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Quantum simulations with trapped ions
R. Blatt1,2* and C. F. Roos1,2

In the field of quantum simulation, methods and tools are explored for simulating the dynamics of a quantum system of interest
with another system that is easier to control and measure. Systems of trapped atomic ions can be accurately controlled and
manipulated, a large variety of interactions can be engineered with high precision and measurements of relevant observables
can be obtained with nearly 100% efficiency. Here, we discuss prospects for quantum simulations using systems of trapped
ions, and review the available set of quantum operations and first proof-of-principle experiments for both analog and digital
quantum simulations with trapped ions.

The field of quantum information has emerged during the past
decade, together with the much refined art of controlling
andmanipulating quantum systems. Arguably, it is today one

of the most lively—and still growing—research areas in physics,
with widespread potential applications. The ultimate goal in this
field is the realization of a universal quantum computer, promising
unprecedented computing power. Reaching that goal, however,
will still require many years, if not decades, of improvements
in technology and fundamental research. There are, however,
no principle roadblocks in sight1. Although universal quantum
computers for large-scale operations are probably quite a while in
the future, research during the past few years has clearly shown
that with small numbers of quantum bits (or qubits) a number
of applications already become interesting where well controlled
quantum systems can be favourably employed. Examples include
frequency standards where entangling operations enhance the state
detection2, tests of quantum theory in multiqubit systems3,4 or the
use of qubits as a quantummemory for quantum repeaters.

The power of quantum-information processing is based on the
exponentially growing number of computational paths that are
available in quantum systems consisting of an increasing number of
qubits. Although factoring of large numbers using Shor’s algorithm5

requires tens of thousands of qubits, the use of even small-scale
quantum systems may offer a route to efficiently simulate other
quantum systems that could be very hard to describe analytically or
numerically on classical computers. Such ideas date back to Richard
Feynman, who pointed out in his seminal 1981 lecture ‘Simulating
Physics with Computers’ that the proper way of simulating
quantum physics would be making use of a quantum machine
instead of a classical computer6. He conjectured that universal
quantum simulators might exist but it was only in 1996 that Seth
Lloyd was able to show that universal simulators can indeed be built
to efficiently simulate systems with local interactions7.

Employing one quantum system to simulate the behaviour of
another can be realized in two rather distinct ways sketched in
Fig. 1: mapping the dynamics of the simulated Hamiltonian to a
mathematically equivalent, albeit physically quite different, system
emulates a quantum system, and is referred to as an analog quantum
simulator8. Obviously, the availability of such emulations or analog
quantum simulations hinges on the accessibility of a very well
controlled quantum system that offers a large variety of interactions
that can be precisely controlled. Much more general and even
much more challenging, in the spirit of Feynman and Lloyd, is
the construction of a universal quantum simulator that can be
reprogrammed to accommodate the needs for any system to be
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investigated. In that case the task is to obtain the solution |Ψ(t )〉 of
the Schrödinger equation describing the action of a time-dependent
Hamiltonian Hsys, which may be written as a sum of many local
interactions, on the initial state |Ψ(0)〉. This, however, requires the
use of a freely programmable quantum computer to implement
the required Hamiltonians. As was pointed out in ref. 7, the
unitary evolution of a system Hamiltonian Hsys can be rebuilt by
piecewise application of local Hamiltonians e−iHl t/n. According to
the Trotter formula7,9

e−iHsyst ≈
(
e−iH1t/ne−iH2t/n ...e−iHl t/n

)n (1)

the dynamics of the system is then approximated better and better
with finer and finer time slices. Equation (1) is applicable for a
time-independent Hamiltonian Hsys =

∑l
i=1Hi but can be easily

generalized to time-dependent Hamiltonians. In ref. 7 it was shown
that, for any given simulation precision, the complexity of the
simulation grows only polynomially with the number of particles
to be simulated. Any unitary evolution based on local interactions
can thus be simulated; the approach, therefore, provides the basis
for universal quantum simulations. Such a quantum simulator,
realized by unitaries implemented with a set of universal quantum
operations, is referred to as a digital quantum simulator.

During the past decade a large number of technologies have
been investigated searching for the optimum technology for an
implementation of quantum-information processing1,10. Nuclear
magnetic resonance in molecules11 was the first technology used
for implementing complex multiqubit gate operations. Although
NMR systems are usually considered to be not scalable for
general-purpose quantum computation, they have been favourably
used for small-scale quantum simulations, both digital and
analog8,12. Larger systems that lend themselves almost naturally
to implement solid-state Hamiltonians13,14 are available with
neutral atoms in optical lattices15,16. In these systems, a variety
of experimental controls is available to steer the interaction
between atoms in the lattice, and with the recently developed
techniques for individually addressing single lattice sites17,18
this method offers a wide range of possibilities for analog
simulations14. There are a number of other technologies in use
for various quantum simulations, such as photons19–22; however,
their applicability seems to be limited to very small system
sizes. Other approaches, such as trapped ions15,23, resonator-
coupled superconducting qubit arrays24,25 or electron spins in
quantum dots or diamond26, will need to demonstrate that the
technology is truly scalable.
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Figure 1 | Principles of quantum simulation. The three main steps of a
quantum simulator consist of preparing the input state, evolving it over a
time t and carrying out measurements on the evolved state to extract the
physical information of interest. The time evolution of the simulator is
designed to match the time evolution of the model system to be simulated.
In an analog simulator, this is achieved by matching the dynamics of the
simulator with the time evolution governing the dynamics of the simulated
model. In a digital simulator, the propagator describing the dynamical
evolution is constructed from a series of quantum gates. In the illustration,
the horizontal lines represent qubits or other elementary constituents of
the overall quantum system; grey boxes represent quantum operations
acting on the respective constituents covered by the boxes.

Quantum toolbox with trapped ions
Among the most successful systems investigated for quantum-
information processing arewell controlled strings of trapped atomic
ions held in linear radiofrequency traps23,27,28. Present trapped-ion
processors are based on qubits encoded in one ion each, and
manipulated and made to interact with other qubits by pulses
of laser or microwave radiation. Possible electronic qubit states
are hyperfine or Zeeman ground states, or a combination of a
ground state and an excited metastable electronic state. Depending
on the sensitivity of the qubit states to external field noise, the
coherence of the qubit state is typically preserved for durations of a
few milliseconds up to seconds. A qubit is coherently manipulated
by lasers or microwaves resonantly coupling the qubit states as
described by the Hamiltonian

HI = h̄
Ω

2
(σ+eiφ+σ−e−iφ) (2)

where the Rabi frequency Ω is controlled by the intensity I ∝ |Ω |2
of the exciting field, φ is the phase of the field and σ± denote the
atomic raising and lowering operators. Alternatively, off-resonant
couplings can be employed for inducing a.c. Stark shifts described
by HI = (1/2)h̄Ωσz . The qubit state is detected by a fluorescence
measurement (Fig. 2a) which couples one of the qubit states, but
not the other, to a short-lived excited level29. In this way, the qubit
states are measured by the presence or absence of fluorescence
with detection errors as small as 10−4 (ref. 30). Qubit rotations
before fluorescence detection allow for projective measurements
of any spin component. Qubit–qubit correlations are measured by
spatially resolved fluorescence detection.

The motion of a trapped ion is composed of harmonic motion
along three perpendicular directions. Doppler-cooling techniques
enable us to spatially confine the ion to a region much smaller than
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Figure 2 | Trapped-ion quantum system used for quantum-information
processing. a, A qubit is encoded in two internal states |g〉,|e〉 of an ion
confined in a harmonic potential. Qubit read-out is accomplished by
coupling one of the qubit levels to a short-lived state |s〉. Thus, observation
of fluorescence (bright, dark) indicates population of the ground (|g〉) or
excited (|e〉) state, respectively. The qubit is coherently manipulated by
laser pulses coupling states |g〉 and |e〉 on either a single- or two-photon
transition. b, Qubit–motion coupling. The qubit is excited either on the
carrier transition (2) or on the sideband transitions (3), (4), which couple it
to a vibrational mode. Bracketed numbers refer to equation numbers in the
text giving the corresponding Hamiltonians. Excitation on the sideband
transitions decreases or increases the vibrational quantum number n on
excitation of the qubit. c, In an ion crystal, all measurements are made by
(spatially resolved) fluorescence detection. The vibrational states can be
measured by coupling the ion motion to the qubits using sideband
transitions, thus mapping information about the ion motion onto qubits that
are subsequently read out. Effective spin–spin interactions are realized by
interactions mediated by one or several of the crystal’s vibrational modes.

the optical wavelength31. By laser-sideband cooling, a vibrational
mode can be prepared in the ground state of the quantum
oscillator describing the harmonic motion at low temperature.
Reheating times by fluctuating electric fields strongly depend on
the ion-trap size, with heating rates ranging between 1 and 106
phonons per second32,33.

As indicated in Fig. 2, narrow-band laser light can be used
to couple a qubit, consisting of the two-level system |g 〉 ≡ |↓〉,
|e〉≡ |↑〉, to the ion motion. The physical basis of the interaction is
themomentum transfer from the light field to the ion by stimulated
emission or absorption events. The ion motion is described by a
quantum harmonic oscillator with states |n〉, n = 0,1,2, ... and
oscillation frequency ω. The interaction of a qubit with a laser
detuned from the qubit transition frequency by−ω (red sideband)
is described by the Hamiltonian

HRSB
I = h̄

ηΩ

2
i(aσ+eiφ−a†σ−e−iφ) (3)

Here, creation or destruction of a vibrational quantum is described
by the raising or lowering operators, a† or a, respectively, pertaining
to the harmonic oscillator mode; this process goes hand in hand
with the respective atomic (de-)excitation. When compared with
equation (2), the interaction strength is reduced by a factor η= ka0
where k is the overlap of the (effective) wave vector of the
electromagnetic wave with the normal vector of the ionmotion and
a0 the size of the ionwave packet in the ground state of the harmonic
oscillator. Note that this interaction is mathematically equivalent
to the interaction of a two-level atom inside a cavity, as described
by the Jaynes–Cummings model34, with the cavity-mode frequency
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replaced by the vibrational frequencyω and the interaction strength
replaced by ηΩ . Thus it was realized already in the 1990s that
the physics of a trapped-ion system could be used to emulate the
dynamics of a cavity quantumelectrodynamical (CQED) system35,36

and of other optical processes37. With such operations, CQED
physics was simulated in an analog fashion and enabled the creation
of highly non-classical states of the ion motion38, completely
equivalent to photonic states in CQED, which are rather hard to
prepare and to investigate.

Moreover, interaction with the laser detuned by the trap
frequency+ω (blue sideband) results in anotherHamiltonian

HBSB
I = h̄

ηΩ

2
i(a†σ+eiφ−aσ−e−iφ) (4)

which is not available in CQED physics, but provides for a further
route to simulate quantum systems. In addition to providing
operations entangling qubit and motion, the Hamiltonians (3)
and (4) are also crucial for measuring the vibrational quantum state
by unitary operations mapping the relevant information onto the
qubit which is subsequently read out38–40.

Ion crystals are created by laser cooling an ensemble of ions
into the submillikelvin range. At the equilibrium positions of the
ions, the Coulomb repulsion between the ions is balanced by the
trap confinement force. Typically, the ion oscillation frequencies
ωi/(2π), i = x,y,z , are about 1–10MHz. In linear ion traps41,
the axial potential can be made much less confining than the
transverse one. In such strongly anisotropic potentials, linear
ion crystals form with distances d between neighbouring ions
in the range of a few micrometres. This enables the detection
of individual ions and their manipulation by strongly focused
laser beams. For a laser-cooled N -ion crystal, the ion motion
around the equilibrium positions is described by a set of 3N
collective vibrational modes with distinct oscillation frequencies.
These motional degrees of freedom form part of the quantum
system available for quantum simulations.

Deterministic operations entangling qubits among one another
can be realized by Coulomb-mediated interactions of laser pulses
exciting the ions on the red and blue sidebands of these collective
modes. Different schemes have been proposed and experimentally
demonstrated, based on laser beams that either subsequently
interact with single ions23,42 or couple to all qubits at the same
time43–46. The latter interactions can be described by effective
Hamiltonians inducing spin–spin interactions σ z

i ⊗σ
z
j or σ φi ⊗σ

φ

j
between all pairs of ions (i,j) participating in the interaction where
σ
φ

j = cos φσ x
j + sin φσ y

j and σ k
j denotes the Pauli matrix σ k acting

on the j th qubit. These entangling interactions are independent of
the vibrational state to first order47, whichmakes them attractive for
simulating spin–spin interactions48. Here and later on, Pauli spin
matrices are used to describe operations acting on the pseudo-spin
system composed of the two qubit states. This pseudo-spin should
not be mistaken for the atomic spin.

Analog quantum simulations with trapped ions
The flexibility in engineering interactions between the set of
qubits and harmonic oscillators constituting the trapped ions’
quantum system enables the construction of a wide range of
Hamiltonians. Instead of trying to review all proposals dealing
with analog quantum simulations in trapped ions (many proposals
are summarized in ref. 49), in this section we shall focus on two
examples where first experimental steps have been taken.

Quantum spin systems serve as models for modelling
magnetism in condensed matter. However, understanding
these quantum many-body systems is challenging, and, as
numerical simulation techniques can become computationally too
demanding even for systems consisting of a few tens of spins50,51,
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Figure 3 | Magnetization data. The magnetization mx=
∑N

i=1〈σ
x
i 〉/N

(as derived from the populations of the individual two-level systems that
represent the simulated spins, for details see ref. 57) for N= 2 spins
(circles) is contrasted with that of N=9 spins (diamonds), with
representative error bars for the detection process57. The data deviate from
unity at B/|J| =0 by∼20%, predominantly owing to decoherence from
spontaneous emission in Raman transitions and further dephasing from
Raman beam intensity fluctuations57. The theoretical time-evolution curves
(solid line for N= 2 and dashed line for N=9 spins) are calculated by
averaging over 10,000 quantum trajectories. Reproduced from ref. 57.

quantum simulation might offer new insights into the physics
of these systems.

The simulation of quantum spin systems with trapped ions was
proposed in ref. 48. In that model, each ion of a trapped ion crystal
encodes a spin-1/2 system. The spinHamiltonian

H =
1
2

∑
α,i,j

J αij σ
α
i σ

α
j +

∑
α,i

Bασ αi (5)

is realized by lasers interacting with all qubits representing the spins
and coupling them with one another and to a fictitious magnetic
field Bα . Here, the spin–spin interactions are effective interactions
arising from off-resonant coupling to the motional sidebands (3),
(4) in a regime where the ion–motion coupling strength is much
smaller than the detuning of the lasers. In this limit, the motional
state stays close to its initial state and the vibrational degrees of free-
dom can be adiabatically eliminated. Similar interactions are used
for entangling quantum gates based on spin-dependent forces43,45,
where, however, much stronger transient excitations of the mo-
tional state occur. To engineer the Hamiltonian (5), a pair of laser
beams is required for realizing each component σ αi σ

α
j , α=x,y,z , of

the spin–spin term, and another laser is needed for generating the
coupling to the magnetic field. The spin–spin coupling constants
J αij depend on the laser detuning which determines the coupling
strengths to the different normalmode of the ionmotion. An imple-
mentation of the Hamiltonian (5) on the basis of microwave transi-
tions in inhomogeneousmagnetic fields52 will be discussed later.

A proof-of-principle experiment with two ions was carried
out in 2008 (ref. 53), demonstrating an adiabatic evolution from
paramagnetic to ferromagnetic order when ramping up an Ising-
interaction term in the presence of a transverse field. Experiments
simulating a quantum Ising model with transverse field with three
ions demonstrated the control over the nearest- and next-nearest-
neighbour coupling and its effect on different magnetic ordering,
including spin frustration54–56. More recently, such experiments
have been extended to linear strings of N = 3...9 ions57,58, where
the observed sharpening of the crossover from paramagnetic to
ferromagnetic order with increasing ion number is the precursor
of a quantum phase transition in the limit N →∞. Figure 3,
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Figure 4 | Quantum simulation of relativistic scattering (Klein tunnelling) for linear potentials. Particle–wave packets (filled curves), presented in units of
the size of the ground-state wavefunction, ∆, are compared with ideal predictions (solid black lines) and predictions taking corrections to the Lamb–Dicke
approximation into account (dashed black lines). In the first and last frames of each sequence the positive (green)- and negative (red)-energy components
are reconstructed separately. The blue colour scale of these panels represents the measured expectation value of momentum. The axis on the right shows
the potential energy in units of initial kinetic energy. a, Without a potential, the particle moves to the right with constant velocity. b–d, For a shallow
potential gradient (b) the particle is almost completely reflected, and for steeper gradients (c,d) part of the wave packet propagates into the repulsive
potential through Klein tunnelling. Figure reproduced with permission from ref. 71, © 2011 APS.

taken from ref. 57, shows the result of such an experiment. In
this measurement, the arising magnetism in a fully connected
non-uniform ferromagnetic quantum Ising model implemented
with up to nine trapped 171Yb+ ions is simulated57.When increasing
the Ising coupling strengths relative to the transverse field, the spin
ordering changes from paramagnetic to ferromagnetic, indicating
a phase transition, which sharpens as more ions are used for the
simulation. More information about the simulation of spin systems
can be found in a recent review59. To become competitive with
classical simulation techniques, trapped-ion simulations of spin
systems will have to demonstrate simulations with larger numbers
of spins and more complex spin–spin couplings J αij . Then, even
for fairly small numbers of spins, rich phase diagrams with sharp
transitions have been predicted60. Experiments along these lines will
require coupling tomultiple vibrationalmodes48 andmost probably
also two-dimensional trapping geometries, topics that will be briefly
touched on at the end of this Review.

Quantum simulations with trapped ions are not limited to the
domain of low-energy physics. Proposals have been put forward for
simulating relativistic quantum particles61, Hawking radiation62–65

and particle generation66 using analog trapped-ion simulators.
Here, we illustrate how a single laser-cooled ion can be made to
behave like a relativistic quantum particle.

At submillikelvin temperatures, the quantum dynamics of a
trapped ion is adequately described by the Schrödinger equation
ih̄∂ψ/∂t = Hψ . Therefore, to simulate a relativistic particle, the
Schrödinger Hamiltonian H has to be engineered such that it
matches the HamiltonianHD= c α · p̂+βmc2 of the Dirac equation
governing the dynamics of the particle to be simulated. Here, α and
β are the Dirac matrices and p̂ the momentum operator. For the
simulation of a free Dirac particle, it was proposed in ref. 61 to
encode the four-component spinor state ψ in four internal states
of the ion and to simulate the Dirac Hamiltonian HD by laser–ion
interactions coupling the internal states among one another and to
the three harmonic oscillators describing the ionmotion in the trap.

In the experiment described in ref. 67, this proposal is realized
for a Dirac equation in 1+1 dimensions. In this case, the spinors

have only two components that were encoded in two long-lived
levels of a 40Ca+ ion, and the Hamiltonian HD = c p̂ σx +mc2 σz
is realized by spin-dependent light forces and a.c. Stark shifts.
In addition to simulating free Dirac particles, particles in linear
and quadratic potentials can also be simulated by adding a
potential generated by laser excitation of a second particle68.
With these tools, phenomena analogous to relativistic quantum
effects such as ‘Zitterbewegung’—the trembling motion of a Dirac
particle predicted by Schrödinger69—and Klein tunnelling70 can be
investigated in trapped-ion experiments67,71.

For the observation of the simulated quantum dynamics,
schemes for measuring observables of interest are required. Infor-
mation about themotional state needs to bemapped onto the inter-
nal states of the ion, where it is read out by fluorescence detection.
Instead of completely characterizing the motional state by tomo-
graphic techniques39,72, it is more efficient tomeasure the centre-of-
mass position 〈x̂〉 of the ion73 or its probability distribution 〈δ(x̂−
x)〉 (refs 40,74) in position space by tailored detection schemes.

The motion of a relativistic wavepacket in the presence of a
potential was simulated by Gerritsma and colleagues71. For this,
one ion was used to simulate the Dirac particle and a second
ion to simulate the action of a linear potential on the Dirac
particle. Figure 4 shows the simulated behaviour of the wavepacket
in that potential: in the absence of a potential (Fig. 5a), the
motion of a free particle is observed, for small slopes (Fig. 5b;
non-relativistic limit) the wavepacket is reflected and for steeper
slopes (Fig. 5c,d; relativistic scattering) the positive-energy part
of the wavefunction (simulated matter) is reflected and the
negative-energy part of the wavefunction (simulated antimatter)
is transmitted, which corresponds to a quantum simulation
of Klein tunnelling71.

The experiments described above all deal with a single relativistic
particle and thus do not present insurmountable obstacles to
analytic calculation or conventional simulation techniques. To
bring these experiments to a new level of complexity will require
the development of techniques for the simulation of quantum
fields64–66,75 that allow for the creation and annihilation of particles.
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Figure 5 | Quantum toolbox with a string of trapped ions. Laser beams
interact with the ion(s) for a predetermined time, corresponding to phases
θ in units of π. For this, the ions are either simultaneously (global beam) or
individually (local beam) addressed to implement the toolbox operations
O1(θ,j) (local), O2(θ) and O3(θ,φ) (global) and the entangling O4(θ,φ)
(global). These operations are applied sequentially according to a given
simulation (or computational) task.

Digital quantum simulations with trapped ions
In the digital approach to quantum simulation, the state of
the system to be simulated is encoded in a quantum register
of the simulator and the dynamics is approximated with a
stroboscopic sequence of quantum gates. This approach is very
flexible as it enables us in principle to efficiently simulate any
local quantum system7. Such a universal quantum simulator is
an instance of a special-purpose quantum computer. Quantum
error-correction techniques to correct for and quantitatively bound
experimental errors are therefore available in large-scale digital
quantum simulations. Efficiency considerations with respect to the
desired simulation precision are discussed in refs 12,76.

Any universal set of quantum gates can be the basis for
the operations of a digital quantum simulator. The digital
approach has been experimentally explored with NMR systems
and with trapped ions. Here, we shall illustrate it by describing
a recent experiment using the Trotter technique for simulating
spin–spin interactions in a string of two to six 40Ca+ ions77
where the qubits are encoded in superpositions of the |S1/2〉
ground and |D5/2〉 metastable states of the calcium ion. Then,
states encoded in these qubits are manipulated by laser pulses
implementing the following universal set of operations78:O1(θ,j)=
exp(−iθσ z

j ), O2(θ)= exp(−iθ
∑

iσ
z
i ), O3(θ,φ)= exp(−iθ

∑
iσ

φ

i )
and O4(θ,φ)= exp(−iθ

∑
i<jσ

φ

i σ
φ

j ). As indicated in Fig. 5, O1
is realized by a strongly focussed beam interacting with the jth
ion, whereas O2–O4 are implemented with a second beam that
couples to all ions with the same strength. The entangling operation
O4 is realized by off-resonant coupling to a vibrational mode
as described earlier.

The digital approach enables arbitrary interactions between
spins to be programmed. For simulations shown in Figs 6 and 7,
we define dimensionless Hamiltonians H̃ , that is H = EH̃ such
that U = e−iH̃Et/h̄ and the system evolution is quantified by a
unitless phase θ = Et/h̄.

According to (1), and as detailed in ref. 77, the Hamiltonians
to be simulated are piecewise applied using the toolbox operations
given above. The dynamics of the system is then implemented with
a stroboscopic sequence of Oi (i = 1,2,3,4) gates, representing
for example the magnetic field and spin–spin evolution operators
for Ising-type interactions. As was shown in ref. 77, the simulated
dynamics converge closer to the exact dynamics as the digital
resolution is increased.

Figure 6a–c shows the simulated dynamics of two-spin systems
with increasing complexity and the initial state |→←〉x ≡ (| ↓〉
+|↑〉)(|↓〉−|↑〉). Figure 6a shows the state evolution for the Ising
system, where the operations C =O2(π/16) and D=O4(π/16,0)
are employed to implement the uniform field B and the interaction
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Figure 6 | Digital simulations of a two-spin system interacting through
Ising, XY and XYZ interaction plus a transverse field. Dynamics of the
initial state |→←〉x using a fixed digital resolution of π/16. Each panel
shows how a single digital step is built from the elementary interactions:
C=O2(π/16), D=O4(π/16,0), E=O4(π/16,π), F=O3(π/4,0). Lines
show exact dynamics induced by the respective Hamiltonian, open symbols
the ideal digitized dynamics. Filled symbols are measured data (blue
diamond,→←x; red square,←→x; black circle,←←x,→→x). Figure
adapted with permission from ref. 77, © 2011 AAAS.

J , respectively. More complex systems with further spin–spin
interactions in the y (‘XY’ model) and z (‘XYZ’ model) directions
can be simulated by reprogramming the operation sequence.
The dynamics due to a further spin–spin interaction in the
y direction is simulated by adding another entangling operation
(labelled E in Fig. 6b) to each step of the Ising stroboscopic
sequence. To simulate a Heisenberg interaction, a third spin–spin
interaction in the z direction is realized by adding yet another
entangling gate sandwiched between a pair of collective single-qubit
operations set to rotate the reference frame of the qubits. In
the simulated dynamics of the initial state |→←〉x under each
model, for a fixed digital resolution of θ/n= π/16 and 12 Trotter
steps, 24, 48 and 84 gates are used for the Ising, XY and XYZ
simulations, respectively.

As an even more complex example, Fig. 7a shows the observed
dynamics of the four-spin state |↑↑↑↑〉 ≡ |eeee〉 under a long-
range Ising-type interaction. The rich structure of the dynamics
reflects the increased complexity of the underlying Hamiltonian:
oscillation frequencies correspond to the energy gaps in the
spectrum. This information can be extracted through a Fourier
transform of the data77. Figure 7b shows the observed dynamics
for the largest simulation presented in ref. 77: a six-spin many-
body interaction, which directly couples the states |↑↑↑↑↑↑〉
and | ↓↓↓↓↓↓〉, periodically producing a maximally entangled
Greenberger–Horne–Zeilinger state.

The toolbox above can be extended to include optical pumping
techniques and thus enables simulations of non-Hermitian Hamil-
tonians and therefore of open quantum systems as well79.
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Figure 7 | Digital simulations of four- and six-spin systems. Dynamics of
the initial state where all spins point up. a, Four-spin long-range Ising
system. Each digital step is D.C=O4(π/16,0).O2(π/32). Error bars are
smaller than the point size. b, Six-spin six-body interaction. F=O1(θ,1),
4D=O4(π/4,0). Lines, exact dynamics. Open symbols, ideal digitized.
Filled symbols, data (blue square, P0; magenta diamond, P1; black circle, P2;
green triangle, P3; red right triangle, P4; cyan down triangle, P5; orange left
triangle, P6, where Pi is the total probability of finding i spins pointing
down). Figure reproduced with permission from ref. 77, © 2011 AAAS.

New directions
All the experiments described so far involve linear strings of
ions held in harmonic traps and subject to spin-dependent forces
induced by laser beams. Although this set-up will continue to
play a key role in future experiments, there are also various new
approaches being explored at present. Here, we shall discuss a
couple of ideas that address new ways of coupling ions, handling
larger numbers of ions andmodifying the geometrical arrangement
in which the ions are held.

An alternative to optical spin-dependent forces for entanglement
creation is the use of microwaves. As the momentum transfer
by absorption or emission of free-space microwave photons is
too small to be useful, magnetic-field gradients provide a means
of creating spin-dependent potentials for exhibiting a differential
Zeeman shift52 or driving sideband transitions80. Experiments have
demonstrated a coupling between two internal states of an ion
and its motion using either static81 or oscillating field gradients82.
The latter have been recently used for entangling a pair of ions
by inducing correlated spin flips82,83. Quantum simulations of spin
systems based on forces generated by magnetic-field gradients
would have much less stringent low-temperature requirements
than their laser-based counterparts. To achieve substantial ion–ion
couplings, large field gradients of about 10–100 Tm−1 are required,
which can be achieved in microfabricated ion traps with current-
carrying structures in close proximity to the ions82,84,85.

Microfabricated ion traps are also of interest in other respects,
as they offer greater flexibility in shaping the external trapping
potential, compared with the standard Paul traps. When scaling up
quantum simulations with long strings of ions held in harmonic
potentials, the ratio of transverse to axial trap frequencies has to
grow as ωx,y/ωz > 0.77N/

√
logN with the number of ions N ,

to prevent the ion string from undergoing a transition change
to a zigzag configuration86. This sets a technical upper limit
to the number of ions in a linear configuration. If, however,
anharmonic terms are added to the axial potentials to keep the
ion distance d constant over the length of the ion string, the
ion string retains its linear structure for transverse frequencies
ωx,y > 2.05

√
e2/(4πε0md3) (refs 86,87), where m denotes the ion

mass and ε0 the vacuum permittivity. Good approximations to
the required axial potential can be achieved in a segmented trap
with a small number of control electrodes88. If long strings of ions
are trapped in such an anharmonic potential, there will be low-
frequency axial modes with substantial thermal excitation that will
be difficult to laser-cool close to the ground state. For this reason,
spin–spin couplings will most likely be engineered by coupling to
the transversemodes, which have a small frequency spread1ω. This
would allow for simulations of short-range spin–spin interactions
mediated by electromagnetic forces coupling spin and motion with
a detuning much bigger than1ω.

Another path to quantum simulations with larger numbers
of ions makes use of microtraps for realizing two-dimensional
trapping geometries by placing each ion into a minimum of
the trapping potential89–94. With two-dimensional ion crystals
at hand, quantum simulation of spin–boson models95, phonon
superfluids96, spin frustration97 or the study of edge states of
topological insulators98 could be carried out. The big challenge
when trapping ions in individual traps is to achieve sizeable
(state-dependent) couplings between the ions, as the Coulomb-
mediated motional coupling between them scales as ω−1d−3 with
the trap frequency ω and ion distance d . This approach requires
potential variations on length scales well below 100 µm. Only
recently, first experiments have demonstrated coherent coupling
of ions trapped in the two wells of a double-well potential99,100.
An alternative to trapping each ion separately for simulating
two-dimensional spin frustration might be to use zigzag crystals
or the coupling of linear crystals held in separate traps85,101.
As an alternative to Coulomb-mediated ion–ion interactions,
the use of dipole–dipole interactions between Rydberg ions
has been proposed102,103.

All approaches described above are based on ions trapped by
means of radiofrequency fields. This, however, is not the only way
of trapping ions. In Penning traps, the crystallization of hundreds
of ions in a planar crystal has been demonstrated104; the ion
motion can be excited with state-dependent optical dipole forces105.
If a similar level of control over the ions as was demonstrated
in radiofrequency traps could be achieved in these traps, they
would become an attractive system for the simulation of two-
dimensional spin systems97.

Trapping ions by optical forces106 is another way of creating
strongly anharmonic potentials with prospects for simulations aim-
ing at simulating the Frenkel–Kontorova model and friction107,108.
Also, optical forces might be of interests in quantum simulations
involving ions and neutral atoms109,110.

Summary and outlook
The progress in quantum-information processing over the past
decade has opened up exciting new perspectives for the realization
of quantum simulations. Among the systems investigated, trapped
ions have proved to be one of the best, enabling both reliable
quantum control andmeasurements with high fidelity. Most recent
experimental results on quantum simulations with trapped ions
have been summarized and reviewed, and a number of further
potential applications have been indicated. The current efforts
towards scalable ion trap systems, both for long strings of ions
and two-dimensional ion arrays, offer promising tools for future
experiments.With these at hand, it will be necessary to demonstrate
in the not-too-distant future—at least on a proof-of-principle
level—that quantum simulations will be able to go beyond what
can be done with classical computers. At this time, simulating
the dynamics of spin Hamiltonians of the Ising type with general
interactions and more than 40 ions seems to be a problem that goes
beyond the classical capabilities111 and that may be in reach within
the next few years for trapped-ion experiments.
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Also, for much-extended quantum simulations and for high (or
higher) precision, the influence of errors on the simulation result is
an important topic; at present, the question of whether simulator
imperfections will have a substantial impact or not on quantities of
interest to be extracted from the simulation has not been studied in
depth112. For analog quantum systems, techniques such as encoding
into decoherence-free subspaces113 or the application of dynamical
decoupling techniques114 might be needed to suppress unwanted
decoherence, and thus to stabilize the simulation processes. For dig-
ital quantum simulations, quantum-error-correction techniques115
are likely to be required, albeit at the expense of much-increased
experimental overhead. However, the necessity for error correction
depends also on the problem to be simulated. For example, sim-
ulated phase transitions may be visible with only marginal error
correction, whereas the precise simulation, for example, of molec-
ular potentials or energy gaps of a spin system presumably requires
muchmore involved error correction or error-avoiding protocols.

Finally, for large quantum simulations that go beyond classical
computing, verification of the results will become an issue. It
is often argued that this may be the bottleneck for quantum
simulations. However, this is not the case when several different
devices with possibly different technologies become available to run
the same simulations. Then large-scale quantum simulations can
be compared with one another—in the same way as has happened
for metrological precision experiments for defining, for example,
the second as an International System of Units (SI) unit. Therefore,
quantum simulations can be considered a new method of precision
spectroscopy and quantum metrology that is able to tackle both
fundamental and applied questions.
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