k,t) undergoes sharp revivals at twice
the rate of r(r), i.e., when the cloud size is max-
imum (outer turning point, t = to) as well as
minimum (inner turning point, t = ti). At inter-
mediate time scales between the turning points,
n(k) is broadened. At a qualitative level, this pecu-
liar effect can be understood as a consequence of
the oscillation of the hydrodynamic velocity field
at any point (x, y), vBºsinðwBtÞ½xêx þ yêy � .
During the breathing cycle, vB vanishes at the
two turning points. At the intermediate points,
the nonzero value of vBmanifests in a broadened
momentum distribution, whereas the in situ pro-
file shows a monotonous variation between the
inner andouter turning points.Weprovide amore
detailed description of the effect using variational
Gross-Pitaevskii computations in (fig. S1) (32). A
similar effect has recently been predicted for the
1D Bose gas in the Tonks-Girardeau regime using
scale-invariant dynamics (33) and has also been
experimentally observed in the weakly interacting
regime (34).
From these dynamical measurements, the oc-

currence and violation of scale invariance can be
studied by comparing the in situ andmomentum-
space distributions at different points in time.
To illustrate this point, let us consider the
time evolution of a scale-invariant gas in a har-
monic potential. Naturally, the presence of a
trapping potential introduces a length scale and
thus explicitly breaks scale invariance. However,
as pointed out in (3), the special case of a 2D
harmonic potential has an inherent SO(2,1)
symmetry that restores scaling behavior. Conse-
quently, the harmonically trapped scale-invariant
gas displays predictable dynamics with the
time-dependent many-body wave function being

given in terms of the equilibrium wave func-
tion according to

yðX ; tÞ ¼ 1

lN
yðX=l; t ¼ 0Þ�

exp i
ml

�

2ℏl
X2

 !
exp
�
iqðtÞ

�
ð1Þ

where X ¼ ðx→1; x
→
2;…; x

→
N Þ are the 2N position

coordinates of the many-body system, m is the
particle mass, q(t) is an overall phase, and l(t)
is the time-dependent scale factor that obeys
the Ermakov-Milne equation (32). From the
full wave function (Eq. 1), one obtains the evo-
lution of the in situ density and the momentum
distribution

rðr; tÞ ¼ 1

l2
r

r
l
; t ¼ 0

� �
ð2Þ

nðk; tÞ ¼ l2∫W lk þm

ℏ
l
�

lr; r; t ¼ 0
� �

d2r ð3Þ

in terms of the Wigner function W(k,r,t). The in
situ density is completely self-similar (Eq. 2), i.e.,
the density at any time t can be rescaled to its
initial form using a single scaling factor l(t).
When l

� ¼ 0, the momentum distribution n(k,t)
also displays self-similar scaling with the inverse
factor l−1. For the breathing modes, l

� ¼ 0 at the
two turning points. Therefore, a comparison of
the in situ and momentum distributions at the
inner and outer turning points can be used as a
proxy to study scale invariance.
We measured the dynamically evolving in situ

and momentum distributions for various inter-
action parameters across the BEC-BCS crossover.

In Fig. 2, we show r(r) (left column) and n(k)
(right column) at the inner and outer turning
points for interaction strengths ln(kFaKD) = −1.5,
1, 1.3, 1.5, and 2, which correspond to the strongly
interacting crossover region. The open diamonds
and filled circles represent the distributions at
successive inner (ti,1, ti,2) and outer (to,1, to,2) turn-
ing points within a breathing cycle (Fig. 1E). The
scaling to the inner turning point distribution
is performed using the mean of the successive
outer turning point distributions. In the in situ
distributions, the outer turning point profile
r(r,to) (blue) can be collapsed onto the inner
turning point profile r(r,ti) using a global scaling
factor 0 < l < 1. The rescaling is represented by
the dashed black curves in Fig. 2, where rsc(r) =
l−2r(r/l,to); the scaling factor l is obtained by
minimizing the mean square deviation between
the inner profile and the rescaled outer profile.
Themeasured and rescaled distributions coincide
within the systematic and statistical uncertain-
ties of the measured density, which is ~5% (14).
Inmomentum space, the inverse scaling factor

l−1 should collapse the inner and outer turning-
point distributions if the system were scaling
invariant. This condition is satisfied to a good
approximation both in the BEC ½lnðkFa2DÞ ≲�1:5�
and BCS ½lnðkFa2DÞ≳2� regimes (Fig. 2, A and E).
In these regimes, the difference between the
scaling factor obtained independently for the
k-space distributions and the inverse in situ scaling
factor is <2%. However, in the crossover region
around ln(kFa2D) ~ 1.3, we find a notable discrep-
ancy between the measured n(k,ti) at the inner
turning point and the rescaled distribution nsc(k)
obtained using the inverse in situ scaling factor.
In fact, we expect n(k,ti) to always be broader
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Fig. 1. Dynamics of a 2D fermionic superfluid in position and momentum space. (A and B) We
prepare a 2D Fermi gas well below the superfluid critical temperature (0.05 < T/TF < 0.1) (14). The
isotropic breathing mode is excited by resonantly modulating the harmonic trap at twice the trap
frequency. Once the drive is stopped, the breathing oscillations continue for a variable time t,
at which point we measure (C) the in situ density distribution r(r,t) and (D) the pair momentum
distribution n(k,t) using a matter wave focusing technique. (E) Example of azimuthally averaged
r(r,t) (orange) and n(k,t) (blue) taken at interaction strength ln(kFa2D) ≈ 1. The in situ density oscillates
at twice the trap frequency, as expected. The momentum distribution exhibits sharp revivals at twice
the rate of the in situ oscillation. The frequency doubling arises from the sinusoidal oscillation of
the hydrodynamic velocity field, which vanishes at the inner and outer turning points of the breathing
cycle, denoted by the vertical dashed lines.
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than n(k,to) (see Fig. 2A), but the measured
momentum distribution at ln(kFa2D) ~ 1.3 shows
the opposite effect. Here, the occupation of the
low-k region ofn(k) is strongly enhanced, not only
with respect to the expected distribution but also
compared with n(k,to). This discrepancy is evi-
dence that scale invariance is violated owing to
strong interactions, with an unmistakable signa-
ture in momentum space.
As shown in Fig. 2, the fermionic interactions

have a substantial influence on the low-kmodes,
which correspond to long-wavelength phase fluc-
tuations in the superfluid. The correlations in the
phase are characterized by the first-order corre-
lation function

g1ðrÞ ¼ ∫r1ðR � r=2;R þ r=2Þ d2R ð4Þ

where r1 is the one-body density matrix. Exper-
imentally, g1(r) is directly obtained from the n(k)
through a Fourier transform. In (7), a transition
from exponential to algebraic decay in the trap-
averaged g1(r) was observed, in agreement with
BKT theory and quantum Monte Carlo compu-
tations (35). Here, we use the same procedure
described in (7) to extract g1(r) at the inner and
outer turning points. These are shown in Fig. 3A
for ln(kFa2D) = −6 and 1.3. To account for the
change in cloud size when comparing the two
correlation functions, we plot g1(lr,to) in rescaled
coordinates, where l is the scaling factor ob-
tained from the procedure described above (Fig.
2 and Eq. 2). In addition, we extract the exponent
h by fitting a power law [f(r) ~ r−h(t)] to g1(r,t).
Although the exponents in the trap-averaged
g1(r) are substantially larger than the homoge-
neous BKT predictions, they have the same qual-
itative behavior (35), in particular, a smaller
exponent corresponds to a larger superfluid
phase space density Ds ¼ rsl

2
T, where rs is the

superfluid density and lT is the thermal de
Broglie wavelength. The power-law exponents
obtained at the two turning points are tabulated
in table S1 (32).
In the BEC regime, the two curves [g1(r,ti)

and g1(lr,to)] collapse onto each other (Fig. 3A),
whereas in the crossover regime, the correlation
functions are substantially different, with the in-
ner g1(r,ti) decaying slower than expected. In Fig.
3B, we show the ratio hi/ho for different inter-
action strengths across the BEC-BCS crossover.
For scale-invariant systems, hi = ho, i.e., the spec-
trum of phase fluctuations is unaffected by a
change in the density. Indeed, we find hi/ho ≈
1 in the BEC regime, but the ratio dips dramat-
ically in the crossover regime to a value of ~0.8
before rising again in the weakly interacting BCS
regime. This quantitative deviation proves that
the quantum scale anomaly that originates in
the short-distance fermionic correlations in-
fluences the algebraic decay of correlations in
the 2D superfluid. An equivalent signature is ob-
tained by comparing the outer zero-momentum
occupation with the rescaled one at the inner
turning point; the resulting curve, shown in the
inset of Fig. 3B, also deviates from the scale-
invariant expectation in the crossover region.

Murthy et al., Science 365, 268–272 (2019) 19 July 2019 3 of 5

Fig. 2. Scale-invariance breaking in momentum space.The in situ (left column) and pair momentum
distributions (right column) at the inner and outer turning points for interaction strengths ln(kFa2D) ≈
−1.5, 1.0, 1.3, 1.5, and 2.0 (A to E, respectively). The diamonds and filled circles represent the
distributions at adjacent inner and outer turning points. For a scale-invariant system, the
in situ density profiles at to (red diamonds) and ti (blue circles) should be scalable with a single
scaling factor l, as well as the momentum distributions [n(k,to)→n(k,ti)] with the inverse factor
l−1. Such scaling behavior is observed both in the weakly interacting BEC and BCS regimes.
However, in the strongly interacting crossover regime, we find a clear departure from scale invariance.
Although the evolution of the r(r) is still self-similar, the momentum distribution shows a notable
discrepancy from the expected result obtained with the inverse scaling factor from the in situ
scaling (dashed black line). This scaling violation at strong interactions is attributed to the
quantum anomaly.
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What is the origin of these effects? The inter-
action region [ln(kFa2D) ~ 1] where we see the
largest scaling violation in the phase correla-
tions coincides with the regions of (i) maximum
critical temperature (14), (ii) largest density-
dependent pairing (pseudogap) (29), and (iii)
the maximum breathing mode frequency shift
(26, 27). This suggests that all these effects may
have a common mechanism. However, the ex-
act dependence of these effects on ln(kFa2D) is
slightly different because local properties such
as fermion pairing and long-range properties
such as coherence respond differently to tem-
perature. Also, because the breathing motion
in the system is much slower than the micro-
scopic scattering rate between fermions, one
can apply the traditional hydrodynamic pic-
ture where the gas can be considered locally in
equilibrium at all times. This allows the dynam-
ical behavior of the gas to be connected with its
equilibrium properties.
In this framework, one possible mechanism

arises from the density-dependent pairing ef-
fect observed in (29). In the crossover region, a
change in density during the breathing cycle
corresponds to a change in the total pairing
energy. However, in 2D BCS theory, the coher-
ence length remains fixed to the vacuum expec-
tation a2D irrespective of the density. Accordingly,
as the particle spacing is the smallest at the inner
turning point, this implies enhanced phase co-
herence extending over more particle spacings
and a smaller decay exponent h. At the same time,
enhanced occupation of low-momentum modes
requires, at a fixed total number, a reduced occu-

pation at highmomenta and hence a depletion in
the pair kinetic energy. We have analyzed the
kinetic energy extracted from the momentum
distribution and found a scaling violation con-
sistent with this argument (fig. S2) (32).
The observations in Fig. 3 may also provide

hints toward explaining the enhanced critical
temperatures in this region. We recall that the
power-law exponents are an indicator of super-
fluid stiffness and phase-space density: a smaller
h corresponds to more coherence and greater
stiffness Ds. For scale-invariant systems, Ds nec-
essarily remains constant throughout the breath-
ing cycle leading to hi/ho = 1. However, in the
crossover regime, the observation of hi/ho < 1
implies that the density-dependent pair cor-
relations enhance the superfluid phase space
density for the same effective temperature. In
other words, the critical Ds required for the
superfluid transition can be attained at higher
Tc/TF, as seen in (14).
Finally, we note the differences between the

manifestations of the anomaly in the breathing
mode frequency shifts and coherence measure-
ments. The density profiles at the turning points
do not exhibit conspicuous effects of the quantum
anomaly and satisfy the prediction of the dy-
namical SO(2,1) symmetry (24). This is consistent
with the small shifts in the breathing mode fre-
quency reported in (26, 27). It further shows that
the breathing mode dynamics are not fully ex-
plained by the equation of state (15–17), which is
scale dependent and would imply a large shift in
the breathing frequency accompanied by an ob-
servable change in the in situ density profile. On

the other hand, the coherence of the system
probes the long-wavelength phase fluctuations
and thus displays a much larger effect of the
quantum anomaly. In addition, the coherence
properties in the superfluid phase are more sen-
sitive to temperature, which leads to a slightly
different dependence on the ln(kFa2D) with
respect to local measurement of many-body
pairing (29). An important goal for future in-
vestigations is to find a theoretical description
that connects these different effects—many-body
pairing, enhanced critical temperature, breath-
ing mode frequencies, and spatial coherence—in
the crossover region. Although the relation be-
tween many-body pairing and breathing mode
properties has been recently demonstrated the-
oretically (36), the connection between the quan-
tum anomaly and coherence remains an open
question.
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Fig. 3. The quantum anomaly and spatial coherence. (A) The first-order correlation function
g1(r,ti) at inner point (red) and rescaled correlation function g1(lr,to) at the outer points (blue), for
ln(kFa2D) ~ −6 (upper panel, BEC) and ln(kFa2D) ~ 1.3 (lower panel, crossover), where l is the
real space scaling factor obtained in Fig. 2 . In the BEC regime, g1(r,ti) and g1(lr,to) coincide, whereas
in the crossover regime, the two curves are conspicuously different. From the power-law decay
of g1(r) ~ r−h, we extract the exponent h. (B) The ratio hi/ho across the BEC-BCS crossover. The
scale-invariant expectation hi/ho = 1 is reproduced in the BEC regime. In the crossover regime, we
observe a sharp dip in the ratio signaling the scaling violation in the long-range phase correlations.
The minimum ratio is at ln(kFa2D) ~ 1.3, which coincides with the regime of many-body pairing
observed in (29). (Inset) The ratio between the zero pair momentum occupation at the inner and
outer turning points, divided by 1/l2; as above, the largest anomaly is observed in the crossover
region. The purple and green curves are guides to the eye.
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strong interactions between the atoms, the momentum profiles deviated markedly from the classical scaling.
atoms. They initially perturbed the gas and then monitored the momentum distribution of its atoms. In the regime of 

 studied the momentum-space profiles of 2D superfluids of fermionicet al.than expected on theoretical grounds. Murthy 
anomalies have been observed in the real-space properties of 2D Fermi gases, but the effect is much less pronounced 

a breakdown of scaling laws that characterize such systems in the classical regime. Signatures of these−−anomalies
 At low temperatures, two-dimensional (2D) systems with contact interactions are expected to exhibit quantum

A quantum breakdown
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